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Abstract. We consider the following problem: Assuming that Alice and
Bob have an integer interval [a, e] and an integer b respectively, for a
commitment c to b, Alice and Bob jointly check whether b is within [a, e]
without revealing their inputs, where either party may behave malicious-
ly. A special case of the problem is the secure integer comparison in the
malicious model. This problem mainly arises from location-based access
control systems where one party needs to assure to the other party that
its location is within some definite area.
Our main result is a constant-round protocol that exhibit the square
of log e communication and the square of log e exponentiations with
simulation-based security. At the heart of the construction is perfec-
t k-ary index and corresponding zero-knowledge proof techniques. We
consider a more general case of the problem where the interval is substi-
tuted by a union of intervals.

Keywords: private interval check, secure integer comparison, malicious
model, zero-knowledge proof, k-ary tree index, location-based access con-
trol

1 Introduction

In this paper, we consider private interval check problem (PIC) where two party,
having an integer interval [a, e] and an integer b respectively, want to check
whether b ∈ [a, e] where either party may behave maliciously. A special case
of PIC is the secure integer comparison problem in the malicious model. We
consider a more general case of PIC where the interval is substituted by a union
of intervals.

The main motivation for PIC is privacy protection in location-based ac-
cess control systems [1–5]. In location-based access control systems, one party
(Client) is willing to prove to the other party (Server) that her location, e.g.,
GPS coordinates (x, y), is within Server’s valid area, e.g., a rectangular area
[(x1, y1), (x2, y2)] (where (x1, y1) and (x2, y2) denote the low-left and the upper-
right points of the rectangular area), such that: (i) Client does not learn the
valid area [(x1, y1), (x2, y2)]; (ii) Server learns no information about Client lo-
cation data (x, y), beyond the result of whether (x, y) ∈ [(x1, y1), (x2, y2)]; and
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(iii) Client should not tamper with her location data or intermediate results to
affect the final result.

The above problem can be formalized as a secure two-party computation
problem: Two parties, Client and Server, each with an integer b and an integer
interval [a, e] respectively, want to evaluate whether b ∈ [a, e], such that: (i)
Client can not learn the values a, e; (ii) Server learns no information about value
b; and (iii) Client should not change b or intermediate results to affect the final
result. As formerly stated, we call the problem “private interval check (PIC)”.

In the paper, we construct an efficient secure two-party protocol to treat PIC.
Obviously, PIC is a special case of Private Set Intersection Cardinality problem
(PSI-CA) [6–8], where two parties want to compute the intersection cardinality
of their input sets without revealing their input set to the other one. There is
then a direct question of why not to use existing PSI-CA protocols to solve PIC
problem since, after all, there are many excellent protocols for PSI-CA [6–11].
One major reason is the inefficiency of these protocols to treat PIC, where an
integer interval is treated simply as a set of all integers in the integer interval.
However, integer interval is a consecutive integer set, which is redundant, and
it would be inefficient to simply treat it without further treatment, such as
compression. The other reason is that most of these protocols are based on
the semi-honest model, where both parties are assumed to act according to their
prescribed action in the protocol, which is unrealistic in our application scenario.
A protocol is then needed to treat PIC efficiently in the malicious model.

Our major contribution is a private interval check protocol in the malicious
model, where interval is not confined to an integer interval but a union of integer
intervals. The major challenge is to first “compress” intervals and then prove the
knowledge about it. To the best of our knowledge, ours is the first to solve the
private interval check problem in the malicious model with constant round and
O(log2 n) communication and exponentiations for the integer interval length n.
The core of our protocol is the using of k-ary tree index and the accompanying
zero-knowledge proof techniques. A simulation-based proof is given to the private
interval check protocol. We also analyse our protocol’s complexity and give it an
asymptotic optimization. Furthermore, a special case of our protocol is a secure
integer comparison protocol [12–16] in the malicious model.

Besides location-based access control, there are other applications for our
protocol, such as electronic election, credential systems, electronic auction, etc.

1.1 Related Works

Our work is related to Private Set Intersection (PSI) [6, 11, 9, 10] and Private
Set Intersection Cardinality (PSI-CA) [7, 8, 6]. PSI have been widely looked at
by researchers in the last few years due to their potential applications. PSI-CA
is a special case of PSI where the output is the cardinality of intersection set
but not the intersection. PIC can be seen as a special case of PSI-CA where
the input sets are a set containing one integer and a set containing a series
of consecutive integers, and the output is either 0 or 1. However, our work is
different from the above works. The main difference of our work from PSI and
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PSI-CA is that our work focuses on the special case of set, i.e., integer interval or
union of integer intervals, which can be compressed to improve the efficiency of
protocols. Moreover, the former PSI-CA protocols [7, 8] are not adapted to our
application scenarios since their protocols are in the semi-honest model which is
unrealistic to our application scenarios.

Our work is also related to the secure integer comparison – the well-known
“Millionaires’ Problem” [12–16]. Due to its significant applications, such as elec-
tronic auction [15], secure interval check [14], location-based access control [17,
18], and proximity test [19–25], it has been studied extensively.

However, our protocol is different from these secure integer comparison proto-
cols; almost all secure integer comparison protocols are based on the semi-honest
assumption where each party follows the protocol with the exception that it
keeps all its intermediate computations, which is not practical in our application
scenarios. Our protocol don’t rely on the semi-honest model but assumes the
existence of malicious parties which makes our schemes more practical than the
formers.

There are other related works in the privacy protection of location-based
access control [4, 5, 17, 2] and in location-based social networks [19]. However,
these works either assume the honest Server or are based on the semi-honest
assumption [4, 5, 17, 19] that are different from ours.

2 Preliminaries

2.1 Basic Notations

For a real number a, bac denotes the largest integer ≤ a. The notation m ∈R S
denotes that m is randomly chosen from a set S. The notation [x, y], for two
integers x and y, denotes an interval of integers, i.e., [x, y] = {z ∈ Z : x ≤ z ≤
y}. We say that m intervals [a1, e1], . . . , [am, em] are pairwise non-adjacent if
ei + 1 < ai+1 for 1 ≤ i ≤ m− 1.

2.2 Hardness Assumptions

Our construction relies on the following two hardness assumptions.

Definition 1 (Decisional Deffie-Hellman (DDH) assumption). Let G be
a group with order q and let g ∈R G, x, y, z ∈R Zq. The Decisional Deffie-
Hellman assumption for G is that it is infeasible to distinguish (g, gx, gy, gz)
from (g, gx, gy, gxy).

Definition 2 (Discrete Logarithm (DL) assumption). Let G be a group
with order q and let g, h ∈R G. The Discrete Logarithm assumption is that it is
infeasible to find x ∈R Zq such that h = gx.
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2.3 Commitment Scheme

In this paper, we use Pedersen commitment scheme [26]. Let q′ = 2q + 1 where
q, q′ are primes. Set G to be the unique subgroup of Z∗q′ of order q. Let g̃, h̃
be two random generators of G; then a commitment to m ∈ Zq is defined as

com(m, r) = g̃mh̃r where r ∈R Zq. Commitment to a set is defined as follow.

Definition 3 (Commitment to a set). Let B = {n0, . . . , nt} be a subset
of Zq. Set, for 0 ≤ i ≤ t, ci = com(ni, rni) where rni ∈ Zq. Then the set
C = {c0, . . . , ct} is said to be a commitment to B.

The commitment scheme is computationally binding and perfectly hiding.

2.4 Homomorphic Encryption Scheme

We use a standard variant of ElGamal encryption scheme [27]. We use the same
group G used for the Pedersen commitment scheme. Let g, h be two random
generators in G; then the public key is (g, h) and the secret key is k = logg h. To
encrypt a message m ∈ Zq, choose y ∈R Zq, and compute E(m) = (gy, hy×gm).
To decrypt (α, β), first compute β/αx, then search a lookup table of (gm,m)
to find m. It is easy to find that the decryption scheme is very inefficient. For-
tunately, we don’t need any decryption but only need verification of whether
gm = 1. Note that gm = 1 if and only if m = 0.

It is easy to verify that the modified ElGamal scheme is additively homo-
morphic, i.e., E(m1 +m2) = E(m1)E(m2). It follows by repeated addition that
E(em) = E(m)e for an integer e.

2.5 Secure Two-Party Computation

A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs. Let f be a two-party functionality, i.e. f =
(f1, f2) : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗, and let π be a two-party protocol
for computing f . The security of π in the malicious model [28, §7.2] is defined
as follow.

Definition 4. Let f and π be as above. Protocol π is said to securely compute
f with abort in the presence of malicious adversaries if for every probabilis-
tic polynomial-time adversary A for the real model, there exists a probabilistic
polynomial-time (p.p.t.) adversary S for the ideal model, such that for every
I ⊂ {1, 2},

{IDEALf,S(z),I(x, y, n)}x,y,z∈{0,1}∗,n∈N
c≡ {REALπ,A(z),I(x, y, n)}x,y,z∈{0,1}∗,n∈N,

where I ⊂ {1, 2} denotes the set of corrupted parties, (x, y) denote the inputs of
π, z is the auxiliary input to A, and n is the security parameter.
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2.6 Zero-Knowledge Proofs

For a Proof of Knowledge (PK) we use the definition from [29].

Definition 5. A two-party protocol (P, V ) is a proof of knowledge (PK) for a
relation R = {(x,w)} ⊂ {0, 1}∗ × {0, 1}∗ with knowledge error 0 ≤ κ ≤ 1 if the
following properties are satisfied:

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Knowledge soundness (or validity): If a cheating prover P ∗ has probability
ε of convincing V to accept x, there exists an expected polynomial-time al-
gorithm E, called the knowledge extractor, such that when given rewindable
black-box access to P ∗, E outputs a witness w for x with probability ε− κ.

The proof system (P, V ) is zero-knowledge if there exists a p.p.t. algorithm S,
called the simulator, such that for any (x,w) ∈ R and any p.p.t. algorithm V ∗,
the outputs of V ∗(x) after interacting with P (w) and that of S(w) are computa-
tionally indistinguishable.

When presenting protocols we express Zero Knowledge (ZK) proofs using the
notation introduced by Camenisch and Stadler [30]:

PK{(α, β, . . .) : statements involving α, β, . . .}

means the prover is proving knowledge of (α, β, . . .) such that these values satisfy
statements.

2.7 Perfect Binary Index

The paper [14] presents perfect binary index. We summarize their definitions as
follows.

Definition 6 (Tree node). A tree node is a data structure that consists of a
unique label (h, o) and possibly two pointers left and right to other tree nodes.
The label has two components: the height h and the order o. A leaf node is a tree
node with a label (0, o) and no pointers.

Definition 7 (` Perfect Binary Tree (` PBT)). An ` perfect binary tree is
a binary tree with a set of leaf nodes L = {(0, 0), (0, 1), . . . , (0, 2`− 1)} and a set
of non-leaf nodes NL such that (`, 0) ∈ NL and for all (h, o) ∈ NL, there exists
(h−1, 2o), (h−1, 2o+ 1) ∈ (L∪NL) with (h, o).left = (h−1, 2o), (h, o).right =
(h− 1, 2o+ 1). In an ` PBT, the root node is the node (`, 0).

Figure 1 shows a 3 PBT.

Definition 8 (Coverage). Given an ` PBT, we say a tree node (h1, o1) covers
a leaf node (0, o2) if there exist a path from (h1, o1) to (0, o2) in the tree (e.g., if
o1×2h1 ≤ o2 < (o1+1)×2h1). The covering set of a given leaf node v is the set of
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Fig. 1. 3 Perfect Binary Tree

all nodes in the PBT that cover v (e.g., all nodes on the path from v to the root).
The coverage of a tree node v = (h1, o1) is the set of all leaf nodes covered by v.
The pointer v.leftLeaf [v.rightLeaf ] returns the left [right] most leaf node in the
coverage of v (v.leftLeaf = (0, o1×2h1), v.rightLeaf = (0, (o1 + 1)×2h1 −1)).

Definition 9 (Representer set and minimal representer set). Given an
` PBT, a representer (set) of a set of leaf nodes L′ ⊆ L is a set of nodes
R ⊆ (L ∪NL) such that

– for all nodes v ∈ L′, there exists a node in R that covers v, and
– for all nodes v ∈ R, there is no leaf node v′ /∈ L′ that is covered by v.

A representer R for the set of leaf nodes L′ is minimal, if there is no other
representer R′ of L′ with |R′| < |R|.

2.8 Perfect k-ary Index

In this paper, we use a generalized notion of the perfect binary index in Section
2.7, i.e., perfect k-ary index. The generalization is direct. We only give the details
of the notion of ` perfect k-ary tree (` PKT). Other related notions can be treated
similarly.

Definition 10 (` Perfect k-ary tree (` PKT)). An ` perfect k-ary tree
(k ≥ 2) is a k-ary tree with a set of leaf nodes L = {(0, 0), (0, 1), . . . , (0, k`− 1)}
and a set of non-leaf nodes NL such that (`, 0) ∈ NL and for all (h, o) ∈ NL,
there exists (h − 1, ko), (h − 1, ko + 1), . . . , (h − 1, ko + k − 1) ∈ (L ∪NL) with
(h, o).c1 = (h− 1, ko) ,. . ., (h, o).ck = (h− 1, ko+ k− 1). In an ` PKT, the root
node is the node (`, 0).

Figure 2 shows a 2 Perfect 3-ary Tree(P3T).

Lemma 1 ([14](Lemma 6)). Let R be a minimal representer of a set of leaf
nodes. For each node n ∈ R, no other node n′ ∈ R is a descendant of n.

Lemma 2 ([14](Lemma 3)). Let R be a minimal representer for {(0, 0), ..., (0, e)}
in an ` PKT. For each level 0 ≤ i ≤ `, there can be at most k − 1 nodes v ∈ R
such that v.h = i.
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Lemma 3 ([14](Lemma 5)). Given an ` PKT, let R be a minimal representer
for the set of leaf nodes {(0, a), . . . , (0, e)} and let B be the covering set for the
leaf node (0, b). Then a ≤ b ≤ e if and only if |R ∩B| = 1.

The above three lemmas are the generalizations of the lemmas in [14]. The
proof of these three lemmas is similar with those in [14] and we omit them.

Corollary 1. Let Li = [ai, ei], for 1 ≤ i ≤ m. Let Ri, for 1 ≤ i ≤ m, be
the minimal representer set of Li and let R be the minimal representer set of
∪mi=1Li in an ` PKT. If Li are pairwise non-adjacent, i.e., ei + 1 < ai+1 for
1 ≤ i ≤ m− 1, then R = ∪mi=1Ri.

Proof. Since Li, for 1 ≤ i ≤ m, are pairwise non-adjacent, we get Ri ∪ Rj = ∅
for different i, j from Definition 9. Then we have R = ∪mi=1Ri.

Corollary 2. Let Li, R be as in Corollary 1 and B be the covering set of b in
the ` PKT. Then b ∈ ∪mi=1Li if and only if |R ∩B| = 1.

The notion of PKT gives a bijection between a set of integers and a set
of leaf nodes in the PBT, such as the integer interval [a, e] is injected to the
set {(0, a), (0, a + 1) . . . , (0, e)}. In the following sections, we will use the no-
tations [a, e] to denote either the integer interval [a, e] or the set of leaf nodes
{(0, a), (0, a+ 1) . . . , (0, e)} if without ambiguity.

We define a bijection g(h, o) =
∑h−1
j=0 k

`−j + o between the set of all nodes in

an ` PKT and the integer interval [0, (k`+1 − 1)/(k− 1)]. By using the bijection
g each node (h, o) in an ` PKT is identical to a unique integer g(h, o). In the
following part of the paper, while mentioning a node, it would relate either to
(h, o) or to its integral form g(h, o). We would interchangeably use them without
ambiguity.

3 Commitment to the Covering Set of an Integer

In this section, we give a protocol to prove the knowledge of commitment to
the covering set of an integer. Specifically, setting B be the covering set of an
integer b ∈ [0, k`] in an ` PKT, Client can convince Server, who only knows a
commitment to b, that a set is a commitment to B. We first give a result for B.
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Lemma 4. Let b, B, k, ` be as above. Then B = {(0, b), (1, bb/kc), (2, bb/k2c), . . . ,
(`, bb/k`c)}.

Proof. By Definition 10, the coverage of a node (h, o) is {(0, kh×o), . . . , (0, kh×
(o + 1) − 1)}. Assuming that (i, j) is the node that covers (0, b) in the level i,
0 ≤ i ≤ `, then ki × j ≤ b ≤ ki × (j + 1)− 1. We have b/ki − 1 + 1/k ≤ j ≤ b/ki
and so j = bb/kic. The proof is complete.

Let B, b be as in Lemma 4, and let C, c be commitments to B, b respectively.
We now show a two-party protocol by which Client can prove to Server, where
Server only knows c, that C is a commitment to B without revealing b and B.

Protocol 1
– Common input: A string c and a set {c0, . . . , c`}, where c, c0, . . . , c` ∈ G.
– Auxiliary input for Client: A tuple (b, r) such that c = com(b, r), where
b, r ∈ Zq.

– Initial message: Client computes

1. cbi = com(bi, rbi), for i = 0, . . . , `− 1, where rbi ∈R Zq and bi is the ith
digit (from right to left) in the k-ary notation of b.

2. e0 = b and ce0 = cb.
3. for 1 ≤ i ≤ `, ei = (ei−1 − bi−1)/k and cei = com(ei, rei), where rei ∈R

Zq.
– The protocol:

1. Client sends {cb0 , . . . , cb`−1
} and {ce0 , . . . , ce`} to Server.

2. For each 0 ≤ i ≤ ` − 1, Client proves to Server that cbi commits to the
ith digit bi in the k-ary notation of b, i.e.,

PK{(bi, ri) : cbi = gbihri ∧ bi ∈ [0, k − 1]}, for 0 ≤ i ≤ `− 1

and

PK{(θ) : c/

`−1∏
i=0

ck
i

bi = hθ}.

3. For 1 ≤ i ≤ `, Client proves to Server that ei = (ei−1 − bi−1)/k, i.e.,

PK{(δi) : cei−1
/(cbi−1

ckei) = hδi}, for 1 ≤ i ≤ `.

4. Client proves to Server that {c0, . . . , c`} is a set of commitments of B,
i.e., for 0 ≤ i ≤ `,

PK{(τ0, τ1, . . . , τ`) : c0/(ceig
fi) = hτ0∨c1/(ceigfi) = hτ1∨. . .∨c`/(ceigfi) = hτ`},

where fi =
∑i−1
j=0 k

`−j.

Note that {c0, . . . , c`} is a shuffle of a commitment to B, i.e., each ci committing
to which node in B is unknown to Server.
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Remark 1. In Step 2, the first ` PKs can be achieved using the range proof tech-
niques in [31] and the last PK is just a proof of knowledge of discrete logarithm.
The PK in Step 4 can be evaluated using the batch proof techniques in [32].

Remark 2. The complexity of Protocol 1: The initial message step needs 4` expo-
nentiations in G; In Step 2, the first ` PKs needs O(` log k) exponentiations in G
using the range proof protocol in [31] and the last PK needs `+3 exponentiations
in G; Step 3 needs 4` exponentiations in G; Step 4 needs O(`2) exponentiations
in G [33, 32]. The total computation is O(` × max(`, log k)) exponentiations in
G. The total communication is O(`×max(`, log k)|G|) bits.

Theorem 1. Protocol 1, when constructed with a secure ZK protocol, is a zero-
knowledge proof for the assertion that {c0, . . . , c`} is a shuffle of a commitment
to B.

Proof. Step 2 proves that cbi commits to the ith digit in the k-ary notation of b.
Step 3 proves that cei commits to bb/kic. Step 4 illustrates that {c0, . . . , c`} and
{ce0gf0 , . . . , ce`gf`} commit to the same set, where ceig

fi commits to the node
(i, bb/kic) in B. In all, completeness and soundness are complete.

Zero-knowledge property follows from the fact of perfectly hiding property
of the commitment scheme and of zero-knowledge property of each ZK protocol
in Protocol 1.

4 Private Interval Check Protocol

We now consider the private interval check problem. We first give the problem
a formal definition and then present a high level description of our protocol.
Finally, we present the detailed protocol.

4.1 Definitions and Overview

We consider a more general case of the private interval check problem where the
interval may not be an interval but a union of intervals. Let Li = [ai, ei], for
1 ≤ i ≤ m, be m pairwise non-adjacent intervals, and let Ri be the minimal
representer set of Li in an ` PKT. Let R be the minimal representer set of
L = ∪mi=1Li. Let b be a nonnegative integer ≤ k` − 1 and B be its covering set
in the ` PKT.

Definition 11 (Private Interval Check of Committed Integer). Let L, b
be as above. Set c = com(b, r) be a commitment of b. The function of private
interval check of committed integer FPIC is defined as

((b, c), (L, c)) 7→ (λ, |{b} ∩ L|).

Definition 12. Let Π be a protocol to compute FPIC. Π is said to securely
compute FPIC with abort in the presence of malicious adversaries if for every
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probabilistic polynomial-time adversary A for the real model, there exists a prob-
abilistic polynomial-time adversary S for the ideal model, such that for every
I ⊂ {Client, Server},

{IDEALFPIC,S(z),I((b, c), (L, c))}
c≡ {REALΠ,A(z),I((b, c), (L, c))}.

Suppose that Client has (b, c) and that Server has (L1, . . . , Lm, c). By Corol-
lary 2, b ∈ L if and only if |R∩B| = 1. Therefore, we only need to check whether
|R ∩B| = 1 in order to check whether b ∈ L. Our protocol functions as follows.

– Client computes a commitment C to B, and proves the knowledge of C to
Server using protocol 1.

– Server evaluates the minimal representer R of L1, . . . , Lm in the ` PKT and
computes f(x) =

∏
ai∈R(x− ai) =

∑v
i=0 αix

i where v = |R|.
– Server encrypts αi, for i = 0, . . . , v, using its ElGamal encryption function
E(·) and prove to Client that E(αi) is a correct encryption.

– For each ni ∈ B, Client evaluates wi = E(sif(ni)) where si ∈ Zq/{0} and
proves to Server that it is evaluated correctly. Note that ni ∈ B ∩ R if and
only if f(ni) = 0.

– Server decrypts wi to get gsif(ni) and counts the number of wi if the corre-
sponding decryption is gsif(ni) = 1 and denotes the count as e. Note that
ni ∈ B ∩ R if and only if gsif(ni) = 1 and that gsif(ni) would be a random
element to Server if ni /∈ B ∩R.

– Server accepts that b ∈ L if and only if e = 1. Note that e is the number of
node in B ∩R.

4.2 A Concrete Construction

We now present the detailed protocol.

Protocol 2 (Private Interval Check of Committed Integer)
– Common input: A string c ∈ G.
– Auxiliary input for Client: A tuple (b, r) such that c = com(b, r) where b, r ∈

Zq.
– Auxiliary input for Server: m pairwise non-adjacent intervals L1, . . . , Lm.
– Initial message: For two positive integer k and `,
• Client computes b’s covering set B in the `-PKT.
• Server computes L’s minimal representer set S in the `-PKT and com-

putes f(x) =
∏
ai∈R(x− ai) =

∑v
i=0 αix

i where v = |R|.
– The protocol:

1. Client proves the knowledge of a commitment to B by invoking Protocol
1 with Client’s input (c, b, r), denoting the ZK constructed for Protocol
1 as P1. Suppose that the output of Protocol 1 is the set C = {ci : ci =
com(ni, δi), ni ∈ B, δi ∈R Zq, 0 ≤ i ≤ `}.

2. Client sends C and P1 to Server.
3. Server verifies P1, and aborts if it fails.
4. Server evaluates Ei = E(αi) = (gri , gαihri), ri ∈R Zq for i = 0, . . . , v.
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5. Server creates

P2 = PK{(α0, . . . , αk, r0, . . . , rk) : Ei,1 = gri∧Ei,2 = gαihri for i = 0, . . . , v},

where Ei,1 and Ei,2 denote the first and the second item of Ei respec-
tively.

6. Server sends (E0, . . . , Ev) and P1 to Client.
7. Client verifies P2, and aborts if it fails.
8. Client homomorphically evaluates f at elements in B by computing

vi = (

v∏
j=0

E
nj
i

j,1,

v∏
j=0

E
nj
i

j,2)

for each ni ∈ B in random order, then computes wi = (vsii,1, v
si
i,2) for

si ∈R Zq/{0}. Note that wi = E(sif(ni)).
9. Client creates the proof

P3 = PK{(n0, . . . , n`, s0, . . . , s`, δ0, . . . , δ`) : wi = (

v∏
j=0

E
nj
isi

j,1 ,

v∏
j=0

E
nj
isi

j,2 )∧

ci = com(ni, δi), for i = 0, . . . , `}.

10. Client sends (w0, . . . , w`, P3) to Server.
11. Server verifies P3, and aborts if verification fails. Server also checks that

si 6= 0 by verifying that wi 6= (1, 1) for i = 0, . . . , `.
12. Server initializes a counter e = 0, evaluates D(wi) to get gsif(ni) and

increments e if gsif(ni) = 1.
13. Server outputs e.

Some explanations are needed for P2 and P3. The ZK of P2 needs a proving
the knowledge of the discrete logarithm αi and a proving the equality of the
discrete logarithm ri. The ZK of P3 is more involved. For notational simplicity,
for each n ∈ B, we set w = (w1, w2) = (

∏v
j=0E

njs
j,1 ,

∏v
j=0E

njs
j,2 ) and set, for

j = 1, . . . , v, dj = com(nj , uj) where s, uj ∈R Zq. For each n ∈ B, Client creates

PK{(n, u1, δ2, . . . , δv) : d1 = com(n, u1)∧d2/dn1 = com(0, δ2)∧. . .∧dv/dnv−1 = com(0, δv)}

and

PK{(β1, . . . , βv, δ1, . . . , δv, s) : w1/E1,1 =

v∏
j=1

E
βjs
j,1 ∧ w2/E1,2 =

v∏
j=1

E
βjs
j,2 ∧

d1 = com(β1, δ1) ∧ . . . ∧ dv = com(βv, δv)},

where the first ZK proves that dj commits to nj for j = 1, . . . , v and the second
ZK proves that w is computed correctly by the product of Ei’s correct exponen-
tiation.
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Remark 3. The complexity of Protocol 2: Step 1 needs O(`×max(`, log k)) expo-
nentiations in G; Step 4 needs 3(v+1) exponentiations in G; Step 5 needs 8(v+1)
exponentiations in G; Step 8 needs 2(v+ 2)` exponentiations in G; Step 9 need-
s O(v`) exponentiations in G. The total computation is O(` ×max(`, log k, v))
exponentiations in G. The total communication is O(`×max(`, log k, v)|G|) bits.

Theorem 2. Protocol 2, when constructed with a secure ZK protocol, is a secure
protocol to compute FPIC assuming the DDH and DL assumptions hold.

Proof. We separately prove security in the case that no parties are corrupted,
the case that Client is corrupted, and the case that Server is corrupted.

No parties are corrupted. Step 1 ensures that C is a commitment to B. Step
4 and Step 5 ensure that the function f(t) is encrypted correctly. Step 9 ensures
that, for each ni ∈ B, the encryption E(sif(ni)) is computed correctly. Since G
is prime order and si 6= 0 it must be that gsif(ni) = 1 if and only if f(ni) = 0 in
Step 12. Hence, e is the number of elements ni in B such that f(ni) = 0. On the
other hand, f(t) = 0 if and only if t ∈ R by the definition of f(t) which results
in that e is the number of elements of B ∩R. By Corollary 2, b ∈ L if and only
if |B ∩ R| = 1. Therefore, b ∈ L if and only if e = 1 and then the protocol is
correct.

Server is corrupted. Let A denote an adversary controlling Server. We con-
struct a simulator S as follows.

1. S evaluates, for i = 0, . . . , `, ci = com(ni, δi) for randomly chosen (ni, δi),
and forges the proof P1.

2. S sends c0, . . . , c` and P1 to A.
3. S receives from A the encrypted polynomial E0, . . . , Ev and P2. If P2 is

invalid or if A has aborted, S stops and returns ⊥ to the trusted party.
Otherwise, S receives α0, . . . , αv from A and verifies the validity.

4. S evaluates w0, . . . , w` and creates the proof P3.
5. S sends w0, . . . , w` and P3 to A.
6. S outputs whatever A does.

To prove that A’s views in the real and simulated executions are compu-
tationally indistinguishable, we construct a sequence of games and show that

the corresponding random variables G
A(z)
i (c, b, L) that consist of the view of A

in game Gi are computationally indistinguishable. Recall that the commitmen-
t scheme com is perfectly hiding, and that the ElGamal encryption scheme is
semantically secure.

Game G0: The simulated execution.
Game G1: A follows Protocol 2 except that A chooses a set S′ to compute

f(t) which is the minimal representer set of a set L′ where L 6= L′. In this case,
the output of A is the same as the output of S where the input is L′. Therefore,

G
A(z)
0 (c, b, L) and G

A(z)
1 (c, b, L) are computationally indistinguishable.

Client is corrupted. Let A denote an adversary controlling Client. We con-
struct a simulator S as follows.



Efficient Interval Check in the Presence of Malicious Adversaries 13

1. S receives C and P1 from A, verifies P1, and extracts (n0, δ0), . . . , (n`, δ`).

2. S evaluates, for i = 0, . . . , v, Ei = E(αi) = (gri , gαihri) for randomly chosen
(ri, αi), and forges the proof P2.

3. S sends E0, . . . , Ev and P2 to A.

4. S receives w0, . . . , w` and P3 from A.

Since the commitment scheme is perfectly hiding and the ElGamal encryption
scheme is semantically secure, we can see that the view of A is computationally
indistinguishable from the view of S.

In all, the proof is complete.

Corollary 3. If L = [0, b], Protocol 2, when constructed with a secure ZK pro-
tocol, is a secure integer comparison protocol in the malicious model assuming
the DDH and DL assumptions hold.

4.3 Asymptotic Complexity Analysis

We now give an asymptotic analysis of the computational and communication
costs of our protocol.

Let b, k, `, v, L,R,B be as in Section 4.1 and Section 4.2. For simplicity, we
assume that L = [a, e]. The value v is then the cardinality of the minimal repre-
senter set of [a, e]. From Remark 3, the total computation isO(`×max(`, log k, v))
exponentiations in G and the total communication is O(` ×max(`, log k, v)|G|)
bits. Therefore, in order to reduce the computation and communication complex-
ity, we need to reduce ` and maxk(`, log k, v) by allocating k. Note that b, a, e
take values from range [0, k`] where k` (setting z = k`) is fixed. Intuitively, we
can reduce the value of ` = logk z by raising the value k and therefore reduce
the complexity. However, raising k will raise the value log k. Furthermore, it is
unclear how does v change when raising k. It is then needed to make sense how
does v change.

We give some results for v.

Lemma 5. Let R = {r1, . . . , rt} be the minimal representer of a set of leaf nodes
in an ` PKT. Let Ti be the coverage of node ri for 1 ≤ i ≤ t. Then Ti ∩ Tj = ∅
for 1 ≤ i, j ≤ t and i 6= j.

Proof. It is easy to verify that ri is the minimal representer of Ti. Assuming that
there exists a leaf node e ∈ Ti ∩ Tj , then ri, rj both cover e and so one is an
ancestor of the other, which is contrary to Lemma 1.

We first give a result for the case of a = 0, i.e., L = [0, e].

Lemma 6. In an ` PKT, the cardinality of the minimal representer set of L =
[0, e] is

∑n
i=0 ei, where ei is the ith (from right to left) digit in the k-ary notation

of e+ 1 and en 6= 0.
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Proof. Let R = {r1, . . . , rt} be the minimal representer of L and Ti be the
coverage of node ri for 1 ≤ i ≤ t. Then, for 1 ≤ i ≤ t, ri is the minimal
representer of Ti. By Lemma 5, Ti ∩ Tj = ∅ for 1 ≤ i, j ≤ t and i 6= j and

then e + 1 = |L| =
∑t
i=1 |Ti|. Since the number of nodes covered by ri ∈ R

is of the form kτi for a definite nonnegative integer τi by Definition 10, then
e + 1 =

∑t
i=1 |Ti| =

∑t
i=1 k

τi =
∑
τi,1≤i≤t nik

τi , where ni is the times of kτi

appeared in
∑t
i=1 k

τi . By Lemma 2 there are at most k − 1 nodes r ∈ R such
that r.h = i for 0 ≤ i ≤ `. Since each node r ∈ R covers kr.h nodes in L, which
says that each node at the same level in R covers the same numbers of leaf
node, then 0 ≤ ni ≤ k− 1. Hence,

∑
τi,1≤i≤t nik

τi is the k-ary notation of e+ 1.

Therefore, |R| =
∑n
i=0 ei =

∑
τi,1≤i≤t ni. The proof is complete.

We now give a result for L = [a, e].

Lemma 7. Let L, a, e be as above. Let atat−1 · · · a0 and etet−1 · · · e0 be the k-ary
notations of a and e+ 1 respectively and let et 6= 0. Then

1. if at < et, |R[a,e]| = (e+ 1)k + ((at + 1)kt − a)k − at − 1,
2. otherwise (i.e., at = et), |R[a,e]| = |R[a−at×kt,e−et×kt]|,

where R[x,y] denotes the minimal representer of [x, y] in the ` PKT and (x)k
denotes the sum of every digits in the k-ary notation of nonnegative integer x.

Proof. We separately prove the lemma in the case that at < et and the case that
at = et.

If at < et, there exist two cases: the case that et = at + 1 and the case that
et > at + 1.

(a) If et = at + 1, then L = [a, (at + 1)kt− 1]∪ [etk
t, e] while e > etk

t− 1, or
else L = [a, etk

t− 1] while e = etk
t− 1. While e > etk

t− 1, R[a,e] = R[a,etkt−1] ∪
R[etkt,e]. By the symmetric property of PKT, |R[a,etkt−1]| = |R[0,etkt−a−1]| and
|R[etkt,e]| = |R[0,e−etkt]|. Then |R[a,e]| = |R[a,etkt−1]|+ |R[etkt,e]| = ((at + 1)kt −
a)k + (e − etkt + 1)k=

∑t−1
i=0 ei + ((at + 1)kt − a)k + (et − at − 1) = (b + 1)k +

((at + 1)kt − a)k − at − 1. While e = etk
t − 1, |R[a,e]| = 1 =

∑t−1
i=0 ei + ((at +

1)kt − a)k + (et − at − 1).
(b) If et > at + 1, L = ∪et−at−1i=1 [(at + i)kt, (at + i + 1)kt − 1] ∪ [a, (at +

1)kt − 1] ∪ [etk
t, e] while e > etk

t − 1, or else L = ∪et−at−1i=1 [(at + i)kt, (at + i+
1)kt − 1] ∪ [a, (at + 1)kt − 1] while e = etk

t − 1. While e > etk
t − 1, R[a,e] =

∪et−at−1i=1 R[(at+i)kt,(at+i+1)kt−1] ∪R[a,(at+1)kt−1] ∪R[etkt,e]. Then |R[a,e]| =∑et−at−1
i=0 |R[(at+i)kt,(at+i+1)kt−1]|+ |R[a,(at+1)kt−1]|+ |R[etkt,e]| = (et−at−1) +

((at + 1)kt − a)k + (e− etkt + 1)k=
∑t−1
i=0 ei + ((at + 1)kt − a)k + (et − at − 1) =

(e+ 1)k + ((at + 1)kt − a)k − at − 1. While e = etk
t − 1, the conclusion can be

proved similarly as the case (i).
If at = et, which says that (0, a) and (0, e) are both covered by the node

(t, at − 1) in level t, then (t, at − 1) is an ancestor of all nodes in R[a,e] and
(t, at − 1) /∈ R[a,e]. ( Otherwise, if (t, at − 1) ∈ R[a,e], then (t, at − 1) is the
minimal representer of [a, e]. We have a = atk

t and e = atk
t + kt − 1 and so
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e + 1 = atk
t + kt, which says that et = at + 1, a contradiction to at = et)

Therefore, R[a,e] = R[a−at×kt,e−et×kt] and so |R[a,e]| = |R[a−at×kt,e−et×kt]|.
In all, the proof is complete.

We then have Theorem 3.

Theorem 3. Let a, e be as above. Let atat−1 · · · a0 and etet−1 · · · e0 be the k-ary
notations of a and e + 1 respectively and let et 6= 0. Let s be the first integer i
such that ai < ei for i from t to 0. Then, |R[a,e]| =

∑s
i=0 ei + ((as + 1) × ks −∑s

i=0 ai × ki)k − as − 1.

From Theorem 3 we have Corollary 4.

Corollary 4. Let a, e be as above. Then |R[a,e]| ≤ 2(k − 1) logk e.

By Theorem 3, |R[a,e]| =
∑s
i=0 ei + ((as + 1)× ks −

∑s
i=0 ai × ki)k − as − 1

which displays that the minimal representer of [a, e] in an ` PKT is determined
entirely by the digits of the k-ary notations of e+ 1 and of “the complement of
a”. Hence, different k will result in different R[a,e] and so different v = |R[a,e]|.
It is interesting that a larger interval may have a very small sizable minimal
representer if we choose a suitable k (needs not to be large), e.g., when the
weights of e+ 1 and of “the complement of a”, i.e. (as + 1)× ks −

∑s
i=0 ai × ki,

are both small for k. Therefore, we should choose suitable k to reduce v and
then to reduce the complexity of Protocol 2.

Recall that the total computation is O(` ×max(`, log k, v)) exponentiations
in G and the total communication is O(` ×max(`, log k, v)|G|) bits by Remark
3. We should choose suitable k to leverage the values of `, log k, v to reduce the
complexity of Protocol 2.

5 Conclusion

Protocol 2 gives an efficient and secure solution to the PIC problem. By choosing
suitable k, we can further reduce the complexity of the protocol. This property
is especially important in the location-based access control applications where
resource is limited. Applying our protocol to the location-based access control
applications would be one of our future works.

As stated in the paper, besides the PIC protocol, our work has a byproduct,
i.e., a secure integer comparison protocol in the malicious model. It seems that
the later protocol would have more future applications than the former, such as
in electronic election, credential systems, electronic auction, etc.

Furthermore, we only commit to the input of Client, the integer, in Protocol
2. By considering fairness, it would be needed to extend the protocol to the case
that both parties’s inputs, i.e., the integer and the interval, are committed which
would be our another future work.
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