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Abstract

We present a construction for non-interactive zero-knowledge proofs of knowledge in the random
oracle model from general sigma-protocols. Our construction is secure against quantum adversaries.
Prior constructions (by Fiat-Shamir and by Fischlin) are only known to be secure against classical
adversaries, and Ambainis, Rosmanis, Unruh (FOCS 2014) gave evidence that those constructions
might not be secure against quantum adversaries in general.

To prove security of our constructions, we additionally develop new techniques for adaptively
programming the quantum random oracle.
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1 Introduction
Classical NIZK proofs. Zero-knowledge proofs are an vital tool in modern cryptography. Traditional
zero-knowledge proofs (e.g., [GMW91]) are interactive protocols, this makes them cumbersome to use
in many situations. To circumvent this problem, non-interactive zero-knowledge (NIZK) proofs where
introduced [BFM88]. NIZK proofs circumvent the necessity for interaction by introducing a CRS, which
is a publicly known value that needs to be chosen by a trusted third party. The ease of use of NIZK proofs
comes at a cost, though: generally, NIZK proofs will be less efficient and based on stronger assumptions
than their interactive counterparts. So-called sigma protocols (a certain class of three move interactive
proofs, see below) exist for a wide variety of problems and admit very generic operations for efficiently
constructing more complex ones [CDS94, Dam10] (e.g., the “or” of two sigma protocols). In contrast,
efficient NIZK proofs using a CRS exist only for specific languages (most notably related to bilinear
groups, using Groth-Sahai proofs [GS08]). To alleviate this, [FS87] introduced so-called Fiat-Shamir
proofs that are NIZK proofs in the random oracle model.1 Those can transform any sigma protocol into a
NIZK proof. (In fact the construction is even a proof of knowledge, but we will ignore this distinction for
the moment.) The Fiat-Shamir construction (or variations of it) has been used in a number of notable
protocols, e.g., Direct Anonymous Attestation [BCC04] and the Helios voting system [Adi08]. A second
construction of NIZK proofs in the random oracle model was proposed by Fischlin [Fis05]. Fischlin’s
construction is less efficient than Fiat-Shamir (and imposes an additional condition on the sigma protocol,
called “unique responses”), but it avoids certain technical difficulties that Fiat-Shamir has (Fischlin’s
construction does not need rewinding).

Quantum NIZK proofs. However, if we want security against quantum adversaries, the situation
becomes worse. Groth-Sahai proofs are not secure because they are based on hardness assumptions
in bilinear groups that can be broken by Shor’s algorithm [Sho94]. And [ARU14b] shows that the
Fiat-Shamir construction is not secure in general, at least relative to a specific oracle. Although this does
not exclude that Fiat-Shamir is still secure without oracle, it at least makes a proof of security less likely
– at the least, such a security proof would be non-relativizing, while all known proof techniques that deal
with rewinding in the quantum case [Wat09, Unr12] are relativizing. Similarly, [ARU14b] also shows
Fischlin’s scheme to be insecure in general (relative to an oracle). Of course, even if Fiat-Shamir and
Fischlin’s construction are insecure in general, for certain specific sigma-protocols, Fiat-Shamir or Fischlin
could still be secure. (Recall that both constructions take an arbitrary sigma-protocol and convert it
into a NIZK proof.) In fact, [DFG13] shows that for a specific class of sigma-protocols (with so-called
“oblivious commitments”), a variant of Fiat-Shamir is secure2. However, sigma-protocols with oblivious
commitments are themselves already NIZK proofs in the CRS model.3 (This is not immediately obvious
from the definition presented in [DFG13], but we show this fact in Appendix A.) Also, sigma-protocols
with oblivious commitments are not closed under disjunction and similar operations (at least not using
the constructions from [CDS94]), thus losing one of the main advantages of sigma-protocols for efficient
protocol design. Hence sigma-protocols with oblivious commitments are a much stronger assumption than
just normal sigma-protocols, we loose one of the main advantages of the classical Fiat-Shamir construction:
the ability to transform arbitrary sigma-protocols into NIZK proofs. Summarizing, prior to this paper, no
generic quantum-secure construction was known to transform sigma-protocols into NIZK proofs or NIZK
proofs of knowledge in the random oracle model. ([DFG13] left this explicitly as an open problem.)

Our contribution. We present a NIZK proof system in the random oracle model, secure against
quantum adversaries. Our construction takes any sigma protocol (that has the standard properties “honest
verifier zero-knowledge” (HVZK) and “special soundness”) and transforms it into a non-interactive proof.
The resulting proof is a zero-knowledge proof of knowledge (secure against polynomial-time quantum
adversaries) with the extra property of “online extractability”. This property guarantees that the witness
from a proof can be extracted without rewinding. (Fischlin’s scheme also has this property in the classical
setting, but not Fiat-Shamir.) Furthermore the scheme is non-malleable, more precisely simulation-sound.

1[FS87] originally introduced them as a heuristic construction for signatures schemes (with a security proof in the random
oracle model by [PS96]). However, the construction can be seen as a NIZK proof of knowledge in the random oracle model.

2Security is shown for Fiat-Shamir as a signature scheme, but the proof technique most likely also works for Fiat-Shamir
as a NIZK proof of knowledge.

3This observation does not trivialize the construction from [DFG13] because a sigma-protocol with oblivious commitments
is a non-adaptive single-theorem NIZK proof in the CRS model while the construction from [DFG13] yields an adaptive
multi-theorem NIZK proof in the random oracle model. See Appendix A.
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That is, given a proof for one statement, it is not possible to create a proof for a related statement. This
property is, e.g., important if we wish to construct a signature-scheme from the NIZK proof.

As an application we show how to use our proof system to get strongly unforgeable signatures in the
quantum random oracle model from any sigma protocol (assuming a generator for hard instances).

In order to prove the security, we additionally develop a result on random oracle programming in the
quantum setting (Theorem 10 below) which is a strengthening of a lemma from [Unr14b, Unr14a] to the
adaptive case. It allows us to reduce the probability that the adversary notices that a random oracle has
been reprogrammed to the probability of said adversary querying the oracle at the programmed location.
(This would be relatively trivial in a classical setting but becomes non-trivial if the adversary can query
in superposition.)

Further related work. [DFG13] shows the impossibility of proving the quantum security of Fiat-
Shamir using a reduction that does not perform quantum rewinding.4 [ARU14b] shows the quantum
insecurity of Fiat-Shamir and Fischlin’s scheme relative to an oracle (and therefore the impossibility of a
relativizing proof, even with quantum rewinding). [FKMV12] shows that Fiat-Shamir is zero-knowledge
and simulation-sound extractable (not simulation-sound online-extractable) in the classical setting under
the additional assumption of “unique responses” (a.k.a. computational strict soundness). [Fis05] shows that
Fischlin’s construction is zero-knowledge and online-extractable (not simulation-sound online-extractable)
in the classical setting assuming unique responses.

Difficulties with Fiat-Shamir and Fischlin. In order to understand our protocol construction, we
first explain why Fiat-Shamir and Fischlin’s scheme are difficult to prove secure in the quantum setting.
A sigma-protocol consists of three messages com, ch, resp where the “commitment” com is chosen by
the prover, the “challenge” ch is chosen uniformly at random by the verifier, and the “response” resp
is computed by the prover depending on ch. Given a sigma-protocol, and a random oracle H, the
Fiat-Shamir construction produces the commitment com, computes the challenge ch := H(com), and
computes a response resp for that challenge. The proof is then π := (com, ch, resp), and the verifier
checks whether it is a valid execution of the sigma-protocol, and whether ch = H(com). How do we prove
that Fiat-Shamir is a proof (or a proof of knowledge)? (The zero-knowledge property is less interesting
for the present discussion, so we skip it.) Very roughly, given a malicious prover P , we first execute P to
get (com, ch, resp). Then we rewind P to the oracle query H(com) that returned ch. We then change
(“program”) the random oracle such that H(com) := ch ′ for some random ch ′ 6= ch. And then we then
continue the execution of P with the modified oracle H. Then P will output a new triple (com ′, ch ′, resp′).
And since com was determined before the point of rewinding, we have com = com ′. (This is a vague
intuition. But the “forking lemma” [PS96] guarantees that this actually works with sufficiently large
probability.) Then we can use a property of sigma-protocols called “special soundness”. It states: given
valid sigma-protocol interactions (com, ch, resp), (com, ch ′, resp′), one can efficiently compute a witness
for the statement being proven. Thus we have constructed an extractor that, given a (successful) malicious
prover P , finds a witness. This implies that Fiat-Shamir is a proof of knowledge.

What happens if we try and translate this proof idea into the quantum setting? First of all, rewinding
is difficult in the quantum setting. We can rewind P by applying the inverse unitary transformation P † to
reconstruct an earlier state of P . However, if we measure the output of P before rewinding, this disturbs
the state, and the rewinding will return to an undefined earlier state. In some situations this can be
avoided by showing that the output that is measured contains little information about the state and thus
does not disturb the state too much [Unr12], but it is not clear how to do that in the case of Fiat-Shamir.
(The output (com, ch, resp) may contain a lot of entropy due to com, ch, even if we require resp to be
unique.)

Even if we have solved the problem of rewinding, we face a second problem. We wish to reprogram
the random oracle at the input where it is being queried. Classically, the input of a random oracle query
is a well-defined notion. In the quantum setting, though, the query input may be in superposition, and
we cannot measure the input because this would disturb the state.

So when trying to prove Fiat-Shamir secure, we face two problems to which we do not have a solution:
rewinding, and determining the input to an oracle query.

We now turn to Fischlin’s scheme. Fischlin’s scheme was introduced in the classical case to avoid
the rewinding used in Fiat-Shamir. (There are certain reasons why even classically, rewinding leads
to problems, see [Fis05].) Here the prover is supposed to send a valid triple (com, ch, resp) such that

4I.e., a reduction that cannot apply the inverse of the unitary describing the adversary.
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POEPOEPOE :

Input: (x,w) with (x,w) ∈ R

// Create t ·m proofs (comi, chi,j , respi,j)

for i = 1 to t do
comi ← P 1

Σ(x,w)
for j = 1 to m do

chi,j
$← Nch \ {chi,1, . . . , chi,j−1}

respi,j ← P 2
Σ(chi,j)

// Commit to responses
for i = 1 to t do

for j = 1 to m do
hi,j := G(respi,j)

// Get challenge by hashing
J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

// Return proof (only some responses)
return π :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i

)
5

VOEVOEVOE :

Input: (x, π) with
π =

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
check chi,1, . . . , chi,m pairwise distinct

for i = 1 to t do
check VΣ(x, comi, chi,Ji , respi) = 1

for i = 1 to t do
check hi,Ji = G(respi).

if all checks succeed then
return 1

Figure 1: Prover PG,HOE (x,w) (left) and verifier V G,HOE (x, π) (right) from Definition 13. The missing
notation will be introduced in Section 2.2.

H(com, ch, resp) mod 2b = 0 for a certain parameter b. (This is an oversimplification but good enough for
explaining the difficulties.) By choosing b large enough, a prover can only find triples (com, ch, resp) with
H(com, ch, resp) mod 2b = 0 by trying out a several such triples. Thus, if we inspect the list of all query
inputs to H, we will find several different valid triples (com, ch, resp). In particular, there will be two
triples (com, ch, resp) and (com ′, ch ′, resp′) with com = com ′. (Due to the oversimplified presentation
here, the reader will have to take on trust that we can achieve com = com ′, see [Fis05] for a full analysis.)
Again using special soundness, we can extract a witness from these two triples. So Fischlin’s scheme is
a proof of knowledge with the extra benefit that the extractor can extract without rewinding, just by
looking at the oracle queries (“online-extraction”).

What happens if we try to show the security of Fischlin’s scheme in the quantum setting? Then we
again face the problem that there is no well-defined notion of “the list of query inputs”. If we measure the
query inputs, this disturbs the malicious prover. If we do not measure the query inputs, they are not
well-defined.

The problems with Fiat-Shamir and Fischlin seem not to be just limitations of our proof techniques,
[ARU14b] shows that relative to some oracle, Fiat-Shamir and Fischlin actually become insecure.

Our protocol. So both in Fiat-Shamir and in Fischlin’s scheme we face the challenge that it is difficult
to get the query inputs made by the malicious prover. Nevertheless, in our construction we will still
try to extract the query inputs, but with a twist: Assume for a moment that the random oracle G is a
permutation. Then, given G(x) it is, at least in principle, possible to extract x. Can we use this idea to
save Fischlin’s scheme? No, because in Fischlin’s scheme we need the inputs to queries whose outputs we
never learn; inverting G will not help. So in our scheme, for any query input x we want to learn, we need
to include G(x) in the output. Basically, we sent (com, G(resp1), . . . , G(respn)) where the respj are the
responses for com given different challenges chj . Then, by inverting two of the G, we can get two triples
(com, ch, resp) and (com, ch ′, resp′) which allows us to extract the witness. However, so far we have not
made sure that the malicious prover indeed puts valid responses into the queries. He could simply send
random values instead of G(respj). To avoid this, we use a cut-and-choose technique similar to what is
done in Fiat-Shamir: We first produce a number of proofs (comi, G(respi,1), . . . , G(respi,n)). Then we
hash all of them with a second random oracle H (not a permutation). The result of the hashing indicates
for each comi which of the respi,j should be revealed. A malicious prover who succeeds in this will have
to include valid responses in at least a large fraction of the G(respi,j). Thus by inverting G, we can find
two valid triples (com, ch, resp) and (com, ch ′, resp′) if the malicious prover’s proof passes verification.
The full protocol is described in Figure 1.
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We have not discussed yet: What if G is not a permutation (a random function will usually not be
a permutation)? And how to efficiently invert G? The answer to the first is: as long as domain and
range of G are the same, G is indistinguishable from a random permutation [Zha13]. So although the real
protocol execution uses G that is a random function, in an execution with the extractor, we simply feed a
random permutation to the prover. To answer the second, we need to slightly change our approach (but
not the protocol): [Zha12] shows that a random function is indistinguishable from a 2q-wise independent
function (where q is the number of oracle queries performed). Random polynomials of degree 2q − 1
are 2q-wise independent. So if, during extraction, we replace G not by a random permutation, but by
a random polynomial, we can efficiently invert G. (The preimage will not be unique, but the number
of possible preimage will be small enough so that we can scan through all of them.) This shows that
our protocol is online-extractable: the extractor simply replaces G by a random polynomial, inverts all
G(respi,j), searches for two valid triples (com, ch, resp) and (com, ch ′, resp′) , and computes the witness.
The formal description of the extractor is given in Section 4.3.

Organization. In Section 2 we introduce the main security notions used in this paper: those of
non-interactive proof systems in the random oracle model (Section 2.1) and those of sigma-protocols
(Section 2.2). In Section 3 we review some simple results on quantum random oracles and then prove our
results on adaptive random oracle programming. In Section 4 we introduce and prove secure our NIZK
proof system. In Section 5 we illustrate the use of our results and construct a signature scheme in the
random oracle model from sigma-protocols.

1.1 Preliminaries
By x← A(y) we denote the (quantum or classical) algorithm A executed with (classical) input y, and its
(classical) output assigned to x. We write x← AH(y) if A has access to an oracle H. We stress that A
may query the random oracle H in superposition. By x $←M we denote that x is uniformly randomly
chosen from the set M . Pr[P : G] refers to the probability that the predicate P holds true when the free
variables in P are assigned according to the program (game) in G. All algorithms implicitly depend on a
security parameter η that we never write. If we say a quantity is negligible or overwhelming , we mean
that it is in o(ηc) or 1− o(ηc) for all c > 0 where η denote the security parameter. A polynomial-time
algorithm is a classical one that runs in polynomial-time in its input length and the security parameter,
and a quantum-polynomial-time algorithm is a quantum algorithm that runs in polynomial-time in input
and security parameter.
{0, 1}n are the bitstrings of length n, {0, 1}≤n the bitstrings of length at most n, and {0, 1}∗ those

of any length. (M → N) refers to the set of all functions from M to N . a‖b is the concatenation of
bitstrings a and b. GF(2n) is a finite field of size 2n, and GF(2n)[X] is the set of polynomials over
that field. ∂p refers to the degree of the polynomial p. The collision entropy of a random variable X
is − log Pr[X = X ′] where X ′ is independent of X and has the same distribution. The min-entropy is
minx(− log Pr[X = x]). A family of functions F is called q-wise-independent if for any distinct x1, . . . , xq

and for f $← F , f(x1), . . . , f(xq) are independently uniformly distributed. E[X] is the expected value of
the random variable X.

TD(ρ, ρ′) denotes the trace distance between two density operators.

2 Security notions
In the following we present the security notions used in this work. All security notions capture security
against quantum adversaries. To make the notions strongest possible, we formulate them with respect to
quantum adversaries, but classical honest parties (and classical simulators and extractors).

2.1 Non-interactive proof systems
In the following, we assume a fixed efficiently decidable relation R on bitstrings, defining the language of
our proof systems. That is, a statement x is in the language iff there exists a witness w with (x,w) ∈ R.
We also assume a distribution ROdist on functions, modeling the distributions of our random oracle. (E.g.,
for a random oracle H : {0, 1}∗ → {0, 1}n, ROdist would be the uniform distribution on {0, 1}∗ → {0, 1}n.)

5The values hi,Ji
could be omitted since they can be recomputed as hi,Ji

= G(respi,Ji
). We include them to keep the

notation simple.
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A non-interactive proof system consists of two polynomial-time oracle algorithms P (x,w), V (x, π).
(The argument π of V represents the proof produced by P .) We require that PH(x,w) = ⊥ whenever
(x,w) /∈ R and that V H(x, π) ∈ {0, 1}. Inputs and outputs of P and V are classical.

Definition 1 (Completeness) (P, V ) is complete iff for any quantum-polynomial-time oracle algo-
rithm A, we have that

Pr[(x,w) ∈ R ∧ ok = 0 : H ← ROdist, (x,w)← AH(), π ← PH(x,w), ok ← V H(x, π)]

is negligible.

Zero-knowledge. We now turn to the zero-knowledge property. Zero-knowledge means that an
adversary cannot distinguish between real proofs and proofs produced by a simulator (that has no access
to the witness). In the random oracle model, we furthermore allow the simulator to control the random
oracle. Classically, this means in particular that the simulator learns the input for each query, and can
decide on the response adaptively. In the quantum setting, this is not possible: since the random oracle
can be queried in superposition, measuring its input would disturb the state of the adversary. We chose an
alternative route here: the simulator is allowed to output a circuit that represents the function computed
by the random oracle. And he is allowed to update that circuit whenever he is invoked. However, the
simulator is not invoked upon a random oracle query. (This makes the definition only stronger.) We now
proceed to the formal definition:

A simulator is a pair of classical algorithms (Sinit , SP ). Sinit outputs a circuit H describing a classical
function which represents the initial (simulated) random oracle. The stateful algorithm SP (x) returns
a proof π. Additionally SP is given access to the description H and may replace it with a different
description (i.e., it can program the random oracle).

Definition 2 (Zero-knowledge) Given a simulator (Sinit , SP ), the oracle S′P (x,w) does: If (x,w) /∈ R,
return ⊥. Else return SP (x). (The purpose of S′P is merely to serve as an interface for the adversary
who expects a prover taking two arguments x,w.)

A non-interactive proof system (P, V ) is zero-knowledge iff there is a polynomial-time simulator
(Sinit , SP ) such that for every quantum-polynomial-time oracle algorithm A, we have that∣∣Pr[b = 1 : H ← ROdist, b← AH,P ()]− Pr[b = 1 : H ← Sinit(), b← AH,S

′
P ()]

∣∣ is negligibe. (1)

We assume that both Sinit and SP have access to and may depend on a polynomial upper bound on the
runtime of A.

The reason why we allow the simulator to know an upper bound of the runtime of the adversary
is that we use the technique of [Zha12] of using q-wise independent hash functions to mimic random
functions. This approach requires that we know upper bounds on the number and size of A’s queries; the
runtime of A provides such bounds.

Online-extractability. We will now define online-extractability. Online-extractable proofs are a
specific form of proofs of knowledge where extraction is supposed to work by only looking at the proofs
generated by the adversary and at the oracle queries performed by him. Unfortunately, in the quantum
setting, it is not possible to generate (or even define) the list of oracle queries because doing so would
imply measuring the oracle input, which would disturb the adversary’s state. So, different from the
classical definition in [Fis05], we do not give the extractor the power to see the oracle queries. Is it then
possible at all for the extractor to extract? Yes, because we allow the extractor to see the description of
the random oracle H that was produced by the simulator Sinit . If the simulator produces suitable circuit
descriptions, those descriptions may help the extractor to extract in a way that would not be possible
with oracle access alone. We now proceed to the formal definition:

An extractor is an algorithm E(H,x, π) where H is assumed to be a description of the random oracle,
x a statement and π a proof of x. E is supposed to output a witness. Inputs and outputs of E are
classical.

Definition 3 (Online extractability) A non-interactive proof system (P, V ) is online extractable with
respect to Sinit iff there is a polynomial-time extractor E such that for any quantum-polynomial-time
oracle algorithm A, we have that

Pr[ok = 1 ∧ (x,w) /∈ R : H ← Sinit(), (x, π)← AH(), ok ← V H(x, π), w ← E(H,x, π)] is negligible.
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We assume that both Sinit and E have access to and may depend on a polynomial upper bound on the
runtime of A.

Online-extractability intuitively implies that it is not possible for an adversary to produce a proof
for a statement for which he does not know a witness (because the extractor can extract a witness from
what the adversary produces). However, it does not exclude that the adversary can take one proof π1 for
one statement x1 and transform it into a valid proof for another statement x2 (even without knowing
a witness for x2), as long as a witness for x2 could efficiently be computed from a witness for x1. This
problem is usually referred to as malleability.

To avoid malleability, one definitional approach is simulation-soundness [Sah99, Gro06]. The idea is
that extraction of a witness from the adversary-generated proof should be successful even if the adversary
has access to simulated proofs (as long as the adversary generated proof does not equal one of the
simulated proofs). Adapting this idea to online-extractability, we get:

Definition 4 (Simulation-sound online-extractability) A non-interactive proof system (P, V ) is
simulation-sound online-extractable with respect to simulator (Sinit , SP ) iff there is a polynomial-time
extractor E such that for any quantum-polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (x, π) /∈ simproofs ∧ (x,w) /∈ R :

H ← Sinit(), (x, π)← AH,SP (), ok ← V H(x, π), w ← E(H,x, π)]

is negligibe. Here simproofs is the set of all proofs returned by SP (together with the corresponding
statements).

We assume that Sinit , SP , and E have access to and may depend on a polynomial upper bound on the
runtime of A.

Notice that AH,SP gets access to SP , not to S′P . That is, A can even create simulated proofs of
statements where he does not know the witness.

2.2 Sigma protocols
We now introduce sigma protocols. The notions in this section are standard, all we do to adopt them to
the quantum setting is to make the adversary quantum-polynomial-time. Note that the definitions are
formulated without the random oracle, we only use the random oracle for constructing a NIZK proof out
of the sigma protocol.

A sigma protocol for a relation R is a three message proof system. It is described by the domains
Ncom , Nch , Nresp of the messages (where |Nch | ≥ 2), a polynomial-time prover (P1, P2) and a deterministic
polynomial-time verifier V . The first message from the prover is com ← P1(x,w) and is called the
commitment , the uniformly random reply from the verifier is ch $← Nch (called challenge), and the prover
answers with resp ← P2(ch) (the response). We assume P1, P2 to share state. Finally V (x, com, ch, resp)
outputs whether the verifier accepts.

Definition 5 (Properties of sigma protocols) Let (Ncom , Nch , Nresp , P1, P2, V ) be a sigma protocol.
We define:
• Completeness: For any quantum-polynomial-time algorithm A, Pr[(x,w) ∈ R ∧ ok = 0 : (x,w)←
A, com ← P1(x,w), ch

$← Nch , resp ← P2(ch), ok ← V (x, com, ch, resp)] is negligible.
• Computational special soundness: There is a polynomial-time algorithm EΣ such that for any
quantum-polynomial-time A, we have that

Pr[(x,w) /∈ R ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (x, com, ch, resp, ch ′, resp′)← A(),

ok ← V (x, com, ch, resp), ok ′ ← V (x, com, ch ′, resp′), w ← EΣ(x, com, ch, resp, ch)]

is negligible.
• Honest-verifier zero-knowledge (HVZK): There is a polynomial-time algorithm SΣ (the sim-
ulator) such that for any stateful quantum-polynomial-time algorithm A the following is negligible
for all (x,w) ∈ R:∣∣Pr[b = 1 : (x,w)← A(), com ← P1(x,w), ch

$← Nch , resp ← P2(ch), b← A(com, ch, resp)]

−Pr[b = 1 : (x,w)← A(), (com, ch, resp)← S(x), b← A(com, ch, resp)]
∣∣
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Note that the above are the standard conditions expected from sigma-protocols in the classical setting.
In contrast, for a sigma-protocol to be a quantum proof of knowledge, a much more restrictive condition
is required, strict soundness [Unr12, ARU14b]. Interestingly, this condition is not needed for our protocol
to be quantum secure.

3 Quantum random oracles
In this section, we state and prove various lemmas about quantum random oracles that we need in our
security proofs. Some of them are known or straightforward extensions of known results. However, the
results on adaptive programming below need considerable extensions of prior proofs.

Simple facts. The following is a slight extension of [ARU14a, Lemma 38]. That lemma says that a
(sufficiently sparse) random function F cannot be distinguished from the constant zero function N . Here,
we show that this even holds if the adversary gets access to the full description of F after the last query.

Lemma 6 (Preimage search in a random function) Let γ ∈ [0, 1]. Let Z be a finite set. Let q ≥ 0
be an integer. Let F : Z → {0, 1} have the following distribution: Each F (c) is independently Bernoulli-
distributed with Pr[F (c) = 1] = γ. Let N be the function with ∀z : N(z) = 0.

For any oracle algorithm A that makes at most q queries, and any algorithm A′ that can access the
final state of A, we have∣∣Pr[b = 1 : AF (), b← A′(F )]− Pr[b = 1 : AN (), b← A′(F )]

∣∣ ≤ 2q
√
γ.

Here A′(F ) means that A′ gets a description of F (e.g., a value table), not just oracle access to F .

Proof. The proof is identical to that of [ARU14a, Lemma 38], except that the last calculation is replaced
with: ∣∣Pr[b = 1 : AF (), b← A′(F )]− Pr[b = 1 : AN (), b← A′(F )]

∣∣
≤
∑
f

αf
∣∣Pr[b = 1 : Af (), b← A′(f)]− Pr[b = 1 : AN (), b← A′(f)]

∣∣
≤
∑
f

αf TD(|Ψq
f 〉, |Ψ

q〉) ≤ 2q
√
λ. �

Lemma 7 Fix γ ∈ [0, 1]. Let F : Z → {0, 1} have the following distribution: Each F (c) is independently
Bernoulli-distributed with Pr[F (c) = 1] = γ. Let S be an algorithm making at most q queries to F . Then
µ := Pr[F (c) = 1 : c← SF ()] ≤ 2(q + 1)

√
γ.

Proof. S immediately gives rise to an oracle algorithm doing q + 1 queries that distinguishes F from the
constant zero function with probability µ. Lemma 6 shows that this distinguishing probability is at most
2(q + 1)

√
γ. �

Theorem 8 (Finding collisions) Let G : {0, 1}m → {0, 1}n be uniformly distributed. Let A be an
oracle algorithm making at most q queries to G. Then Pr[G(x) = G(x′) ∧ x 6= x′ : (x, x′) ← AG()] ≤
C(q + 1)32−n for some C (that is independent of A, q, n,m).

Proof. Shown in [Zha13, Theorem 3.1]. �

Adaptive programming. The following lemma is a generalization of [Unr14a, Lemma 14]. The
difference is that in [Unr14a], the position where the random oracle is queried is of the form x‖m where x
is random and m is adversarially chosen. In contrast, here the oracle is queried at an adversarially chosen
x which is only required to have high min-entropy. The proof from [Unr14a] does no apply in that case
because it relies on the fact that part of x‖m (namely x) is chosen independently of the adversary’s state,
and that x‖m uniquely determines x. The lemma from [Unr14a] can be recovered (with worse bounds)
from the present lemma by letting AC picks x at random and return x‖m.
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Lemma 9 (One-way to hiding, adaptive) Let H : M → N be a random oracle for finite sets M,N .
(Infinite M ⊆ {0, 1}∗ is also permissible.) Consider the following algorithms:
• The oracle algorithm A0 that makes at most q0 queries to H.
• The classical algorithm AC that may access the classical part of the final state of A0. Assume that
for every initial state, the output of AC has collision entropy at least k.

• The oracle algorithm A1 that may access the final states of A0 and AC and makes at most q1 ≥ 1
queries to H.
• Let C1 be an oracle algorithm that on input (j, B, x) does the following: run AH1 (x,B) until (just
before) the j-th query, measure the argument of the query in the computational basis, output the
measurement outcome. (When A1 makes less than j queries, C1 outputs ⊥ /∈ {0, 1}`.)

Let

P 1
A := Pr[b′ = 1 : H

$← (M → N), AH0 (), x← AC(), b′ ← AH1 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$← (M → N), AH0 (), x← AC(), B
$← N, b′ ← AH1 (x,B)]

PC := Pr[x = x′ : H
$← (M → N), AH0 (), x← AC(), B

$← N, j
$← {1, . . . , q1}, x′ ← CH1 (j, B, x)]

Then |P 1
A − P 2

A| ≤ (4 +
√

2)
√
q0 2−k/4 + 2q1

√
PC . 6

Note that we do not allow AC to have access to H, and that AC is required to be classical. Both
conditions are necessary, see the examples after the special case Corollary 11.

Proof. In the following we assume that M is finite. The case of infinite M =: M ′ ⊆ {0, 1}∗ follows
directly by considering M := M ′ ∩ {0, 1}≤n for n→∞. Such a restricted M ′ leads to an error term in
the values of P 1

A, P
2
A, PC that converges (for fixed A0, AC , A1) towards 0; we then recover the final bound

on |P 1
A − P 2

A| for infinite M = M ′ as the limit of the bounds for the finite M := M ′ ∩ {0, 1}≤n.
Without loss of generality, we can assume that AH1 does not access the final state of AC . This

is because A1 gets the output x of AC as input and can just sample the (classical) final state of AC
conditioned on its (classical) input and its (classical) output. (Recall that we do not assume A1 to be
computationally limited.)

Furthermore, we make the classical part of the final state of A0 explicit and call it m. Thus instead of
writing “AH0 (), x← AC()” we write . “m← AH0 (), x← AC(m)”. Then AC(m) can be simply considered
as a probability distribution, parametric in m.

We define two auxiliary algorithms:
• Let d := dk/2 + log q0e. For a function F : M → {0, 1}d and a bitstring z ∈ {0, 1}d, and a

bitstring m, the algorithm I(z,m, F ) samples x according to the distribution AC(m), conditioned
on F (x) = z. (Or ⊥ if no such x exists.)

• Given a set X ⊂M and a bitstring m, the algorithm J(m,X) picks a uniformly random F ∈ (M →
{0, 1}d) and z ∈ {0, 1}d conditioned on X = F−1({z}). Then J invokes x← I(z,m, F ) and returns
x.

We then have:

P 1
A = Pr[b′ = 1 : H

$← (M ← N), m← AH0 (), x← AC(m), b′ ← AH1 (x,H(x))]

= Pr[b′ = 1 : H
$← (M ← N), m← AH0 (), F ← (M → {0, 1}d), z ← DF,m,

x← I(z,m, F ), b′ ← AH1 (x,H(x))]

where DF,m is the distribution resulting from picking x← AC(m), z := F (x) and returning z. Then the
equality follows by definition of I.

· · ·
ε1≈ Pr[b′ = 1 : H

$← (M ← N), m← AH0 (), F ← (M → {0, 1}d), z $← {0, 1}d,
x← I(z,m, F ), b′ ← AH1 (x,H(x))]

6We conjecture that the term 2−k/4 is an artifact of our proof technique. By analogy to the special case [Unr14a, Lemma
14], we might hope for the bound O(q02−k/2 + q1

√
PC).
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where a
ε1≈ b means |a − b| ≤ ε1 := 2(d−k)/2−1. We use the convention that if I returns ⊥, AH1 is not

executed and b′ := 0 (same for the algorithm J below). The last step follows because AC(m) has
collision-entropy at least k for any m, and thus for uniformly random F , DF,m has statistical distance
ε1 from uniform (even given F ) by the leftover hash lemma [HILL99, Lemma 4.8] (using the fact that
random functions are in particular universal hash functions).7

· · · = Pr[b′ = 1 : H
$← (M ← N), m← AH0 (), X ← D′, x← J(m,X), b′ ← AH1 (x,H(x))]

where D′ returns a set X ⊆ N which contains each x ∈ N independently with probability 2−d. The
equality then follows by definition of J and since F (x) = z with probability 2−d for uniform F .

· · · = Pr[b′ = 1 : H
$← (M ← N), X ← D′, m← AH0 (), x← J(m,X), b′ ← AH1 (x,H(x))]

ε2≈ Pr[b′ = 1 : H
$← (M ← N), X ← D′, m← A

H\X
0 (), x← J(m,X), b′ ← AH1 (x,H(x))]

where H \X denotes the oracle that return H(x) on input x /∈ X, ⊥ on input x ∈ X. And ε2 := 2q02−d/2.
The

ε2≈-part then follows by reduction to Lemma 6 with γ := 2−d: the adversary AF picks H $← (M → N)

and runs AH\imF
0 (this can be done with one F -query for each query of A0), and A′(F ) computes

X := imF and executes x← J(m,X), b′ ← AH1 (x,H(x)).

Summarizing, we have

P 1
A

ε1+ε2≈ Pr[b′ = 1 : H
$← (M ← N), X ← D′, m← A

H\X
0 (),

x← J(m,X), b′ ← AH1 (x,H(x))] =: P 1a
A .

Analogously, we get

P̂ 1
A := Pr[b′ = 1 : H

$← (M → N), m← AH0 (), x← AC(m), B
$← N, b′ ← AHxB

1 (x,B)]

ε1+ε2≈ Pr[b′ = 1 : H
$← (M ← N), X ← D′, m← A

H\X
0 (),

x← J(m,X), B
$← N, b′ ← AHxB

1 (x,B)] =: P 1b
A

where HxB denote the oracle that returns H(x′) on input x′ 6= x, and that returns B on input x.
By construction, J either outputs ⊥ or some x ∈ X. Thus either A1 is not executed, or H(x) is

a position of the random oracle that is never queried by AH\X0 . Thus replacing H by HxB cannot be
noticed by A1, thus P 1a

A = P 1b
A . (Notice: the second argument B of A1 in P 1b

A is equal to HxB(x).)
Thus, summarizing we get |P 1

A − P̂ 1
A| ≤ 2ε1 + 2ε2.

Furthermore, we can show |P̂ 1
A − P 2

A| ≤ 2q1

√
PC . This is done as in [Unr14a, Lemma 14], except

that in that proof every occurrence of β = 2−n|domH | · 2−n · 2−` needs to be replaced by βxm :=
2−n|domH | · 2−n · Pr[AC(m) = x].

Summarizing, we have

|P 1
A − P 2

A| ≤ 2ε1 + 2ε2 + 2q1

√
PC ≤ 2(d−k)/2 + 4q02−d/2 + 2q1

√
PC

= 2(dk/2+log q0e−k)/2 + 4q02−dk/2+log q0e/2 + 2q1

√
PC

≤
√

2 · 2−k/4+(log q0)/2 + 4q02−k/4−(log q0)/2 + 2q1

√
PC

= (4 +
√

2)
√
q0 2−k/4 + 2q1

√
PC . �

Given the previous lemma, we can now easily generalize another lemma [Unr14a, Lemma 15] in a
similar way. The following lemma shows that we can reprogram the random oracle adaptively:

Theorem 10 (Random oracle programming, adaptive) Let H : M → N be a random oracle for
finite M,N . (Infinite M ⊆ {0, 1}∗ is also permissible.) Consider the following algorithms:
• The oracle algorithm A0 that makes at most q0 queries to H.

7The reader may notice it would be sufficient to bound the average statistical distance of DF,m from uniform (averaged
over all m as chosen by AH

1 ). Thus, we do not need a bound on the worst-case collision entropy k := H2(x) here;
k := −2 log(E[2−H2(x)/2]) would do as well.
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• The classical algorithm AC that may access the classical part of the final state of A0. Assume that
for every initial state, the output of AC has collision entropy at least k.

• The oracle algorithm A1 that may access the final states of A0 and AC .
• The oracle algorithm A2 that may access the final state of A1; and A1 and A2 together perform at
most q12 queries to H.
• Let C1 be an oracle algorithm that on input (j, B, x) does the following: run AH1 (x,B) until (just
before) the j-th query, measure the argument of the query in the computational basis, output the
measurement outcome. (When A1 makes less than j queries, C1 outputs ⊥ /∈ {0, 1}`.)

Let

P 1
A := Pr[b′ = 1 : H

$← (M → N), AH0 (), x← AC(), AH1 (x,H(x)), b′ ← AH2 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$← (M → N), AH0 (), x← AC(), B
$← N,

AH1 (x,B), H(x) := B, b′ ← AH2 (x,B)]

PC := Pr[x = x′ : H
$← (M → N), AH0 (), x← AC(),

B
$← N, j

$← {1, . . . , q12}, x′ ← CH1 (j, B, x)]

Then |P 1
A − P 2

A| ≤ (4 +
√

2)
√
q0 2−k/4 + 2q12

√
PC .

Proof. The proof is almost identical to that of [Unr14a, Lemma 15], but with “x ← AC()” instead of
“x $← {0, 1}`”, with “x” instead of “x‖m”, and with “x = x′” instead of “x = x′ ∧m = m′” everywhere,
and using Lemma 9 instead of [Unr14a, Lemma 14]. �

We now state the two special cases of Theorem 10 that we will need in the remainder of this paper:

Corollary 11 Let M,N be finite sets and H : M → N be the random oracle. Let A0, AC , A2 be
algorithms, where AH0 makes at most q queries to H, AC is classical, and the output of AC is in M and
has collision-entropy at least k given AC ’s initial state. A0, AC , A2 may share state.

Then ∣∣Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B := H(x), b← AH2 (B)]

−Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B

$← N,H(x) := B, b← AH2 (B)]
∣∣

≤ (4 +
√

2)
√
q 2−k/4.

Note that AC does not get access to H, otherwise the lemma would be false: AC could, e.g., return x
such that H(x) is even. But A2 does know x, because A0, AC , A2 share state.

Also the condition that AC is classical is necessary; the following example illustrates this: AH0 produces
the state

∑
x∈M

1√
|M |
|x〉|H(x)〉 (this is possible with a single H-query). AC then measures the two

registers in this state, giving x and B′ = H(x), and returns x. Note that x has min-entropy log|M | given
AC ’s initial state. And AH2 (B) returns b := 1 iff B = B′. In the first game, Pr[B = B′] = 1, in the second
Pr[B = B′] = 1/|M |.

Proof. Let A1 be an algorithm that does nothing. Then the first probability in the statement of
the corollary is equal to P 1

A in Theorem 10. And the second probability equals P 2
A in Theorem 10.

(In P 1
A, P

2
A, A1 gets an additional argument x which it ignores.) So we need to bound |P 1

A − P 2
A|.

Let q2 denote an upper bound on the number of oracle queries performed by A2. By Theorem 10,
|P 1
A − P 2

A| ≤ (4 +
√

2)
√
q 2−k/4 + 2q2

√
PC where PC = Pr[x = x′ : . . . , x′ ← CH1 (j, B, x)], and CH1 runs

A1 till the j-th oracle query (and returns ⊥ if there is no j-th query). Since A1 does nothing, this implies
that CH1 always returns ⊥, thus PC = Pr[x = ⊥ : . . . ] = 0. It follows that |P 1

A −P 2
A| ≤ (4 +

√
2)
√
q 2−k/4.

�

Corollary 12 Let M,N be finite sets and H : M → N be the random oracle. Let A0, A1 be algorithms
that perform at most q0, q1 oracle queries, respectively, and that may share state. Let AC be a classical
algorithm that may access (the classical part of) the final state of A0. (But A1 does not access AC ’s
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state.) Assume that the output of AC has min-entropy at least k given its initial state. Then∣∣Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B := H(x), b← AH1 (B)]

−Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B

$← N, b← AH1 (B)]
∣∣

≤ (4 +
√

2)
√
q0 2−k/4 + 2q12−k/2.

Note that x is never used except for setting B := H(x), otherwise the lemma would be trivially false.
Note also that AC does not share state with A1 as otherwise x could be leaked to A1. Finally, note that
AC does not get access to H, and that AC has to be classical for the same reasons as those discussed
after Corollary 11.

Proof. Let A2 be an algorithm that does nothing except output the bit b that was computed by A1.
Then the first probability in the statement of the corollary is equal to P 1

A in Theorem 10, and the second
probability is equal to P 2

A in Theorem 10. (In P 1
A, P

2
A, A1 gets an additional argument x which it ignores.)

Thus we have to bound |P 1
A − P 2

A|. Since min-entropy is a lower bound for collision entropy, AC ’s output
also has collision-entropy at least k. By Theorem 10, |P 1

A − P 2
A| ≤ (4 +

√
2)
√
q0 2−k/4 + 2q1

√
PC . Here

PC = Pr[x = x′ : H
$← (M → N), AH0 (), x← AC(), B

$← N, j
$← {1, . . . , q12}, x′ ← CH1 (j, B, x)].

By construction, CH1 uses x only as an input to the simulated A1, which in turn ignores x. Furthermore,
x has min-entropy k, given AC ’s initial state (and the final state of AC is not accessed by CH1 ), thus the
probability that CH1 outputs x is at most 2−k. Thus PC ≤ 2−k and hence

|P 1
A − P 2

A| ≤ (4 +
√

2)
√
q0 2−k/4 + 2q12−k/2. �

4 Online-extractable NIZK proofs

4.1 Construction
In the following, we assume a sigma protocol Σ = (Ncom , Nch , Nresp , P

1
Σ, P

2
Σ, VΣ) for a relation R.

Assume that Nresp = {0, 1}`resp for some `resp .8 We use this sigma protocol to construct the following
non-interactive proof system:

Definition 13 (Online-extractable proof system (POE , VOE )) The proof system (POE , VOE ) is parametrized
by polynomially-bounded integers t,m where m is a power of 2 with 2 ≤ m ≤ |Nch |. We use random
oracles H : {0, 1}∗ → {1, . . . ,m}t and G : Nresp → Nresp.9 Prover and verifier are defined in Figure 1.

Lemma 14 (Completeness) If Σ is complete, (POE , VOE ) is complete.

Proof. Since Σ is complete, VΣ(x, comi, chi,j , respi,j) = 1 for all i, j with overwhelming probability. Then
all checks performed by VOE succeed by construction of POE . �

4.2 Zero-knowledge
Theorem 15 (Zero-knowledge) Assume that Σ is HVZK, and that the response of P 2

Σ has superloga-
rithmic min-entropy (given its initial state and its input ch).10

Let κ′ be a lower bound on the collision-entropy of the tuple
(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by

POE (given its initial state and the oracle G,H). Assume that κ′ is superlogarithmic.11
Then (VOE , POE ) is zero-knowledge with the simulator (SOE

init , SPOE
) from Figure 2.

8Any Nresp can be efficiently embedded in a set of fixed length bitstrings {0, 1}`resp (there is no need for this embedding
to be surjective). So any sigma protocol can be transformed to have Nresp = {0, 1}`resp for some `resp .

9The definitions from Section 2.1 are formulated with respect to only a single random oracle with distribution ROdist.
Having two oracles, however, can be encoded in that framework by letting ROdist be the uniform distribution over pairs of
functions with the respective domains/ranges.

10We can always transform a sigma protocol into one with responses with superlogarithmic min-entropy by adding some
random bits to the responses.

11This can always be achieved by adding random bits to the commitments.
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SPOE
SPOESPOE

:

Input: x

for i = 1 to t do
Ji

$← {1, . . . ,m}; (comi, chi,Ji , respi,Ji)← SΣ(x)

for j = 1 to m except j = Ji do
chi,j

$← Nch \ {chi,Ji , chi,1, . . . , chi,j−1}

for i = 1 to t do
hi,Ji := G(respi,Ji)

for j = 1 to m except j = Ji do
hi,j

$← Nresp

H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1‖ . . . ‖Jt
return π :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i

)

SOE
initSOE
initSOE
init :

Parameters: upper bounds qG, qHqG, qHqG, qH on the
number of queries to G and H; upper bound
`̀̀ on the length of the inputs to H;
embedding ι`ι`ι`

pG
$← GF(2`resp )[X] with ∂pG ≤ 2qG − 1

pH
$← GF(2`

∗
)[X] with ∂pH ≤ 2qH − 1

// Construct circuits G,H:
G(x) := pG(x) for x ∈ {0, 1}`resp
H(x) := pH(ι`(x))1...t logm

for x ∈ {0, 1}≤`

return descriptions of G,H

SΣ is the simulator for (P 1
Σ, P

2
Σ, VΣ), cf. Definition 5. H(x) := y means the description of H is replaced

by a new description with H(x) = y. Bounds qG, qH , ` include calls made by the adversary and by
POE . Such bounds are known because the runtime of A is known to the simulator (cf. Definition 2).
ι` is an arbitrary efficiently computable and invertible injection ι` : {0, 1}≤` → {0, 1}`∗ for some
`∗ ≥ t logm. pH(ι`(x))1...t logm denotes pH(ι`(x))1...t logm truncated to the first t logm bits. We assume
that GF(2`resp ) = {0, 1}`resp and GF(2`

∗
) = {0, 1}`∗ ; such a representation can be found in polynomial-

time [BO81].

Figure 2: The simulator (SPOE
, SOE

init) for (POE , VOE ).

Proof. We prove this using a sequence of games. We start with the real model (lhs of (1)) and transform
it into the ideal model (rhs of (1)) step by step, never changing Pr[b = 1] by more than a negligible
amount. In each game, new code lines are marked with new and changed ones with chg (removed ones
are simply crossed out).

Let ROdist be the uniform distribution on pairs of functions G,H (with the respective domains and
ranges as in Definition 13). Then the lhs of (1) becomes:

Game 1 (Real model) G,H $← ROdist, b← AG,H,POE .

We now modify the prover. Instead of getting J1, . . . , Jt from the random oracle H, he chooses
J1, . . . , Jt at random and programs the random oracle H to return those values J1, . . . , Jt.

Game 2 G,H
$← ROdist, b← AG,H,P with the following prover P :

...
for i = 1 to t do

new Ji ← {1, . . . ,m}
comi ← P 1

Σ(x,w)
...

J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
chg H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1‖ . . . ‖Jt

...

By assumption the argument (x, (comi)i, (chi,j)i,j , (hi,j)i,j) toH has superlogarithmic collision-entropy
κ′ (given the state at the beginning of the corresponding invocation of POE ). Thus from Corollary 11 we
get (using a standard hybrid argument) that

∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 2]
∣∣ is negligible.

Next, we change the order in which the prover produces the subproofs (comi, chi,j , respi,j): For each
i, the (comi, chi,j , respi,j) with j = Ji is produced first.
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Game 3 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . ,m}; comi ← P 1
Σ(x,w)

new chi,Ji
$← Nch ; respi,Ji ← P 2

Σ(chi,Ji)

chg for j = 1 to m except j = Ji do
chg chi,j

$← Nch \ {chi,Ji , chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(chi,j)
...

Obviously, changing the order of the P 2
Σ-invocations does not change anything because P 2

Σ has no side
effects. At a first glance, it seems that the values chi,j are chosen according to different distributions in
both games, but in fact in both games (chi,1, . . . , chi,m) are uniformly distributed conditioned on being
pairwise distinct. Thus Pr[b = 1 : Game 2] = Pr[b = 1 : Game 3].

Now we change how the hi,j are constructed. Those hi,j that are never opened are picked at random.

Game 4 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

new hi,Ji := G(respi,Ji)

chg for j = 1 to m except j = Ji do
chg hi,j

$← Nresp

...

Note that the argument respi,j to G has superlogarithmic min-entropy (given the value of all variables
when G(respi,j) is invoked) since we assume that the responses of P 2

Σ have superlogarithmic min-entropy.
Thus from Corollary 12 we get (using a standard hybrid argument) that

∣∣Pr[b = 1 : Game 3]− Pr[b = 1 :

Game 4]
∣∣ is negligible. (H in the corollary is G here, and AC in the corollary is P 2

Σ here.)

Now we omit the computation of the values respi,j that are not used:

Game 5 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for j = 1 to m except j = Ji do

chi,j
$← Nch \ {chi,Ji , chi,1, . . . , chi,j−1}

respi,j ← P 2
Σ(chi,j)

...

We now replace the honestly generated proof (comi, chi,Ji , respi,Ji) by one produced by the simulator
SΣ (from Definition 5).

Game 6 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . ,m}; comi ← P 1
Σ(x,w)

chi,Ji
$← Nch ; respi,Ji ← P 2

Σ(chi,Ji)

new (comi, chi,Ji , respi,Ji)← SΣ(x)
...
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EPOE
EPOEEPOE :

Input: G = pG, H, x, π =
(
(comi), (chi,j), (hi,j), (respi)

)
J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
for j = 1 to m except Ji do

for each resp′ ∈ p−1
G (hi,j) do

if VΣ(x, comi, chi,j , resp
′) = 1 then

return EΣ(x, comi, chi,Ji , respi, chi,j , resp
′)

VΣ and EΣ are verifier and ex-
tractor of the sigma protocol Σ.
p−1
G (h) is the set of preimages of
h under pG. Since pG is a poly-
nomial over GF(2`resp ), p−1

G (h)
is polynomial-time computable
[BO81].

Figure 3: The extractor EPOE
for (POE , VOE ).

Since Σ is HVZK by assumption,
∣∣Pr[b = 1 : Game 5]− Pr[b = 1 : Game 6]

∣∣ is negligible.
Note that P as defined in Game 6 does not use the witness w any more. Thus we can replace P by a

simulator that depends only on the statement x. That simulator SPOE
is given in Figure 2.

Game 7 G,H
$← ROdist, b← AG,H,S

′
POE for SPOE

from Figure 2. (Recall that S′POE
is defined in terms

of SPOE , see Definition 2.)

From the definition of SPOE in Figure 2 we immediately get Pr[b = 1 : Game 6] = Pr[b = 1 : Game 7].
Finally, we replace ROdist by oracles as chosen by SOE

init from Figure 2. (In general, any construction
of SOE

init would do for the proof of the zero-knowledge property, as long as it returns G,H that are
indistinguishable from random. However, in the proof of extractability we use that G is constructed in
this specific way.)

Game 8 G,H
$← SOE

init , b← AG,H,S
′
POE for (SOE

init , SPOE ) from Figure 2.

For the following argument, we introduce the following abbreviation: Given distributions on functions
H,H ′, by H ≈q,` H ′ we denote that H and H ′ are perfectly indistinguishable by any quantum algorithm
making at most q queries and making no queries with input longer than `. We omit q or ` if q =∞ or
` =∞. Let pG, pH , `, ι`, `∗ be as defined in Figure 2.

Let GR denote the function G : Nresp → Nresp as chosen by ROdist, and let GS denote the function
G = pG chosen by SOE

init . It is easy to see that a uniformly random polynomial p of degree ≤ 2q − 1 is
2q-wise independent. [Zha12] shows that a 2q-wise independent function is perfectly indistinguishable from
a random function by an adversary performing at most q queries (the queries may be in superposition).
Then GR ≈qG GS .

Similarly, let HR and HS denote H : {0, 1}∗ → {0, 1}t logm as chosen by ROdist or SOE
init , respectively.

Then pH ≈2qH H ′ for a uniformly random functionH ′ : {0, 1}`∗ → {0, 1}`∗ . Hence pH◦ι` ≈qH H ′◦ι` ≈ H ′′
for uniformly random H ′′ : {0, 1}≤` → {0, 1}`∗ . Hence HS = (pH ◦ ι`)1...t logm ≈qH (H ′′)1...t logm where
H1...t logm means H with its output restricted to the first t logm bits.12 And H ′′ ≈` H3 for uniformly
random H3 : {0, 1}∗ → {0, 1}`∗ . Thus HS ≈qH (H ′′)1...t logm ≈` (H3)1...t logm ≈ HR, hence HS ≈qH ,` HR.

Since qH and qG are upper bounds on the number of queries to H and G and ` bounds input length
of the H-queries made by A, GR ≈qG GS and HS ≈qH ,` HR imply that A cannot distinguish the oracles
GR, HR produced by ROdist from the oracles GS , HS produced by SOE

init . Thus Pr[b = 1 : Game 7] =
Pr[b = 1 : Game 8].

Summarizing, we have that
∣∣Pr[b = 1 : Game 1] − Pr[b = 1 : Game 8]

∣∣ is negligible. Since
Games 1 and 8 are the games in (1), it follows that (POE , VOE ) is zero-knowledge. �

4.3 Online extractability
We now proceed to prove that (POE , VOE ) is simulation-sound online-extractable using the extractor
EPOE

from Figure 3.
To analyze EPOE

, we define a number of random variables and events that can occur in the execution of
the simulation-soundness game (Definition 4). Remember, the game in question is G,H ← SOE

init , (x, π)←
12Notice that to see this, we need to be able to implement (H′′)1...t log m using a single oracle query to H′′. This can be

done by initializing the output qubits of H′′ that shall be ignored with |+〉, see [Zha13, Section 3.2].
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AG,H,SPOE , ok ← V G,HOE (x, π), w ← EPOE
(H,x, π), and simproofs is the set of all proofs returned by SPOE

(together with the corresponding statements).
• H0: Let H0 denote the initial value of H as returned by SOE

init . (H can change during the game
because SPOE

programs it, see Figure 2. On the other hand, G does not change.)
• H1: Let H1 denote to the final value of H (as used by VOE for computing ok).
• ShouldEx: ok = 1 and (x, π) /∈ simproofs. (I.e., in this case the extractor should find a witness.)
• ExFail: ok = 1 and (x, π) /∈ simproofs and (x,w) /∈ R. (ExFail represents a successful attack.)
• MallSim: ok = 1 and (x, π) /∈ simproofs and (x, π∗) ∈ simproofs for some π∗ =

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (resp

∗
i )i
)

where
(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
:= π. (In other words, the adversary produces a valid

proof that differs from one of the simulator generated proofs (for the same statement x) only in the
resp-components).
• We call a triple (com, ch, resp) Σ-valid iff VΣ(x, com, ch, resp) = 1 (x will always be clear from the

context). If R is a set, we call (com, ch, R) set-valid iff there is a resp ∈ R such that (com, ch, resp)
is Σ-valid. And Σ-invalid and set-invalid are the negations of Σ-valid and set-valid.

The following technical lemma establishes that an adversary with access to the simulator SPOE cannot
produce a new valid proof by just changing the resp-components of a simulated proof. This will cover
one of the attack scenarios covered in the proof of simulation-sound online-extractability below.

Lemma 16 (Non-malleability) Let κ be a lower bound on the collision-entropy of the tuple
(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE

(given its initial state and the oracle G,H). Let qG be an upper bound for the number
of queries to G made by A and SPOE

and VOE together. Let n be an upper bound on the number of
invocations of SPOE .

Then Pr[MallSim] ≤ n(n+1)
2 2−κ +O

(
(qG + 1)32−`resp

)
.

Proof. First, since G is chosen as a polynomial of degree 2qG − 1 and is thus 2qG-wise independent, by
[Zha12] G is perfectly indistinguishable from a uniformly random G within qG queries. Thus, for the
proof of this lemma, we can assume that G is a uniformly random function.

In the definition of MallSim, since ok = 1, we have that π is accepted by VOE . In particular,
this implies that G(respi) = hi,Ji for all i by definition of VOE . And J1‖ . . . ‖Jt = H1(x, πhalf ) where
πhalf :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
is π without the resp-components. Furthermore, by construction

of SPOE
, we have that π∗ satisfies: G(resp∗i ) = hi,J∗i for all i and J∗1 ‖ . . . ‖J∗t = H∗(x, πhalf ) where H∗

denotes the value of H directly after SPOE
output π∗. (I.e., H∗ might differ from H1 if further invocations

of SPOE
programmed H further.) But if H1(x, πhalf ) = H∗(x, πhalf ), then Ji = J∗i for all i, and thus

G(respi) = G(resp∗i ) for all i. And since π /∈ simproofs and π∗ ∈ simproofs by definition of MallSim, we
have that respi 6= resp∗i for some i.

Thus

Pr[MallSim] ≤ Pr[H1(x, πhalf ) 6= H∗(x, πhalf )] + Pr[∃i : G(respi) = G(resp∗i ) ∧ respi 6= resp∗i ]

If we have H1(x, πhalf ) 6= H∗(x, πhalf ), this implies that SPOE
reprogrammed H after producing π∗.

This implies in particular that in two invocations of SPOE
, the same tuple πhalf =

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
was chosen. This happens with probability at most n(n+1)

2 2−κ because each such tuple has collision-entropy
at least κ.

Finally, since G is a random function that is queried at most qG times, Pr[∃i : G(respi) = G(resp∗i ) ∧
respi 6= resp∗i ] ∈ O

(
(qG + 1)32−`resp

)
by Theorem 8.

Thus Pr[MallSim] ≤ n(n+1)
2 2−κ +O

(
(qG + 1)32−`resp

)
. �

The following lemma states that, if H is uniformly random, the adversary cannot produce a valid
proof (conditions (i),(ii)) from which is it not possible to extract a second response for one of the comi

by inverting G (condition (iii)). This lemma already implies online-extractability, because it implies that
the extractor EPOE

will get a commitment comi with two valid responses. However, it does not go the
full way to showing simulation-sound online-extractability yet, because in that setting, the adversary has
access to SPOE

which reprograms the random oracle H, so H cannot be treated as a random function.

Lemma 17 Let G be an arbitrarily distributed function, and let H0 : {0, 1}≤` → {0, 1}t logm be uniformly
random (and independent of G). Then it is hard to find x and π =

(
(comi), (chi,j), (hi,j), (respi)

)
such

that:
(i) hi,Ji = G(respi) for all i with J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).
(ii) (comi, chi,Ji , respi) is Σ-valid for all i.
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(iii) (comi, chi,j , G
−1(hi,j)) is set-invalid for all i and j with j 6= Ji.

More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π) with these properties with
probability at most 2(qH + 1)2−(t logm)/2.

Proof. Without loss of generality, we can assume that G is a fixed function and that A knows that
function. Thus in the following, we only provide oracle access to H0 to A.

For any given value of H0, we call a tuple
(
x, (comi), (chi,j), (hi,j)

)
an H0-solution iff:

for each i, j, we have that (comi, chi,j , G
−1(hi,j)) is set-valid iff j = Ji

where J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).

(The name “H0-solution” derives from the fact that we are trying to solve an equation in terms of H0.)
It is easy to see that if x and π =

(
(comi), (chi,j), (hi,j), (respi)

)
satisfies (i)–(iii), then

(
x, (comi), (chi,j), (hi,j)

)
is an H0-solution. (Note for the case j = Ji that hi,Ji = G(respi) implies respi ∈ G−1(hi,j). With the
Σ-validity of (comi, chi,Ji , respi) this implies the set-validity of (comi, chi,j , G

−1(hi,j)).)
Thus it is sufficient to prove that AH0 () making at most qH queries outputs an H0-solution with

probability at most 2(qH + 1)2−(t logm)/2. Fix such an adversary AH0 ; denote the probability that it
outputs an H0-solution (for uniformly random H0) with µ.

We call
(
x, (comi), (chi,j), (hi,j)

)
an candidate iff for each i, there is exactly one J∗i such that

(comi, chi,J∗i , G
−1(hi,J∗i )) is set-valid. Notice that a non-candidate can never be an H0-solution. (This

justifies the name “candidate”, those are candidates for being an H0-solution, awaiting a test-call to H0.)
For any given candidate c, for uniformly random H0, the probability that c is an H0-solution is 2−t logm.

(Namely c is an H0-solution iff all Ji = J∗i for all i, i.e., there is exactly one output of H0(c) ∈ {0, 1}t logm

that makes c an H0-solution.)
Let Cand denote the set of all candidates. Let F : Cand→ {0, 1} be a random function with all F (c)

independently identically distributed with Pr[F (c) = 1] = 2−t logm.
Given F , we construct HF : {0, 1}∗ → {0, 1}t logm as follows:
• For each c /∈ Cand, assign a uniformly random y ∈ {0, 1}t logm to HF (c).
• For each c ∈ Cand with F (c) = 1, let HF (c) := J∗1 ‖ . . . ‖J∗t where J∗1 , . . . , J∗t are as in the definition

of candidates.
• For each c ∈ Cand with F (c) = 0, assign a uniformly random y ∈ {0, 1}t logm \ {J∗1 ‖ . . . ‖J∗t } to
HF (c).

Since F (c) = 1 with probability 2−t logm, HF (c) is uniformly distributed over {0, 1}t logm for c ∈ Cand.
Thus HF is a uniformly random function.

Since AH0 () outputs an H0-solution with probability µ and HF has the same distribution as H0, AHF ()
outputs an HF -solution c with probability µ. Since an HF -solution c must be a candidate, we have
c ∈ Cand. And c can only be an HF -solution if HF (c) = J∗1 ‖ . . . ‖J∗t , i.e., if F (c) = 1. Thus AHF () returns
some c with F (c) = 1 with probability µ.

However, to explicitly construct HF , AHF needs to query all values of F , so the number of F -queries
is not bounded by qH . However, AHF can be simulated by the following algorithm SF :
• Pick uniformly random H1 : {0, 1}≤` → {0, 1}t logm. Set H2(c) := J∗1 ‖ . . . ‖J∗t for all c ∈ Cand. For

all c ∈ Cand, let H3(c) := y for uniformly random y ∈ {0, 1}t logm \ {J∗1 ‖ . . . ‖J∗t }.
• Let H ′F (c) := H1(c) if c /∈ Cand, let H ′F (c) := H2(c) if c ∈ Cand and F (c) = 1, let H ′F (c) := H3(c)

if c ∈ Cand and F (c) = 0.
• Run AH

′
F ().

The function H ′F constructed by S has the same distribution as HF (given the same F ). Thus S outputs
c with F (c) = 1 with probability µ. Furthermore, no F -queries are needed to construct H1, H2, H3, and a
single F -query is needed for each H ′F -query performed by AHF . Thus S performs at most qH F -queries.
Thus by Lemma 7, µ ≤ 2(qH + 1)2−(t logm)/2. �

Theorem 18 (Simulation-sound online-extractability) Assume that Σ has special soundness. Let
κ be a lower bound on the collision-entropy of the tuple

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE

(given its input and the oracles G,H). Assume that t logm and κ and `resp are superlogarithmic.
Then (VOE , POE ) is simulation-sound online-extractable with extractor EPOE

from Figure 3 and with
respect to the simulator (SPOE

, SOE
init) from Figure 2.

A concrete bound µ on the success probability is given in (6) below.

Proof. Given π =
(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
, let πhalf :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
, i.e., π

without the resp-components.
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Fix an adversary A for the game in Definition 4. Assume A, SPOE
, VOE together perform at most qG

queries to G and qH queries to H, and that at most n instances of SPOE
are invoked.

Let Ev(i), Ev(ii), Ev(iii) denote the events that conditions (i), (ii), (iii) from Lemma 17 are satisfied.
Assume that ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii) occurs. The event ShouldEx by definition entails ok = 1

and (x, π) /∈ simproofs. Furthermore, ¬MallSim then implies that for all (x∗, π∗) ∈ simproofs, we have
that (x∗, π∗half ) 6= (x, πhalf ). In an invocation π∗ ← SPOE (x∗), SPOE only reprograms H at position
H(x∗, π∗half ), hence H(x, πhalf ) is never reprogrammed. Thus H0(x, πhalf ) = H1(x, πhalf ). Furthermore
ok = 1 implies by definition of VOE (and the fact that H1 denotes H at the time of invocation of VOE ):
(comi, chi,Ji , respi) is Σ-valid for all i and hi,Ji = G(respi) for all i, where J1‖ . . . ‖Jt := H1(x, πhalf ).
Since H0(x, πhalf ) = H1(x, πhalf ), we have J1‖ . . . ‖Jt = H0(x, πhalf ) as well. And ¬Ev(iii) implies that
(comi, chi,j , G

−1(hi,j)) is set-valid for some i, j with j 6= Ji. Thus by construction, EPOE outputs
w := EΣ(x, comi, chi,Ji , respi, chi,j , resp

′) for some resp′ ∈ G−1(hi,j) such that (comi, chi,j , resp
′) is

Σ-valid. Furthermore, ok = 1 implies by definition of VOE that chi,1, . . . , chi,t are pairwise distinct, in
particular chi,j 6= chi,Ji . And ok = 1 implies that (comi, chi,Ji , respi) is Σ-valid. On such inputs, the
special soundness of EΣ (cf. Definition 5) implies that (x,w) ∈ R with probability at least 1− εsound for
negligible εsound . Thus

Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)] ≥ Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)]− εsound . (2)

Then since ExFail ⇐⇒ ShouldEx ∧ (x,w) /∈ R,

Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]

= Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)]− Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)]
(2)

≤ εsound . (3)

Then

Pr[ExFail ∧ ¬MallSim]

= Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]
(3)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound . (4)

Assume ExFail ∧ ¬MallSim. As seen above (in the case ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)), this implies
that H0(x, πhalf ) = H1(x, πhalf ) and that (comi, chi,Ji , respi) is Σ-valid for all i and hi,Ji = G(respi) for
all i, where J1‖ . . . ‖Jt := H1(x, πhalf ). This immediately implies Ev(i) and Ev(ii). Thus

Pr[ExFail ∧ ¬MallSim]
(4)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound
(∗)
= Pr[ExFail ∧ ¬MallSim ∧ Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound (5)

where (∗) uses ExFail ∧ ¬MallSim⇒ Ev(i) ∧ Ev(ii).
As already seen in the proof of Theorem 15, H = H0 as chosen by SOE

init is perfectly indistinguishable
from a uniformly randomH0 : {0, 1}≤` → {0, 1}t logm using only qH queries. Thus we can apply Lemma 17,
and get Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] ≤ 2(qH + 1)2−(t logm)/2.

And by Lemma 16, we have Pr[MallSim] ≤ n(n+1)
2 2−κ +O

(
(qG + 1)32−`resp

)
. We have

Pr[ExFail] ≤ Pr[ExFail ∧ ¬MallSim] + Pr[MallSim]
(5)

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound + Pr[MallSim]

≤ 2(qH + 1)2−(t logm)/2 + εsound +
n(n+ 1)

2
2−κ +O

(
(qG + 1)32−`resp

)
=: µ. (6)

Since the adversary A is polynomial-time, qH , qG, n are polynomially-bounded. Furthermore t logm and
κ and `resp are superlogarithmic by assumption. Thus µ is negligible. And since ExFail is the probability
that the adversary wins in Definition 4, it follows that (POE , VOE ) is simulation-sound online-extractable.
�

Corollary 19 If there is a sigma-protocol Σ that is complete and HVZK and has special soundness, then
there exists a non-interactive zero-knowledge proof system with simulation-sound online extractability in
the random oracle model.
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Proof. Without loss of generality, we can assume that the commitments and the responses of Σ have at least
superlogarithmic collision-entropy κ′. (This can always be achieved without losing completeness, HVZK,
or special soundness by adding κ′ random bits to the commitments and the responses of Σ.) This also
implies that `resp is superlogarithmic. And it implies that the tuples

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
produced by POE have superlogarithmic collision-entropy ≥ κ′.

Fix polynomially-bounded t,m such that m is a power of two with 2 ≤ m ≤ |Nresp | and such
that t logm is superlogarithmic. (E.g., t superlogarithmic and m = 2.) and let (VOE , POE ) be as in
Definition 13 (with parameters t,m).

Then by Theorem 15, (VOE , POE ) is zero-knowledge.
Then the collision-entropy κ of the tuples

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
produced by SPOE

must
be superlogarithmic. (Otherwise one could distinguish between POE and SPOE by invoking it twice with
the same argument and checking if they result in the same tuple.)

Then by Theorem 18, (VOE , POE ) is simulation-sound online-extractable. �

5 Signatures
A typical application of non-interactive zero-knowledge proofs of knowledge are signature schemes. E.g.,
the Fiat-Shamir construction [FS87] was originally described as a signature scheme. As a litmus test
whether our security definitions (Definition 2 and Definition 4) are reasonable in the quantum setting,
we demonstrate how to construct signatures from non-interactive simulation-sound online-extractable
zero-knowledge protocols (in particular the protocol (POE , VOE ) from Definition 13). The construction is
standard, and the proof simple, but we believe that such a sanity check for the definitions is necessary,
because sometimes a definition is perfectly reasonable in the classical setting while its natural quantum
counterpart is almost useless. (An example is the classical definition of “computationally binding
commitments” which was shown to imply almost no security in the quantum setting [ARU14b].)

The basic idea of the construction is that to sign a message m, one needs to show that one know the
knowledge of one’s secret key. Thus, we need a relation R between public and secret keys, and we need an
algorithm G to generate public/secret key pairs such that it is hard to guess the secret key. The following
definition formalizes this:

Definition 20 (Hard instance generators) We call an algorithm G a hard instance generator for a
relation R iff
• Pr[(p, s) ∈ R : (p, s)← G()] is overwhelming and
• for any polynomial-time A, Pr[(p, s′) ∈ R : (p, s)← G(), s′ ← A(p)] is negligible.

An example of a hard instance generator would be: R := {(p, s) : p = f(s)} for a one-way function f , and
G picks s uniformly from the domain of f , sets p := f(s), and returns (p, s).

Now a signature is just a proof of knowledge of the secret key. That is, the statement is the public key,
and the witness is the secret key. However, a signature should be bound to a particular message. For this,
we include the message m in the statement that is proven. That is, the statement that is proven consists
of a public key and a message, but the message is ignored when determining whether a given statement
has a witness or not. (In the definition below, this is formalized by considering an extended relation R′.)
The simulation-soundness of the proof system will then guarantee that a proof/signature with respect to
one message cannot be transformed into a proof/signature with respect to another message because this
would mean changing the statement.

A signature scheme consists of a key generation algorithm (pk , sk)← KeyGen(). The secret key sk is
used to sign a message m using the signing algorithm σ ← Sign(sk ,m) to get a signature σ. And the
signature is valid iff Verify(pk , σ,m) = 1.

Definition 21 (Signatures from non-interactive proofs) Let G be a hard instance generator for a
relation R. Let R′ := {((p,m), s) : (p, s) ∈ R}. Let (P, V ) be a non-interactive proof system for R′ (in
the random oracle model). Then we construct the signature scheme (KeyGen,Sign,Verify) as follows:
• KeyGen(): Pick (p, s)← G(). Let pk := p, sk := (p, s). Return (pk , sk).
• Sign(sk ,m) with sk = (p, s): Run σ ← P (x,w) with x := (p,m) and w := s. Return σ.
• Verify(pk , σ,m) with pk = y: Run ok ← V (x, σ) with x := (p,m). Return ok .

Notice that if we use the scheme (POE , VOE ) from Definition 13, we do not need to explicitly find a
sigma-protocol for the relation R′. This is because an HVZK sigma protocol with special soundness for R
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will automatically also be an HVZK sigma protocol with special soundness for R′. Thus, the only effect
of considering the relation R′ is that in POE , the message m will be additionally included in the hash
query H(x, (comi), (chi), (hi,j)) as part of x = (p,m).

Definition 22 (Strong unforgeability) A signature scheme (KeyGen,Sign,Verify) is strongly un-
forgeable iff for all polynomial-time adversaries A,

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk)← KeyGen(),

(σ∗,m∗)← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

is negligible. Here Sig is a classical oracle that upon classical input m returns Sign(sk ,m). (But queries
to H are quantum.) And Q is the list of all queries made to Sig. (I.e., when Sig(m) returns σ, (m,σ) is
added to the list Q.)

If we replace (m∗, σ∗) /∈ Q by ∀σ.(m∗, σ) /∈ Q, we say the signature scheme is unforgeable.

Theorem 23 (Unforgeability) If (P, V ) is zero-knowledge and has simulation-sound online-extractability,
then the signature scheme (KeyGen,Sign,Verify) from Definition 21 is strongly unforgeable.

Proof. Fix a quantum-polynomial-time adversary A. We need to show that the following probability P1

is negligible.

P1 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk)← KeyGen(),

(σ∗,m∗)← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

By definition of the signature scheme,

P1 = Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (p, s)← G(), (σ∗,m∗)← AH,Sig(p), ok ← V ((p,m∗), σ∗)]

And Sig(m) returns the proof P ((p,m), s). And G is the hard instance generator used in the construction
of the signature scheme.

Since G is a hard instance generator, we have that (p, s) ∈ R with overwhelming probability. Thus,
with overwhelming probability, for all m, ((p,m), s) ∈ R′. Thus, with overwhelming probability, Sig
invokes P ((p,m), s) only with ((p,m), s) ∈ R′. Since (P, V ) is zero-knowledge (Definition 2), we can
replace H ← ROdist by H ← Sinit () and P ((p,m), s) by SP ((p,m)) where (Sinit , SP ) is the simulator for
(P, V ). That is, |P1 − P2| is negligible where:

P2 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← Sinit(), (p, s)← G(),

(σ∗,m∗)← AH,Sig
′
(p), ok ← V ((p,m∗), σ∗)]

and Sig′(m) returns SP ((p,m)).
Let E be the extractor whose existence is guaranteed by the simulation-sound online-extractability of

(P, V ), see Definition 4. Consider the following game G:

G := H ← Sinit(), (p, s)← G(), (σ∗,m∗)← AH,Sig
′
(p),

ok ← V ((p,m∗), σ∗), s′ ← E(H, (p,m∗), σ∗).

That is, we perform the same operations as in P2, except that we additionally try to extract a witness for
the statement (p,m∗). Since the output of E is simply ignored, Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : G] = P2.

Let simproofs denote the list of queries made to SP , i.e., whenever Sig′(m) queries SP ((p,m)) resulting
in proof/signature σ, (p,m, σ) is appended to simproofs. Note that whenever some (p,m, σ) is appended
to simproofs, (m,σ) is appended to Q. Thus (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs.

Since (P, V ) is simulation-sound online-extractable, P3 := Pr[ok = 1 ∧ (p,m∗, σ∗) /∈ simproofs ∧
((p,m∗), s′) /∈ R′ : G] is negligible.

Since (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs, and ((p,m∗), s′) ∈ R′ iff (p, s′) ∈ R, we have
P3 ≥ P4 with P4 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q ∧ (p, s′) /∈ R : G]. Hence P4 is negligible.

And since G is a hard instance generator and s is never given to any algorithm in G, P5 := Pr[ok =
1 ∧ (m∗, σ∗) /∈ Q ∧ (p, s′) ∈ R : G] is negligible.

Thus P2 = P4 +P5 is negligible. And since |P1 −P2| is negligible, P1 is negligible. Since this holds for
any quantum-polynomial-time A, the signature scheme is strongly unforgeable. �
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Note that this proof is exactly as it would have been in the classical case (even though the adversary A
was quantum). This is due to the fact that simulation-sound online-extractability as defined in Definition 4
allows us to extract a witness in a non-invasive way: we do not need to operate in any way on the quantum
state of the adversary (be it by measuring or by rewinding); we get the witness purely by inspecting the
classical proof/signature σ∗. This avoids the usual problem of disturbing the quantum state while trying
to extract a witness.
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A Sigma-protocols with oblivious commitments
In this section we review the definition of sigma-protocols with oblivious commitments [DFG13] and
explain why they directly imply NIZK proofs in the CRS model.

Definition 24 (Sigma-protocols with oblivious commitments, following [DFG13]) A sigma-protocol
Σ = (Ncom , Nch , Nresp , P

1
Σ, P

2
Σ, VΣ) has oblivious commitments if P 1

Σ simply chooses and return a uni-
formly random bitstring from Ncom .13

In other words, in a sigma-protocol with oblivious commitments, the first message (the commitment)
is uniformly random. (While normally, we only require the second message to be uniformly random.)

Note that [DFG13] defines oblivious commitments slightly differently: the prover does not have to
send a uniformly random commitment. Instead, given its commitment, it should be efficiently feasible to
find randomness that leads to that commitment. But [DFG13] points out that that definition is equivalent
to what we wrote in Definition 24 (in the sense that a protocol satisfying one definition can easily be
transformed into one satisfying the other). Furthermore, [DFG13] actually assumes Definition 24 in their
construction, so we give and discuss that definition here. [DFG13] proves (restated using the language
from our paper):

Theorem 25 (Fiat-Shamir-like signatures, [DFG13]) Assume a hard instance generator G and a
sigma-protocol Σ with oblivious commitments, completeness, special-soundness, and HVZK.

Then there is an unforgeable signature scheme (build in an efficient way from G and Σ).

The actual construction used [DFG13] is not Fiat-Shamir, but only inspired by Fiat-Shamir. The crucial
difference is that the commitments are not chosen by the prover, but instead are hash values output by the
random oracle (the same way as the challenges are output by the random oracle in normal Fiat-Shamir).

At the first glance this theorem might seem unrelated to the problem of constructing NIZK proofs.
However, their proof of unforgeability implicitly proves the existence of an extractor (though not of
a simulation-sound extractor) because it works by extracting two sigma-protocol executions and then
computing a witness from those.

Note however that the proof from [DFG13] does not show that their construction is zero-knowledge.
Yet, we conjecture that with the random oracle programming techniques presented here, one can show
that their construction is zero-knowledge using a proof similar to ours.

Relation to CRS NIZK proofs. We now argue why sigma-protocols with oblivious commitments
are quite a strong assumption. Namely, they are by themselves (without any use of a random oracle)
already NIZK proofs of knowledge in the CRS model.

Given a sigma-protocol Σ = (Ncom , Nch , Nresp , P
1
Σ, P

2
Σ, VΣ) with oblivious commitments, we construct

a proof system ΠΣ = (CRS , P, V ) in the CRS model as follows: The CRS crs is uniformly random
from the set crs := Ncom ×Nch . The prover P (crs, x, w) splits crs =: (com, ch), runs P 1

Σ(x,w) with the
randomness that would yield com (this is possible because in a sigma-protocol with oblivious commitments,

13We stress that P 1
Σ needs to directly output its randomness. For example, if P 1

Σ produces com := f(r) with random r
using a one-way permutation f , then P 1

Σ does not have oblivious commitments, even though com is uniformly distributed.
(Because P 1

Σ additionally produces a preimage of com under f .)
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P 1
Σ just outputs its randomness), and runs resp ← P 2

Σ(ch). The proof is π := resp. The verifier V (crs, x, π)
splits crs =: (com, ch) and resp := π and runs VΣ(x, com, ch, resp) and accepts if VΣ accepts.

We now show that (P, V ) is both zero-knowledge and a proof of knowledge in the CRS model.

Definition 26 (Zero-knowledge in the CRS model) A non-interactive protocol (CRS , P, V ) is (single-
theorem, non-adaptive) zero-knowledge in the CRS model for relation R iff there exists a polynomial-time
simulator S such that for any quantum-polynomial-time adversary (A1, A2), the following is negligible:∣∣Pr[(x,w) ∈ R ∧ b = 1 : (x,w)← A1(), crs

$← CRS , π ← P (crs, x, w), b← A2(crs, π)]

−Pr[(x,w) ∈ R ∧ b = 1 : (x,w)← A1(), crs, π
$← S(x), b← A2(crs, π)]

∣∣
Notice that we have chosen the variant of zero-knowledge that is usually called single-theorem, non-

adaptive zero-knowledge. That is, given one CRS, one is allowed to produce only a single proof. And the
statement x that is to be proven may not depend on the CRS.

Lemma 27 If Σ is a zero-knowledge sigma-protocol with oblivious commitments, then ΠΣ is zero-
knowledge in the CRS model.

Proof. Let S(x) be a simulator that runs (com, ch, resp) := SΣ(x) where SΣ is the simulator of the
sigma-protocol (see Definition 5). Then S computes crs := (com, ch) and π := resp and returns
(crs, π). Note that crs = (com, ch)

$← CRS = Ncom × Nch yields the same distribution of (com, ch)

as com ← P 1
Σ(x), ch

$← Nch . Together with the fact that Σ is zero-knowledge, one easily sees that the
probability difference in Definition 26 is negligible for quantum-polynomial-time (A1, A2). �

Definition 28 (Proofs of knowledge in the CRS model) A non-interactive protocol (CRS , P, V )
is a (single-theorem, non-adaptive) proof of knowledge in the CRS model for relation R iff there exists a
polynomial-time extractor (E1, E2) such that the output of E1 is quantum-computationally indistinguishable
from crs

$← CRS , and such that for any quantum-polynomial-time adversary (A1, A2), the following
probability is negligible:

Pr[ok = 1 ∧ (x,w) /∈ R : x← A1(), crs ← E1(x), π ← A2(crs), w ← E2(π)] (7)

Note that again, we have defined a weak form of proofs of knowledge: single-theorem and non-adaptive.

Lemma 29 Let Σ be a sigma-protocol with oblivious commitments. Assume that Σ is zero-knowledge
with the following extra properties: for (com, ch, resp)← SΣ(x), (com, ch) is quantum-computationally
indistinguishable from uniform, and VΣ(com, ch, resp) = 1 with overwhelming probability.14

Then ΠΣ is a proof of knowledge in the CRS model.

Proof. Let E1(x) run the simulator (com, ch, resp) ← SΣ(x) of the sigma-protocol Σ. Then E1 picks
ch ′

$← Nch \ ch. Then E1 outputs crs := (com, ch ′).
Since (com, ch) chosen as (com, ch, resp)← SΣ(x) is indistinguishable from uniform, so is (com, ch ′)

as chosen by E1. Thus crs = (com, ch ′) as picked by E1(x) is quantum-computationally indistinguishable
from crs

$← CRS = Ncom ×Nch .
The second part of the extractor, E2(π), sets resp′ := π. This yields two executions of the sigma-

protocol: (com, ch, resp) and (com, ch ′, resp′) with ch 6= ch ′. Then E2 runs w ← EΣ(x, com, ch, resp, ch ′, resp′)
(the extractor of Σ) to get a witness w and returns that witness.

The first execution (com, ch, resp) is valid (i.e., VΣ accepts it) with overwhelming probability, since
(com, ch, resp) was produced by the simulator and thus passes verification with overwhelming probability
(by assumption in the lemma). If additionally the second execution (com, ch ′, resp′) is valid (i.e., if ok = 1
in (7)), then EΣ returns a correct witness with overwhelming probability (i.e., (x,w) ∈ R). Thus the case
ok = 1 ∧ (x,w) /∈ R occurs with negligible probability, hence the probability in (7) is negligible. �

14At the first glance, those properties already follow from zero-knowledge and completeness of Σ. However, zero-knowledge
and completeness do not apply when there exists no witness for x. So we need to explicitly require those conditions to also
hold when x has no witness.
Note that the proof in [DFG13] does not need these conditions because in their setting, the statement x is the honestly

generated public key of the signature scheme, and thus always has a witness. If, however, one would adapt their proof to
show that their construction is actually a NIZK proof of knowledge, those conditions would be needed for the same reasons
as in our proof of Lemma 29.
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Summarizing, a sigma-protocol with oblivious commitments is already a NIZK proof of knowledge in
the CRS model in itself. Hence sigma-protocols with oblivious commitments seem to be a much stronger
assumption that just sigma-protocols. (At least we are not aware of any generic construction, classical or
quantum, that transforms a sigma-protocols into a NIZK proof/proof of knowledge in the CRS model,
without using random oracles.)

One may ask why the fact that sigma-protocols with oblivious commitments are already NIZK proofs of
knowledge does not trivialize the construction from [DFG13] since it converts a NIZK proof of knowledge
into a NIZK proof of knowledge. The crucial point is that sigma-protocols with oblivious commitments
are only single-theorem non-adaptive NIZK proofs. So one can interpret the construction from [DFG13]
as a way of strengthening a specific kind of NIZK proofs to become multi-theorem adaptive ones.15
(Actually, seen like this, their construction becomes a very natural one: the statement is hashed using the
random oracle, and the hash is used as a CRS for the proof.)

Sigma-protocols with oblivious commitments and efficient protocols. One major advantage of
sigma-protocols is that they allow for very efficient constructions of sigma-protocols for complex relations
from simpler ones [CDS94, Dam10]. For example, given sigma-protocols for two relations R1, R2, it is
possible to build a sigma-protocol for the disjunction R := {((x1, x2), w) : (x1, w) ∈ R1 ∨ (x2, w) ∈ R2}.
Unfortunately, even when starting with sigma-protocols with oblivious commitments for R1, R2, the
resulting sigma-protocol for R will not have oblivious commitments any more. This is because the protocol
for R sends a commitment (com1, com2) where com1 is generated by the prover of R1, and com2 by the
simulator of R2 (or vice versa). Since given the output of the simulator, it is in general hard to determine
its randomness, it will not be possible to find the randomness that lead to com2. Hence the protocol does
not have oblivious commitments.
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