
1

Compact and Side Channel Resistant Discrete
Gaussian Sampling

Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede

Abstract—Discrete Gaussian sampling is an integral part of
many lattice based cryptosystems such as public-key encryption,
digital signature schemes and homomorphic encryption schemes.
In this paper we propose a compact and fast Knuth-Yao sampler
for sampling from a narrow discrete Gaussian distribution with
very high precision. The designed samplers have a maximum sta-
tistical distance of 2−90 to a true discrete Gaussian distribution.
In this paper we investigate various optimization techniques to
achieve minimum area and cycle requirement. For the standard
deviation 3.33, the most area-optimal implementation of the bit-
scan operation based Knuth-Yao sampler consumes 30 slices on
the Xilinx Virtex 5 FPGAs, and requires on average 17 cycles
to generate a sample. We improve the speed of the sampler
by using a precomputed table that directly maps the initial
random bits into samples with very high probability. The fast
sampler consumes 35 slices and spends on average 2.5 cycles
to generate a sample. However the sampler architectures are
not secure against timing and power analysis based attacks.In
this paper we propose a random shuffle method to protect the
Gaussian distributed polynomial against such attacks. Theside
channel attack resistant sampler architecture consumes 52slices
and spends on average 420 cycles to generate a polynomial of
256 coefficients.

Keywords. Lattice-based cryptography, Discrete GaussianSam-
pler, Hardware implementation, Knuth-Yao algorithm, Discrete
distribution generating (DDG) tree, Side channel analysis

I. I NTRODUCTION

Most currently used public-key cryptosystems are based on
difficult number theoretic problems such as integer factoriza-
tion or discrete logarithm problem. Though these problems
are difficult to solve using present day digital computers, they
can be solved in polynomial time on large quantum computers
using Shor’s algorithm. Although quantum computing is still
in a primitive stage, significant research is going on to develop
powerful quantum computers for military applications such
as cryptanalysis [1]. As a result, the possible appearance
of powerful quantum computers could bring disaster for our
present day public-key infrastructure.

Lattice-based cryptography is considered as a strong candi-
date for public key cryptography in the era of quantum com-
puting. Advantages of lattice-based cryptography over other
conventional public key schemes are its strong security proofs,

The authors are with the ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium. Email:
{firstname.lastname}@esat.kuleuven.be This work was supported in part by
the Research Council KU Leuven: TENSE (GOA/11/007), by iMinds, by
the Flemish Government, FWO G.0213.11N, by the Hercules Foundation
AKUL/11/19, by the European Commission through the ICT programme
under contract FP7-ICT-2011-284833 PUFFIN and FP7-ICT-2013-10-SEP-
210076296 PRACTICE. Sujoy Sinha Roy is funded by an Erasmus Mundus
fellowship.

vast range of applicability [2] and computational efficiency. In
the present decade, beside significant progress in the theory
of lattice-based cryptography, efficient implementations[3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13] have increased
practicality of the schemes.

Sampling from a discrete Gaussian distribution is an essen-
tial part in many lattice-based cryptosystems such as public
key encryption, digital signature and homomorphic encryption.
Hence an efficient and secure implementation of discrete
Gaussian sampling is a key towards achieving practical im-
plementations of these cryptosystems. To achieve efficiency,
the sampler architecture should be small and fast. At the same
time the sampler should be very accurate so that its statistical
distance to a true discrete Gaussian distribution is negligible
to satisfy the security proofs [14].

The most commonly used methods for sampling from a
discrete Gaussian distribution are based on the rejection and
inversion methods. However these methods are very slow and
consume a large number of random bits. The first hardware
implementation of a discrete Gaussian sampler [4] uses a
Gaussian distributed array indexed by a (pseudo)random num-
ber generator. However the sampler has a low precision and a
small tail bound (2s) which results in a large statistical distance
to the true discrete Gaussian distribution. A more efficient
sampler in [6] uses an inversion method which compares
random probabilities with a cumulative distribution table. In
the hardware architecture an array of parallel comparatorsis
used to map a random probability into a sample value. To
satisfy a negligible statistical distance, the sampler requires
very large comparator circuits. This increases area and delay of
the sampler. The first compact implementation with negligible
statistical distance was proposed in [7]. The sampler is based
on the Knuth-Yao random walk algorithm [15]. The advantage
of this algorithm is that it requires a near-optimal number of
random bits to generate a sample point in the average case. The
sampler was designed to attain a statistical distance less than
2−90 to a true discrete distribution for the standard deviation
σ = 3.33. On the Xilinx Virtex V FPGA, the sampler con-
sumes 47 slices and requires on average 17 cycles to compute a
sample point. Later in [11] a very small-area Bernoulli sampler
architecture was presented. The sampler consumes only 37
slices and spends on average 144 cycles to generate a sample.
In [10] an efficient sampler architecture was proposed for
sampling from wider discrete Gaussian distributions that are
suitable for the lattice based digital signature scheme BLISS
[16]. In this paper we focus on designing compact, fast and
secure samplers for the narrow discrete Gaussian distributions
that are normally used in the lattice based encryption schemes.

2

Our contributions: In this paper we propose a compact and
fast discrete Gaussian sampler based on the Knuth-Yao random
walk. As the Knuth-Yao random walk is not a constant-time
operation, the discrete Gaussian sampler is vulnerable to side-
channel attacks. In this paper we propose a technique to
prevent such attacks. In particular, we make the following
contributions:

1) The compact Knuth-Yao sampler proposed in [7] is
composed of mainly a ROM, a scan register and several
small counters. The sampler consumes 47 slices on
a Xilinx Virtex 5 FPGA for the standard deviation
σ = 3.33. The area requirement of the sampler is mostly
due to the ROM and the scan-register. In this paper we
reduce the total area consumption of the sampler by
reducing the width of the ROM and the scan-register.
We also optimize the control signal generation block to
finally achieve an area of only 30 slices for the overall
sampler. In this paper we provide a detailed internal
architecture of the sampler along with the control signal
generation block.

2) The basic Knuth-Yao sampler [7] performs a random
walk determined by a sequence of random bits and by
the probability bits from the ROM. This bit scanning op-
eration is sequential and thus the sampler in [7] requires
on average 17 cycles to obtain a sample point. To achieve
faster computation time, we increase the speed of the
sampler by using a dedicated small lookup table that
maps the initial random bits directly into a sample point
(with large probability) or into an intermediate position
in the random walk.

3) The Knuth-Yao random walk is not a constant time
operation and hence it is possible by an adversary to
predict the value of the output sample by performing
timing and simple power analysis. In this paper we
show how this side channel analysis can be used to
break the ring-LWE encryption scheme. Finally we
propose a random shuffle method to remove any timing
information from a Gaussian distributed polynomial.

The remainder of the paper is organized as follows: Sec-
tion II provides a brief mathematical background. Imple-
mentation strategies for the Knuth-Yao sampler architecture
are described in Section III. The hardware architecture for
the discrete Gaussian sampler is presented in Section IV.
In Section V we describe side channel vulnerability of the
sampler architecture along with countermeasures. Detailed
experimental results are presented in Section VI.

II. BACKGROUND

Here we recall the mathematical background required to
understand the paper.

A. Discrete Gaussian Distribution

A discrete Gaussian distribution defined overZ with stan-
dard deviationσ > 0 and meanc ∈ Z is denoted asDZ,σ,c.
Let E be a random variable distributed as perDZ,σ,c. This is

defined as follows.

Pr(E = z) =
1

S
e−z

2/2σ2

whereS = 1 + 2

∞
∑

z=1

e−z
2/2σ2

The normalization factorS is approximatelyσ
√
2π. For most

lattice based cryptosystems the meanc is taken as zero and
in such cases we useDZ,σ to representDZ,σ,0. A discrete
Gaussian distribution can also be defined over a latticeL ⊆
R

m. Such a distribution is denoted asDL,σ and assigns a
probability proportional toe−|x|

2/2σ2

to each elementx ∈ L.
WhenL = Z

m, the discrete Gaussian distributionDL,σ over
L is the product distribution ofm independent copies ofDZ,σ.

B. Tail and precision bounds

A discrete Gaussian distribution has an infinitely long tail
and infinitely high precision for the probabilities of the sample
points. In a real-world application it is not possible to design
a sampler that can support infinite tail and precision. Indeed
in practical applications we put an upper bound on the tail
and the precision of the probabilities. Such bounds obviously
introduce a non-zero statistical distance to a true discrete
Gaussian distribution. To satisfy the security proofs [14], the
sampler should have a negligible statistical distance to a true
discrete Gaussian distribution. According to Lemma 4.4 in
[17], for anyc > 1 the probability of samplingv from DZm,σ

satisfies the following inequality.

Pr(|v| > cσ
√
m) < cme

m

2
(1−c2) (1)

Similarly denote the probability of samplingz ∈ Z accord-
ing to the accurate distributionDZ,σ with ρz . Assume that
the real-world sampler samplesz with probabilitypz and the
corresponding approximate distribution is̃DZ,σ. There is an
error-constantǫ > 0 such that|pz − ρz| < ǫ. The statistical
distance betweeñDZm,σ corresponding tom independent
samples fromD̃Z,σ and the true distributionDZm,σ [18]:

∆(D̃Zm,σ, DZm,σ) < 2−k + 2mztǫ . (2)

Here Pr(|v| > zt : v ← DZm,σ) < 2−k represents the tail
bound.

In Table I we show the tail bound|zt| and the precision
boundǫ required to satisfy a statistical distance of less than
2−90 for the Gaussian distribution parameter sets taken from
[4]. We first calculate the tail bound|zt| from Equation 1 for
the right-hand side upper bound2−100. Then using Equation 2,
we derive the precisionǫ for a maximum statistical distance
of 2−90 and the value of the tail bound|zt|. In practice

m σ |zt| ǫ
256 3.33 84 106
320 3.192 86 106
512 3.195 101 107

TABLE I
PARAMETER SETS AND PRECISIONS TO ACHIEVE STATISTICAL DISTANCE

LESS THAN2
−90

the tail bounds obtained from Equation 1 are quite loose for
the precision values shown in Table I. For all three standard
deviations, the probabilities for the sample points greater than
39 become zero upto the given precision bounds.

3

0 1 1 1 0

0 0 1 0 1
0 1 1 0 1Pmat =

I
le

ve
l 0

I
I

1
0

le
ve

l 1

I
2

1
0

I

0
I

2
1

row 0

co
lu

m
n

 0

ro
o

t

Fig. 1. Probability matrix and corresponding DDG-tree

C. The Knuth-Yao Algorithm

The Knuth-Yao sampling algorithm performs a random walk
along a binary tree known as the discrete distribution generat-
ing (DDG) tree. A DDG tree is related to the probabilities of
the sample points. The binary expansions of the probabilities
are written in the form of a binary matrix which we call the
probability matrixPmat. In the probability matrix thejth row
corresponds to the probability of thejth sample point.

A DDG tree consists of two types of nodes : intermediate
nodes (I) and terminal nodes. A terminal node contains a
sample point, whereas an intermediate node generates two
child nodes in the next level of the DDG tree. The number
of terminal nodes in theith level of a DDG is equal to the
Hamming weight of theith column of the probability matrix.
An example of a DDG tree corresponding to a probability
distribution consisting of three sample points{0, 1, 2} with
probabilitiesp0 = 0.01110, p1 = 0.01101 andp2 = 0.00101
is shown in Figure 1. During a sampling operation a random
walk is performed starting from the root of the DDG tree.
For every jump from one level of the DDG tree to the next
level, a random bit is used to determine a child node. The
sampling operation terminates when the random walk hits a
terminal node. The value of the terminal node is the value of
the output sample point.

A naive implementation of a DDG tree requiresO(ztǫ)
storage space where the probability matrix has a dimension
(zt + 1) × ǫ. However in practice much smaller space is
required as a DDG tree can be constructed on-the-fly from
the corresponding probability matrix.

III. E FFICIENT IMPLEMENTATION OF THE KNUTH-YAO

ALGORITHM

In this section we present a simple hardware implementation
friendly construction of the Knuth-Yao sampling algorithm
from our previous paper [7]. However this basic construction
is slow due to its sequential bit-scanning operation. In theend
of this section we propose a fast sampler architecture usinga
precomputed lookup table.

A. Construction of the DDG tree at runtime

The Knuth-Yao random walk travels from one level of the
DDG tree to the next level after consuming a random bit.
During a random walk, theith level of the DDG tree is
constructed from the(i − 1)th level using theith column of
the probability matrix. Hence in an efficient implementation of
the sampling algorithm, we need to work with only one level
of the DDG tree and one column of the probability matrix at
a time.

A Knuth-Yao traversal from the(i− 1)th level of the DDG
tree to theith level is shown in Figure 2. Assume that in the
(i − 1)th level, the visited node is thekth intermediate node
and that there ared intermediate nodes to the right side of the
visited node. Now the random walk consumes one random bit
and visits a child node in theith level of the DDG tree. The
visited node has2d or 2d+1 nodes to its right side depending
on whether it is a right or a left child of its parent node. Now
to discover the terminal nodes in this level of the DDG tree,
the ith column of the probability matrix is scanned from the
bottom. Each ‘1’ bit in the column discovers a terminal node
from the right side of theith level of the DDG tree. The
value of the terminal node is the correspondingrow number
for which it was discovered. In this way the visited node will
eventually be discovered as a terminal node if the Hamming
weight of theith column is larger than the number of nodes
present to the right side of the visited node. When the visited
node is discovered as a terminal node, the sampling operation
stops and the corresponding row number of the probability
matrix is the value of the sample. For the other case, the
random walk continues to the(i+1)th level of the DDG tree
and then the same process continues until a terminal node is
visited by the random walk.

The traversal can be implemented using a counter which we
call distance counterand a register to scan a column of the
probability matrix. For each jump to a new level of the DDG
tree the counter is initialized to2d or 2d+1 depending on the
random bit. Then the corresponding column of the probability
matrix is scanned from the bottom using the bit-scan register.
Each ‘1’ bit read from the bit-scanning operation decrements
the distance counter. The visited node is discovered as a
terminal node when the distance counter becomes negative
for the first time.

B. Optimized storage of the probability bits

In the last subsection we have seen that during the Knuth-
Yao random walk probability bits are read from a column of
the probability matrix. For a fixed distribution the probability
values can be stored in a cheap memory such as a ROM. The
way in which probability bits are stored in the ROM affects
the number of ROM accesses and hence also influences the
performance of the sampler. Since the probability bits are read
from a single column during the runtime construction of a
level in the DDG tree, the number of ROM accesses can be
minimized if the columns of the probability matrix are stored
in the ROM words.

A straightforward storage of the columns would result in
a redundant memory consumption as most of the columns in
the probability matrix contains a chain of 0s in the bottom. In

TI TI I I

1 2 k
d

n

Discover Terminal Nodes

2d

10

Fig. 2. DDG Tree Construction

4

001101001000110011101100011010
001010010010001110000011001110
000111010011001101100110100000
000100101100101100100011010010
000010101111011110010010001110

000000010011011000000110100010
000000000111101001000111111011
000000000010101110111011001001
000000000000111000101110001100

000000000000000001000100110001
000000000000000000001111000100
000000000000000000000010111111

000001011100110110001001011000
000000101100100010110010101101

000000000000010000101011010101
000000000000000100011100100010

001111001101110110011011001101

#0

#2

#1
001110_1110111_110

11011_110010111_11

000111111111010111000101110101

Part of Probability Matrix First two ROM words

Fig. 3. Storing Probability Matrix

an optimized storage these 0s can be compressed. However in
such a storage we also need to store the lengths of the columns
as the columns will have variable lengths after trimming
off the bottom 0s. If the column lengths are stored naively,
then it would cost⌈log ztσ⌉ bits per column and hence in
total ǫ⌈log ztσ⌉ bits. By observing a special property of the
Gaussian distributed probability values, we can indeed derive a
much simpler and optimized encoding scheme for the column
lengths. In the probability matrix we see that for most of the
consecutive columns, the difference in the column lengths is
either zero or one. Based on this observation we use one-step
differential encoding scheme for the column lengths : when we
move from one column to its right consecutive column, then
column length either increases by one or remains the same.
Such a differential encoding scheme requires only one bit per
column length. In Figure 3 we show how the bottom zeros
are trimmed using one-step partition line. In the ROM we
store only the portion of the probability matrix that is above
the partition line. Along with the columns, we also store the
encoded column-length bit. Each column starts with a column
length bit : if this bit is ‘1’, then the column is larger by one
bit compared to its left consecutive column; otherwise they
are of equal lengths.

We take Algorithm 1 from [7] to summarize the steps of the
Knuth-Yao sampling operation. The ROM has a word size of
w bits and contains the probability bits along with the column-
length bits.

C. Fast sampling using lookup table

A Gaussian distribution is concentrated around its center.
In the case of a discrete Gaussian distribution with standard
deviationσ, the probability of sampling a value larger than
t · σ is less than2 exp(−t2/2) [17]. In fact this upper bound
is not very tight. We use this property of a discrete Gaussian
distribution to design a fast sampler architecture satisfying the
speed constraints of many real-time applications. As seen from
the previous section, the Knuth-Yao random walk uses random
bits to move from one level of the DDG tree to the next
level. Hence the average case computation time required per
sampling operation is determined by the number of random
bits required in the average case.

The lower bound on the number of random bits required
per sampling operation in the average case is given by the
entropy of the probability distribution [19]. The entropy of a

continuous normal distribution with a standard deviationσ is
1
2 log(2πeσ

2). For a discrete Gaussian distribution, the entropy
is approximately close to entropy of the normal distribution
with the same standard deviation. A more accurate entropy can
be computed from the probability values as per the following
equation.

H = −
∞
∑

−∞

pi log pi (3)

The Knuth-Yao sampling algorithm was developed to consume
the minimum number of random bits on average [15]. It was
shown that the sampling algorithm requires at mostH + 2
random bits per sampling operation in the average case.

For a Gaussian distribution, the entropyH increases with
the standard deviationσ, and thus the number of random
bits required in the average case also increases withσ. For
applications such as the ring-LWE based public key encryption
scheme and homomorphic encryption, smallσ is used. Hence
for such applications the number of random bits required in the
average case are small. Based on this observation we can avoid
the costly bit-scanning operation using a small precomputed
table that directly maps the initial random bits into a sample
value (with large probability) or into an intermediate node
in the DDG tree (with small probability). During a sampling
operation, first a table lookup operation is performed using
the initial random bits. If the table lookup operation returns
a sample value, then the sampling algorithm terminates. For
the other case, bit scanning operation is initiated from the
intermediate node. For example, whenσ = 3.33, if we
use a precomputed table that maps the first eight random
bits, then the probability of getting a sample value after the
table lookup is 0.973. Hence using the lookup table we can
avoid the costly bit-scanning operation with probability 0.973.
However extra storage space is required for this lookup table.
When the probability distribution is fixed, the lookup table

Algorithm 1 : Knuth-Yao Sampling in Hardware Platform
Input : Probability matrixP
Output : Sample valueS
begin1

d← 0; /* Distance between the visited and the rightmost internalnode */2
Hit ← 0; /* This is 1 when the sampling process hits a terminal node */3
ColLen← INITIAL; /* Column length is initialized */4
address← 0; /* This variable is the address of a ROM word */5
i← 0; /* This variable points the bits in a ROM word */6
while Hit = 0 do7

r ← RandomBit() ;8
d← 2d + r̄ ;9
ColLen← ColLen + ROM [address][i] ;10
for row = ColLen− 1 down to0 do11

i← i+ 1 ;12
if i = w then13

address← address + 1 ;14
i← 0 ;15

end16
d← d− ROM [row][i] ;17
if d = −1 then18

S ← row ;19
Hit ← 1 ;20
ExitForLoop() ;21

end22
end23

end24
return (S)25

end26

5

can be implemented as a ROM which is cheap in terms of
area in hardware platforms. In the next section we propose
a cost effective implementation of a fast Knuth-Yao sampler
architecture.

IV. T HE SAMPLER ARCHITECTURE

The first hardware implementation of a Knuth-Yao sampler
was proposed in our previous paper [7]. In this paper we
optimize the previous sampler architecture and also introduce
a lookup table that directly maps input random bits into a
sample point or into an intermediate node in the DDG tree.
The sampler architecture is composed of 1) a bit-scanning
unit, 2) counters for column length and row number, and 3)
a subtraction-based down counter for the Knuth-Yao distance
in the DDG tree. In addition, for the fast sampler architecture,
a lookup table is also used. A control unit is used to gen-
erate control signals for the different blocks and to maintain
synchronization between the blocks. The control unit used in
this paper is more decentralized compared to the control unit
in [7]. This decentralized control unit has a more simplified
control logic which reduces the area requirement compared
to the previous architecture. We now describe the different
components of the sampler architecture.

A. The Bit-scanning Unit

The bit-scanning unit is composed of a ROM, a scan
register, one ROM-address counter, one counter to record the
number of bits scanned from a ROM-word and a comparator.
The ROM contains the probabilities and is addressed by
the ROM-address counter. During a bit-scanning operation,
a ROM-word (sizew bits) is first fetched and then stored in
the scan register. The scan-register is a shift-register and its
msb is read as the probability-bit. To count the number of bits
scanned from a ROM-word, a counterword-bit is used. When
theword-bit counter reachesw−2 from zero, the output from
the comparatorComp1enables theROM-addresscounter. In
the next cycle theROM-addresscounter addresses the next
ROM-word. Also in this cycle theword-bit counter reaches
w − 1 and the output fromComp2enables reloading of the
bit-scan register with the new ROM-word. In the next cycle,
the word-bit counter is reset to zero and the bit-scan register
contains the word addressed by theROM-wordcounter. In this
way data loading and shifting in the bit-scan register takes
place without any loss of cycles. Thus the frequency of the
data loading operation (which depends on the widths of the
ROM) does influence the cycle requirement of the sampler
architecture. This interesting feature of the bit-scan unit will be
utilized in the next part of this section to achieve optimal area
requirement by adjusting the width of the ROM and the bit-
scan register. Another point to note in this architecture isthat,
most of the control signals are handled locally compared to
the centralized control logic in [7]. This effectively simplifies
the control logic and helps in reducing area. The bit-scanning
unit is the largest sub-block in the sampler architecture in
terms of area. Hence this unit should be designed carefully

to achieve minimum area requirement. In FPGAs a ROM can
be implemented as a distributed ROM or as a block RAM.
When the amount of data is small, a distributed ROM is the
ideal choice. The way a ROM is implemented (its widthw
and depthh) affects the area requirement of the sampler. Let
us assume that the total number of probability bits to be stored
in the ROM isD and the size of the FPGA LUTs isk. Then
the total number of LUTs required by the ROM is around
⌈ D
w·2k
⌉ ·w along with a small amount of addressing overhead.

The scan-register is a shift register of widthw and consumes
aroundw LUTs andwf = w FFs. Hence the total area (LUTs
and FFs) required by the ROM and the scan-register can be
approximated by the following equation.

#Area =
⌈ D

w · 2k
⌉

· w + (w + wf)

=
⌈ h

2k
⌉

· w + (w + wf)

For optimal storage,h should be a multiple of2k. Choosing a
larger value ofh will reduce the width of the ROM and hence
the width of the scan-register. However with the increase in
h, the addressing overhead of the ROM will also increase. In
Table II we compare area of the bit-scan unit forσ = 3.33
with various widths of the ROM and the scan register using
Xilinx Virtex V xcvlx30 FPGA. The optimal implementation
is achieved when the width of the ROM is set to six bits.
Though the slice count of the bit-scan unit remains the same
in both the second and third column of the table due to various
optimizations performed by the Xilinx ISE tool, the actual
effect on the overall sampler architecture will be evident in
Section VI.

B. Row-number and Column-length Counters

As described in the previous section, we use a one-step
differential encoding for the column lengths in the probability
matrix. Thecolumn-lengthcounter in Figure 4 is an up-counter
and is used to represent the lengths of the columns. During
a random-walk, this counter increments depending on the
column-length bit which appears in the starting of a column.If
the column-length bit is zero, then thecolumn-lengthcounter
remains in its previous value; otherwise it increments by one.
At the starting of a column-scanning operation, theRow-
number counter is first initialized to the value of column-
length. During the scanning operation this counter decrements
by one in each cycle. A column is completely read when the
Row Numbercounter reaches zero.

C. The Distance Counter

A subtraction-based counterdistanceis used to keep the
distance d between the visited node and the right-most

width height LUTs FFs Slices
24 128 70 35 22
12 256 72 23 18
6 512 67 17 18

TABLE II
AREA OF THE BIT-SCAN UNIT FOR DIFFERENT WIDTHS AND DEPTHS

6

<<

<<

Scan Register

dout shifted data

ROM−Address

Word−bit
w−2

Comp2

w−1

Comp1

rst_internal

rst_internal

enable

scan−bit

SCAN−UNIT

Row Number
Comp3

0

Row_is_zero_reg

enable

Row_is_zero

COLUMN−ROW DISTANCE

scan−bit

ROM

1

sel1

doneCarry

enable sel1 randgen rst_internal

Control FSM

msb

left shift

comp2_true

comp2_true

rst_internal

Row_is_zero_reg

enable
Column Length

rst_internal
Distance

random bit

Carry

Lookup

Fig. 4. Hardware Architecture for Knuth-Yao Sampler

intermediate node in the DDG tree. The registerdistance
is first initialized to zero. During each column jump, the
row zero reg is set and thus the subtrahend becomes zero.
In this step, thedistanceregister is updated with the value2d
or 2d+1 depending on the input random bit. As described in
the previous section, a terminal node is visited by the random
walk when the distance becomes negative for the first time.
This event is detected by the control FSM using the carry
generated from the subtraction operation.

After completion of a random walk, the value present in
Row Numberis the magnitude of the sample output. One
random bit is used as a sign of the value of the sample output.

D. The Lookup Table for Fast Sampling

The output from the Knuth-Yao sampling algorithm is deter-
mined by the probability distribution and by the input sequence
of random bits. For a given fixed probability distribution, we
can precompute a table that maps all possible random strings
of bit-width s into a sample point or into an intermediate
distance in the DDG tree. The precomputed table consists of
2s entries for each of the2s possible random numbers.

On FPGAs, this precomputed table is implemented as a
distributed ROM using LUTs. The ROM contains2s words
and is addressed by random numbers ofs bit width. The
success probability of a table lookup operation can be in-
creased by increasing the size of the lookup table. For example
whenσ = 3.33, the probability of success is 0.973 when the
lookup table maps the eight random bits; whereas the success
probability increases to 0.999 when the lookup table maps
13 random bits. However with a larger mapping, the size
of precomputed table increases exponentially from28 to 213.
Additionally each lookup operation requires 13 random bits.
A more efficient approach is to perform lookup operations in
steps. For example, we use a first lookup table that maps the
first eight random bits into a sample point or an intermediate
distance (three bit wide forσ = 3.33). In case of a lookup

failure, the next step of the random walk from the obtained
intermediate distance will be determined by the next sequence
of random bits. Hence, we can extend the lookup operation
to speedup the sampling operation. For example, the three-bit
wide distance can be combined with another five random bits
to address a (thesecond) lookup table. Using this two small
lookup tables, we achieve a success probability of 0.999 for
σ = 3.33. An architecture for a two stage lookup table is
shown in Figure 5.

V. T IMING AND SIMPLE POWER ANALYSIS

The Knuth-Yao sampler presented in this paper is not a
constant time architecture. Hence this property of the sampler
leads to side channel vulnerability. Before we describe this
in detail, we first describe the ring-LWE encryption scheme
which requires discrete Gaussian sampling from a narrow
distribution.

A. The ring-LWE Encryption Scheme

The ring-LWE encryption scheme [20] uses special struc-
tured ideal lattices. Such ideal lattices are a generalization
of cyclic lattices and correspond to ideals in ringsZ[x]/〈f〉,
wheref is an irreducible polynomial of degreen. To reduce

Sample Sample

Initial Distance

Lookup
Table 2

Lookup
Table 1

Random Bits LU1 Distance

Fig. 5. Hardware Architecture for two stage Lookup

7

computation cost, the underlying ring is generally taken as
Rq = Zq[x]/〈f〉 with the irreducible polynomial of the form
f(x) = xn +1, wheren is a power of two and the primeq is
taken asq ≡ 1 mod 2n. The ring-LWE distribution consists
of tuples(a, t) where the polynomiala is chosen uniformly
from Rq and t = a · s + e ∈ Rq. The polynomials is a
secret polynomial and is a fixed polynomial for a ring-LWE
distribution. The error polynomiale is constructed by sampling
its coefficients from a discrete Gaussian distributionXσ. Key
generation, encryption and decryption are as follows:

1) KeyGeneration(a) : Two polynomialsr1, r2 ∈ Rq are
chosen fromXσ and thenp = r1 − a · r2 ∈ Rq is
computed. The public key is the polynomial pair(a, p)
and the private key is the polynomialr2.

2) Encryption(a, p,m) : The messagem is first encoded
to a polynomialm̄ ∈ Rq. Then three error polynomi-
als e1, e2, e3 ∈ Rq are constructed by sampling their
coefficients from from a discrete Gaussian distribu-
tion with standard deviationσ. The ciphertext is the
polynomial pair (c1, c2) where c1 = a · e1 + e2 and
c2 = p · e1 + e3 + m̄ ∈ Rq.

3) Decryption(c1, c2, r2) : First a polynomialm′ = c1 ·
r2 + c2 ∈ Rq is computed. Then the original message
m is recovered fromm′ using a simple decoder.

B. Side Channel Vulnerability of the Sampling Operation

In the ring-LWE encryption scheme, the key generation and
the encryption require discrete Gaussian sampling. The key
generation operation is performed only to generate long-term
keys and hence can be performed in a secure environment.
However, this is not the case for the encryption operation.
It should be noted that in a public key encryption scheme,
the plaintext is normally considered secret information. For
example, it is common practice to use a public-key cryptosys-
tem to encrypt a symmetric key that is subsequently used for
fast, bulk encryption (this construction is commonly named
“hybrid cryptosystems”). Hence, from the perspective of side-
channel analysis, any leak of information during the encryption
operation about the plaintext (symmetric key) is considered as
a valid security threat.

The basic Knuth-Yao sampler uses a bit scanning operation
in which the sample generated is related to the number of
probability-bits scanned during a sampling operation. Hence,
the number of cycles of a sampling operations provides some
information to an attacker about the value of the sample. We
recall that in a ring-LWE encryption operation, the Gaussian
sampler is used as a building block, and it is called in an
iterative fashion to generate an array of samples. An attacker
that monitors the instantaneous power consumption of the
discrete Gaussian sampler architecture can easily retrieve accu-
rate timings for each sampling information via Simple Power
Analysis (SPA) patterns, and hence gain some information
about the secret polynomialse1, e2 ande3. In the worst case,
this provides the adversary with enough information to break
the cryptosystem.

To verify to what extent the instantaneous power consump-
tion provides information about the sampling operation, we

performed a SPA attack on the unprotected design running
on a Xilinx Spartan-III at 40 MHz. The instantaneous power
consumption is measured with a Langer RF5-2 magnetic pick-
up coil on top of the FPGA package (without decapsulation),
amplified (+50 dB), low-pass filtered (cutoff frequency of48
MHz). In Figure 6 we show the instantaneous power consump-
tion of two different sampling operations. The horizontal axis
denotes time, and both sampling operations are triggered on
the beginning of the sampling operation. One can distinguish
enough SPA features (presumably due to register updates)
to infer that theblue graph corresponds to a sampling that
requires small number of cycles (7 cycles exactly) whereas the
red graph represents a sampling operation that requires more
cycles (21 cycles). From this SPA attack, the adversary can
predict the values of each coefficient of the secret polynomials
e1, e2 and e3 that appear during the encryption operation in
the ring-LWE cryptosystem, effectively breaking the security
by infering the secret messagem (since the polynomialp is
publicly known). We recall that in the encryption operation
in the ring-LWE cryptosystem, the encoded messagem̄ is
masked asc2 = p ·e1+e3+m̄ using two Gaussian distributed
noise polynomialse1 ande3. As the polynomialp is publicly
known, any leakage about the coefficients ine1 and e3 will
eventually leak information about the secret messagem.

Fig. 6. Two instantaneous power consumption measurements corresponding
to two different sampling operations. Horizontal axis is time, vertical axis
is electromagnetic field intensity. The different timing for the two different
sampling operations is evident.

C. Strategies to mitigate the side-channel leakage

In this paper we propose an efficient and cost effective
scheme to protect the Gaussian sampler from simple timing
and power analysis based attacks. Our proposal is based on
the fact that the encryption scheme remains secure as long as
the attacker has no information about the relative positions of
the samples (i.e. the coefficients) in the noise polynomials. It
should be noted that, as the Gaussian distribution used in the
encryption scheme is a publicly known parameter, any one can
guess the number of a particular sample point in an array ofn
samples. Similar arguments also apply for other cryptosystems
where the key is a uniformly distributed random string of bits
of some length (sayl). For such a random key, one has the

8

information that almost half of the bits in the key are one
and the rest are zero. In other words, the Hamming weight is
aroundl/2. Even if the exact value of the Hamming weight is
revealed to the adversary (on average, sayl/2), the key still
mantains log2

(

l
l/2

)

bits of entropy (≈ 124 bits for a 128 bit
key). It is the random positions of the bits that make a key
secure.

When the coefficients of the noise polynomial are generated
using the sequential bit-scan, a side channel attacker gets
information about both the value and position of the sample in
the polynomial. Hence, such leakages will make the encryption
scheme vulnerable. Our simple timing and power analysis
resistant sampler is described below:

1) Use of a lookup : The table lookup operation is constant
time and has a very large success probability. Hence with
this lookup approach, we protect most of the samples
from leaking any information about the value of the
sample from which an attacker can perform simple
power and timing analysis.

2) Use of a random permutation : The table lookup oper-
ation succeeds in most events, but fails with a small
probability. For a failure, the sequential bit scanning
operation leaks information about the samples. For ex-
ample, whenσ = 3.33 and the lookup table maps initial
eight random bits, the bit scanning operation is required
for seven samples out of 256 samples in the average
case. To protect against SPA, we perform a random
shuffle after generating an entire array of samples. The
random shuffle operation swaps all bit-scan operation
generated samples with other random samples in the
array. This random shuffling operation removes any
timing information which an attacker can exploit. In the
next section we will describe an efficient implementation
of the random shuffling operation.

D. Efficient Implementation of the Random Shuffling

We use a modified version of the Fisher and Yates shuffle
which is also known as theKnuth shuffle[21] to perform
random shuffling of the bit-scan operation generated samples.
The advantages of this shuffling algorithm are its simplicity,
uniformness, inplace data handling and linear time complexity.
In the original shuffling algorithm, all the indexes of the input
array are processed one after another. However in our case we
can restrict the shuffling operation to only those samples that
were generated using the sequential bit scanning operation.
This operation is implemented in the following way.

Assume thatn samples are generated and then stored
in a RAM with addresses in the range 0 to(n − 1). We
use two countersC1 and C2 to represent the number of
samples generated through successful lookup and bit-scanning
operations respectively. The total number of samples generated
is given by(C1 + C2). The samples generated using lookup
operation are stored in the memory locations starting from
0 till (C1 − 1); whereas the bit-scan generated samples are
stored in the memory locations starting from addressn − 1
downton − C2. After generation of then samples, the bit-
scan operation generated samples are randomly swapped with
the other samples using Algorithm 2

C1

C2

RAM

Gaussian
Sampler

Random Indecx

Comp 1

Comp 2

n−1

address

Control

done

address_sel

enable

address_sel

din_sel

wea

wea

n−1C2_dec
C2_inc

C1_inc

lookup_successdone

rand_bits
enable

rand_bit_gen

rand_index_gen

Random Index

din_sel

ram_buffer

Comp 3
0

lookup_success

Fig. 7. Sampler with shuffling

Algorithm 2 : Random swap of samples
Input : Sample vector stored in RAM[] with timing information
Output : Sample vector stored in RAM[] without timing information
begin1

while C2 > 0 do2
L1 : random index← random() ;3
if random index ≥ (n− C2) then4

gotoL1 ;5
end6
swapRAM [n − C2]↔ RAM [random index] ;7
C2 ← C2 − 1 ;8

end9
end10

A hardware architecture for the secure consecutive-sampling
is shown in Figure 7. In the architecture,C1 is an up-
counter andC2 is an up-down-counter. When theenable
signal is high, the Gaussian sampler generates samples in
an iterative way. After generation of each sample, the signal
Gdonegoes high and the type of the sample is indicated by the
signal lookup success. In the case when the sample has been
generated using a successful lookup operation,lookup success
becomes high. Depending on the value of thelookup success,
the control machine stores the sample in the memory address
C1 or (n−C2) and also increments the corresponding counter.
Completion of then sampling operations is indicated by the
output fromComparator2.

In the random-shuffling phase, a random address is gen-
erated and then compared with(n − C2). If the random-
address is smaller than(n− C2) then it is used for the swap
operation; otherwise another random-address is generated.
Now the memory content of address(n−C2) is swapped with
the memory content of random-address using theram buffer
register. After this swap operation, the counterC2 decrements
by one. The last swap operation happens whenC2 is zero.

VI. EXPERIMENTAL RESULTS

We have evaluated the Knuth-Yao discrete Gaussian sampler
architecture forσ = 3.33 using the Xilinx Virtex V FPGA
xcvlx30 with speed grade−3. The results shown in Table III

9

Sampler Architecture ROM-width ROM-depth LU-depth LUTs FFs Slices BRAM Delay (ns) Cycles

Basic Knuth-Yao Sampler 24 128 - 101 81 38 - 2.9 17
Basic Knuth-Yao Sampler 12 256 - 105 60 32 - 2.5 17

Basic Knuth-Yao Sampler⋆ 6 512 - 102 48 30 - 2.6 17
Fast Knuth-Yao Sampler 6 512 8 118 48 35 - 3 ≈2.5
Knuth-Yao Sampler [7] 32 96 - 140 - 47 - 3 17
Bernoulli Sampler [11] - - - 132 40 37 - 7.3 144
Polynomial Sampler–1 6 512 8 135 56 44 1 3.1 392
Polynomial Sampler–2 6 512 8 176 66 52 1 3.3 420

TABLE III
PERFORMANCE OF THE DISCRETEGAUSSIAN SAMPLER ON XC5VLX 30

are obtained from the Xilinx ISE12.2 tool after place and route
analysis. In the table we show area and timing results of our
architecture for various configurations and modes of operations
and compare the results with other existing architectures.The
results do not include the area of the random bit generator.
Area requirements for the basic bit-scan operation based
Knuth-Yao sampler for different ROM-widths and depths are
shown in the first three columns of the table. The optimal
area is achieved when the ROM-width is set to 6 bits. As the
width of the ROM does not affect the cycle requirement of
the sampler architecture, all different configurations have same
clock cycle requirement. The average case cycle requirement
of the sampler is determined by the number of bits scanned on
average per sampling operation. A C program simulation of
the Knuth-Yao random walk in [7] shows that the number of
memory-bits scanned on average is 13.5. Before starting the
bit-scanning operation, the sampler performs two column jump
operations for the first two all-zero columns of the probability
matrix (for σ = 3.33). This initial operation requires two
cycles. After this, the bit scan operation requires 14 cycles to
scan 14 memory-bits and the final transition to the completion
state of the FSM requires one cycle. Thus, on average 17
cycles are spent per sampling operation. The most area-optimal
instance of the Knuth-Yao sampler is smaller by 17 slices than
the Knuth-Yao sampler architecture proposed in [7]. The effect
of the bit-scan unit and decentralized control logic is thus
evident from the comparison. The compact Bernoulli sampler
proposed in [11] consumes 37 slices and spends on average
144 cycles to generate a sample point. Thus in comparison to
the Bernoulli sampler, our Knuth-Yao sampler is both smaller
and faster.

The fast sampler architecture in the fourth column of Table
III uses a lookup table that maps eight random bits. The
sampler consumes additional five slices compared to the basic
bit-scan based architecture. The probability that a table lookup
operation returns a sample is 0.973. Due to this high success
rate of the lookup operation, the average case cycle require-
ment of the fast sampler is slightly larger than 2 cycles withthe
consideration that one cycle is consumed for the transitionof
the state-machine to the completion state. In this cycle count,
we assume that the initial eight random bits are available
in parallel during the table lookup operation. If the random
number generator is able to generate only one random bit per
cycle, then additional eight cycles are required per sampling
operation. However generating many (pseudo)random bits is
not a problem using light-weight pseudo random number

generators such as the trivium steam cipher which is used in
[11]. The results in Table III show that by spending additional
five slices, we can reduce the average case cycle requirement
per sampling operation to almost two cycles from 17 cycles.
As the sampler architecture is extremely small even with the
lookup table, the acceleration provided by the fast sampling
architecture will be useful in designing fast cryptosystems.

The Polynomial Sampler–1 architecture in the seventh
column of Table III generates a polynomial ofn = 256
coefficients sampled from the discrete Gaussian distribution
by using the fast sampler iteratively. The samples are stored
in the RAM from address 0 ton− 1. During the consecutive
sampling operations, the state-machine jumps to the next
sampling operation immediately after completing a sampling
operation. In this consecutive mode of sampling operations, the
‘transition to the end state’ cycle is not spent for the individual
sampling operations. As the probability of a successful lookup
operation is 0.973, in the average case 249 out of the 256
samples are generated using successful lookup operations;
whereas the seven samples are obtained through the sequential
bit-scanning operation. In this consecutive mode of sampling,
each lookup operation generated sample consumes one cycle.
Hence in the average case 249 cycles are spent for generating
the majority of the samples. The seven sampling operations
that perform bit scanning starting from the ninth column of
the probability matrix require on average a total of 143 cycles.
Thus in total 392 cycles are spent on average to generate a
Gaussian distributed polynomial.

The Polynomial Sampler–2 architecture includes the random
shuffling operation on a Gaussian distributed polynomial of
n = 256 coefficients. The architecture is thus secure against
simple time and power analysis attacks. However this security
comes at the cost of an additional eight slices due to the
requirement of additional counter and comparator circuits. The
architecture first generates a polynomial in 392 cycles and then
performs seven swap operations in 28 cycles in the average
case. Thus in total the proposed side channel attack resistant
sampler spends 420 cycles to generate a secure Gaussian
distributed polynomial of 256 coefficients.

VII. C ONCLUSION

In this paper we presented an optimized instance of the
Knuth-Yao sampling architecture that consumes very small
area. We have shown that by properly tuning the width of the
ROM and the scan register, and by a decentralizing the control
logic, we can reduce the area of the sampler to only 30 slices

10

without affecting the cycle count. Moreover, in this paper
we proposed a fast sampling method using a very small-area
precomputed table that reduces the cycle requirement by seven
times in the average case. We showed that the basic sampler
architecture can be attacked by exploiting its timing and power
consumption related leakages. In the end we proposed a cost-
effective counter measure that performs random shuffling of
the samples.

REFERENCES

[1] S. Rich and B. Gellman, “NSA Seeks to build Quantum Computer
that could crack most types of Encryption,” The Washington Post, 2nd
January, 2014, http://www.washingtonpost.com/world/national-security/.

[2] O. Regev, “Lattice-Based Cryptography,” inAdvances in Cryptology -
CRYPTO 2006, ser. LNCS, C. Dwork, Ed., vol. 4117. Springer Berlin,
2006, pp. 131–141.

[3] T. Pöppelmann and T. Güneysu, “Towards Efficient Arithmetic for
Lattice-Based Cryptography on Reconfigurable Hardware,” in Progress
in Cryptology LATINCRYPT 2012, ser. LNCS, A. Hevia and G. Neven,
Eds., vol. 7533. Springer Berlin, 2012, pp. 139–158.

[4] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S.Huss, “On
the Design of Hardware Building Blocks for Modern Lattice-Based En-
cryption Schemes,” inCryptographic Hardware and Embedded Systems
CHES 2012, ser. LNCS, vol. 7428. Springer Berlin, 2012, pp. 512–529.

[5] T. Frederiksen, “A Practical Implementation of Regev’sLWE-
based Cryptosystem,” inhttp://daimi.au.dk/ jot2re/lwe/resources/, 2010.
[Online]. Available: http://daimi.au.dk/ jot2re/lwe/resources/

[6] T. Pöppelmann and T. Güneysu, “Towards Practical Lattice-Based
Public-Key Encryption on Reconfigurable Hardware,” inSelected Areas
in Cryptography – SAC 2013, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 68–85.

[7] S. S. Roy, F. Vercauteren, and I. Verbauwhede, “High Precision Discrete
Gaussian Sampling on FPGAs,” inSelected Areas in Cryptography –
SAC 2013, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 383–401.

[8] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Ver-
bauwhede, “Compact Ring-LWE based Cryptoprocessor,” Cryptology
ePrint Archive, Report 2013/866, 2013, http://eprint.iacr.org/.

[9] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and Area-efficient
FPGA Implementations of Lattice-based Cryptography,” inHOST.
IEEE, 2013, pp. 81–86.

[10] T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced Lattice-Based
Signatures on Reconfigurable Hardware,” Cryptology ePrintArchive,
Report 2014/254, 2014, http://eprint.iacr.org/.

[11] T. Pöppelmann and T. Güneysu, “Area Optimization of Lightweight
Lattice-Based Encryption on Reconfigurable Hardware,” inProc. of the
IEEE International Symposium on Circuits and Systems (ISCAS-14),
2014, Preprint.

[12] T. Oder, T. Pöppelmann, and T. Güneysu, “Beyond ECDSAand RSA:
Lattice-based Digital Signatures on Constrained Devices,” in Proceed-
ings of the The 51st Annual Design Automation Conference on Design
Automation Conference, ser. DAC ’14. New York, NY, USA: ACM,
2014, pp. 110:1–110:6.

[13] A. Boorghany and R. Jalili, “Implementation and Comparison of
Lattice-based Identification Protocols on Smart Cards and Micro-
controllers,” Cryptology ePrint Archive, Report 2014/078, 2014,
http://eprint.iacr.org/.

[14] L. Ducas and P. Q. Nguyen, “Faster Gaussian Lattice Sampling Using
Lazy Floating-Point Arithmetic,” inAdvances in Cryptology ASI-
ACRYPT 2012, ser. LNCS, vol. 7658. Springer Berlin, 2012, pp. 415–
432.

[15] D. E. Knuth and A. C. Yao, “The Complexity of Non-UniformRandom
Number Generation,”Algorithms and Complexity, pp. 357–428, 1976.

[16] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
Signatures and Bimodal Gaussians,” Cryptology ePrint Archive, Report
2013/383, 2013, http://eprint.iacr.org/.

[17] V. Lyubashevsky, “Lattice Signatures without Trapdoors,” in Proceed-
ings of the 31st Annual international conference on Theory and Appli-
cations of Cryptographic Techniques, ser. EUROCRYPT’12. Berlin:
Springer-Verlag, 2012, pp. 738–755.

[18] N. Dwarakanath and S. Galbraith, “Sampling from Discrete Gaussians
for Lattice-based Cryptography on a Constrained Device,”Applicable
Algebra in Engineering, Communication and Computing, vol. 25, no. 3,
pp. 159–180, 2014.

[19] L. Devroye, Non-Uniform Random Variate Generation.
New York: Springer-Verlag, 1986. [Online]. Available:
http://luc.devroye.org/rnbookindex.html

[20] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” inAdvances in Cryptology EU-
ROCRYPT 2010, ser. Lecture Notes in Computer Science, vol. 6110.
Springer Berlin Heidelberg, 2010, pp. 1–23.

[21] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

