
Expressive and Secure Searchable Encryption in
the Public Key Setting (Full Version)

Zhiquan Lv1,2, Cheng Hong1, Min Zhang1, and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
{lvzhiquan,hongcheng,mzhang,feng}@tca.iscas.ac.cn

Abstract. Searchable encryption allows an untrusted server to search
on encrypted data without knowing the underlying data contents. Tra-
ditional searchable encryption schemes focus only on single keyword or
conjunctive keyword search. Several solutions have been recently pro-
posed to design more expressive search criteria, but most of them are
in the setting of symmetric key encryption. In this paper, based on the
composite-order groups, we present an expressive and secure asymmetric
searchable encryption (ESASE) scheme, which is the first that simultane-
ously supports conjunctive, disjunctive and negation search operations.
We analyze the efficiency of ESASE and prove it is secure in the stan-
dard model. In addition, we show that how ESASE could be extended
to support the range search and the multi-user setting.

Keywords: Searchable Encryption, Asymmetric Searchable Encryption, Ex-
pressive Search

1 Introduction

In a remote storage system, a user can store his data on the remote server and
then access the data using his PC or mobile devices. Since the server cannot al-
ways be fully trusted, data containing sensitive information must be encrypted
to protect the user’s privacy. However, it makes retrieval of such encrypted data
difficult. To cope with this problem, searchable encryption schemes have been
proposed, which can be divided into two versions: symmetric searchable encryp-
tion (SSE) and asymmetric searchable encryption (ASE). Generally speaking,
SSE is more efficient than ASE, while ASE is more suitable to practical scenar-
ios since it does not require that different users must share a common secret
key.

However, most traditional searchable encryption schemes focus only on single
keyword search [1–3, 5, 17] or multiple keyword search [4, 8, 9, 15, 16], practical
systems desire a more expressive search. In the symmetric key setting, some
solutions have been recently designed for general boolean queries on encrypted
data [7, 18]. However, in the public key setting, to the best of our knowledge,
there are only two related works [6, 12].

Fig. 1: An example of secure searchable email system.

Consider a secure searchable email system in Figure 1. To support the key-
word search, each email will be defined some keyword fields, such as “Sender”,
“Priority”, and “Month”. Here we use “Z1”, “Z2” and “Z3” to denote these
fields respectively. Before sending an email, a sender first encrypts the email con-
tent using a standard public key encryption algorithm with the receiver’s public
key, and then appends some additional encrypted keywords of the keyword fields,
such as “Alice”, “urgent”, and “October”. Generally speaking, the ASE schemes
focus only on the keywords encryption since it is well known that the standard
public key encryption is secure. In schemes [6, 12], an email gateway might be
given a trapdoor for the boolean formula (Z1 = “Alice” OR Z2 = “urgent”),
which indicates that the receiver wants the gateway to return all emails either
sent by Alice or having urgent priority. Since the receiver might have read all
the emails in September, the trapdoor for boolean formula would actually like
((Z1 = “Alice” OR Z2 = “urgent”) AND (NOT Z3 = “September”)). However,
neither of schemes [6, 12] can work in the situations involving negation search
operation. Moreover, the former is less secure and the latter is less efficient.

The requirement of supporting negation also can be found in Attribute-Based
Encryption schemes, where the solutions are polynomial interpolation [20] and
“2-equation technique” [21, 22]. However, these solutions cannot be applied to
searchable encryption because the keywords will be disclosed to the server.

Our Contributions. Our contributions are summarized as follows.

– Based on the composite-order groups, we propose an expressive and secure
ASE scheme named ESASE. To the best of our knowledge, ESASE is the first
that simultaneously supports conjunctive, disjunctive and negation search
operations in the public key setting.

– We give a detail security proof of ESASE in the standard model. Compared
with [6], ESASE does not disclose the searching keywords in the trapdoor.
Furthermore, the efficiency analysis shows that the overhead on storage,
communication, and computation in ESASE is close to [6], but much lower
than [12].

– We show how ESASE could be extended to support a class of simple range
search, which can help the user choose the search ranges based on different
choices of granularity. Furthermore, we extend ESASE to the multi-user set-
ting, which can minimize the overhead on computation and communication.

1.1 Related Work

Song et al. [1] initiate the research on searchable encryption and present the
first practical solution in the symmetric key setting. After this work, several
works [2, 3, 11, 13, 14, 17] have been proposed to improve the efficiency of the
system or provide stronger security. Boneh et al. [5]. first address the concept
of asymmetric searchable encryption, where anyone can use the public key to
encrypt the data and keywords but only authorized users with secret key can
search. However, these early schemes focus only on single keyword search.

Evidently, there are two trivial solutions to achieve conjunctive keyword
search based on the single keyword search: one is to obtain the intersection of all
sets where each set is the searching result for every individual keyword in the con-
junction; another would be to define a meta-keyword for each possible keywords
conjunction. However, as Golle et al. [4] point out, these approaches suffer from
obvious drawbacks. The former allows the gateway to learn which documents
contain each individual keyword based on the results of the conjunctive query,
and the latter requires an exponential storage and search time for the number of
keywords. Therefore, they propose the first solution for symmetric conjunctive
keyword search, where each encrypted file is associated with encrypted keywords
that are assigned to separate keyword fields. If a user queries a trapdoor with
several keywords, the server can search a file containing those keywords with this
trapdoor. Later, Park et al. [16] propose the notion of asymmetric conjunctive
keyword search. To decrease the trapdoor size and the computation overhead,
several solutions are presented in [8, 9, 15].

To design more expressive search criteria, Cash et al. [18] propose the first
searchable symmetric encryption protocol that supports conjunctive search and
general boolean queries on outsourced data. One of the drawbacks of their scheme
is that the trapdoors they generate are deterministic, in the sense that the same
trapdoor will always be generated for the same keyword. Thus, it leaks statistical
information about the user’s search pattern [19]. Based on the orthogonalization
of the keyword field according to the Gram-Schmidt process, Moataz et al. [7]
present a similar solution which avoids this drawback in [18]. In the public key
setting, Katz et al. [12] propose an inner-product predicate encryption scheme,
which can enable the disjunctive search over encrypted data using polynomial
evaluation. However, as pointed out in [12], the complexity is proportional to
dt, where t is the number of variables and d is the maximum degree (of the
resulting polynomial) in each variable. Recently, Lai et al. [6] present a more
efficient construction based on the fully secure key-policy attribute-based en-
cryption (KP-ABE) scheme [10]. Compared with [12], the size of a ciphertext
(or a trapdoor) in [6] is linear with the number of keyword fields (or the size
of the search predicate), not superpolynomial. However, scheme [6] discloses the

searching keywords in the trapdoor, which will let the server learn whether the
encrypted data contains the keywords in the trapdoor.

2 PRELIMINARIES

2.1 Linear Secret Sharing Schemes

Our construction will make essential use of linear secret-sharing schemes (LSSS).
We first describe the definition of access structure [23] that will be used in LSSS.
Then, we give the definition of LSSS adapted from [23].

Definition 1 (Access Structure). Let {P1, . . . , Pm} be a set of parties.
A collection A ⊆ 2{P1,...,Pm} is monotone if ∀B,C : if B ∈ A and B ⊆ C
then C ∈ A. An access structure (respectively, monotonic access structure) is
a collection (respectively, monotone collection) A of non-empty subsets of {P1,
. . . , Pm}, i.e., A ⊆ 2{P1,...,Pm}\{∅}. The sets in A are called the authorized sets,
and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret-Sharing Schemes (LSSS)). Suppose there ex-
ists a linear secret sharing structure A = (A, ρ), where A is a ℓ×m matrix and
ρ is an injective function from {1, . . . , ℓ} to a party. Let S ∈ A be any authorized
set, and I ⊂ {1, . . . , ℓ} be defined as I = {i : ρ(i) ∈ S}. Therefore, there exist
constants {σi ∈ Zp} such that

∑
i∈IσiAi = (1, 0, . . . , 0), where Ai is the i’th row

of matrix A. When we consider the column vector υ = (s, r2, . . . , rm), where
s ∈ Zp is the secret to be shared, and r2, . . . , rm ∈ Zp are randomly chosen, then
Aυ can be regarded as the linear secret sharing where each share Aiυ belongs to
party ρ(i). On the other hand, given a party set S and its corresponding rows
I = {i : ρ(i) ∈ S} in the matrix A, finding {σi ∈ Zp} such that

∑
i∈IσiAiυ = s

is called linear secret reconstruction. Note that, for unauthorized sets, no such
constants exist.

In our context, the role of the parties is taken by the keywords. Access struc-
tures (i.e., search predicates) might also be described in terms of monotonic
boolean formulas. As described in [23], any monotonic boolean formula can be
converted into an LSSS representation.

2.2 Composite-Order Bilinear Groups

We will construct our scheme in composite-order bilinear groups [24]. Let G and
GT be two multiplicative cyclic groups of order N = p1p2p3p4, where p1, p2, p3
and p4 are distinct primes. Let g be a generator of G and e : G×G −→ GT be
a bilinear map such that e(g, g) ̸= 1, and for any u, v ∈ G, a, b ∈ ZN it holds
e(ua, vb) = e(u, v)ab. We say that G is a bilinear group if the group operation in
G and the bilinear map e are both efficiently computable.

Let Gp1 , Gp2 , Gp3 and Gp4 denote the subgroups of order p1, p2, p3 and p4
in G respectively. Observe that G = Gp1 × Gp2 × Gp3 × Gp4 . We note that if

hi ∈ Gpi and hj ∈ Gpj for i ̸= j, e(hi, hj) = 1. To see this, suppose h1 ∈ Gp1

and h2 ∈ Gp2 . We let g denote a generator of G. Then, gp2p3p4 generates Gp1 ,
and gp1p3p4 generates Gp2 . Hence, we can have:

e(h1, h2) = e((gp2p3p4)α1 , (gp1p3p4)α2) = e(gp3p4α1 , gα2)p1p2p3p4 = 1,

where α1 = loggp2p3p4 h1 and α2 = loggp1p3p4 h2. This orthogonality property
of Gp1 , Gp2 , Gp3 , Gp4 will be a principal tool in our construction and security
proof.

2.3 Complexity Assumptions

We now state the complexity assumptions that will be used in our security proof.
The first two assumptions are also used in [6] and the third can be easily proved
by utilizing the theorems proposed in [12]. We note all of them hold in the generic
group model.

Assumption 1. Let N,G,GT , e be defined as in above section. Let g ∈ Gp1 ,
X3 ∈ Gp3 , and X4 ∈ Gp4 be chosen at random. Given the tuple (G, GT , N , e, g,
X3, X4), this assumption states that no probabilistic polynomial-time algorithm
B can distinguish the random elements in Gp1 and Gp1p2 with non-negligible
advantage.

Assumption 2. Let N,G,GT , e be defined as in above section. Let g,X1 ∈ Gp1 ,
X2, Y2 ∈ Gp2 , X3, Y3 ∈ Gp3 , and X4 ∈ Gp4 be chosen at random. Given the
tuple (G, GT , N , e, g, X1X2, Y2Y3, X3, X4), this assumption states that no
probabilistic polynomial-time algorithm B can distinguish the random elements
in Gp1p2p3 and Gp1p3 with non-negligible advantage.

Assumption 3. Let N,G,GT , e be defined as in above section. Let s ∈ ZN ,
g, u ∈ Gp1 , g2, X2 ∈ Gp2 , X3 ∈ Gp3 , X4, h

′ ∈ Gp4 , and B24, D24 ∈ Gp2p4 be cho-
sen at random. Given the tuple (G,GT , N, e, g, g2, X2, uh

′, gsB24, X3, X4), this
assumption states that no probabilistic polynomial-time algorithm B can distin-
guish usD24 and a random element in Gp1p2p4 with non-negligible advantage.

3 Syntax and Security Model

3.1 Syntax

We consider that a user’ s encrypted data is outsourced in the storage of an un-
trusted server, such as an email gateway. To support the keyword search, we will
define some keyword fields for the emails, such as “Sender”, “Priority”, “Month”.
Suppose each email is associated with a keyword set W = {w1, . . . , wn}, where
wi is the keyword of the email in the ith keyword field and n is the number of
keyword fields. Moreover, we employ the same assumption used in the previ-
ous works [4, 6, 9, 16]: every keyword field is defined for every email. An ESASE
scheme consists of the following fundamental algorithms:

Setup(1κ): takes as input a security parameter 1κ, and generates a public key
pk and secret key sk.

Encrypt(pk, W): for the public key pk and a keyword set W , produces a ci-
phertext CW .

Trapdoor(pk, sk, P): given the public key pk, the secret key sk, and a predicate
P, produces a trapdoor TP .

Test(pk, CW , TP): takes as input the public key pk, the ciphertext CW , and the
trapdoor TP . It outputs “1” if the keyword set W satisfies the predicate P and
“0” otherwise.

3.2 Security Model

In ESASE, we assume the server who runs the Test algorithm is Honest but
Curious. That is to say, it will execute correctly the proposed algorithm, but try
to find out as much secret information as possible based on its inputs. Moreover,
we define the security notion in the sense of indistinguishability security against
chosen predicate attacks. Formally, security is defined using the following game
between an attacker and a challenger.

Setup. The challenger takes a security parameter 1κ and runs the Setup algo-
rithm. The public key pk is given to the adversary. The challenger keeps the
secret key sk to itself.

Phase 1. The adversary adaptively queries a number of predicates, P1, . . ., Pq,
to the challenger. In response, the challenger runs the Trapdoor algorithm and
gives the trapdoor TPi to the adversary, for 1≤i≤q.

Challenge. The adversary selects two target keyword sets W0, W1, and sends
them to the challenger. The challenger picks a random bit β ∈ {0, 1} and obtains
the ciphertext CWβ

by running the Encrypt algorithm. Then, he gives CWβ
to

the adversary. Note that W0 and W1 cannot satisfy any of queried predicates in
phase 1.

Phase 2. The adversary additionally queries the challenger for trapdoors cor-
responding to predicates with the restriction that none of them can be satisfied
by W0 and W1.

Guess. The adversary outputs a guess β
′
of β and wins the game if β

′
= β.

The advantage of the adversary in this game is defined as |Pr[β′
= β]- 12 |.

Definition 3. An ESASE scheme is secure if all polynomial time adversaries
have at most a negligible advantage in this security game.

Fig. 2: An example of propagating the negation operations.

4 Construction

4.1 Overview

Consider any search predicate with negation operations, we can use the De-
Morgan’s law to propagate the negation operations. For example, in Figure 2,
a search predicate (Z1 = “A” AND (NOT (Z3 = “B” AND Z4 = “C”))) e-
quals (Z1 = “A” AND ((NOT Z3 = “B”) OR (NOT Z4 = “C”))), where A, B
and C denote the keywords in keyword fields Z1, Z3 and Z4 respectively. After
the propagation, the negation operations can only be associated with keyword-
s. Thus, the name of the keywords in our scheme may be of two types: either
the name is normal (like x) or it is primed (like x′). We conceptually associate
primed keywords as representing the negation of unprimed keywords. Therefore,
the search predicate (Z1 = “A” AND (NOT (Z3 = “B” AND Z4 = “C”))) can
be parsed as (Z1 = “A” AND (Z3 = “B′” OR Z4 = “C ′”)).

As described previously, any monotonic boolean search predicate can be con-
verted into an LSSS representation A = (A, ρ), where A is a ℓ×m matrix and
ρ is a map from each row of A to a keyword field (i.e., ρ is a function from
{1, . . . , ℓ} to {1, . . . , n}). Let E = {tρ(1), . . . , tρ(ℓ)}, F = {fρ(1), . . . , fρ(ℓ)},
where tρ(i) is the keyword of keyword field ρ(i) specified by the predicate and
fρ(i) denotes whether the keyword of keyword field ρ(i) is primed or not (We
can use “− ” and “ + ” to denote it is primed and not primed respectively).

(, , ,) ! A !

!

(3) mA

Fig. 3: An example of the conversion.

Thus, in our scheme, any boolean search predicate, which simultaneously
supports the operations of conjunctive and disjunctive and negation, can be
converted into an LSSS representation A = (A, ρ, E , F). A keyword set W
= {w1, . . . , wn} satisfies a predicate A = (A, ρ, E , F) if and only if there
exist I ⊂ {1, . . . , ℓ} and constants {σi}i∈I such that

∑
i∈IσiAi = (1, 0, . . . , 0),

where Ai is the i’th row of matrix A. Note that for ∀i ∈ I, if fρ(i) denotes the
keyword of keyword field ρ(i) is not primed, then tρ(i) = wρ(i); else, tρ(i) ̸= wρ(i).
In addition, we define IA,ρ as the set of minimum subsets of {1, . . . , ℓ} that
satisfies (A, ρ, E ,F). Figure 3 shows an example of converting a search predicate
into an LSSS representation, where ℓ = 3 and IA,ρ = {{1, 2}, {1, 3}}.

4.2 Main Construction

Setup(1κ): Take as input a security parameter 1κ, it returns params = (p1, p2,
p3, p4, G, GT , e) with G = Gp1 ×Gp2 ×Gp3 ×Gp4 , where G and GT are cyclic
groups of order N = p1p2p3p4. Next it chooses g, u1, . . . , un ∈ Gp1 , X3 ∈ Gp3 ,
X4, h1, . . . , hn ∈ Gp4 and α ∈ ZN uniformly at random. The public key pk is
published as:

N, g, gα, {Hi = ui · hi}1≤i≤n, X4.

The secret key sk = {u1, . . . , un, α,X3}.

Encrypt(pk,W): The encryption algorithm chooses s ∈ ZN and h, Z0, {Z1,i}1≤i≤n

∈ Gp4 uniformly at random. Let the keyword set be W=(w1, . . . , wn)∈ Zn
N ,

then the corresponding ciphertext CW = (C̃, C0, {Ci}1≤i≤n) is computed as:

C̃ = e(g, gα)
s
, C0 = (gh)s · Z0, Ci = (Hi

wi)
s · Z1,i.

Trapdoor(pk, sk, P): Suppose that the predicate P is corresponding to (A, ρ,
E , F), where A is the ℓ × m matrix, ρ(i) is a map from each row Ai of A to
{1, . . . , n}, E = {tρ(1), . . . , tρ(ℓ)} ∈ Zℓ

N , and F = {fρ(1), . . . , fρ(ℓ)}. The algorithm
first chooses a random vector υ ∈ Zm

N such that 1 ·υ = α, where 1 = (1, 0, . . . , 0).
Then, for each row Ai of A, it chooses a random ri ∈ ZN and random elements
V1,i, V2,i, V3,i ∈ Gp3 . The trapdoor key TP = ((A, ρ,F), {D1,i, D2,i, D3,i}1≤i≤ℓ)
is computed as

D1,i = gAi·υ(uρ(i))
tρ(i)·ri · V1,i, D2,i = gri · V2,i, D3,i = (uρ(i))

tρ(i)·ri · V3,i.

Test(pk, CW , TP): Given a ciphertext CW and a trapdoor TP , the algorithm
first calculates IA,ρ. Then, it checks if there exists an set I ∈ IA,ρ that satisfies

C̃ =
∏
i∈I

(Ui)
σi ,

where
∑

i∈IσiAi = (1, 0, . . . , 0). For i ∈ I: if fρ(i) denotes the keyword of keyword
field ρ(i) is not primed, the above Ui = e(D1,i, C0)/e(D2,i, Cρ(i)); else, Ui =
e(D1,i, C0)/e(D3,i, C0) and the equality e(C0, D3,i) = e(Cρ(i), D2,i) does not
hold.

If no element in IA,ρ satisfies it, it outputs “0”. Otherwise, it outputs “1”.

4.3 Correctness

In the Test algorithm, for i ∈ I such that fρ(i) denotes the keyword of keyword
field ρ(i) is not primed, if tρ(i) is equal to wρ(i), we can have:

Ui = e(D1,i, C0)/e(D2,i, Cρ(i))

=
e(gAi·υ(uρ(i))

tρ(i)·ri · V1,i, (gh)
s · Z0)

e(gri · V2,i, (Hρ(i)
wρ(i))

s · Z1,ρ(i))

=
e(gAi·υ(uρ(i))

tρ(i)·ri , gs)

e(gri , uρ(i)
wρ(i)s)

= e(g, g)sAi·υ.

For i ∈ I such that fρ(i) denotes the keyword of keyword field ρ(i) is primed, if
the equality e(C0, D3,i) = e(Cρ(i), D2,i) does not hold, it indicates that tρ(i) is
not equal to wρ(i). Furthermore, we can have:

Ui = e(D1,i, C0)/e(D3,i, C0) =
e(gAi·υ(uρ(i))

tρ(i)·ri · V1,i, (gh)
s · Z0)

e((uρ(i))
tρ(i)·ri · V3,i, (gh)s · Z0)

= e(g, g)sAi·υ.

Thus, we can have:∏
i∈I

(Ui)
σi =

∏
i∈I

(e(g, g)
sAi·υ)σi = e(g, g)

Σi∈IsAi·υσi = e(g, g)αs = C̃.

4.4 Discussion

In Lai et al. [6], the searching keywords are disclosed in the trapdoor, which
will cause a Test algorithm executor (i.e., an email gateway) to learn whether
the encrypted data contains the keywords in the trapdoor. However, ESASE
just discloses whether the keywords in the trapdoor are primed or not. We note
that it might be inevitable in an ASE scheme that can support negation search
operation, but it is acceptable if the scheme is proved secure in the security
model defined in Section 3.2.

5 Security

Theorem 1. If Assumptions 1, 2 and 3 hold, then ESASE is secure.

Proof. The proof consists of the following three steps:

1. Constructing the semi-functional ciphertexts and keys.

We define two additional structures: semi-functional ciphertexts and keys,
which will not be used in the real system, but will be needed in our proof.

Semi-functional Ciphertext. A semi-functional ciphertext is formed as fol-
lows. Firstly, a normal ciphertext C

′

W = (C̃
′
, C

′

0, {C
′

i}1≤i≤n) is generated

by the Encrypt algorithm. Then, for each component C
′

i , a random value
γi ∈ ZN is chosen. Let g2 be a generator of Gp2 and c ∈ ZN be a random

exponent, the semi-functional ciphertext CW = (C̃, C0, {Ci}1≤i≤n) is set to
be:

C̃ = C̃
′
, C0 = C

′

0 · gc2, Ci = C
′

i · g
cγi

2 .

Note that the values {γi}1≤i≤n are chosen randomly once and then fixed in
the following semi-functional keys.

Semi-functional Key. To create a semi-functional key, a normal trapdoor
key T

′

P = ((A, ρ, F), {D′

1,i, D
′

2,i, D
′

3,i}1≤i≤ℓ) should be first generated by
the Trapdoor algorithm. Then, it chooses a random vector z ∈ Zm

N and
sets δi = Ai · z. For each row i of the ℓ × m matrix A, a random value
ηi ∈ ZN is chosen. Finally, a semi-functional key TP = ((A, ρ, F), {D1,i,
D2,i, D3,i}1≤i≤ℓ) is divided into two types of forms. The type 1 is set to be:

D1,i = D
′

1,i · g
δi+ηiγρ(i)

2 , D2,i = D
′

2,i · g
ηi

2 , D3,i = D
′

3,i · g
ηiγρ(i)

2 .

The type 2 is similarly formed as:

D1,i = D
′

1,i · g
δi
2 , D2,i = D

′

2,i, D3,i = D
′

3,i.

2. Defining a sequence of attack games.

We organize our proof as a sequence of games. The first game, Gamereal, is
the real security game defined in Section 3.2. In the next game, Game0, all of
the trapdoor keys are normal, but the challenge ciphertext is semi-functional.
Let q be the number of trapdoor key queries made by the attacker. For k
from 1 to q and ξ from 1 to n, we define:
- Gamek,1: the first k− 1 trapdoor keys are semi-functional of type 2, the
kth trapdoor key is semi-functional of type 1, and the remaining trapdoor
keys are normal. In addition, the challenge ciphertext is semi-functional.

- Gamek,2: the first k trapdoor keys are semi-functional of type 2, and the
remaining trapdoor keys are normal. In addition, the challenge ciphertext
is semi-functional.

- Gamefinal,ξ: all the trapdoor keys are semi-functional of type 2, and the

challenge ciphertext CWβ
= (C̃, C0, {C1, . . ., Cn}) is a semi-functional

encryption of Wβ with C1, . . ., Cξ, each of which is randomly chosen
from Gp1p2p4 .

Note that Game0,2 and Gamefinal,0 can be considered as another way of
denoting Game0 and Gameq,2 respectively.

3. Proving these attack games are indistinguishable with the real game.

We prove that these games are indistinguishable in four lemmas, whose for-
mal descriptions and proofs are given in the Appendix. It is clear that in

Gamefinal,n, the attacker’s advantage is negligible since the challenge ci-
phertext CWβ

is independent of the keyword sets W0 and W1. Therefore, we
conclude that the advantage of the adversary in Gamereal is negligible. This
completes the proof of Theorem 1.

6 Efficiency

We compare our proposed scheme with Katz et al. [12] and Lai et al. [6] in Table
1.

Storage and Communication Overhead. The storage and communication
overhead is mainly determined by the sizes of the ciphertext and trapdoor re-
spectively. Table 1 shows the size of a ciphertext (resp. a trapdoor), both in
ESASE and [6], is linear with the number of keyword fields n (resp. the number
of rows ℓ) rather than superpolynomial in [12].

Computation Overhead. The computation overhead is mainly determined by
three algorithms, including Encryption, Trapdoor, and Test. Table 1 shows that
the computation overhead of Encryption (resp. Trapdoor), both in ESASE and
[6], is linear with n (resp. ℓ), not superpolynomial. In addition, since ESASE
supports the negation search, the Test cost of it is a little bigger than [6].

It can be concluded that the efficiency of ESASE is close to Lai et al. [6],
but much better than Katz et al. [12]. Furthermore, compared with these two
schemes, ESASE can simultaneously support conjunctive, disjunctive and nega-
tion search operations.

Table 1: Comparisons of efficiency of existing expressive ASE schemes.
Schemes Katz et al. [12] Lai et al. [6] ESASE

Size of ciphertext (1 + 2m)L1 (1 + n)L1 + L2 (1 + n)L1 + L2

Size of trapdoor (1 + 2m)L1 2ℓ · L1 3ℓ · L1

Encryption (1 + 4m) · e 2(1 + n) · e (2 + n) · e+p
Trapdoor 6m · e 4ℓ · e 4ℓ · e

Test (1 + 2m) · p ≤ ψ1 · e+ 2ψ2 · p ≤ ψ1 · e+ 2(ψ2 + ψ3) · p

Security
secure in the

standard model
less secure

secure in the
standard model

Expressiveness AND, OR AND, OR AND, OR, NOT
1 n: the number of keyword fields; ℓ: the number of rows in the matrix A;
L1 (or L2): a bit length of a group element in G (or GT); m: the length
of the vector corresponding to the ciphertext in Katz et al. [12]. Note that
m is proportional to dℓ, where d is the maximum degree (of the resulting
polynomial) in each variable in [12].

2 e: an exponentiation operation in G or GT ; p: a pairing operation; ψ1: the
number of elements in IA,ρ = {I1, . . . , Iψ1}; ψ2: |I1| + . . . + |Iψ1 |; ψ3: the
number of primed keywords in a search predicate.

7 Extensions

7.1 Range Search

Besides the boolean search, range search is also an important requirement for
the searchable encryption. However, there is no expressive ASE scheme for the
range search. Here we show how ESASE could be extended to support a class
of simple range search [25]. Although supporting an arbitrary range search can
be achieved by using the technique in [26], high complexity will be introduced
when there are lots of disjunctive operations in a predicate. Therefore, we are
not aiming at it.

We first introduce the concept of the keyword hierarchy. Let Zi be a numerical
keyword field, a keyword hierarchy over Zi is a balanced tree Γ (Zi), where each
internal node represents a range that is the union of the ranges of its children
nodes and each leaf node is the keyword. In addition, we define some notations
as follows.

- R(id): the range of a internal node id.
- P(z): the path from a leaf node z to the root. For every node id in P(z), it
has z ∈ R(id).

- Γl(Zi): the node set in the l-th level of the tree, it is also called a “level-
l field”. Any node in Γl(Zi) is called a “level-l keyword” and denotes a
“level-l simple range”.

Suppose there is a “Hour” field Z4 with keywords from number 0 to 23,
Figure 4 depicts the keyword hierarchy. The path of the leaf node “12” is (“0-
23”, “12-17”, “12-13”, “12”), and “12-17”, “12-13” are level-2 and level-3 simple
range respectively.

Fig. 4: The keyword hierarchy of the
“Hour” field.

Fig. 5: An example of field structure con-
version for the “Hour” field.

To support the simple range search based on the keyword hierarchy in E-
SASE, the original field structure should be converted in the following way: for
each hierarchical field Zi, let φ be its maximum level and zi be a leaf node, we
expand Zi into (φ − 1) subfields: Zi,2, · · · , Zi,φ, where the value set of Zi,l is
Γl(Zi) and the value of Zi,l is the l-th element in P(zi). Note that since there
is only one keyword in Zi,1, we ignore this subfield. Figure 5 shows that the

Hour field is expanded into 3 subfields. As a result, the parameter n in the
Setup algorithm will be set to 6 and the keyword set to be encrypted will be
{“Alice”, “urgent”, “October”,“12−17”,“12−13”,“12”}.

Moreover, before we use a predicate with range search to generate a trapdoor,
we should convert it based on the system-defined simple ranges. For example,
an original search predicate (Z1 = “Alice” AND (“6” ≤ Z4 ≤ “13”)) can be
converted into (Z1 = “Alice” AND (Z4,2 = “6-11” OR Z4,3 = “12-13”)). Since
ESASE supports the negation search, a search predicate (Z1 = “Alice” OR
(NOT “6” ≤ Z4 ≤ “13”)) can be converted into (Z1 = “Alice” OR (Z4,2 = “(6-
11)′” AND Z4,3 = “(12-13)′”)).

We note this class of simple range search will bring two benefits. On the
one hand, the hierarchy on a numerical field can be well-designed depending
on different usages. Take Figure 4 for example, the node “6-11” stands for the
morning and “12-17” for the afternoon. On the other hand, a user can choose
the search ranges based on different choices of granularity.

7.2 Multi-user Setting

We briefly outline how we extend ESASE scheme to the multi-user setting [9].
In a Single-user ESASE scheme, if a sender wants to send an encrypted email to
multiple receivers in the example of a secure email system, he needs to encrypt
the same email and the same keywords with each receiver’s public key respec-
tively. A multi-user ESASE scheme can eliminate these repeated operations and
minimize the size of the public key material that needs to be obtained. We use
the randomness re-use technique [27, 28] as follows.

We observe that in the Trapdoor algorithm, the parameter α is the secret
in the LSSS representation A = (A, ρ, E , F). In addition, only one element, gα

in the public key depends upon α. Therefore, we can use different α to distin-
guish between different users. Specifically, in the Setup algorithm of a multi-user
ESASE scheme, the public parameter PP shared by all the users is published
as:

PP = N, g, {Hi}1≤i≤n, X4.

while the public/secret key pair {pkx, skx} for user x is:

{pkx, skx} = {gαx , (u1, . . . , un, αx, X3)}.

Note that all the users also share the same parameters u1, . . . , un, and X3.
When a sender is to encrypt a keyword set W for k users, he first uses the

public parameter PP to encryptW to obtain the components C0 and {Ci}1≤i≤n,

and then uses each user’s public key pkx to generate the components C̃1, . . .,
C̃x, . . ., C̃k respectively. Finally, for the user x (1 ≤ x ≤ k), the corresponding
ciphertext CW will be:

CW = (C̃x, C0, {Ci}1≤i≤n).

The rest two algorithms of the multi-user ESASE scheme are the same with
ESASE respectively. We compare the efficiency of the Single-user and Multi-user
ESASE in Table 2. It shows that the multi-user ESASE is more efficient when
there are multiple receivers.

Table 2: Comparisons of efficiency for the Single-user and Multi-user ESASE.
Schemes Single-user ESASE Multi-user ESASE

OE (2 + n) · ke+k · p (1 + n+ k)· e + k · p
SPK (3 + n)k · L1 (2 + n+ k) · L1

k: the number of the receivers; n, e, p, L1: defined as in Section 6; OE:
the encryption overhead; SPK: the size of the public key material that a
sender needs to obtain.

8 Conclusion and Future Work

Searchable encryption is an important cryptographic mechanism which enables
to perform secure searches over encrypted data stored on untrusted servers. In
this paper, we present a new scheme ESASE, to solve the problem of expres-
sive search in the public key setting. To the best of our knowledge, ESASE
is the first that can simultaneously support conjunctive, disjunctive and nega-
tion search operations. Then we prove ESASE is secure in the standard model.
By analyzing, the efficiency of ESASE compares favorably to that of existing,
less-expressive asymmetric searchable encryption schemes. Finally, we make t-
wo useful extensions: one is to support the range search, and another is to the
multi-user setting. A further direction is to find more efficient schemes that can
achieve the expressive search in the public key setting.

References

1. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searcheson encrypted
data. In: IEEE Symposium on Security and Privacy, S&P 2000, pp. 44–55 (2000)

2. Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
3. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-

cryption: Improved Definitions and Efficient Constructions. In: ACM CCS 2006,
pp. 79–88 (2006)

4. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 31–45. Springer, Heidelberg (2004)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Lai, J., Zhou, X., Deng, R. H., Li, Y., Chen, K.: Expressive search on encrypted
data. In: ACM ASIACCS 2013, pp. 243-252 (2013)

7. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: ACM ASI-
ACCS 2013, pp. 265-276 (2013)

8. Chen, Z., Wu, C., Wang, D., Li, S.: Conjunctive keywords searchable encryption
with efficient pairing, constant ciphertext and short trapdoor. In: Chau et al. (eds.)
PAISI 2012. LNCS, vol. 7299, pp. 176–189. Springer, Heidelberg (2012)

9. Hwang, Y. H., Lee, P. J.: Public key encryption with conjunctive keyword search
and its extension to a multi-user system. In: Takagi et al. (eds.) Pairing 2007.
LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007)

10. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

11. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In:
Network and Distributed System Security Symposium (NDSS). (2012)

12. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

13. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In ACM CCS 2012, pp. 965–976 (2012)

14. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography and Data Security (FC). (2013)

15. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing et al. (eds.) ICICS 2005. LNCS, vol. 3783,
pp. 414–426. Springer, Heidelberg (2005)

16. Park, D. J., Kim, K., Lee, P. J.: Public key encryption with conjunctive field
keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp.
73–86. Springer, Heidelberg (2004)

17. Chang, Y.C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

18. Cash, D., Jarecki, S., Jutla, C. S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-
Scalable Searchable Symmetric Encryption with Support for Boolean Queries.
In Canetti, R., Garay, J. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013)

19. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable en-
cryption: Ramification, attack and mitigation. In: Network and Distributed System
Security Symposium (NDSS). (2012)

20. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In ACM CCS 2007, pp. 195–203 (2007)

21. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE Symposium on Security and Privacy, S&P 2010, pp. 273–285 (2010)

22. Attrapadung, N., Libert, B.: Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In: N-
guyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

23. Beimel, A.: Secure schemes for secret sharing and key distribution (Doctoral dis-
sertation. PhD thesis, Israel Institute of Technology. (1996)

24. Boneh, D., Goh, E. J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

25. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: IEEE Distributed Computing Systems (ICDCS), pp.
383–392 (2011).

26. Lewko A., Waters B.: New proof methods for attribute-based encryption: Achieving
full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

27. Kurosawa, K.: Multi-recepient public-key encryption with shortend ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002)

28. Bellare M., Boldyreva A., Staddon J.: Randomness re-use in multi-recipient encryp-
tion schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99.
Springer, Heidelberg (2003)

A Security Proofs

Lemma 1. If there is an algorithm A that distinguish the Gamereal and Game0
with non-negligible advantage ϵ. Then we can construct an algorithm B with
advantage ϵ in breaking Assumption 1.

Proof. B is given {g,X3, X4, T} and will simulate Gamereal or Game0 with A.

Setup. B chooses h1, . . . , hn ∈ Gp4 and α, a1, . . . , an ∈ ZN uniformly at
random. Then, it sets u1 = ga1 , . . . , un = gan , H1 = u1h1, . . . , Hn = unhn,
and sends A the public key pk = {N, g, gα, {Hi}1≤i≤n, X4}.

Phase 1. B can respond to trapdoor key requests by running the Trapdoor al-
gorithm to make normal trapdoor keys because it knows the secret key sk =
{u1, . . . , un, α,X3}.

Challenge. A sends B two keyword sets W0, W1. B first chooses random values
h, Z̃0, {Z̃1,i}1≤i≤n ∈ Gp4 . Then, it randomly chooses a keyword set Wβ from

{W0,W1}. Let Wβ = {wβ,1, . . . , wβ,n}, it computes C̃ = e(gα, T), C0 = T · Z̃0,

Ci = T aiwβ,i · Z̃1,i. B sets CWβ
= (C̃, C0, {Ci}1≤i≤n) and sends it to A as the

challenge ciphertext.

Phase 2. Same as Phase 1 with the restriction that none of the query trapdoors
can be satisfied by W0 and W1.

Guess. The adversary outputs a guess β
′
of β:

– If T ∈ Gp1p2 , let T = gsgc2, then

C̃ = e(g, gα)
s
, C0 = (gh)sZ0 · gc2, Ci = (Hi

wβ,i)
s
Z1,i · gcγi

2 ,

where Z0 = Z̃0 · h−s, Z1,i = Z̃1,ih
−(wβ,is)
i , γi = aiwβ,i. This is a semi-

functional ciphertext and B simulates Game0. Since the values of ai, wβ,i

modulo p1 are uncorrelated from their values modulo p2, it is properly dis-
tributed.

– if T ∈ Gp1 , this is a normal ciphertext and B simulates Gamereal.

Therefore, if A can distinguish the Gamereal and Game0 with non-negligible
advantage ϵ, B can break Assumption 1 with advantage ϵ.

Lemma 2. If there is an algorithm A that distinguish the Gamek−1,2 and
Gamek,1 with non-negligible advantage ϵ. Then we can construct an algorith-
m B with advantage ϵ in breaking Assumption 2.

Proof. B is given {g,X1X2, Y2Y3, X3, X4, T} and will simulate Gamek−1,2 or
Gamek,1 with A.

Setup. Same as in Lemma 1.

Phase 1. Note that B knows the secret key sk = {u1, . . . , un, α,X3}. Considering
a predicate (A, ρ , E = {tρ(1), . . . , tρ(ℓ)}, F = {fρ(1), . . . , fρ(ℓ)}), B creates the
trapdoor keys as follows.

– For j < k, B chooses a random vector υ such that 1 ·υ = α, a random vector
z′, random exponents ri ∈ ZN , random elements V1,i, V2,i, V3,i ∈ Gp3 , and
set:

D1,i = gAi·υ(uρ(i))
tρ(i)·ri · V1,i(Y2Y3)

Aiz
′
, D2,i = gri · V2,i, D3,i = (uρ(i))

tρ(i)·ri · V3,i.

We note that this is a properly distributed semi-functional key of type 2
because the value of Aiz

′ modulo p2 is uncorrelated to its value modulo p3.

– For j > k, since B knows the secret key sk, he can create a normal trapdoor
key by running the trapdoor generation algorithm.

– For the kth trapdoor key, B chooses a random vector υ′ such that 1 · υ′ = α,
a random vector z such that z · 1 = 0, random exponents η̃i ∈ ZN , random
elements Ṽ1,i, Ṽ2,i, Ṽ3,i ∈ Gp3 , and sets:

D1,i = gAi·υ′
TAiz+η̃iaitρ(i) Ṽ1,i, D2,i = T η̃i Ṽ2,i, D3,i = T η̃iaitρ(i) Ṽ3,i.

Thus, if T ∈ Gp1p2p3 , then T can be written as grgd2V , and

D1,i = gAi·υ(uρ(i))
tρ(i)·ri · V1,i · g

δi+ηiγρ(i)

2 ,

D2,i = gri · V2,i · gηi

2 ,

D3,i = (uρ(i))
tρ(i)·ri · V3,i · g

ηiγρ(i)

2 ,

where υ = υ′ + zr, ri = rη̃i, δi = dAiz, γρ(i) = aitρ(i), ηi = dη̃i, V1,i =

V Aiz+η̃iaitρ(i) Ṽ1,i, V2,i = V η̃i Ṽ2,i, V3,i = V η̃iaitρ(i) Ṽ3,i. This is a semi-function
key of type 1. Since the values of η̃i, ai, tρ(i) modulo p1 are are uncorrelated
from their values modulo p2, it is properly distributed. If T ∈ Gp1p3 , it is a
properly distributed normal trapdoor key.

Challenge. A sends B two keyword sets W0, W1. B first chooses random values
h, Z̃0, {Z̃1,i}1≤i≤n ∈ Gp4 . Then, it randomly chooses a keyword set Wβ from

{W0,W1}. Let Wβ = {wβ,1, . . . , wβ,n}, it computes C̃ = e(gα, X1X2), C0 =

(X1X2) · Z̃0, Ci = (X1X2)
aiwβ,i · Z̃1,i. B sets CWβ

= (C̃, C0, {Ci}1≤i≤n) and
sends it to A as the challenge ciphertext. If we let X1X2 = gsgc2, then

C̃ = e(g, gα)
s
, C0 = (gh)sZ0 · gc2, Ci = (Hi

wβ,i)
s
Z1,i · gcγi

2 ,

where Z0 = Z̃0 · h−s, Z1,i = Z̃1,ih
−(wβ,is)
i , γi = aiwβ,i. This is a semi-functional

ciphertext. Since the values of ai, wβ,i modulo p1 are uncorrelated from their
values modulo p2, it is properly distributed.

Phase 2. Same as Phase 1 with the restriction that none of the query trapdoors
can be satisfied by W0 and W1:

– If T ∈ Gp1p2p3
, the kth trapdoor key is properly distributed semi-functional

key of type 1. Thus, B has properly simulated Gamek,1.

– if T ∈ Gp1p3 , the kth trapdoor key is properly distributed normal key. Thus,
B has properly simulated Gamek−1,2.

Therefore, if A can distinguish the Gamek,1 and Gamek−1,2 with non-negligible
advantage ε, B can break Assumption 2 with advantage ε.

Lemma 3. If there is an algorithm A that distinguish the Gamek,1 and Gamek,2
with non-negligible advantage ϵ. Then we can construct an algorithm B with
advantage ϵ in breaking Assumption 2.

Proof. B is given {g,X1X2, Y2Y3, X3, X4, T} and will simulateGamek,1 orGamek,2
with A.

Setup. Same as in Lemma 1.

Phase 1. Note that B knows the secret key sk = {u1, . . . , un, α,X3}. Considering
a predicate (A, ρ , E = {tρ(1), . . . , tρ(ℓ)}, F = {fρ(1), . . . , fρ(ℓ)}), B creates the
trapdoor keys as follows.

– For j < k and j > k, the responses to trapdoor key queries are the same as
in Lemma2.

– For the kth trapdoor key, B chooses a random vector υ such that 1 · υ = α,
a random vector z such that z · 1 = 0, random exponents η̃i ∈ ZN , random
elements Ṽ1,i, Ṽ2,i, Ṽ3,i ∈ Gp3 , and sets:

D1,i = gAi·υ(Y2Y3)
AizT η̃iaitρ(i) Ṽ1,i, D2,i = T η̃i Ṽ2,i, D3,i = T η̃iaitρ(i) Ṽ3,i,

Thus, if T ∈ Gp1p2p3 , then T can be written as grgd2V , and

D1,i = gAi·υ(uρ(i))
tρ(i)·ri · V1,i · g

δi+ηiγρ(i)

2 ,

D2,i = gri · V2,i · gηi

2 ,

D3,i = (uρ(i))
tρ(i)·ri · V3,i · g

ηiγρ(i)

2 ,

where ri = rη̃i, δi = logg2 Y2·Aiz, γρ(i) = aitρ(i), ηi = dη̃i, V1,i = Y Aiz
3 V η̃iaitρ(i) Ṽ1,i,

V2,i = V η̃i Ṽ2,i, V3,i = V η̃iaitρ(i) Ṽ3,i. This is a semi-function key of type 1.

Since the values of η̃i, ai, tρ(i) modulo p1 are are uncorrelated from their
values modulo p2, it is properly distributed. If T ∈ Gp1p3 , it is a properly
distributed semi-functional key of type 2.

Challenge. Same as in Lemma2.

Phase 2. Same as Phase 1 with the restriction that none of the query trapdoors
can be satisfied by W0 and W1:

– If T ∈ Gp1p2p3 , the kth trapdoor key is properly distributed semi-functional
key of type 1. Thus, B has properly simulated Gamek,1.

– if T ∈ Gp1p3 , the kth trapdoor key is is properly distributed semi-functional
key of type 2. Thus, B has properly simulated Gamek,2.

Therefore, if A can distinguish the Gamek,1 and Gamek,2 with non-negligible
advantage ε, B can break Assumption 2 with advantage ε.

Lemma 4. If there is an algorithm A that distinguish the Gamefinal,ξ−1 and
Gamefinal,ξ with non-negligible advantage ϵ. Then we can construct an algorithm
B with advantage ϵ in breaking Assumption 3.

Proof. B is given {g, g2,X2, uh
′, gsB24,X3,X4, T} and will simulateGamefinal,ξ−1

or Gamefinal,ξ−2 with A.

Setup. B chooses h1, . . . , hmax{1,ξ−1}, hξ+1, . . . , hn ∈ Gp4 and α, a1, . . . ,
amax{1,ξ−1}, aξ+1, . . ., an ∈ ZN uniformly at random. Then, it sets u1 = ga1 ,
. . . , umax{1,ξ−1} = gamax{1,ξ−1} , uξ+1 = gaξ+1 , . . ., un = gan , H1 = u1h1,
. . . , Hmax{1,ξ−1} = umax{1,ξ−1}hmax{1,ξ−1}, Hξ = uh′, Hξ+1 = uξ+1hξ+1, . . .,
Hn = unhn, and sends A the public key :

pk = {N, g, gα, {Hi}1≤i≤n, X4}

Phase 1. Note that B knows the secret key sk = {u1, . . . , un, α,X3}. Consider A
queries for a predicate (A, ρ , E = {tρ(1), . . . , tρ(ℓ)}, F = {fρ(1), . . . , fρ(ℓ)}), B
first chooses a random vector υ such that 1 · υ = α, a random vector z, random
exponents ri ∈ ZN , random elements Ṽ1,i, Ṽ2,i, Ṽ3,i ∈ Gp3 , and then set: D1,i =

gAi·υ(uX2)
tρ(i)·ri · V1,i · gAiz

2 , if ρ(i) = ξ, or D1,i = gAi·υ(gaρ(i))tρ(i)·ri · V1,i · gAiz
2

otherwise. D2,i = gri · V2,i, D3,i = (gaρ(i))tρ(i)·ri · V3,i. Thus, D1,i can be written

as gAi·υ(uρ(i))
tρ(i)·riV1,i · gδi2 , where δi = Aiz + tρ(i)ri logg2 X2 if ρ(i) = ξ or

δi = Aiz otherwise. Note this is a properly distributed semi-functional key of
type 2.

Challenge. A sends B two keyword sets W0, W1. B first chooses random val-
ues h, Z̃0, {Z̃1,i}ξ≤i≤n ∈ Gp4 . Then, it randomly chooses a keyword set Wβ

from {W0,W1} and random elements C1, . . . , Cmax{1,ξ−1} ∈ Gp1p2p4
. Let

Wβ = {wβ,1, . . . , wβ,n}, it computes C̃ = e(g, gsB24), C0 = gsB24 · Z̃0, Cξ =

(gsB24)
wβ,ξ ·T ·Z̃1,ξ, {Ci = gsB24

aiwβ,i ·Z̃1,i}ξ≤i≤n. B sets CWβ
= (C̃, C0, {Ci}1≤i≤n)

and sends it to A as the challenge ciphertext.

Phase 2. Same as Phase 1 with the restriction that none of the query trapdoors
can be satisfied by W0 and W1.

Guess. The adversary outputs a guess β
′
of β:

– Denote B2, B4 to be the Gp2 , Gp4 parts of B24 respectively, D2, D4 to be
the Gp2 , Gp4 parts of D24 respectively. If T = usD24, then

C̃ = e(g, gα)
s
, C0 = (gh)sZ0 · gc2, {Ci = (Hi

wi)
s
Z1,i · gcγi

2 }ξ≤i≤n,

where c = logg2 B2, γξ = (logg2 (B
wβ,ξ

2 D2))/c, {γi = aiwβ,i}ξ≤i≤n, Z0 =

B4Z̃0·h−s, Z1,ξ = B
wβ,i

4 D4Z̃1,ξ(uh
′)−(wβ,is), {Z1,i = B

aiwβ,i

4 Z̃1,ih
−(wβ,is)
i }ξ≤i≤n.

Since the values of ai, wβ,i modulo p1 are uncorrelated from their val-
ues modulo p2, it is properly distributed semi-functional ciphertext with
C1, . . . , Cmax{1,ξ−1} random in Gp1p2p4 . Thus, B has properly simulated
Gamefinal,ξ−1.

– if T ∈ Gp1p2p4 , this is a properly distributed semi-functional ciphertext with
C1, . . . , Cξ random chosen from Gp1p2p4 . Thus, B has properly simulated
Gamefinal,ξ.

Thus, ifA can distinguish theGamefina,ξ−1 andGamefinal,ξ with non-negligible
advantage ε, B can break Assumption 3 with advantage negligibly ε.

