New Class of Multivariate Public Key Cryptosystem, K(XI)RSE(2)PKC, Constructed based on Reed-Solomon Code Along with K(X)RSE(2)PKC over \mathbb{F}_2

Masao KASAHARA *
September 10, 2014

Abstract

Extensive studies have been made of the public key cryptosystems based on multivariate polynomials (Multi-variate PKC, MPKC) over \mathbb{F}_2 and \mathbb{F}_{2^m}. However most of the proposed MPKC are proved not secure. In this paper, we propose a new class of MPKC based on Reed-Solomon code, referred to as K(XI)RSE(2)PKC. In Appendix, we present another class of MPKC referred to as K(X)RSE(2)PKC over \mathbb{F}_2. Both K(X)RSE(2)PKC and K(XI)RSE(2)PKC yield the coding rate of 1.0. We show that the proposed schemes can be sufficiently secure against various attacks, including Gröbner basis attack.

keyword
Public-key cryptosystem, Gröbner basis attack, Multivariate PKC, Code-based PKC.

1 Introduction

Extensive studies have been made of the Public Key Cryptosystem (PKC). The security of most PKC’s depends on the difficulty of discrete logarithm problem or factorization problem. Thus it is desired to investigate another classes of PKC that do not rely on the difficulty of these two problems.

So far extensive studies have been made of the Multivariate PKC (MPKC) constructed based on the simultaneous equations of degree 2 (SE(2)PKC) [1-8]. All these proposed schemes are very interesting and important. However unfortunately, some of these schemes have been proved not necessarily secure against the conventional attacks such as Patarin’s attack [3], Gröbner basis attack [9], Bracken-Wolf-Preneel (BWP) attack [10,11].

In this paper, we propose a new class of MPKC based on Reed-Solomon code, referred to as K(XI)RSE(2)PKC. We then propose another class of MPKC referred to as K(X)RSE(2)PKC over \mathbb{F}_2. Both K(X)RSE(2)PKC over \mathbb{F}_2 and K(XI)RSE(2)PKC over \mathbb{F}_{2^m} yield the coding rate of 1.0. We show that the proposed schemes can be secure against the possible attacks, including Gröbner basis attack.

Throughout this paper, when the variable v_i takes on a value \tilde{v}_i, we shall denote the corresponding vector $\mathbf{v} = (v_1, v_2, \cdots, v_n)$ as

$$\tilde{\mathbf{v}} = (\tilde{v}_1, \tilde{v}_2, \cdots, \tilde{v}_n).$$

We shall use the notation tilda \sim when it is necessary for understanding the meaning of v_i more clearly.

*Research Institute for Science and Engineering, Waseda University. Research and Development Initiative, Chuo University. kasahara@ogu.ac.jp
The vector \(\mathbf{v} = (v_1, v_2, \cdots, v_n) \) will be represented by the polynomial as
\[
v(x) = v_1 + v_2 x + \cdots + v_n x^{n-1}.
\] (2)

The \(\tilde{u} \), \(\tilde{u}(x) \) et al. will be defined in a similar manner.

2 \hspace{1em} K(XI)RSE(2)PKC

2.1 Preliminaries

2.1.1 List of symbols

\(M \) : Message, \((M_1, M_2, \cdots, M_{2gm})\) over \(\mathbb{F}_2 \).

\(G(x) \) : Generator polynomial of Reed-Solomon code over \(\mathbb{F}_{2^m} \).

\(g \) : Degree of \(G(x) \).

\(\varphi_R(x) \) : Randomly quadratic-transformed \(x \).

\(\varphi_S(x) \) : Systematically quadratic-transformed \(x \).

\(RSE(2) \) : Simultaneous quadratic equations randomly constructed.

\(SSE(2) \) : Simultaneous quadratic equations systematically constructed.

\(A \) : \((A_1, A_2, \cdots, A_g)\) over \(\mathbb{F}_{2^m} \).

\(A_i \) : \((A_{i1}, A_{i2}, \cdots, A_{im})\) over \(\mathbb{F}_{2^m} \).

\(A_{ij} \) : Randomly constructed quadratic equation; \(A_{ij}^{(2)}(M_1, M_2, \cdots, M_{2gm}) \) over \(\mathbb{F}_2 \).

\(\alpha \) : \((\alpha_1, \alpha_2, \cdots, \alpha_g)\) over \(\mathbb{F}_{2^m} \).

\(\alpha_i \) : \((\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{im})\) over \(\mathbb{F}_2 \).

\(\alpha_{ij} \) : Systematically constructed quadratic equation; \(\alpha_{ij}^{(2)}(M_1, M_2, \cdots, M_{2gm}) \) over \(\mathbb{F}_2 \).

Small letter is used for \(SSE(2) \).

2.1.2 Random quadratic equation

The set of random quadratic equations, \(\{A_{ij}\} \), is constructed as follows:

Let a linear term \(T_i \) and a quadratic term \(T_{jk} \) be
\[
T_i = M_i; i = 1, 2, \cdots, 2gm. \hspace{1em} (3)
\]
\[
T_{jk} = M_j M_k; j, k = 1, 2, \cdots, 2gm; j \neq k. \hspace{1em} (4)
\]

The random quadratic equation \(A_{ij} \) over \(\mathbb{F}_2 \) is
\[
A_{ij} = \sum_{i=1}^{2gm} \theta_{(1)i} T_i + \sum_{j,k=1,j \neq k}^{2gm} \theta_{(2)jk} T_{jk}, \hspace{1em} (5)
\]

where \(\theta_{(1)i} \) and \(\theta_{(2)jk} \) take on 0 or 1 with the probability 0.5.

2.2 Construction

Let the original message \(M = (M_1, M_2, \cdots, M_{2gm}) \) over \(\mathbb{F}_2 \) be transformed to

\[
M \cdot A_I = m = (m_1, m_2, \cdots, m_{2gm}), \hspace{1em} (6)
\]

where \(A_I \) is a non-singular \(2gm \times 2gm \) matrix over \(\mathbb{F}_2 \).
Let \(\mathbf{m} = (m_1, m_2, \ldots, m_{2gm}) \) over \(\mathbb{F}_2 \) be partitioned to
\[
\mathbf{m} = (\alpha; \beta),
\] where \(\alpha \) and \(\beta \) over \(\mathbb{F}_2 \) are
\[
\alpha = (m_1, m_2, \ldots, m_{gm}),
\beta = (m_{gm+1}, m_{gm+2}, \ldots, m_{2gm}).
\]
The components of \(\alpha \) is systematically transformed to a set of quadratic equations over \(\mathbb{F}_{2m} \) that can be systematically decoded:
\[
\varphi_s(\alpha) = \sigma = (\sigma_1, \sigma_2, \ldots, \sigma_g),
\]
where \(\sigma_i \) is
\[
\sigma_i = (\sigma_{i1}, \sigma_{i2}, \ldots, \sigma_{im}); i = 1, 2, \ldots, g.
\]
The component of \(\sigma_i, \sigma_{ij} \), is
\[
\sigma_{ij} = \sigma_{ij}^{(2)}(m_1, m_2, \ldots, m_{gm}); i = 1, 2, \ldots, g; j = 1, 2, \ldots, m,
\]
where \(\sigma_{ij} \)'s will be referred to as erasure errors.

Let \(\sigma(x) = \sigma_1 x + \sigma_2 x^2 + \cdots + \sigma_g x^{g-1} \) be transformed to
\[
\sigma(x) \to \tau(x) = \sigma_1 x^{(1)} + \sigma_2 x^{(2)} + \cdots + \sigma_g x^{(g)},
\]
where the exponents \((i) \) are randomly chosen on condition that they satisfy
\[
0 \leq (1) < (2) < \cdots < (g) \leq 2g - 1.
\]
Let us refer to \((1), (2), \ldots, (g)\) as erasure locations.
The vector \(\alpha \) is randomly transformed to \(\Omega \) over \(\mathbb{F}_{2m} \):
\[
\varphi_R(\alpha) = \Omega = (\Omega_1, \Omega_2, \ldots, \Omega_g),
\]
where \(\Omega_i \) is
\[
\Omega_i = (\Omega_{i1}, \Omega_{i2}, \ldots, \Omega_{im}); i = 1, 2, \ldots, g.
\]
The component of \(\Omega_i, \Omega_{ij} \) is
\[
\Omega_{ij} = \Omega_{ij}^{(2)}(m_1, m_2, \ldots, m_{gm}); i = 1, 2, \ldots, g; j = 1, 2, \ldots, m.
\]
The vector \(\beta \) is systematically transformed to \(\rho \) over \(\mathbb{F}_{2m} \):
\[
\varphi_s(\beta) = \rho = (\rho_1, \rho_2, \ldots, \rho_g),
\]
where \(\rho_i \) is
\[
\rho_i = (\rho_{i1}, \rho_{i2}, \ldots, \rho_{im}); i = 1, 2, \ldots, g.
\]
The component of \(\rho_i, \rho_{ij} \) is
\[
\rho_{ij} = \rho_{ij}^{(2)}(m_{gm+1}, m_{gm+2}, \ldots, m_{2gm}); i = 1, 2, \ldots, g; j = 1, 2, \ldots, m.
\]
Let us summarize the features of the above-mentioned quadratic equations:
\[
\{\sigma_{ij}\}, \{\rho_{ij}\} : \text{Sets of quadratic equations that can be systematically decoded.}
\]
\[
\{\Omega_{ij}\} : \text{Set of random quadratic equations that cannot be systematically decoded.}
\]
The sets \{\sigma_{ij}\}, \{\rho_{ij}\} and \{\Omega_{ij}\} yield the following advantages:

(i) simple decoding process thanks to \{\sigma_{ij}\} and \{\rho_{ij}\},
(ii) high security against the various attacks including Gröbner bases attack, thanks to \{\Omega_{ij}\}.

Let \Omega(x) + \rho(x) be transformed to
\[x^g(\Omega(x) + \rho(x)) \equiv R(x) \mod G(x). \tag{20} \]
The code word \(V(x)\) is
\[V(x) = R(x) + x^g(\Omega(x) + \rho(x)) \equiv 0 \mod G(x). \tag{21} \]
The word \(W(x)\) is
\[W(x) = V(x) + \tau(x) = W_1 + W_2x + \cdots + W_{2g}x^{2g-1}. \tag{22} \]
Let \(W_i\) be
\[W_i = (W_{i1}, W_{i2}, \cdots, W_{lim}); i = 1, 2, \cdots, 2g. \tag{23} \]

Taking account of the above Eq.(23), we regard \(W = (W_1, W_2, \cdots, W_{2g})\) over \(\mathbb{F}_2\) as the vector \(W'\) over \(\mathbb{F}_2\):
\[W' = (W_{11}, \cdots, W_{1m}; W_{21}, \cdots, W_{2m}; \cdots; W_{2g1}, \cdots, W_{2gm}). \tag{24} \]
The set of public key, \{\(U_i\)\}, is
\[W'A_{II} = U = (U_1, U_2, \cdots, U_{2gm}), \tag{25} \]
where \(A_{II}\) is a non-singular \(2gm \times 2gm\) matrix over \(\mathbb{F}_2\).

The \(U_i\) is
\[U_i = U_i^{(2)}(M_1, M_2, \cdots, M_{2gm}); i = 1, 2, \cdots, 2gm. \tag{26} \]
We see that \(U_i\) can be represented as
\[U_i^{(2)}(M_1, M_2, \cdots, M_{2gm}) = Y_i^{(2)}(M_1, M_2, \cdots, M_{2gm}) + y_i^{(2)}(M_1, M_2, \cdots, M_{2gm}) \tag{27} \]
where \(Y_i\)'s and \(y_i\)'s are the transformed versions of \(V_i\)'s and \(\tau_i\)'s respectively, based on \(A_{II}\).

Let \(z(x) = z_i^{(2)}(M_1, M_2, \cdots, M_{2gm})\) denote the transformed version of \(\rho(x)\) based on \(A_{II}\).

In Fig.1, we show an example of \{\(U_i\)\}, only for an easy understanding of the present paper. It should be noted that this is not an example of K(XI)RSE(2)PKC.
\[U_1 = 1 + (M_1) + M_5 + M_1 M_2 + (M_2 M_3) + M_2 M_4 + M_3 M_6 + (M_3 M_6)\]
\[U_2 = M_2 + (M_4) + M_1 M_4 + (M_2 M_6) + M_3 M_5\]
\[U_3 = M_3 + (M_5) + M_6 + (M_1 M_2) + M_1 M_5 + M_2 M_3 + M_3 M_6 + M_4 M_6\]
\[U_4 = (M_4) + (M_6) + M_1 M_5 + M_1 M_6 + (M_3 M_4) + M_2 M_6 + M_5 M_6\]
\[U_5 = M_2 + (M_5) + M_1 M_3 + (M_2 M_3) + M_2 M_6 + (M_3 M_4) + (M_4 M_6)\]
\[U_6 = (M_4) + M_5 + (M_1 M_2) + M_1 M_3 + M_1 M_6 + (M_2 M_4) + M_3 M_4 + (M_3 M_5)\]

Only in this example for easy understanding, erasure symbols are enclosed in parentheses.

Figure 1: An example of \(\{U_i\}\).

In 2.4, we shall see that K(XI)RSE(2)PKC yields the coding rate of exactly 1.0. It is evident that the coding rate of the ciphertext constructed based on \(\{U_i\}\) of Example 1 is also exactly 1.0.

The set of keys are:

| Public key | \{U_i\} |
| Secret key | \{\sigma_{ij}\}, \{\Omega_{ij}\}, \{\rho_{ij}\}, A_I, A_H |

2.3 Encryption and decryption process

Encryption process:

S1: Given the message \(\tilde{M} = (\tilde{M}_1, \tilde{M}_2, \ldots, \tilde{M}_{2gm})\) over \(\mathbb{F}_2\), Bob calculates the ciphertext over \(\mathbb{F}_2^m\):
\[\tilde{C} = (\tilde{U}_1, \tilde{U}_2, \ldots, \tilde{U}_{2gm})\], where \(U_i = U_i^{(2)}(\tilde{M}_1, \tilde{M}_2, \ldots, \tilde{M}_{2gm})\).

Decryption process:

S1: Given the ciphertext \(\tilde{C}\), Alice calculates \(\tilde{C}A_H^{-1} = \tilde{W}'\), yielding \(\tilde{V} + \tilde{r}\) over \(\mathbb{F}_2^m\).
S2: Alice decodes \(\tilde{r}\) with erasure and error decoding algorithm [12], yielding \(\tilde{\sigma}\).
S3: Alice decodes the first message \(\tilde{\alpha} = (\tilde{m}_1, \tilde{m}_2, \ldots, \tilde{m}_{gm})\) over \(\mathbb{F}_2\) by solving the set of systematically constructed quadratic equations \(\{\sigma_{ij}^{(2)}(\tilde{m}_1, \tilde{m}_2, \ldots, \tilde{m}_{gm})\}\).
S4: Alice calculates \(\varphi_R(\tilde{\alpha}) = \tilde{\Omega} = (\tilde{\Omega}_1, \tilde{\Omega}_2, \ldots, \tilde{\Omega}_g)\) over \(\mathbb{F}_2^m\), where \(\tilde{\Omega}_i\) is \(\Omega_i^{(2)}(\tilde{m}_1, \tilde{m}_2, \ldots, \tilde{m}_{gm})\), yielding \(\tilde{\rho} = (\tilde{\rho}_1, \tilde{\rho}_2, \ldots, \tilde{\rho}_g)\) over \(\mathbb{F}_2^m\).
S5: Alice decodes the second message \(\beta = (\tilde{m}_{gm+1}, \tilde{m}_{gm+2}, \ldots, \tilde{m}_{2gm})\) over \(\mathbb{F}_2\) by solving the set of systematically constructed quadratic equations \(\{\rho_i^{(2)}(\tilde{m}_{gm+1}, \tilde{m}_{gm+2}, \ldots, \tilde{m}_{2gm})\}\).
S6: Alice calculates \((\tilde{m}_1, \tilde{m}_2, \ldots, \tilde{m}_{2gm})A_I^{-1}\), yielding the message : \(\tilde{M} = (\tilde{M}_1, \tilde{M}_2, \ldots, \tilde{M}_{2gm})\) over \(\mathbb{F}_2\).

2.4 parameters

The size of public key, \(S_{PK}\), is
\[S_{PK} = \#\{U_i\} \times |U_i|, \quad (28)\]
where \(\# \{U_i\} \) is the order of the set of public key, \(\{U_i\} \), and \(|U_i|\), the size of public key \(U_i \) (in bit).

For example,

\[
S_{PK} = 135 \text{ KB for } m = 8, g = 8. \\
S_{PK} = 1.05 \text{ MB for } m = 8, g = 16.
\]

The coding rate \(\rho \) is

\[
\rho = \frac{|M|}{|C|} = \frac{2gm}{2gm} = 1.0,
\]

where \(M \) is the size of message and \(|C|\), the size of the ciphertext.

We see that the coding rate is exactly 1.0.

2.5 Security considerations

In this subsection we let the parameters: \(m = 8, g = 16 \).

Attack 1: Exhaustive attack on \(A_H \)

The probability that \(A_H \) is correctly estimated, \(P_c[\hat{A}_H] \)

\[
P_c[\hat{A}_H] \approx 2^{-4g^2m^2} = 5 \times 10^{-19662}.
\]

We see that K(XI)RSE(2)PKC is secure against Attack 1.

For a moment let us assume that \(W' \) is transformed to \(W'P = U' \),

\[
W'P = U',
\]

where \(P \) is a \(2gm \times 2gm \) random column permutation matrix. Namely we assume that a more simple transformation \(P \) is applied to \(W' \), instead of \(A_H \).

Attack 2: Exhaustive attack on erasure locations, \((1), (2), \cdots, (g)\), under the condition that \(U' \) is given instead of \(U \).

The probability that erasure locations are correctly estimated, \(P_c[[\hat{i}]] \), is

\[
P_c[[\hat{i}]] = \left(\frac{2gm}{gm} \right)^{-1}.
\]

For example, for \(m = 8, g = 16 \), \(P_c[[\hat{i}]] \) are

\[
P_c[[\hat{i}]] = \left(\frac{256}{128} \right)^{-1} = 1.74 \times 10^{-76},
\]

a sufficiently small value.

We conclude that K(XI)SE(2)PKC is secure against Attack 2 for \(m = 8, g \gtrsim 16 \).

Remark 1: The author feels certain that, even if the set of erasure error locations \(\{i\} \) are correctly estimated with an exhaustive method, it would still hard to disclose the set of simultaneous equations \(\{\sigma_{ij}\} \). The reason of the author’s certainty is due to the robustness of K(XI)RSE(2)PKC against Attack 3 mentioned below.

Attack 3: Disclosing SSE(2) added on RSE(2)

Let us first point out a large difference between the entropies (ambiguities) of SSE(2) and RSE(2). The entropy of SSE(2) in the \(gm \) variables \(m_1, m_2, \cdots, m_{gm} \) or \(m_{g+1}, m_{g+2}, \cdots, m_{2gm} \), \(I_S \), is

\[
I_S \approx \log_2 \left(\frac{2^{gm} - 1}{gm} \right) + \log_2 \left(\frac{gm}{2} \right) \\
\approx gm + \log_2 gm \text{ (bit)}.
\]
The entropy of RSE with the same number of variables, I_R, is

$$I_R \cong \left(\frac{gm}{2} \right) \cdot gm \cong \frac{1}{2}g^3m^3 \text{ (bit)}. \quad (36)$$

For $m = 8, g = 16$, I_S and I_R are

\begin{align*}
I_S &= 135 \text{ bit}, \\
I_R &= 1.05 \text{ M bit}. \quad (37)
\end{align*}

Namely in $K(X)SE(2)PKC$, the following relation holds:

$$I_R >> I_S. \quad (38)$$

We see that any linear transformation attack would find it hard to disclose $y_i^{(2)}(M_1, M_2, \ldots, M_{2gm})$ from $U_i^{(2)}(M_1, M_2, \ldots, M_{2gm})$, due to the large difference between the entropies (ambiguities) of SSE(2) and RSE(2).

We thus conclude that disclosing the set of SSE(2), $\{\sigma_{ij}\}$ embedded in V, is hard, because the entropy of σ_{ij} is very small compared with that of the component of V.

We see that $K(X)SE(2) PKC$ is secure against Attack 3.

Notes on the security:

The set of quadratic equation $\{\Omega_{ij}\}$ is constructed using $\varphi_R(\alpha)$, a random non-linear transformation of $\alpha = (m_1, m_2, \ldots, m_{gm})$ where m_i is a linear equation in the variables $M_1, M_2, \ldots, M_{2gm}$ over \mathbb{F}_2.

The vector τ, randomly permuted version of $\varphi_R(\alpha)$ is added to the code word

$$V = (V_1, V_2, \ldots, V_{2gm}), \quad (39)$$

where V_i is

$$V_i = (V_{i1}, V_{i2}, \ldots, V_{im}). \quad (40)$$

The component of V_i, V_{ij} is a random quadratic equation in the variables $M_1, M_2, \ldots, M_{2gm}$ and has a very large entropy compared with that of σ_{ij}.

Besides $K_M(X)RSE(2)PKC$ realizes the coding rate of exactly 1.0.

We thus conclude that $K_M(X)RSE(2)PKC$ would be sufficiently secure against the linear transformation type of attacks such as Gröbner basis attack.

3 Conclusion

We have presented a new class of RSE(2)PKC referred to as $K(X)RSE(2)PKC$ over \mathbb{F}_{2m}. We have shown that letting the size of public key be almost same as that of the conventional RSE(2)PKC, the security is much improved.

The author feels certain that $K(X)RSE(2)PKC$ would open up a brand new field of PKC’s as it is strongly related to the fields of both MPKC and code-based PKC.

In Appendix, we have presented $K(X)RSE(2)PKC$ over \mathbb{F}_2, which is simpler but less secure compared with $K(X)RSE(2)PKC$.

This work is partly supported by NICT’s project: Research and developement for public key cryptosystem for secure communication between social systems and 21st. Century Informatic Culture Center.

References

Appendix: K(X)RSE(2)PKC

In Dec.2013, in Ref. [14], the author presented an augmentation technique, K(V)Schme and applied it to several members of PKC such as

- knapsack type PKC,
- code based PKC,
- multivariate PKC.

In this Appendix, we present K(X)RSE(2) over \(\mathbb{F}_2 \) by applying K(V)Schme to a general RSE(2)PKC over \(\mathbb{F}_2 \).

Let the original message \(M \) be

\[
M = (M_1, M_2, \cdots, M_{2g}) \text{ over } \mathbb{F}_2.
\]
The message M is transformed to
\[M \cdot A_{III} = m = (m_1, m_2, \cdots, m_{2g}), \]
where A_{III} is a non-singular $2g \times 2g$ matrix over F_2. Let m be partitioned to
\[m_I = (m_1, m_2, \cdots, m_g) \quad (43) \]
and
\[m_{II} = (m_{g+1}, m_{g+2}, \cdots, m_{2g}) \quad (44) \]

The message m_I is then transformed to
\[\varphi_s(m_I) = a = (a_1, a_2, \cdots, a_g), \quad (45) \]

where a_i is
\[a_i = a_i^{(2)}(m_1, m_2, \cdots, m_g); i = 1, 2, \cdots, g. \quad (46) \]

Let the message m_{II} be also transformed to
\[\varphi_B(m_{II}) = A = (A_1, A_2, \cdots, A_g), \quad (47) \]
where A_i is
\[A_i = A_i^{(2)}(m_1, m_2, \cdots, m_g); i = 1, 2, \cdots, g. \quad (48) \]

Let m_{II} be transformed to
\[\varphi_B(m_{II}) = b = (b_1, b_2, \cdots, b_g), \quad (49) \]
where b_i is
\[b_i = b_i^{(2)}(m_{g+1}, m_{g+2}, \cdots, m_{2g}); i = 1, 2, \cdots, g. \quad (50) \]

Regarding $A + b$ as information symbols, we construct the code word V:
\[(A(x) + b(x))x^g \equiv R(x) \mod F(x), \quad (51) \]
where $F(x)$ is a primitive polynomial of degree g over F_2.

\[V(x) = R(x) + x^g(A(x) + b(x)). \quad (52) \]

We then construct $W(x)$:
\[W(x) = V(x) + a(x) = a(x) + R(x) + x^g(A(x) + b(x)) = W_1 + W_2x + \cdots + W_{2g}x^{2g-1}. \quad (53) \]

From $\{W_i\}$, we construct the set of public keys $\{U_i\}$:
\[W_{A_{III}} = (U_1, U_2, \cdots, U_{2g}), \quad (54) \]
where A_{III} is a $2g \times 2g$ random permutation matrix.

The U_i is
\[U_i = U_i^{(2)}(M_1, M_2, \cdots, M_{2g}) \quad (55) \]

We see that the set of simultaneous equations $\{U_i\}$ cannot be systematically decoded. We also see that K(X)RSE(2)PKC realizes the coding rate of exactly 1.0.