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Abstract. Provably secure distance-bounding is a rising subject, yet an unsettled one; indeed, very few

distance-bounding protocols, with formal security proofs, have been proposed. In fact, so far only two

protocols, namely SKI (by Boureanu et al.) and FO (by Fischlin and Onete), offer all-encompassing security

guaranties, i.e., resistance to distance-fraud, mafia-fraud, and terrorist-fraud. Matters like security, alongside

with soundness, or added tolerance to noise do not always coexist in the (new) distance-bounding designs.

Moreover, as we will show in this paper, efficiency and simultaneous protection against all frauds seem

to be rather conflicting matters, leading to proposed solutions which were/are sub-optimal. In fact, in this

recent quest for provable security, efficiency has been left in the shadow. Notably, the tradeoffs between the

security and efficiency have not been studied. In this paper, we will address these limitations, setting the

“security vs. efficiency” record straight.

Concretely, by combining ideas from SKI and FO, we propose symmetric protocols that are efficient,

noise-tolerant and—at the same time—provably secure against all known frauds. Indeed, our new distance-

bounding solutions outperform the two aforementioned provably secure distance-bounding protocols. For

instance, with a noise level of 5%, we obtain the same level of security as those of the pre-existent protocols,

but we reduce the number of rounds needed from 181 to 54.

1 Introduction

As wireless technologies become more and more pervasive, being used daily in access control, remote

unlocking credit-card payments and beyond, relay attacks also become a growing threat to the social

acceptance of these techniques. It seems likely that nearly all wireless devices will eventually have to

implement solutions to thwart these types of fraud. To defeat relay attacks, Brands and Chaum [12]

introduced the notion of distance-bounding protocols. Distance bounding is a special problem of

position-based cryptography [13]. Although there are many challenges to implement it, this can be

achieved [11]. These protocols rely on information being local and incapable of travelling faster than

the speed of light. So, in distance-bounding, an RFID reader can assess when participants are close

enough because the round-trip communication time must have been short enough. The whole idea of

distance-bounding is that a prover, holding a key x, demonstrates that he is close to a verifier (who

also knows this key x). The literature on distance-bounding considers several threat models.

– Distance fraud (DF): a far-away malicious prover tries to illicitly pass the protocol.

– Mafia fraud [16] (MF): a man-in-the-middle (MiM) adversary between a far-away honest prover

and a verifier tries to exploit the prover’s insights to make the verifier accept. (This generalizes

relay attacks as not only does this adversary relay, but he may also modify the messages involved.)

– Terrorist fraud [16] (TF): a far-away malicious prover colludes with an adversary to make the

verifier accept the adversary’s rounds on behalf of this far-away prover, in such a way that the

adversary gains no advantage to later pass the protocol on his own.

⋆ The proceedings version of this paper is available on [10].



– Impersonation fraud [3]: An adversary tries to impersonate the prover to the verifier.

– Distance hijacking [15]: A far-away prover takes advantage of some honest, active provers (of

which one is close) to make the verifier grant privileges for the far-away prover.

Avoine et al. [1] proposed one of the very first (semi-formal) model. Later, Dürholz et al. [17] pro-

posed a formal model (herein called the DFKO model) based on exhaustive lists of impossible traces

in protocols. Boureanu et al. [7,9,30] proposed a more complete model (herein called the BMV model)

including the notion of time. Based on all these models, there were several variants and generaliza-

tions of these threats. The model in [7,9] factors all the previously enumerated common frauds into

three possible threats:

– Distance fraud. This is the classical notion, but concurrent runs with many participants is ad-

ditionally considered. I.e., it includes other possible provers (with other secrets) and verifiers.

Consequently, this generalized distance fraud also includes distance hijacking.

– Man-in-the-middle. This formalization considers an adversary working in two phases. During a

learning phase, this adversary can interact with many honest provers and verifiers. Then, the attack

phase contains a far away honest prover of given ID and possibly many other honest provers and

other verifiers. The goal of the adversary is to make the verifier accept the proof with ID. Clearly,

this generalizes mafia fraud (capturing relay attacks) and includes impersonation fraud.

– Collusion fraud. This formalization considers a far-away prover holding x who helps an adversary

to make the verifier accept. This might be in the presence of many other honest participants.

However, there should be no man-in-the-middle attack stemming from this malicious prover. I.e.,

one should not extract from this prover any advantage to (later) run a man-in-the-middle attack.

In Vaudenay [30], the last threat model is replaced by a notion coming from interactive proofs:

– Soundness. For all experiment with a verifier V , there exists an extractor such that the following

holds: if this extractor is given as input several views of all participants which were close to V in

several executions and which made him accept therein, then this extractor reconstructs the secret

x. This was further shown to generalize collusion-fraud resistance [30].

In Section 2, we refine these models in a more natural way, including at its basis a stronger, inner

sense of interactive proofs. Indeed, distance-bounding (DB) should ideally behave like a traditional

interactive proof system as it really is a proof of proximity. In this sense, it must satisfy: 1. complete-

ness (i.e., an honest prover close to the verifier will certainly pass the protocol); 2. soundness (i.e., if

the verifier accepts the protocol, then we could extract from close-by participants the information to

define a successful prover); 3. security (i.e., no participant shall be able to extract some information

from the honest prover to make the verifier accept). These properties are similar to what is required in

identification protocols. They differ in that in DB we face the introduction of the notion of proximity.

More precisely, in the above approach, distance fraud (as in Def. 6) does not capture distance

hijacking anymore, distance hijacking being now captured by soundness. This makes proofs simpler.

To this end, we also formalize in Def. 8 security without a learning phase, and we extend in Def. 10

the definition of soundness in such a way that the extraction of the secret is no longer necessary.

There exist many distance-bounding protocols, but nearly all are broken in some way. For in-

stance, the protocols from Hancke-Kuhn [21], Singelée-Preneel [28], Munilla-Peinado [25], Kim-

Avoine [23], and Nikov-Vauclair [26] are vulnerable to TF [19,24]. Kim et al. [24] proved that the

return channel of the verifier (i.e., whether the protocol succeeds or not) allows to do a MiM attack on

the protocol in Tu-Piramuthu [29]. It is also applicable against the protocol in Reid et al. [27] as shown

in Bay et al. [4]. Boureanu et al. [5] demonstrated that the security arguments of [2,21,27,24] were
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incorrect by constructing instances satisfying the assumptions by the authors and trivially insecure.

Finally, Hancke [20] observed that noisy-resilience in nearly all protocols (including SwissKnife [24])

allowed to mount a TF. So, the problem of making provably secure distance bounding is of utmost

importance. So far, only the SKI protocol [6,7,8,9] (built on the BMV model) and the Fischlin-Onete

(FO) protocol [18] (built on the DFKO model) provide an all-encompassing proven security, i.e., they

protect against all the above threats.

Organization. In Section 2, we advance revised security definitions for distance-bounding, rendering a

more intuitive model, whilst maintaining backward compatibility; we also prove the latter preservation

of results. In Section 3, we propose new, secure DB protocols DB1, DB2, and DB3. Section 3.5

considers the tradeoffs between security and efficiency, and presents the comparisons made in this

sense. Results for SKI and FO are recalled and revisited in Appendix.

Contribution. The contribution of this paper is threefold:

– We build up on SKI [6,7,8,9] and FO [18,30] to propose DB1, DB2, and DB3, three new distance-

bounding protocols which outperform both the SKI and the FO protocols.

For instance, to offer a false acceptance rate of under 1‰ and false rejection rate of under 1%, at

a noise level of 5% during the rapid bit-exchange, DB1 (with parameter q = 3) requires 14/14/54

rounds for resistance to distance fraud / mafia fraud / terrorist fraud, respectively. For the same

performance, SKI and FO require 84/48/181 and 84/84/? rounds3, respectively. So, DB1 represents

a substantial improvement in terms of efficiency, whilst maintaining provable security.

– When considering optimality amongst protocols requiring at least τ out of n correct rounds, no

clock for the proer, and a challenge/response set of size q, we show security as follows:

DF-resistance MF-resistance TF-resistance

DB1 (q > 2) secure, optimal secure, optimal secure

DB2 (q = 2) secure, suboptimal secure, optimal secure

DB3 (q = 2) secure, optimal secure, optimal insecure

– For our security proofs, we build on the BMV model [7,9,30]. In doing so, we revisit the definition

of mafia fraud / man-in-the-middle and the definition of terrorist fraud / collusion fraud. Thus,

we provide a complete set of security definitions for distance-bounding, capturing the previous

notions, but being in line with the established theory behind interactive proofs.

Useful bounds for noisy communications. Following [7,9], to assert security in noisy communications,

we will make use of the tail of the binomial distribution:

Tail(n,τ,ρ) =
n

∑
i=τ

(n

i

)

ρi(1−ρ)n−i,

We recall that for any ε,n,τ,ρ such that τ
n
< ρ− ε, we have Tail(n,τ,ρ) > 1− e−2ε2n. For τ

n
> ρ+ ε,

we have Tail(n,τ,ρ)< e−2ε2n. This comes from the Chernoff-Hoeffding bound [14,22].

2 Revised DB Security Model and Proofs

We now refine the security definitions and other tools from the BMV security model [7,9,30]. In this

section, we also discuss the links with the original notions.

3 As discussed herein, FO has an incomparable approach for TF-resistance in which the number of rounds is not relevant.
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In this paper, we concentrate on distance-bounding protocols based on symmetric cryptography

(which is the overwhelmingly prevalent approach in DB).4

Definition 1. A (symmetric) distance-bounding protocol is a tuple (K ,P,V,B), constructed of the fol-

lowing: a key domain K ; a two-party probabilistic polynomial-time (PPT) protocol (P(x),V (x)),
where P is the proving algorithm, V is the verifying algorithm, and x is taken from K ; a distance

bound B. At the end of the protocol, the verifier V (x) sends a final message OutV . This output denotes

that the verifier accepts (OutV = 1) or rejects (OutV = 0).

Informally, a distance-bounding protocol is complete if executing P(x)↔V (x) on locations within a

distance bounded by B makes V (x) accept with overwhelming probability. The formalism is straight-

forward with the settings below.

We compare our protocols to any DB protocol that follows what we call the common structure.

Definition 2 (Common structure). A DB protocol with the common structure based on parameters

(n,τ,numc,numr) has some initialization and verification phases which do not depend on communi-

cation times.5 These phases are separated by n rounds of timed challenge/response exchanges. This

is called the distance bounding phase. A response is on time if the elapsed time between sending the

challenge and receiving the response is at most 2B. Provers don’t measure time.6 Challenges and

responses are in sets of cardinality numc and numr, respectively.

When the protocol follows the specified algorithms but messages during the distance bounding

phase can be corrupted during transmission, we say that the protocol is τ-complete if the verifier

accepts if and only if at least τ rounds have a correct and on-time response.

One can easily see that nearly all distance-bounding protocols in the literature fit this definition.

In practice, when the timed phase is subject to noise, we assume that there is a probability of pnoise
that one round of challenge/response is corrupted. The probability that an honest prover, close to the

verifier, passes the protocol is thus Tail(n,τ,1− pnoise). So, with τ
n
< 1− pnoise with a constant gap,

the probability to fail is negligible, due to the Chernoff-Hoeffding bound [14,22].

Participants, Instances, Setup and Locations.

– In a DB protocol, participants can be a prover, a verifier, or adversaries. The prover and the verifier

receive a key x which is randomly selected from the key space. We adopt a static adversarial

model: i.e., at the beginning of the experiment, it is decided whether the prover is malicious or

not. Participants have several instances. An instance has a location. It corresponds to the execution

of a protocol during one session.

– A honest prover runs instances of the algorithm P denoted by P(x). An instance of a malicious

prover runs an arbitrary algorithm denoted by P∗(x). P denotes the set of instances of the prover.

– The verifier is honest without loss of generality.7 He runs instances of the algorithm V denoted by

V (x). V denotes the set of instances of the verifier.

– Other participants are (without loss of generality) malicious and may run whatever algorithm,

but with no initialized key. The set of such malicious participants is denoted A. By contrast, a

designated, one such instance is denoted A .

– Locations are elements of a metric space.

4 Our model was recently extended to cover public-key distance-bounding [31,32].
5 The verification phase can be interactive or not.
6 Provers have no clock. They are in a waiting state to receive the challenge and loose the notion of time while waiting.
7 A “malicious verifier” running an algorithm V ∗(x) can be seen as a malicious prover running V ∗(x).
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Why a Single Identity? Our definition uses a single identity, without loss of generality. This is because

provers or verifiers running the protocol with other identities (and keys independent of x) could be

considered as elements of A.

Definition 3 (DB Experiment). An experiment exp for a distance-bounding protocol (K ,P,V,B) is a

setting (P,V,A) with several instances of participants, at some locations, set up as above, and running

an overall PPT sequence.

In the above definition, the notion of experiment implies simultaneously several different entities:

participants, physical locations, algorithms to be run by these participants and corruption states. As

such, when used inside further definitions, the notion of experiment will implicitly or explicitly, upon

the case, quantify over these entities.

We further assume that communicating from a location to another takes time equal to the distance.

Indeed, no one can violate the fact that communication is limited by the speed of light. Adversaries

can intercept some messages and replace them by others, but must adhere to the fact that computation

is local.

Ideally, one should develop a formal model to define all these. This has actually been done in

the BMV model [7,9]. In this paper, we keep the notions at the intuitive level, mainly due to space

limitations, and since such a formal model would only be needed to prove the fundamental Lemma 4

below (which is proven in and adapted from [9, Lemma 1]). We rather take it axiomatically herein.

Lemma 4 (Fundamental Lemma). Assume an experiment in which at some point a participant V

broadcasts a message c, then waits for a response r. We let E be the event that the elapsed time

between sending c and receiving r is at most 2B. In the experiment, Close is the set of all participants

(except V ) which are within a distance of up to B from V , and Far is the set of all participants at a

larger distance. For each user U, we consider his view ViewU just before the time when U can see the

broadcast message c.

We say that a message by U is independent8 from c if it was sent before U could see c, i.e., if it is

the result of applying algorithm U on ViewU , or on a prefix of it.

There exists an algorithm Algo with the following property. If E holds and r was sent from a

participant in Close, we have r = Algo((ViewU)U∈Close,c,w), where w is the list of all messages

independent from c which are not already in (ViewU)U∈Close but seen9 by any U ∈ Close. If E holds

and r was sent from a participant in Far, then the message r is independent from c.

This lemma can be summarized as follows: a close-by participant cannot get online help from far

away to answer correctly and in time to the challenge c.

Definition 5 (Distinguished Experiment). We denote by exp(V ) an experiment in which we fix a

verifier instance V =V (x) from V, which we call distinguished verifier. Participants which are within

a distance of at most B from a distinguished verifier V are called close-by participants. Others are

called far-away participants.

Participants can move during the experiment, but not faster than the transmission of information. For

simplicity, we assume that far-away participants remain far away during the experiment.

Definition 6 (α-resistance to distance fraud). We say that a distance-bounding protocol α-resists to

distance fraud if for any distinguished experiment exp(V ) where there is no participant close to V ,

the probability that V accepts is bounded by α.

8 we stress that this is a local definition of independence which is unrelated to statistical independence.
9 “Seen” means either received as being the destinator or by eavesdropping.
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Compared to [9], this definition is simplified and does not capture the notion of distance hijacking;

therein, a far-away malicious P∗(x) can make V accept by taking advantage of several honest provers

which do not hold x but are close to V . In [9], some close-by honest participants are allowed in the

definition of distance fraud resistance. However, distance hijacking could generalize to the presence

of any close-by honest participant who is running a protocol (for whatever honest reason) which could

match (by some weird coincidence) the response function of the malicious prover. This is not captured

by the definition of [9]. Nonetheless, in most of the cases, this bizarre situation can be ignored and

we can concentrate on regular distance frauds. So, we simplified on purpose our Def. 6, excluding

the more corner-case fraud of distance hijacking, as this simplifies the proofs quite a lot. Nonetheless,

distance hijacking and other extensions of classical frauds will be captured by the notion of soundness,

which we introduce below. Overall, we will treat all threats.

Theorem 7. A DB protocol following the common structure with parameters (n,τ,numc,numr) can-

not α-resist to distance fraud for α lower than Tail
(

n,τ,max
(

1
numc

, 1
numr

))

.10

Proof. We construct a DF following the early-reply strategy: a malicious prover guesses with prob-

ability 1
numc

the challenge ci before it is emitted, and then he sends the response so that it arrives on

time. The rest of the protocol is correctly simulated (with delay) after receiving the challenges. An

incorrect guess would look like a round which was the victim of noise. So, the attack succeeds with

probability Tail
(

n,τ, 1
numc

)

. We can have a similar attack guessing the response r and succeeding

with probability Tail
(

n,τ, 1
numr

)

. ⊓⊔

While the above definition protects verifiers against malicious provers, we need an extra notion to

protect the honest prover against men-in-the-middle. This is as follows.

Definition 8 (β-secure distance-bounding protocol). We say that a distance-bounding protocol is

β-secure if for any distinguished experiment exp(V ) where the prover is honest, and the prover in-

stances are all far-away from V , the probability that V accepts is bounded by β.

Intuitively, this notion protects honest provers from identity theft. It implies that x cannot be extracted

by a malicious participant; this is along the same lines as in zero-knowledge interactive protocols.

This notion of security also captures resistance to relay attacks, mafia fraud, and man-in-the-middle

attacks. The advantage of Def. 8 over the resistance to man-in-the-middle attacks, as it was defined in

[7,9, Def. 4], is that we no longer need to formalize a learning phase, although we can easily show we

capture these notions as well. Our definition is therefore simpler.

Theorem 9. A DB protocol following the common structure with parameters (n,τ,numc,numr) can-

not be β-secure for β lower than Tail
(

n,τ,max
(

1
numc

, 1
numr

))

.11

Proof. We consider V and a far-away instance of the prover P, and a close-by MiM A . In the ini-

tialization phase and the verification phase, A passively relays messages between V and P. During

the challenge phase, and in the pre-ask strategy, A guesses the challenge before it is released and

asks for the response to P on time so that he can later on answer to V . Clearly, the attack succeeds

with probability Tail
(

n,τ, 1
numc

)

. We can have a similar attack with a post-ask strategy where A

10 In [33], a protocol with two bits of challenges and one bit of response achieving α = Tail(n,τ, 1
3 ) is proposed. But it

actually works with numr = 3 as it allows response 0, response 1, and no response.
11 Same remark about [33] as in Th. 7.
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guesses the response at the same time he forwards the challenge to P. This succeeds with probability

Tail
(

n,τ, 1
numr

)

.12 ⊓⊔

The definition below is adapted from [30]. One difference is that γ′ is no longer necessarily 1−
negl. It also considers extractors just passing the protocol, instead of having to produce the secret; this

is clearly more general. Our protocols herein will make the secret extractable though.

Definition 10 ((γ,γ′,m)-soundness). We say that a distance-bounding protocol is (γ,γ′,m)-sound if

for any distinguished experiment exp(V ) in which V accepts with probability at least γ, there exists

a PPT algorithm E called extractor, with the following property. By E running experiment exp(V )
several times, in some executions denoted expi(V ), i = 1, . . . ,M, for M of expected value bounded by

m, we have that

Pr
[

OutV = 1 : E(View1, . . . ,ViewM)↔ V
∣

∣Succ1, . . . ,SuccM

]

≥ γ′,

where Viewi denotes the view of all close-by participants (except V ) and the transcript seen by V in

the run expi(V ), and Succi is the event that V accepts in the run expi(V ).

In other words, the extractor impersonates the prover to V .13 In more details, this means that having

V accept in run expi(V ) implies the following: a piece of x was given to the close-by participants and

it is stored in Viewi, and that m such independent pieces, on average, could allow E to impersonate

P(x) to V . This notion is pretty strong as it could offer a guaranty against distance hijacking: a prover

making such attack would implicitly leak his credentials.

3 New Highly Efficient, Symmetric Distance-Bounding Protocols

In the idea to outperform SKI and FO, we now advance a family of provably secure symmetric

distance-bounding protocols, called DBopt. It includes DB1, DB2, and DB3. Indeed, we will see

herein that DB1 is in fact optimal in terms of distance-fraud resistance and security with non-binary

challenges. The DB2 and DB3 variants are motivated by the use of binary challenges, which is cus-

tomary in distance-bounding designs. Whilst DB2 is suboptimal, it still performs well, almost always,

i.e., better than SKI and FO. DB3 is optimal but not TF-resistant. The eager reader can directly in-

spect the performance/security graphs on Fig. 6, page 16, where we plot the (logs of) fraud-resistance

thresholds, i.e., − log2 α, − log2 β, and − log2 γ.

3.1 DBopt

We propose DBopt, a new family of symmetric distance-bounding protocols, as depicted on Fig. 1. It

combines ideas taken from SKI [6,7,8,9] and the Swiss-Knife protocol [24] (as used by FO [18]). We

use a security parameter s (the length of the secret x, i.e., x ∈ K = Zs
2) and the following parameters

based on s: the number of rounds n, the length ℓtag of tag, a threshold τ, the nonce length ℓnonce, and a

constant q which is a prime power, e.g., q = 2, q = 3, or q = 4. DBopt follows the common structure

with parameters n, τ, and numc = numr = q.

As in SKI, we assume Lµ(x) = (µ(x), . . . ,µ(x)) for some function x 7→ µ(x), but µ is not necessarily

linear. Concretely, µ is a vector in Zs
2 and map a fixed injection from Z2 to GF(q). Hence, µ(x) =

map(µ · x) maps a bitstring x to a GF(q)-representation of the bit obtained by the scalar product µ · x.

12 Since provers loose the notion of time in the challenge phase, pre-ask and post-ask attacks cannot be detected.
13 Note that cases where there is a close-by prover or a close-by verifier are trivial since they hold the secret x in their view.
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We let L denote the set of all such possible Lµ mappings (map being fixed). The function fx maps to

different codomains, depending on its inputs: given two nonces NP and NV , Lµ ∈ L , and b,c∈GF(q)n,

fx(NP,NV ,Lµ,b) ∈ GF(q)n and fx(NP,NV ,Lµ,b,c) ∈ GF(q)ℓtag .

Verifier Prover

secret: x secret: x

initialization phase

pick Lµ ∈U L ,NV ∈U {0,1}
ℓnonce NP←−−−−−−−−−−−−− pick NP ∈U {0,1}

ℓnonce

select b ∈ GF(q)n

a = fx(NP,NV ,Lµ,b)
NV ,Lµ ,b

−−−−−−−−−−−−−→ a = fx(NP,NV ,Lµ,b)

x′ = Lµ(x) x′ = Lµ(x)

distance bounding phase

for i = 1 to n

pick ci ∈U GF(q)

start timeri
ci−−−−−−−−−−−−−→ receive c′i

receive ri, stop timeri

r′i←−−−−−−−−−−−−− r′i = φc′i
(ai,x

′
i,bi)

verification phase

receive c′′, check tag = fx(NP,NV ,Lµ,b,c
′′)

c′,tag
←−−−−−−−−−−−−− tag = fx(NP,NV ,Lµ,b,c

′)

check #{i;ci = c′′i ,ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−−→

Fig. 1. The DBopt Distance-Bounding Protocols

During the initialization, the participants exchange some nonces NP, NV , some Lµ ∈ L , and a

vector b. The vector b could be fixed in the protocol, but is subject to some constraints as detailed

below. V and P compute a = fx(NP,NV ,Lµ,b) and x′ = Lµ(x). In the distance bounding phase, the

response function is a linear function ri = φci
(ai,x

′
i,bi) defined by the challenge ci. The verification

checks that the participants have seen the same challenges (based on the tag computed by tag =
fx(NP,NV ,Lµ,b,c)), counts the number of rounds with a correct and timely response, and accepts if

there are at least τ of them.

Clearly, the DBopt family is quite open to specific choices for q, map, b, and φc. We propose the

instances DB1, DB2, and DB3. There are some specificities in each protocol which are summarized

in the following table:

protocol q map b φci

DB1 q > 2 map(u) 6= 0 no b used φci
(ai,x

′
i,bi) = ai + cix

′
i

DB2 q = 2 map(u) = u Hamming weight n
2

φci
(ai,x

′
i,bi) = ai + cix

′
i + cibi

DB3 q≥ 2 no map used Hamming weight n φci
(ai,x

′
i,bi) = ai + cibi

Specifically, DB3 is the simplest protocol and is optimal, but it offers no soundness. DB2 works with

binary challenges and responses, but it is not optimal. DB1 is optimal but needs q≥ 3 since it requires

that map is injective from Z2 to GF(q)∗. They are depicted on Fig. 2–4.

Overall, DBopt is very similar to SKI. (See Appendix A for a description of SKI.) Like in SKI,

the leak vector x′ is fundamental for soundness: the vector x′ encodes µ · x, which leaks if the prover

reveals his response function. We added a verification step, as in FO (it actually comes from the

Swiss-Knife protocol [24]; see Appendix B for a description of FO). This verification allows to use

better response functions: thanks to the above extra verification, the response function needs no longer
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Verifier Prover

secret: x secret: x

initialization phase

pick Lµ ∈ L ,NV ∈ {0,1}
ℓnonce

NP←−−−−−−−−−−−−−−−−− pick NP ∈ {0,1}
ℓnonce

a = fx(NP ,NV ,Lµ)
NV ,Lµ

−−−−−−−−−−−−−−−−−→ a = fx(NP,NV ,Lµ)

x′ = Lµ(x) x′ = Lµ(x)

distance bounding phase

for i = 1 to n

pick ci ∈ GF(q)

start timeri
ci−−−−−−−−−−−−−−−−−→ receive c′i

receive ri , stop timeri
r′i←−−−−−−−−−−−−−−−−− r′i = ai + c′ix

′
i

verification phase

receive c′′ , check tag = fx(NP ,NV ,Lµ ,c
′′)

c′ ,tag
←−−−−−−−−−−−−−−−−− tag = fx(NP ,NV ,Lµ ,c

′)

check #{i;ci = c′′i ,ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−−−−−−→

Fig. 2. The DB1 Distance-Bounding Protocol

Verifier Prover

secret: x secret: x

initialization phase

pick b ∈ Zn
2 ,Lµ ∈ L ,NV ∈ {0,1}

ℓnonce
NP←−−−−−−−−−−−−−−−−− pick NP ∈ {0,1}

ℓnonce

(b must have weight n
2 )

a = fx(NP,NV ,Lµ ,b)
NV ,Lµ ,b

−−−−−−−−−−−−−−−−−→ a = fx(NP,NV ,Lµ ,b)

x′ = Lµ(x) x′ = Lµ(x)

distance bounding phase

for i = 1 to n

pick ci ∈ {0,1}

start timeri
ci−−−−−−−−−−−−−−−−−→ receive c′i

receive ri , stop timeri
r′
i←−−−−−−−−−−−−−−−−− r′i = ai⊕ c′ix

′
i⊕ c′ibi

verification phase

receive c′′ , check tag = fx(NP ,NV ,Lµ ,b,c
′′)

c′ ,tag
←−−−−−−−−−−−−−−−−− tag = fx(NP ,NV ,Lµ ,b,c

′)

check #{i;ci = c′′i ,ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−−−−−−→

Fig. 3. The DB2 Distance-Bounding Protocol

Verifier Prover

secret: x secret: x

initialization phase

pick NV ∈ {0,1}
ℓnonce

NP←−−−−−−−−−−−−−−−−− pick NP ∈ {0,1}
ℓnonce

a = fx(NP ,NV )
NV−−−−−−−−−−−−−−−−−→ a = fx(NP ,NV )

distance bounding phase

for i = 1 to n

pick ci ∈ {0,1}

start timeri
ci−−−−−−−−−−−−−−−−−→ receive c′i

receive ci , stop timeri
r′
i←−−−−−−−−−−−−−−−−− r′i = ai⊕ c′i

verification phase

receive c′′ , check tag = fx(NP,NV ,c′′)
c′ ,tag

←−−−−−−−−−−−−−−−−− tag = fx(NP,NV ,c)

check #{i;ci = c′′i ,timeri correct} ≥ τ
OutV−−−−−−−−−−−−−−−−−→

Fig. 4. The DB3 Distance-Bounding Protocol with q = 2.
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resist men-in-the-middle playing with different challenges on the sides of P and V , as it was the case

in [2,4]. One particularity is that DB1 mandates x′i 6= 0 so cannot accommodate q = 2. If we want

q = 2, we need for DF-resistance to make sure that ri really depends on ci, by introducing the vector

b in which exactly half of the coordinates are 0. DB2 can be optimized into DB3 by using ri = ai + ci

(so x′ unused and bi = 1 for all i) by sacrificing soundness.

DBopt is clearly τ-complete following Def. 2.

3.2 DF-Resistance of DB1, DB2, and DB3

Theorem 11 (DF-resistance). The DBopt protocols α-resists to distance fraud for

– (DB1 and DB3) α = Tail(n,τ, 1
q
) which is negligible for τ

n
> 1

q
+ cte;

– (DB2) α = Tail( n
2
,τ− n

2
, 1

2
) which is negligible for τ

n
> 3

4
+ cte.

Due to Th. 7, DB1 and DB3 are optimal for DF-resistance. DB2 is clearly not optimal (as DB3 is

better with the same q = 2). However, the bound is tight for DB2 as the DF guessing the response

matches the α bound: the malicious prover always wins the rounds for which x′ = bi (that is: exactly

half of the rounds due to the Hamming weight of b) by sending the response in advance and passes

with probability α = Tail( n
2
,τ− n

2
, 1

2
).

Proof. We consider a distinguished experiment exp(V ) with no close-by participant. Due to the dis-

tance, the answer ri to V comes from far away. Thanks to Lemma 4, ri is independent (in the sense of

Lemma 4) from ci. Since ci is randomly selected when it is sent, ri is statistically independent from

ci. For DB1, since x′i 6= 0 by construction, ri equals ai + cix
′
i with probability 1

q
. The same goes for

DB3. For DB2, thanks to the selection of b, this holds for exactly half of the rounds: those such that

x′i +bi 6= 0. So, the probability to succeed in the experiment is bounded as stated. ⊓⊔

3.3 Security of DB1, DB2, and DB3

As shown in [5], we cannot rely on the PRF assumption alone for DB1 or DB2, since the secret is

used as a key of fx and also outside fx in x′. The circular-PRF assumption guarantees the PRF-ness

of f , even when we encrypt a function Lµ(x) of the key. We new recall and extend the notion, to

accommodate DB1 and DB2.

Definition 12 (Circular PRF). We consider some parameters s, n1, n2, and q. Given x̃ ∈ {0,1}s, a

function L from {0,1}s to GF(q)n1 , and a function F from {0,1}∗ to GF(q)n2 , we define an oracle

Ox̃,F by Ox̃,F(y,L,A,B) = A ·L(x̃)+B ·F(y), using the dot product over GF(q). We assume that L is

taken from a set of functions with polynomially bounded representation. Let ( fx)x∈{0,1}s be a family

of functions from {0,1}∗ to {0,1}n2 . We say that the family f is a (ε,T )-circular-PRF if for any

distinguisher limited to a complexity T , the advantage for distinguishing Ox, fx
, x ∈U {0,1}

s, from

Ox̃,F , x̃ ∈U {0,1}
s, where F is uniformly distributed, is bounded by ε. We require two conditions on

the list of queries:

– for any pair of queries (y,L,A,B) and (y′,L′,A′,B′), if y = y′, then L = L′;

– for any y ∈ {0,1}∗, if (y,L,Ai,Bi), i = 1, . . . , ℓ is the list of queries using this value y, then

∀λ1, . . . ,λℓ ∈ GF(q)
ℓ

∑
i=1

λiBi = 0 =⇒
ℓ

∑
i=1

λiAi = 0 (1)

over the GF(q)-vector space GF(q)n2 and GF(q)n1 .
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This definition extends the one from [7,9] in the following sense: 1. the function L (the leak of x) is

arbitrary instead of being linear; 2. this arbitrary function L now requires the first condition i.e., the

same F-input implies the same leak function L. In [7,9], it was shown that the natural construction

fx(y) = H(x,y) is circular-PRF in the random oracle model, with the definition from [7,9]. We can

easily see that the same proof holds with Def. 12. It would be interesting to make other constructions

without random oracles.

Theorem 13 (Security). The DBopt protocols are β-secure for

– (DB1 and DB2) β = Tail(n,τ, 1
q
)+ r2

2
2−ℓnonce +(r+1)ε+ r2−ℓtag when f is a (ε,T )-circular-PRF

(as defined by Def. 12);

– (DB3) β = Tail(n,τ, 1
q
)+ r2

2
2−ℓnonce + ε+2−ℓtag when f is a (ε,T )-PRF.

There, r is the number of honest instances (of P or V ) and T is a complexity bound on the experiment.

β is negligible for τ
n
> 1

q
+ cte, r and T polynomially bounded, and ε negligible.

Based on that r2

2
2−ℓnonce + (r + 1)ε+ r2−ℓtag (or the similar term for DB3) can be made negligible

against β, DB1, DB2, and DB3 are optimal for security due to Th. 9.

Proof. We consider a distinguished experiment exp(V ) with no close-by P(x), no P∗(x), and where

V accepts with probability p. We consider a game Γ0 in which we simulate the execution of exp(V )
and succeed if and only if OutV by V is an acceptance message. Γ0 succeeds with probability p.

First of all, we reduce to the same game Γ1 whose success additionally requires that for every

(NP,NV ,Lµ) triplet, there is no more than one instance P(x) and one instance V (x) using this triplet.

Since P(x) is honest and selecting the ℓnonce-bit nonce NP at random and the same for V (x) selecting

NV , by looking at the up to r2

2
pairs of P(x)’s or of V (x)’s and the probability that one selection of a

nonce repeats, this new game succeeds with probability at least p− r2

2
2−ℓnonce .

Then, for DB1 and DB2, we outsource the computation of every ai + cx′i to the oracle

Ox, fx
(y,Lµ,A,B) = (A ·Lµ(x))+(B · fx(y))

as in Def. 12, with y = (NP,NV ,Lµ,b), A ·Lµ(x) = c(Lµ(x))i, and B · fx(y) = ( fx(y))i. I.e., Ai = cei and

Bi = ei, where ei is the vector having a 1 on its ith component and 0 elsewhere. This can be used with

c = c′i by P(x) (for computing r′i) or with c = ci by V (x) (for verifying ri). Similarly, the computation

(by P(x) or V (x)) of tag = fx(y) can be made by several calls of form Ox, fx
(y,Lµ,0,B). (We note that

the y in this case has incompatible form with the y in the ri computation.) So, every computation

requiring x is outsourced. Note that queries to the same y must use the same Lµ since this is part of

y. So, the first condition in Def. 12 to apply the circular-PRF assumption is satisfied. We consider the

event E that there exists in the game some sequence (y,Lµ,A j,B j) of queries to Ox, fx
sharing the same

(y,Lµ) and some λ j’s such that ∑ j λ jB j = 0 and ∑ j λ jA j 6= 0. We need to restrict to the event ¬E to

apply Def. 12. We consider the event E ′ that one instance in V receives a valid tag which was not

computed by the prover P (i.e., it was forged).

Let c′′i be the value received by V (x) in the verification phase. We assume that V checks that tag

is correct, timeri is correct, and ci = c′′i , then queries Ox, fx
(y,Lµ,ciei,ei) only if these are correct. If E

happens for some (y,Lµ), due to the property of Γ1, each i has at most two queries. Since B j = ei j
,

∑ j λ jB j = 0 yields pairs of values j and j′ such that i j = i j′ = i, A j = ciei, A j′ = c′iei, B j = B j′ = ei,

and λ j +λ j′ = 0. The event E implies that there exists one such pair such that λ jA j +λ j′A j′ 6= 0. So,

ci 6= c′i. But since V only queries if c′′i and tag are correct, we have ci = c′′i 6= c′i and tag correct. So, V

11



must have accepted some tag which was not computed by P(x). So, E implies E ′. We now show that

Pr[E ′] is negligible.

We define Γ2, the variant of Γ1, which in turn requires that E ′ does not occur as an extra condition

for success. We let E ′j be the event that tag j, the jth value tag received by any V (x) in V is forged.

Let Γ1, j be the hybrid of Γ1 stopping right after tag j is received and succeeding if E ′j occurs but not

E ′1, . . . ,E
′
j−1.

Clearly, since E ′1 ∪ · · · ∪E ′j−1 does not occur and we stop right after reception of tag j, E cannot

occur. (Remember that for E to occur for the first time upon a query to Ox, fx
, there must be a prior

tag which was forged.) So, the conditions to apply the circular-PRF security reduction in Def. 12

is satisfied in Γ1, j. We apply the circular-PRF assumption and replace Ox, fx
by Ox̃,F , loosing some

probability ε. We obtain a game Γ2, j. Clearly, Γ2, j succeeds with probability bounded by 2−ℓtag because

F is random. So, PrΓ1, j [success]≤ ε+2−ℓtag in Γ1, j.

So, Pr[E ′] is bounded by the sum of all PrΓ1, j [success], i.e. PrΓ1
[E ′]≤ rε+r2−ℓtag since the number

of hybrids is bounded by r. Hence, PrΓ2
[success]≥ p− r2

2
2−ℓnonce− rε− r2−ℓtag .

Now, in the whole game Γ2 where E ′ does not occur, we replace Ox, fx
by Ox̃,F and obtain the

simplified game Γ3. We have PrΓ3
[success]≥ p− r2

2
2−ℓnonce− (r+1)ε− r2−ℓtag .

It is now easy to analyze the protocol Γ3. Thanks to Lemma 4, the response is computed based

on information from P(x) (w in Lemma 4) which is independent (in the sense of Lemma 4) from the

challenge. Either P(x) was queried with a challenge before, but this could only match the correct one

with probability 1
q

and the adversary would fail with tag otherwise. Or, P(x) leaked nothing about the

response to this challenge, and the answer by the adversary can only be correct with probability 1
q
. In

any case, his answer is correct with probability 1
q
. So, Γ3 succeeds with probability up to Tail(n,τ, 1

q
).

To sum up, we have p≤ Tail(n,τ, 1
q
)+ r2

2
2−ℓnonce +(r+1)ε+ r2−ℓtag for DB1 and DB2.

For DB3, we loose r2

2
2−ℓnonce from Γ0 to Γ1. In Γ1, we apply the full PRF reduction and loose ε

to obtain Γ2 with a random function. We loose 2−ℓtag more to assume that tag received by V was not

forged in some Γ3. Then, it is easy to see that either the prover was queried before ci was known, but

this will only succeed if ci was correctly guessed, or it was queries after, but this will only succeed

if the answer ri was correctly guessed. So, Γ3 succeeds with a probability bounded by Tail(n,τ, 1
q
).

(Note that DB3 is insecure without the authenticating tag: the man-in-the-middle can just run the DB

phase with the prover, deduce a, then answer all challenges from the verifier.) ⊓⊔

3.4 Soundness of DB1 and DB2

Theorem 14 (Soundness of DB1). The DB1 scheme is (γ,γ′,s+ 2)-sound for any γ ≥ q
q−1

pB and γ′

such that γ′ = (1− γ−1 pB)
s, where pB = maxa+b≤n pB(a,b) and

pB(a,b) = ∑
u+v≥τ−a

(

n−a−b

u

)(

b

v

)(

1−
1

q

)b+u−v(
1

q

)n−a−b−u+v

More precisely, any collusion fraud with a success probability γ ≥ pB

1− 1
q
−ε

leaks one random (µ,µ · x)

pair with probability at least 1
q
+ ε. Assuming pB = pB(0,0),

14 this compares γ to
q

q−1
Tail(n,τ, q−1

q
).

For instance, for γ = spB and τ
n
> q

q−1
+ cte, γ is negligible and γ′ is greater than a constant.

If we applied the same proof as for SKI from [30, Th.14], we would not get such a good result.

We would rather obtain Tail( n
2
,τ− n

2
, q−1

q
). So, our proof of Th. 14 is substantially improved.

14 this is actually confirmed by experiment for the data we use.
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Proof. We consider a distinguished experiment exp(V ) where V accepts with probability p≥ γ.

The verifier V has computed some a and x′. We apply Lemma 4. We let Respi(c) be the value

of the response ri arriving to V when ci is replaced to c in the simulation. We show below that

we can always compute Respi(c)−Respi(c
′) for any (c,c′) pair from a straightline simulation (i.e.,

without rewinding). Let Viewi be the view of close-by participants A until the time before ci ar-

rives, and wi be the extra information (independent from ci, in the sense of Lemma 4) arriving

from far-away. Due to Lemma 4, we have Respi(c) = Algo(Viewi,c,wi). So, we can easily compute

Respi(c)−Respi(c
′) without rewinding. The answer by a far-away participant is independent from ci,

so Respi(c)−Respi(c
′) = 0: we can compute Respi(c)−Respi(c

′) as well.

We say that c is correct in the ith round if Respi(c) = ai + cx′i. We let Ci be the set of correct c’s

for the ith round. We let S be the set of all i’s such that ci ∈Ci. Finally, we let R (resp. R′) be the set of

all i’s for which #Ci = q (resp. #Ci ≤ 1). I.e., all c’s are correct in the ith round for i ∈ R and at most

one is correct for i ∈ R′.

By definition, the probability that #S ≥ τ is p ≥ γ. We see that
Respi(c)−Respi(c

′)
c−c′

= x′i if i ∈ R, for

any c 6= c′. If the left-hand side leads to the same value ξi for each c 6= c′, we say that the round i votes

for x′i = ξi. If the (c,c′) pairs do not lead to the same value in GF(q), we say that the round i does not

vote. So, we can always compute the vote ξi from the views of close-by participants. The majority of

the available map−1(ξi) shall decode µ · x.

For DB1, we can prove that if the round i votes for some ξi such that ξi 6= x′i, then we must

have i ∈ R′. Indeed, if round i votes for some ξi and #Ci ≥ 2, it means that there exist two different

challenges c and c′ such that the responses Respi(c) and Respi(c
′) are correct. So, Respi(c) = ai + cx′i

and Respi(c
′) = ai+c′x′i. The vote ξi is

Respi(c)−Respi(c
′)

c−c′
which is thus equal to x′i. So, an incorrect vote

cannot have two correct challenges: it must be for i ∈ R′. The majority of the votes does not give x′i
only when #R≤ #R′. So, we shall bound Pr[#R≤ #R′].

Let I, I′ ⊆ {1, . . . ,n} such that #I ≤ #I′ and I ∩ I′ is empty. Let pB(a,b) be the probability that at

least τ rounds succeed, when we know that a rounds succeed with probability 1, b rounds succeed

with probability 1
q
, and the other succeed with probability 1− 1

q
. We have Pr[#S≥ τ,R = I,R′ = I′] =

Pr[#S ≥ τ|R = I,R′ = I′]Pr[R = I,R′ = I′] and Pr[#S ≥ τ|R = I,R′ = I′] ≤ pB(#I,#I′) ≤ pB since we

have #I correct rounds for sure and it remains to pick u correct challenges (out of at most q− 1)

among the i 6∈ I ∪ I′ rounds, and v correct challenges (out of at most 1) among the i ∈ I′ rounds,

for all u and v such that u+ v ≥ τ− #I. By summing over all choices for I and I′, we obtain that

Pr[#S ≥ τ,#R ≤ #R′] ≤ pB So, Pr[#R > #R′|#S ≥ τ] ≥ 1− γ−1 pB. So, when the experiment succeeds,

the extracting algorithm gets a random pair (µ,µ · x) with probability at least 1− γ−1 pB. This is better

than just guessing µ · x when γ > q
q−1

pB.

We can do M many such accepting experiments, collect some (µ,µ · x) until we have s vector µ

spanning GF(q)s, and reconstruct x with probability at least γ′ =
(

1− γ−1 pB

)s
. The probability that m

samples in GF(q)s do not generate this space is pm ≤ qs−m (the number of hyperplane, qs− 1 times

the probability that the m samples are all in this hyperplane, which is q−1 to the power m). So, the

expected M until we generate the space is bounded by s+∑m≥s qs−m ≤ s+ 2. Hence, after at most

s+2 iterations on average, we can recover x by solving a linear system. This defines the extractor.

We can also push the extraction further when 1− γ−1 pB > 1
q

by solving an instance of the Learn-

ing Parity with Noise problem (LPN), which would still be feasible by the practical parameters s.

Extraction can also work with a complexity overhead bounded by O(s j) and a probability of at least

γ′ = Tail(s,s− j,1− γ−1 pB), by finding at most j errors by exhaustive search or LPN solving algo-

rithms. On Fig. 5 we plot − log2 γ′ in terms of − log2 γ for an instance of DB1 and j ∈ {0,5,10,15}.
This is why we say that γ compares to

q
q−1

pB (which is 2−20 on Fig. 5) in practice.
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Fig. 5. log2 γ′ in terms of log2 γ for FO and DB1 with q = 3, s = 80, n = 92, τ = 82.

The maximum pB = pB(a,b) is always reached for a= b. Indeed, for all the values plotted on Fig. 6

with n≥ 6, we saw it was reached for a = b = 0. In this case, we have pB = pB(0,0) = Tail(n,τ, q−1
q
).
⊓⊔

Below, we prove that the result is tight for DB1 using q = 3. Whether this it tight for other q is an

open question. Whether it is optimal for protocols following the common structure is also open.

DB1’s tightness of the soundness proof. To show that the result is tight for DB1 with q = 3, we mount

a (non-leaking) terrorist fraud succeeding with probability γ =Tail(n,τ, q−1
q
): let the malicious prover

give to the adversary the tables for ci 7→ ri + ei(ci) for every round i. For each such i, randomly pick

one entry for which ei(ci) is a random nonzero value and let it be 0 for other, two entries. With such

tables as a response function, the adversary passes the DB phase with probability γ. (Other phases

are done by relaying messages.) Since the verifier accepts with negligible probability γ, the adversary

learns as much as if OutV was always set to 0.

For q= 3 and each i, based on random ai ∈GF(q), x′i ∈GF(q)
∗, and c 7→ ei(c) as distributed above,

we can easily see that the distribution of the transmitted table is independent from x′i: for x′i = 1, the

table of c 7→ ai + cx′i defined by a random ai is randomly picked from

(

0 7→ 0

1 7→ 1

2 7→ 2

)

,

(

0 7→ 1

1 7→ 2

2 7→ 0

)

,

(

0 7→ 2

1 7→ 0

2 7→ 1

)

.

When adding the random table ei(c), it becomes a uniformly distributed random table among those

with an output set of cardinality 2. For x′i = 2, the table of ai + cx′i is randomly picked from

(

0 7→ 0

1 7→ 2

2 7→ 1

)

,

(

0 7→ 2

1 7→ 1

2 7→ 0

)

,

(

0 7→ 1

1 7→ 0

2 7→ 2

)

,

but adding ei(c) leads to the same distribution as for x′i = 1. So, the above attack does not leak and is

a valid terrorist fraud. Th. 14 essentially says that there is no valid terrorist fraud with a larger γ. So,

the result is tight for DB1 with q = 3.

The same proof technique leads to the following result for DB2.

Theorem 15 (Soundness of DB2). For τ
n
> 3

4
, the DB2 scheme is (γ,γ′,s+ 2)-sound for any γ ≥

2Tail( n
2
,τ− n

2
, 1

2
) and γ′ = (1− γ−1Tail( n

2
,τ− n

2
, 1

2
))s.

14



Again, it is open whether this is optimal for a protocol with binary challenges. The bound is pretty

tight for DB2: a malicious adversary could leak the ci 7→ ri tables for a random selection of half of the

rounds, and leak the table with one bit flipped for the others. This will not leak x′i and will pass with

probability γ = Tail( n
2
,τ− n

2
, 1

2
).

3.5 Performance Comparisons

Fig. 6 plots the resistance of DB1, DB2, and DB3 compared with the protocols SKI [6,7,8,9] and

FO [18].15 The results for SKI and FO are revisited in our framework in Appendix A–B. In these

figures, we assume a noise level of pnoise = 5% and we adjust τ in terms of the number of rounds n

such that Tail(n,τ,1− pnoise)≈ 99%, for τ-completeness; i.e., we admit a false rejection rate if below

1%. We plot then − log2 α, − log2 β, and − log2 γ in terms of n, assuming that the residual terms (such

as ε and 2−ℓtag from the PRF and 2−ℓnonce from the nonce) can be neglected. We used the following

dominant security parameters:

protocol α β γ

SKI Tail(n,τ,3/4) Tail(n,τ,2/3) Tail( n
2
,τ− n

2
,2/3)

FO Tail(n,τ,3/4) Tail(n,τ,3/4) n/a

DB1 Tail(n,τ,1/q) Tail(n,τ,1/q) q
q−1

Tail(n,τ,1−1/q)

DB2 Tail( n
2
,τ− n

2
,1/2) Tail(n,τ,1/2) Tail( n

2
,τ− n

2
,1/2)

DB3 Tail(n,τ,1/2) Tail(n,τ,1/2) n/a

As we can see, our protocols are better than SKI and FO on all curves.

DB3 is not plotted on the third graph since it is not sound. FO has an incomparable TF-resistance

notion and is not plotted either. Indeed, the FO curve cannot identify any threshold γ like other proto-

cols (see Fig. 5). TF-resistance therein follows another philosophy: in order to pass a DB run, the FO

protocol always leaks with a probability γ′ = γ, no matter the number of rounds. Although this is an

interesting idea, the price to pay is a much lower resistance to man-in-the-middle, as observed in [30].

Since we consider online attacks, security levels of 2−10 or 2−20 should suffice, i.e., better (online)

security may be ambitious. We now report the minimal number of rounds to attain such security:

security level 2−10 security level 2−20

DF security soundness DF security soundness

SKI 84 48 181 SKI 151 91 315

FO 84 84 n/a FO 151 151 n/a

DB1 q = 3 14 14 54 DB1 q = 3 24 24 92

DB1 q = 4 12 12 91 DB1 q = 4 20 20 152

DB2 69 24 79 DB2 123 43 131

DB3 24 24 n/a DB3 43 43 n/a

Interpretation of results. As we can see in the table above, DB1 with q = 4 is the best choice for

distance fraud and security. Unfortunately, its (non-tightly) proven soundness requires more rounds.

DB1 with q = 3 seems to be the best compromise. But if we want to use binary challenges, we shall

choose between DB2 (suboptimal for DF-resistance) and DB3 (not sound).

15 We take the FO protocol as described in [30] since the original one from [18] introduces two counters and has an incorrect

parameter pe. The one from [30] has been shown to provide an optimal expression for pe. (See Appendix B.)
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Fig. 6. Distance fraud resistance (top left) and security (top right), in equivalent bitlength, with respect to the number of

rounds n. This assumes a τ-completeness level of 99% and pnoise = 5%. The bottom curve gives the soundness level. (Note

that DB3 is not sound and that FO follows another TF-resistance philosophy.)

4 Conclusion

We provided the provably secure symmetric protocols DB1, DB2, and DB3 which require fewer

rounds than the only two existing, provably secure protocols, SKI and FO. Prior to this, we have

revised the formal model for distance-bounding protocols in a way which is closer to (the state of

the art of) interactive proofs. We also studied optimality of all provably secure DB protocols, existing

and advanced herein. Some open challenges remain: 1. identify an optimal and sound protocol for

numc = numr = 2; 2. study the optimality of soundness; 3. implement these protocols.
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A The SKI Protocol: Proofs Recasted in the Model Herein

The SKI protocol [7,9] is reminded in Fig. 7. A secret x ∈ {0,1}s is considered, given a security

parameter s. There, the function f must be a PRF with circular-PRF security. It uses some other

parameters based on s: the number of rounds n, a threshold τ, and the nonce length ℓnonce.
Given a vector µ, the linear function Lµ is defined by

Lµ(x) = (µ · x, . . . ,µ · x)

Namely, all bits are set to the dot product between µ and x. With x′ = Lµ(x), Hancke’s terrorist

fraud [20] would reveal a majority of the bits of x′ thus leaking Lµ(x). Since Lµ is not chosen by

the prover, by repeating the attack, we can collect enough information about x to reconstruct x. So,

Hancke’s terrorist fraud is prevented.

Verifier Prover

secret: x secret: x

initialization phase
NP←−−−−−−−−−−−−− pick NP

pick a,Lµ,NV

M,Lµ ,NV
−−−−−−−−−−−−−→

M = a+ fx(NP,NV ,Lµ) a = M− fx(NP,NV ,Lµ)
x′ = Lµ(x) x′ = Lµ(x)

distance bounding phase

for i = 1 to n

pick ci ∈ {1,2,3}

start timeri
ci−−−−−−−−−−−−−→

stop timeri
ri←−−−−−−−−−−−−− ri =







a1,i if ci = 1

a2,i if ci = 2

x′i +a1,i +a2,i if ci = 3

check #{i;ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−−→

Fig. 7. The SKI Distance-Bounding Protocol [6,7,8,9]

There exists several variants of SKI with different properties. Namely, secret sharing schemes

other than the one in Fig. 7 can be considered. Other leakage schemes Lµ can also be considered. We

refer to [6,7,9] for details.

To study the completeness, we assume that there is a probability of pnoise that one round is incor-

rectly executed by honest players. The probability that an honest prover, close to the verifier, passes

the protocol is Tail(n,τ,1− pnoise). So, we need

τ

n
< 1− pnoise− ε (2)

We prove again the security results of SKI [7,9], but in our new settings. All bounds are tight for

SKI, as this was shown in [6].
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Theorem 16 (DF-resistance of SKI). Let α = Tail(n,τ, 3
4
). The SKI protocol α-resists to distance

fraud. The value α is negligible for τ
n
> 3

4
+ cte.

Proof. The proof goes like for Th. 11. Since V selects a, the answer is correct with a probability

bounded by 1 if (a1)i = (a2)i = xi (this occurs with probability 1
4
), and bounded by 2

3
in the other

cases. So, it is bounded by 1
4
×1+ 3

4
× 2

3
= 3

4
. ⊓⊔

Theorem 17 (Security of SKI). Assuming that f is a (ε,T )-circular-PRF (as defined by Def. 12),

the SKI protocol is β-secure for β = Tail(n,τ, 2
3
) + r2

2
2−ℓnonce + ε where r is the number of honest

participants in the experiment and T is a complexity bound on the experiment. For τ
n
> 2

3
+ cte, β is

negligible.

Proof. The proof goes like for Th. 13.

When applying the circular-PRF reduction, we now have to count on two queries on round i:

Ox, fx
(y,Lµ,Ai,Bi) by P(x) and Ox, fx

(y,Lµ,A
′
i,B
′
i) by V (x), with

Ai = 1ci=3ei A′i = 1c′i=3ei Bi = 1ci=1,3e1,i +1ci=2,3e2,i B′i = 1c′i=1,3e1,i +1c′i=2,3e2,i

where ec,i is the vector having 1 on its (c, i) position and 0 elsewhere. If ∑i αiBi +∑i βiB
′
i = 0, due

to the structure of the Bi and B′i vectors, we obtain that, for each i, we have αi1ci=1,3 = βi1c′i=1,3

and αi1ci=2,3 = βi1c′i=2,3. In the ci = c′i case, we obtain αi1ci=3 = βi1c′i=3. In the ci 6= c′i case, we

obtain αi = βi = 0 which also implies αi1ci=3 = βi1c′i=3. So, we always have αiAi = βiA
′
i. Finally,

∑i αiAi +∑i βiA
′
i = 0. The condition (1) to apply the circular-PRF security reduction is satisfied.

It is now easy to see that for each round i of the constructed game Γ3, the adversary has no

time to ask P(x) for the correct answer, he may have asked it before by accident, with probability 1
3
.

Otherwise, his answer is correct with probability 1
2
. So, it is overall correct with probability 1

3
+ 2

3
×

1
2
= 2

3
. So, p≤ Tail(n,τ, 2

3
)+ r2

2
2−ℓnonce + ε. ⊓⊔

Theorem 18 (Soundness of SKI [30]16). Let γ be such that γ ≥ 3
2
Tail( n

2
,τ− n

2
, 2

3
) and let γ′ = (1−

γ−1Tail( n
2
,τ− n

2
, 2

3
))s. For τ

n
> 5

6
+cte, we can select γ negligible and γ′ constant. The SKI protocol is

(γ,γ′,s+2)-sound.

The proof is the same as for Th. 14.

B The FO Protocol: Proofs Recasted in the Model Herein

The FO protocol is depicted on Fig. 8. It is as specified in [30], since the value of pe from [18] is

incorrect and the specification in [18] uses two specific thresholds (namely, for incorrect responses

and for rounds with a time out) instead of a single τ, making the comparison with other protocols

harder. (See [30].)

The protocol builds up on the Swiss-Knife protocol [24] and uses a special escape strategy b = 1.

Normal users shall only use b = 0. For b = 1, the verifier expect a simple echo on challenges (i.e.,

ri = ci), does not verify the tag t, and has a probabilistic behavior: it accepts with probability pe where

e is the Hamming distance between I and the secret y.

Theorem 19 (DF-resistance of FO). The FO scheme α-resists to distance frauds, for α =Tail(w,τ−
n + w, 1

2
), where w is the Hamming weight of y. On average over y, this is α = Tail(n,τ, 3

4
). For

τ
n
> 3

4
+ cte, this is negligible.

16 Actually, the result in [30] was γ = 1
negl(n)

Tail( n
2 ,τ−

n
2 ,

2
3 ). So, our result is more precise.
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Verifier Prover

secret: x,y secret: x,y

initialization phase

pick NV
NV−−−−−−−−−−−→ set b = 0

b,I,NP
←−−−−−−−−−−− pick NP

I′‖a1 = fx(NP,NV ) I‖a1 = fx(NP,NV )
a2 = a1⊕ y a2 = a1⊕ y

distance bounding phase

for i = 1 to n

pick ci ∈ {1,2}

start timeri
ci−−−−−−−−−−−→

stop timeri
ri←−−−−−−−−−−− ri =

{

a1,i if ci = 1

a2,i if ci = 2

verification phase

check b, I, t,
t

←−−−−−−−−−−− t = fx(transcript)

#{i : ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−→

pe = Tail

(

e,e−n+ τ,
1

2

)

correctness conditions for b = 0 correctness conditions for b = 1

I′ = I correct with probability pdH (I,y)

t = fx(transcript) —

ri = aci,i ri = ci

timeri ≤ B timeri ≤ B

Fig. 8. The Fischlin-Onete (FO) distance-bounding protocol (as described in [30]).
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Clearly, this bound is tight for FO.

Proof. We consider a distinguished experiment exp(V ) with no close-by adversary and no close-by

secret.

Due to the distance, the answer ri to V must come from far away, and is so independent from ci.

Clearly, the escape strategy is not optimal since each round can only be correct with probability 1
2
.

Using the regular strategy with b = 0, the malicious prover can always win when yi = 0. Overall, if w

is the Hamming weight of y, he needs to be correct in τ− n+w more rounds. So, the probability is

Tail(w,τ−n+w, 1
2
). ⊓⊔

Theorem 20 (Security of FO). Assuming that f is a PRF, for τ
n
> 3

4
, the FO scheme is β-secure for

β = Tail(n,τ, 3
4
)+negl(n).

This bound is tight for FO, as this was shown in [30]. The attack consists in impersonating the prover

by guessing y and using the escape strategy.

Proof. We consider a distinguished experiment exp(V ) with no close-by P(x), no P∗(x), and where

V accepts with probability p.

The proof goes like the one of Th. 13. We reduce to a game where only one P(x) is running and fx

is replaced by a random function. In the b = 0 strategy, the adversary can only win with probability 1
2

in each round: if he plays with P(x) first, he can only win if he could predict the challenge, due to the

tag, but he must guess all challenges correctly to get the correct tag. If he does not, he can only win if

he could guess the answer. In the escape strategy b = 1, he can just guess some I close to y. In [30], it

was shown that this succeeds with probability Tail(n,τ, 3
4
). ⊓⊔

The FO protocol offers some form of terrorist-fraud.

Theorem 21 (TF-resistance of FO [18,30]). The FO scheme on Fig. 8 is strSimTF-secure. I.e., for

any experiment made of a verifier V =V (x), an adversary A , and a malicious far-away prover P∗(x),
there exists an experiment made of an adversary S(z) with auxiliary input z and a verifier V ′ =V (x)
such that Pr[V ′ accept : z = ViewA ]> Pr[V accept].

FO cannot compare with other protocols in terms of TF protection. For FO, leaks are gradual, i.e.,

we have γ′ = γ, no matter the number of rounds. In SKI, DB1, DB2, if a threshold γ (related to n) of

success in a collusion is attained, then the cooperating prover leaks the secret with a probability γ′,

which tends towards 1 as the number n of rounds grows.
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