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A Key Recovery Attack on Error Correcting
Code Based a Lightweight Security Protocol

Imran Erguler

Abstract—One of the interesting types of RFID application is RFID searching which aims to hear a specific RFID tag from a large
group of tags, i.e. ability of detecting whether a target RFID tag is nearby. Very recently, a lightweight protocol using error-correcting
codes has been proposed by Chen et al. to provide a solution to needs in this field. The authors give a detailed analysis of their
protocol in terms of security, privacy, communication overhead, hardware cost and they claim that it is a realizable scheme with fulfilling
security and privacy requirements. In this study, however, we investigate security of this protocol and clearly demonstrate its security
flaws that completely allow an adversary to exploit the system. In particular, by using linear properties of error correcting coding we
firstly describe a tag tracing attack that undermines untraceability property which is one its design objectives. Then along with its
implementation details we present a key recovery attack that reduces dramatically search space of a tag’s secret key and show that
an adversary can compromise it in practical time by only querying this tag for several times. As an illustrative example we retrieve the
secret key of the protocol in two hours for the adopted linear block code C(47, 24, 11) which is one of the suggested codes.

Index Terms—Authentication, error correcting coding, lightweight, privacy, RFID, security
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1 INTRODUCTION

R FID technology has become prevalent in various
fields. Manufacturing, supply chain management

and inventory control are some popular examples of
these areas where RFID applications are deployed. There
are three key elements in a typical RFID system: Tags,
one or more readers, and a back-end server. Nevertheless
for the sake of clarity in protocol description, reader
and server are sometimes treated as a single entity
(throughout this study we also consider them as one
entity). In a traditional RFID communication protocol,
through a wireless environment RFID reader queries
RFID tags that are attached to objects and delivers their
responses to a back-end server to identify and get related
information about the object. As opposed to this classic
tag identification scenario, RFID searching, emerged as
a new trend in RFID applications, aims to communicate
or find out a specific tag among a large group of tags
[1]. In this case, RFID application initially knows the
target tag and executes a defined protocol to segregate
this tag from the others, e.g. this mechanism should be
used to check whether an item is nearby. In [2], Chen et
al. introduced such a protocol, which we will call CMC
due to name of the first author, to provide secure and
authenticated communication between the reader and
the tags. At the same time, they intended to satisfy com-
putation and hardware constraints of low-cost RFID tags,
without sacrificing security and privacy requirements. In
fact, this is one of the most challenging issues in design
of secure RFID protocols, since proven cryptographic
primitives need higher hardware resources and cannot
be implemented in small world of these gadgets. In this
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regard, the authors only use a pseudo-random number
generator (PRNG), an applicable one-way hash function
like in [3], [4], [5] and an error correcting code technique
is adopted to comply with definition of a lightweight
protocol [6]. Furthermore, it is asserted that the CMC
protocol accomplishes its security and privacy goals,
including resistance to tracing, tag impersonating, replay
and desynchronization attacks. In this paper, however,
we scrutinize security of the CMC protocol and by
using properties of linear block codes we describe a
tracing attack that exhibits untraceability is not assured
depending the on selected code. Also, by launching a
key recovery attack we diminish key search space from
O(2k|Se|) to O(max

n,k
(|Se|, 2k)), where Se is the set of all

error patterns that can be corrected by the [n, k] linear
block code. Although in [2] it is claimed that guessing the
key is computationally infeasible for the suggested code
examples, by means of our proposed attack it becomes
realizable in practical time. In other words we have
shown easy applicability of our attacks by performing
them against different code examples and full disclosure
of the secrets of a tag can be realized in hours.

1.1 RFID Authentication Protocols
The main objective behind deployment of authentication
protocols in RFID systems is to provide secure commu-
nication between the reader/server and the tags in an
authenticated manner and to satisfy privacy of the tag
holders, i.e. concealing private information like location,
ID etc. The majority of the proposed RFID security pro-
tocols like in [7], [8], [9], [10], [11], [12], [13] (readers may
refer to [14] for more examples) deal with identification
of an RFID tag through some queries and involvement
of search mechanisms with different computational com-
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plexities. In other words, these schemes aim to solve
the problem of recovering ID from responses of an
inquired tag without leaking any valuable information to
an adversary. Recently, apart from these studies, another
application field of RFID that intents to find out a specific
ID from a pile of items have been drawn attention from
RFID community. This field is also named as secure
RFID searching. Nevertheless, only a few studies such
as [15], [16], [17], [18], [19], [20] have handled this issue
to provide a secure and privacy preserved protocol in
this area. As a contribution in this direction, rather
recently Chen et al. have presented a lightweight RFID
searching protocol that specifically purposes to mitigate
computational load at the reader side resulting from
process of messages sent by unintended tags. In order to
achieve this, the model basically takes advantage of com-
putational simplicity of error correcting codes compared
to a hash or a cryptographic primitive computation. It
is equivalent to say that the CMC protocol comes up
with a solution to computational load of the reader in
RFID searching by tailoring error correcting codes to
their scheme.

1.2 Error Correcting Codes in Crypto Systems

Error correcting codes have been deployed in different
cryptographic schemes to create a trapdoor in the sys-
tems. McEliece’s public-key cryptosystem is the most
widely known example of this field [21]. The clever
idea behind this system utilizes the NP hard problem
of syndrome decoding in case of the number of errors
is not bounded, i.e. its security relies on decoding of
random linear codes. Another popular problem, as an
NP-hard, related to error correcting code based crypto is
learning parity with noise (LPN) which was introduced
by Hopper and Blum in [22]. From the perspective of an
attacker this problem can be seen as solving numerous
equations of the form zi = ai ·x⊕ ei, to capture secret x,
where x and the ei’s are disguised from her and ei is an
error bit which is set to 1 with a probability γ ∈ [0, 12 ].
Since this mechanism only needs scalar dot product
and simple binary operations, it has attracted interest
of lightweight crypto community and several protocol
designs whose security rests on LPN problem have
been proposed. The HB-family authentication protocols
[22], [23], [24], [25], [26] are nice pioneer examples that
comply with constraints of low-cost RFID tags, although
in different studies it was addressed that these schemes
cannot fulfill their security objectives [27]. The TCHo
public key encryption scheme of J. Aumasson et al. [28]
is another case where linear block codes are employed
in security systems to provide a trapdoor. The subtlety
of this scheme relies on the fact that the encryption
of a message is performed like transmitting a message
over a noisy channel: One small Linear Feedback Shift
Register (LFSR) encodes the message, while a large
one randomly initialized along with a source of biased
random bits produces the noise. The sparse multiple

of the feedback polynomial acts as the trapdoor whose
availability converts ciphertext to a noisy message that
can be decoded successfully. Also, noisy stream cipher
models [29], [30] implicitly add error vectors to encoded
messages to boost search space of an attacker, while these
errors can be easily corrected at the receiver who shares
same secret with the sender.

1.3 Organization
This paper is organized as follows: In Section 2, we
describe some notations that used in the rest of the
paper and give a brief description of the CMC protocol.
Section 3 gives preliminaries and introduces our pro-
posed attacks along with their underlying assumptions.
In Section 4, we address complexities of the attacks
and present their implementation details. Finally, we
conclude our study in Section 5.

2 THE CMC PROTOCOL
2.1 Protocol Description
In [2], Chen et al. have presented a lightweight RFID
authentication protocol to provide secure and authenti-
cated communication between the reader and the tags.
The fundamental purpose of this protocol is identifying
a specific tag from a large group of tags such that
communication is then proceeded with this tag and
responses of others discarded. Since many response mes-
sages transmitted by unintended tags are collected at the
reader side, the CMC protocol utilizes error correcting
codes to filter garbage messages and isolate the target tag
from the others, i.e. avoiding any computational burden
at the reader side. In order to simplify the description of
the protocol, the notations depicted in Table 1 are used
in the remaining parts of the study.

Initially, the administrator chooses a pseudo random
number generator g(), a one-way hash function h()
and a linear block code C(n, k, dmin) with the generator
matrix G and the parity check matrix H . Also each
tag Ti is assigned with a unique identifer, n-bit length
secret key Ki and k-bit length syndrome si. Then
g(), h(),Ki, si, G,H are written into storage memory
of Ti. On the other hand, reader/server stores Ki, si
of each tag and keeps G,H, g(), h(). A step by step
protocol definition of the CMC protocol illustrated in
Fig. 1 is given below:

Step 1: R selects a target tag Ti, and determines the
error vector eR such that its syndrome is equal
to si.

Step 2: R picks a codeword CR randomly and sums
eR with it to compute C ′R = CR ⊕ eR.

Step 3: R generates a random nonce NR and sends it
with CR to Ti as a query.

Step 4: Upon receiving the CR, Ti computes s = CR ·
HT and checks whether s = si.

Step 5: If s = si holds, Ti randomly selects a code-
word Ci ∈ C and an error vector ei and gets
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TABLE 1
Notations for the CMC Protocol

Ti RFID tag
R RFID reader
si The syndrome pattern of Ti
g() Pseudo random number generator
h() One-way hash function
G Generator matrix
H Parity check matrix
CR, Ci Codewords generated by R Ti respectively
eR, ei Error vectors added by R and Ti respectively
NR, Ni Random nonce produced by R and Ti respectively
Ki Secret key of Ti
w() Hamming weight
|| Concatenation operator
⊕ Bitwise XOR operation

C ′i = Ci ⊕ ei , where w(ei) less than or equal
to error correcting capability of the code.

Step 6: Ti evaluates M = Ki ⊕C ′i and calculates Vi =
g(si ⊕NR ⊕ h(Ni ⊕Ki)

Step 7: If s 6= si, Ti sets Vi and C ′i to random values
and gets M = Ki ⊕ C ′i

Step 8: Ti transmits {M,Vi, Ni} tuple to R.
Step 9: R computes M ⊕Ki and checks whether the

result is decodable.
Step 10: If C ′i is decodable, R checks whether g(si ⊕

NR ⊕ h(Ni ⊕Ki) = Vi or not.
Step 11: If Vi is verified, R authenticates the tag and

calculates VR = g(s⊕Ni ⊕ h(NR ⊕Ki)).
Step 12: If C ′i is not decodable or Vi is not verified R

sets VR to a random value
Step 13:R sends VR to Ti and updates Kold

i = Ki, Ki =
h(Ki||NR||s) in case of authentication, where
Ki is matched key, i.e. Kcur

i or Kold
i .

Step 14: If Ti verifies g(s ⊕ Ni ⊕ h(NR ⊕ Ki)) = VR,
it authenticates the reader and updates the
secret key Ki = h(Ki||NR||s).

After completing the authentication process, both of
R and Ti compute sk = g(Ki ⊕ NR ⊕ Ni) to obtain the
session key sk which is used encryption of exchanged
sensitive data between them.

2.2 Security Claims

Below, we briefly overview the claimed security
properties of the CMC protocol with their justifications
detailed in [2]. For further information about common
attack types on RFID systems, readers may refer to an
interesting publication [31].

Anonymity and Untraceability: An adversary
who does not have internal secrets of a tag cannot
distinguish it from other tags by analyzing the tag
responses, because Ni is a randomly produced value
and Vi is generated by the pseudo-random number

generator. Also, the C ′i is masked with the tag’s secret
key which is not available to the adversary, i.e. Ki ⊕ C ′i
appears to random for her and it alleviates success
probability of an adversary in linking transmitted
messages with a specific tag. Furthermore, every tag
replies to a query even if it is not the target tag (e.g.
by responding with a random value) to avoid leakage
of side channel information [32]. Thus, the protocol
satisfies anonymity and untraceability.

Mutual Authentication: Before proceeding to secure
communication, the reader and the tag mutually
authenticates each other by using the verifier messages
Vi and VR.

Confidentiality: The security of transferred messages
after the authentication process relies on guess
complexity of the key Ki. In order to derive Ki,
one may make exhaustive search over all possible C ′i
values for a specific M message due to M = C ′i ⊕ Ki.
Note that |C ′i| =

∑tC
i=0

(
n
i

)
× 2k, where tC is error

correcting capability of an [n, k] linear block code.
For a properly selected code this search space makes
the exhaustive search prohibitively expensive and the
system achieves secure communication.

Resistance to Desynchronization: An adversary may
block the message VR to prevent update of the secret
key at the tag side. In this case the tag might lose
synchronization with the reader, because the reader
updates the secret key while the tag keeps the current
key. Nonetheless, the CMC keeps both of the old and
new keys, so the reader can still resynchronize with the
tag which missed VR message in previous session by
using the old session key Kold

i .

Resistance to Replay Attacks: In replay attacks, the
goal of an adversary is to authenticate herself to reader
or tag by reusing messages of previous sessions. Notice
that the CRC protocol employs a challenge response
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Data Base / Reader Tag

[Ti, Ki, K
old
i , si, G,H] [Ti, Ki, si, G,H]

C′
R, NR

Computes C′
R = CR ⊕ eR - Computes s = C′

R ·H
T and generates Ni

Generates NR IF s = si

C′
i = Ci ⊕ ei, Vi = g(si ⊕NR ⊕ h(Ni ⊕Ki))

ELSE

M = Ki ⊕ C′
i, Vi, Ni C′

i =random value, Vi =random value

�

Computes Cx = Ki ⊕M

If Cx is not decodable, sets VR =random value

Checks if Vi = g(si ⊕NR ⊕ h(Ni ⊕Ki)), Checks:

IF Vi is verified VR VR = g(s⊕Ni ⊕ h(NR ⊕Ki))

VR = g(s⊕Ni ⊕ h(NR ⊕Ki)) - IF VR is verified

Kold
i = Ki, Ki = h(Ki||NR||s) Ki = h(Ki||NR||s)

ELSE

VR =random value

Fig. 1. The CMC mutual authentication protocol. All variables are n−bit length except si which is padded before
XORing.

mechanism. Also, in message flow of the CMC protocol
each party is involved in ensuring freshness of the
session by generating fresh random nonces NR, Ni
that are used in computation of Vi, VR,Ki. Thus, the
CMC protocol provides resistance against replay attacks.

Forward Secrecy: An adversary cannot acquire
previous session keys by analyzing the present secrets,
since secret key is updated using one-way hash function
at the end of each successful session. Hence, the protocol
provides forward secrecy.

3 ATTACKS

Before we elaborate on our attacking details, we will
firstly give preliminaries that are used in the remaining
parts of the study and state a set of reasonable as-
sumptions about the adversary model. Then, we present
a tracking attack which demonstrates that the CMC
protocol cannot guarantee untraceability which is one
of the objectives of the CMC protocol. Last but not least,
we show that a more efficient attack is possible as a key
recovery attack which leads to disclosure of a tag’s secret
key in reasonable time. In fact this attack breaches all
security claims of the scheme, because whole security is
based on secrecy of this key.

3.1 Preliminaries
Definition 1. Used linear block code of the CMC protocol is
defined as C(n, k, dmin), where n, k are lengths of the code-
word and the message respectively such that 2k code words
form a k-dimensional vector subspace of the n-tuples over

GF (2). Also, dmin stands for the minimum distance of the
linear block code C defined as dmin ,min

v,y
{d(v, y) : v, y ∈ C

and v 6= y}, where d(v, y) is the hamming distance of the
binary codewords v and y.

Definition 2. The error correction capability of the code
C(n, k, dmin) is defined as tC , b(dmin− 1)/2c, i.e. the code
can correct up to tC-bit errors.

Definition 3. The error detection capability of the code
C(n, k, dmin) is defined as tD , dmin − 1, i.e. the code can
detect up to tD-bit errors.

Definition 4. A bounded distance decoder is defined as the
decoder that corrects all error patterns e such that w(e) ≤ tC
and results in a decoding failure or a decoding error in
case of w(e) > tC .

Note that when a bounded distance decoder detects
an uncorrectable error, it declares a decoding failure.
On the other hand in decoding error case, some errors
of weight more than tC may be decoded to a wrong
codeword, if there exists a codeword Cy such that
d(e, Cy) ≤ tC .

Definition 5. The set of all possible error patterns whose
Hamming weight is less than or equal to tC is denoted by
Se, i.e. ∀ei ∈ Se, w(ei) ≤ tC .
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Remark 1. It is obvious that

|Se| =
tC∑
i=0

(
n

i

)
. (1)

Definition 6. Ss denotes the set of syndromes that is
produced by Ss = SeHT .

Remark 2. For an error pattern ei, if eiHT /∈ Ss, a bounded
distance decoder gives decoding failure.

Definition 7. M denotes the set of collected M messages
from a tag through different sessions such that each of them is
computed with the same secret key, i.e. M = {M1,M2, · · · }.

Proposition 1. Let M1 = Ki⊕C ′x and M2 = Ki⊕C ′y be two
transmitted messages by the tag Ti with using the same secret
key Ki, where C ′x = Cx ⊕ ex, C ′y = Cy ⊕ ey are the noisy
codewords and Cx and Cy are codewords in the linear block
code C(n, k, dmin). Then M1⊕M2 will be an error detectable
pattern for the C(n, k, dmin) code as long as w(ex⊕ ey) 6= 0.

Proof: Note that M1⊕M2 = Cx⊕Cy ⊕ ey ⊕ ez . Since
summation of any two codewords always yields to a
codeword, e.g. Cz = Cx⊕Cy , we can express M1⊕M2 =
Cz⊕ex⊕ey . Thus, if we show w(ex⊕ey) ≤ tD, we prove
detection of the error pattern ex ⊕ ey and we complete
the proof. We know that both of w(ex) and w(ey) are
equal or less than tC , because they are correctable error
patterns. Hence, we can write

w(ex) ≤ dmin−1
2

w(ey) ≤ dmin−1
2

(2)

From the triangle inequality, w(ex ⊕ ey) ≤ w(ex) ⊕
w(ey), so w(ex ⊕ ey) ≤ dmin − 1. If we replace dmin − 1
with tD, we obtain the expression in Definition 3 and
it is shown that ex ⊕ ey is a detectable error pattern for
code C(n, k, dmin). Note that w(ex⊕ ey) 6= 0 is necessary,
because the syndrome (M1 ⊕ M2)H

T = 0 is obtained
otherwise, i.e. error is not detected.

Proposition 2. Let Rx be a random string of n bit length,
then the probability that Rx is recognized as a decodable word
by a C(n, k, d) linear block code is∑tC

i=0

(
n
i

)
× 2k

2n
.

Proof: The number of all possible n-bit random bi-
nary strings is as |Rx| = 2n. On the other hand, we know
that all codewords with error patterns can be decoded
as long as hamming weight of the error patterns are
equal or less than tC . Hence, there are

∑tC
i=0

(
n
i

)
× 2k

decodable erroneous codewords and the probability can

be calculated by dividing this value by |Rx|, i.e.∑tC
i=0

(
n
i

)
× 2k

2n
. (3)

3.2 Assumptions

In our attacking strategies, we comply with assumptions
of the authors in [2] and not stretch them to make our
attacks realizable. According to the security analysis of
the CMC protocol compromise of a tag is considered,
so it is assumed that the generator and parity check
matrixes G and H are available to the adversary. Indeed
it is a realistic approach, since every tag keeps the same
G and H and they are static. An adversary attains eR and
si of a target tag Ti by just eavesdropping a single session
between the reader and the tag and computing the
syndrome for C ′R. Notice that acquire of eR is critically
important from view of the adversary, because the target
tag always responds correctly to the message Cx ⊕ eR
which is transmitted by the adversary, where Cx is an
arbitrary codeword. In other words, by using eR the
adversary gains opportunities to initiate communication
with the target tag. Furthermore, we suppose that the
CMC protocol employs a bounded distance decoder,
since all error patterns are predetermined (not proba-
bilistic) and only the error patterns whose Hamming
weight less than or equal to tC can be decoded. Last,
the designers of the CMC protocol accepts one day limit
as a rational upper bound to recover the secret key for an
attacker though they assert key recovery needs several
years of time effort for some properly selected codes.
Nevertheless, in accordance with the assumptions made
our proposed key recovery attack extracts the key in
terms of hours for the code C(47, 24, 11) which is one
of the recommended linear block codes.

3.3 Tracking Attack

Roughly speaking, an RFID protocol holds untraceability
as long as an adversary has a negligible advantage in
distinguishing two selected tags by analyzing their mes-
sages. Untraceability of an RFID protocol P is usually
examined by a privacy experiment [33], [34] ExpprivP
which is consisted of the two phases: Learning Phase
and Challenge Phase. In learning phase, the adversary A
is able to initiate communication with the reader or tags.
On the other hand in challenge phase, she chooses two
tags T0 and T1 as the challenge candidates and picks one
of these tags randomly, represented as T ∗b for b ∈ {0, 1}.
Next, A may again communicate with this tag and the
reader to gather some valuable information and make
a guess for whether b = 0 or b = 1. At the end of
this experiment if the adversary has a non-negligible
advantage in guessing the selected tag correctly, then we
can say that the protocol violates untraceability criteria.
The success of A in guessing b is measured by A’s
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advantage in identifying the selected tag compared to
a random guess [35]. Hence it can be described by:

AdvExp
A,P (τ) = |Pr[b̂ = b]− 1

2
|, (4)

where τ is the security parameter e.g. ID length of the
tag. In this respect, a protocol suffers from traceability
if AdvExp

A,P (τ) > ε(τ), where ε(τ) is a negligible function
in τ .

Before proceeding to the details of the attack, we note
that by XORing two of the received messages Mi and
Mj the attacker obtains a noisy codeword as expressed
in Proposition 1. In this way the attacker can obtain an
advantage in distinguishing two tags: One of the tags,
as the non-target, sends random values for Mi,Mj i.e.
Mi⊕Mj will be recognized by the attacker as a random
message with a high probability. On the other hand,
Mi ⊕Mj will produce a decodable pattern with a non-
negligible possibility in case of the target tag. Hence, we
present a tracking attack that takes advantage of this fact
and breaks untraceability of the CMC protocol.

According to the CMC protocol, the reader R chooses
its target tag Ti and initiates the communication by
submitting the message C ′R with a random value. Note
that an adversary A who knows the code C(n, k, dmin)
can easily reveal the eR and si of Ti by just computing the
syndrome for C ′R. Hence, the adversary can impersonate
R to start a session with Ti by randomly picking a
codeword Cx, adding eR to it and transmitting the result
with a random nonce NR. Notice that Ti uses the same
secret key Ki until a successful session is realized.

Below we present how A can realize the privacy
experiment and achieve the tracking attack against
the CMC protocol. In the learning phase, two tags
T0 and T1 are selected, where s0 of the tag T0 is
available to A. Later on, she queries the tag about λ
times and collects the M messages of each session as
M = {M1,M2, · · · ,Mλ}.

Learning Phase
• A selects a pair of distinct tags T0 and T1.
• A randomly picks a codeword Cx and computes C ′x =
Cx ⊕ eR, where eRHT = s0 as the assigned syndrome
of T0

• A sends C ′x with a randomly generated value NR to T0.
• T0 responses with M1, V0, N0 with using its key K0.
• A stores M and discards other received messages. Then,

she ends the session.
• A repeats the previous steps for λ times and obtains

different M values as M =M1,M2, · · · ,Mλ.

In the challenge phase of the attack, the adversary
only the queries the selected tag once and obtains M∗.
Then she XORs M∗ with each Mj ∈ M and checks
whether the result as Ĉ = M∗ ⊕ Mj is a decodable
word or not. Note that there are two cases for Ĉ: In
case of T ∗ = T1 it will likely be a random sequence,
because M∗ is produced by XOR of K∗ and a random

value r. Thus, as stated in Proposition 2, with a high
probability decoding of Ĉ will result in a decoding
failure in that case. On the other hand if T ∗ = T0, as
stated in Proposition 1, Ĉ will be a noisy codeword due
to M∗ ⊕Mj = C∗ ⊕ e∗ ⊕ Cj ⊕ ej = Cz ⊕ e∗ ⊕ ej for any
Mj ∈M, where Cz = C∗⊕Cj . As a result, through trials
we expect some of Ĉ will yield a decodable pattern,
i.e. ĈHT ∈ Ss. Indeed, Algorithm 3.1 seeks such a case
to guess the selected tag is T0. Hence, according to the
result of the Algorithm 3.1 as given below, an adversary
may distinguish these two cases and makes her guess
with a non-negligible probability.

Challenge Phase
• A takes T0 and T1 as its challenge candidates.
• A randomly picks a codeword Cy and computes C ′y =
Cy ⊕ eR.

• A sends C ′y with a randomly generated value NR to the
selected tag T ∗b .

• A keeps response M∗ of T ∗b .
• A executes Algorithm 3.1.
• If the algorithm returns true, A guesses b = 0 and

decides T ∗b = T0. Otherwise guesses b = 1, i.e. T ∗b = T1.

Algorithm 3.1: ISSUMDECODABLE(M∗,M,Ss)

for i← 1 to λ

do

Ĉ ←M∗ ⊕Mi,Mi ∈M
if ĈHT ∈ Ss

then return ( true )
return ( false )

Taking the described attack into consideration one
can see that A may have non-negligible advantage in
guessing the identity of a selected tag. In other words,
the CMC is no longer considered to provide untrace-
ability feature. Let us now derive the advantage of the
adversary:

Pr[b̂ = b] =
∑

∀a∈{0,1}

Pr[b̂ = b|T ∗b = Ta]× Pr[T ∗b = Ta]

= Pr[b̂ = b|T ∗b = T0]× Pr[T ∗b = T0]
+Pr[b̂ = b|T ∗b = T1]× Pr[T ∗b = T1].

(5)
It is apparent that both of the marginal probabilities

Pr[T ∗b = T0] and Pr[T ∗b = T1] are 1/2, since selection
of each challenge candidate has equal chance. Moreover
Pr[b̂ = b|T ∗b = T0] is equal to probability of the Algorithm
3.1 returns true in λ trials for T ∗b = T0. Let p1 denote the
probability that sum of M∗ and any Mj ∈M results in a
decodable vector, where M∗ is the received M message
from the target tag T ∗b . It is equivalent to say that p1 =
Pr[(M∗ ⊕ Mj)H

T ∈ Ss] for any Mj ∈ M. Then from
binomial distribution probability of hitting at least one
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decodable result in λ trials will be 1− (1−p1)λ. Thus we
obtain:

Pr[b̂ = b|T ∗b = T0] = 1− (1− p1)λ.

Let p2 denote probability that addition of M∗ with an
Mi ∈ M yields a non-decodable word such that M∗ =
K∗ ⊕ r and r is a random value. It is equivalent to say
that p2 = Pr[(M∗⊕Mi)H

T /∈ Ss], where M∗ = K∗⊕r and
r is an n−bit length randomly produced binary string.
Since Pr[b̂ = b|T ∗b = T1] is indeed probability of Pr[(M∗⊕
Mi)H

T /∈ Ss] ∀Mi ∈ M, we evaluate this probability as
pλ2 . Hence, we obtain:

Pr[b̂ = b|T ∗b = T1] = pλ2 .

If we replace these derived values in (5), we obtain:

Pr[b̂ = b] =
1− (1− p1)λ

2
+
pλ2
2

(6)

Remark 3. Notice that by assuming sum of M∗ and any
Mi ∈ M results in another random binary sequence, where
M∗ = K∗ ⊕ r and r is a random value, we can obtain a
rough estimation for p2 by using (3) as p2 = 1−

∑tC
i=0 (

n
i)×2

k

2n .

Example 1. In order to show effectiveness of our proposed
attack, we mount it against the CMC protocol with
C(63, 39, 9) which is one of the suggested code sets by
the authors. To compute Pr[b̂ = b], we need p1, p2 and
λ (see Section 4.1 for evaluation of these values), while
tC = 4, n = 63 and k = 39 for this linear block code. From
our experimental computations we heuristically obtained
p1 = 0.069 and also p2 = 0.969. According to these values
with choosing λ = 20, we calculate that Pr[b̂ = b] = 0.646.
Hence, AdvExp

A,S (τ) ≈ 0.15 > ε(τ), for some negligible
function ε(τ). When we carry out the described privacy
experiment that run under the configuration shown in Table
2 for 100000 times in about 25 minutes, we observed that
the described method guesses correctly in 64208 trials, i.e.
with a success rate 0.642. Note that it is very close to our
expected value and it validates our derivations.

Remark 4. As the probability of a random number is
recognized as a valid codeword increases, the p2 value in (6)
decreases, i.e. it reduces advantage of an adversary in the
proposed attack. Hence, we can say that the proposed attack
is effective especially against the codes for which (3) has small
values. A comparison of success probabilities of the adversary
for different codewords is depicted in Table 3. Note that the
last column represents the probability of decoding a random
sequence as a valid codeword and as can be seen the success
probability of adversary increases in case of it decreases, i.e.
the results confirm this remark.

3.4 Key Recovery Attack
In this section, we describe a key recovery attack against
the CMC protocol such that an adversary can capture

Operating system Windows 7 Professional SP1 64 bit
CPU Intel Core i7-3612QM 2.1 GHz
Programming tool MATLAB R2012A

TABLE 2
The Configuration Used in Algorithms 3.1 and 3.2

Code Success Probability λ Value in (3)

C(47, 24, 11) 0.504 4 0.206

C(63, 39, 9) 0.646 20 0.038

C(62, 31, 12) 0.856 20 0.003

TABLE 3
Success Probabilities of the Tracking Attack for Different

Codes

the secret key Ki with O(max
n,k

(|Se|, 2k)) time complexity

and O(|Se|) data complexity. For example, as opposed
the claims of the authors, the key is recovered in terms
of hours if the adopted code is C(47, 24, 11). In order to
reduce attack complexity we apply a divide-and-conquer
approach and the attack is consisted of three steps. In
the first stage, the adversary collects many Mi messages
by querying the target tag several times. Second stage
involves control of whether a special Mi exists in M. In
the last stage, a brute force search is performed over the
result obtained from the previous phase and checks each
candidate key with a known solution for verification. We
express each stage of the attack in the following parts.

3.4.1 Collecting Samples

For our proposed attack, an adversary needs occurrence
of a special state where the picked error pattern by the
target tag is a zero sequence in computation of the M
message, i.e. w(ei) = 0. The probability of catching such
a state is 1

|Se| , so if the adversary obtains about |Se|
different M messages calculated with the same key, then
with a high probability collected messages will contain
the required case. Consequently, the adversary queries
the target tag for |Se| times and keeps responded M
messages as M = {M1,M2, . . . ,M|Se|}. As predictable,
in addition to those collected messages also a single
{Vi, NR, Ni} respective tuple is saved to be used in the
verification of the candidate key.

3.4.2 Recovering the State

In this stage, adversary assumes that at least one Mj ∈
M is in the form of Mj = Ca ⊕ Ki for any Ca ∈
C(n, k, dmin). That is an all-zero error vector is involved
in generation of this Mj . Let Y stand for this Mj . Then
XOR of Y with any Mx = Cb⊕ei⊕Ki in the collected data
yields a decodable erroneous codeword, since ∀Mx ∈M,
Y ⊕Mx = Ca⊕Ki⊕Cb⊕Ki⊕ei = Cd⊕ei and w(ei) ≤ tC .
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The following Algorithm 3.21 relies on this fact: It takes
set of collected messages M and the set of syndromes
Ss. If any Mj ∈ M exists such that Mj = Ca ⊕ Ki

for some codeword Ca, then XOR of Mj with all other
messages inM will result in a decodable word, i.e. ∀Mx,
(Mj ⊕Mx)H

T ∈ Ss and the algorithm returns Mj .

Algorithm 3.2: FINDCORRECTSTATE(M,Ss)

for i← 1 to |M| − α

do



decodable← true
for j ← i+ 1 to |M|

do


Ĉ ←Mi ⊕Mj

if ĈHT /∈ Ss
then decodable← false

break
if decodable

then return (Mi)
else return (0)

3.4.3 Retrieving the Key
From the previous stage of the attack, the adversary
gets the special message Mj = Ca ⊕ Ki. Note that for
this given Mj there are 2k possible solutions for Ki,
since number of codewords is 2k. In this step, adversary
executes Algorithm 3.3 as described below to obtain and
verify the key Ki. In each iteration of the algorithm a
candidate Kx is extracted from the given Mj , then it is
used in calculation of g(si ⊕NR ⊕ h(Ni ⊕Kx)) to verify
the key candidate by checking the result with Vj .

Algorithm 3.3: RECOVERKEY(Mj , C, Vj , NR, Ni)

for x← 1 to 2k

do


Kx ←Mj ⊕ Cx
V ′ ← g(si ⊕NR ⊕ h(Ni ⊕Kx))
if V ′ = Vj

then return (Kx)

4 ANALYSIS OF THE ATTACKS

4.1 Implementation Details
Before giving details of the implementation, we want to
emphasize that implementations in this study are not
done with intent to get an optimized code in terms
of speed, rather we just want to demonstrate that all
proposed attacks are applicable and in particular the
key can be retrieved in practical time by mounting the
presented key recovery attack. In order to realize the

1. In Algorithm 3.2 to get a correct result, XOR of the candidate with
at least α messages must be satisfied. Otherwise, for example, if α = 1
is chosen, then the prior to last item likely be returned as the correct
state, since only one item is checked. Therefore, α should be set to
realistic values such that it is guaranteed that the probability of a false
alarm is ignorable, e.g. in our experiments we set α = 10.

tracking attack and the second phase of the key recovery
attack, we have implemented the Algorithms 3.1 and
3.2 in MATLAB with configuration depicted in Table
2. Moreover, the last stage of the key recovery attack
as the Algorithm 3.3 is implemented in ANSI C and
the iterations have been conducted on the configuration
given in Table 4.

Operating system Ubuntu 14.04 LTS 64 bit
CPU Intel Core i7-3730 3.40 GHz x 8
Compiler gcc 4.8.2
Cryptographic tool OpenSSL 1.0.1f

TABLE 4
The Configuration Used in Algorithm 3.3

For the tracking attack, we firstly need p1 and p2
values in order to find an optimal λ. This is crucial
because as λ increases from some point the success
probability of the adversary given in (6) decreases. To
evaluate p1, p2 we ran the implementation 1000 times
in total. For each attempt a challenge M∗ is generated
from addition of randomly chosen key, codeword and
error vector. Also in each attempt the sequence R∗ is
produced by summing a random binary sequence with
the same key. Then, we construct an M with a size of
1000 and its elements are generated by XOR’ing the same
key and randomly selected codeword-error vector pairs.
Next, we count #{Mi ∈ M : (M∗ ⊕Mi)H

T ∈ Ss} and
#{Mj ∈ M : (R∗ ⊕Mj)H

T /∈ Ss} separately for each
attempt and obtain p1, p2 by averaging these values over
number of trials. In test of the attack, we conduct the
privacy experiment 100000 times in total and in each trial
we randomly choose one tag and launch the Algorithm
3.1 for the evaluated λ. At the end, the rate of correct
guesses gives us the success probability of the attack.

Since purpose of each algorithm in the key recovery
attack is clearly defined, a few things remained to dis-
cuss in this part. One of them is that we have carried
the last phase of the attack to another platform to utilize
efficiency of ANSI C in exhaustive search and benefit
from the crypto library of OpenSSL. Moreover to realize
g(si ⊕ NR ⊕ h(Ni ⊕ Kx)) of Algorithm 3.3, we execute
a hash function instead of the pseudo-random function
g, because no specific details are given about it and
we assume its computational complexity will not be
more than a hash function. Thus, we execute the hash
function twice within the parameters in the correct order
to verify the candidate key. The authors mention that
the hash function is a realizable in constrained RFID
tag environment. Although we have not implemented
a lightweight hash function in our experiment setup,
by taking the cycles per byte (cpb) values presented
in studies [36] into account we may figure out per-
formance of a lightweight hash function compared to
SHA-256. Indeed, in our literature survey we have not
met any comparison of software implementation perfor-
mances for lightweight hash functions with SHA-256.
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We have found benchmarks for SHA-256 in 29.3 cpb
on Intel Core2 Duo E8400 in study [36] and it is 95
cpb with running on Intel Core(TM) i7 CPU Q 720 for
the lightweight hash function PHOTON-80 [5] which is
one of the most efficient hash designs. Note that overall
performance (single-threaded + multi-threaded) of both
platforms are close to each other, so by considering these
values one can say that SHA-256 is about 3 times faster
than PHOTON-80. Therefore, we have used SHA-256 as
the hash function in our experiments and multiply the
measured time cost with 3 to estimate time cost for a
lightweight hash function.

4.2 Attack Complexities

In this part, we explain required time cost of each attack
and analyze their computation complexities. Firstly, the
tracking attack needs λ queries of the target tag in its
learning phase and λ trials in execution of the Algorithm
3.1 in the challenge phase. The authors in [2] give esti-
mated response times of a tag for a selected linear block
code and it is in order of microseconds. Furthermore
through our experiments we have observed that required
λ has small values, e.g. λ is 4 and 20 for C(47, 24, 11)
and C(63, 39, 9) respectively. Note that one may calculate
success probability given in (6) within attained p1 and p2
values over different λ values and cut at some point that
suffices in distinguishing the tags. By considering the
code C(62, 31, 12) for example when λ = 10 an adversary
succeeds with a chance of 0.73, while this reaches its
maximum value 0.99 in case of λ = 94. Hence, she may
decide λ = 10 is enough to launch the tracking attack.
Thus, whole total time complexity will be in order of
milliseconds and it can be ignorable.

We now address the time complexity of the proposed
key recovery attack. In collecting samples stage of the
attack, an adversary needs |Se| queries with tag and
storing of |Se| samples of M messages. Hence this
phase costs |Se| · Ctime computational time and |Se|
data samples, where Ctime denotes response time of a
tag upon receiving the inquiry for the respective linear
block code. In second phase of the attack, adversary
runs Algorithm 3.2 over the samples set M. Let E[X]
represent the expected value of j in Algorithm 3.2, i.e.
X is a discrete random variable for number of trials
getting the first non-decodable word in addition of
any two Mi,Mj ∈ M. Through our experiments, we
realize that only in a few trials a non-decodable result
is obtained and the algorithm passes to next candidate.
For example E[X] is 2.48, 1.27, 1.08 for the codes
C(24, 12, 8), C(47, 24, 11) and C(63, 39, 9) respectively.
As can be inferred from these values, in about two
attempts algorithm breaks the inner loop and continues
with the next candidate. Therefore in this stage for the
worst case a total of E[X] · |Se| + |Se| trials are made
and in each attempt one XOR operation + syndrome
computation + syndrome check process are done. In
syndrome check process whether computed syndrome

result resides in Ss is controlled. Note that the last item
|Se| in total of trials comes from checking all trials when
the candidate is the searched word. Let D denote time
cost for these three sub-procedure, then time cost of
this phase can be expressed as D · (E[X] · |Se| + |Se|).
For instance we evaluate D = 3.7ms for C(47, 24, 11).
In the last phase of the attack, 2k possible candidates
are searched for a given specific solution. For each
candidate we assume that one XOR operation + two
hash computation are required. Notice that normally
in verification the protocol uses one hash function
and one pseudo-random function (PRF). Since a PRF
is a computationally complex function, we assume
its computational cost is same as a hash function to
simplify calculations. Thus, computational time cost
of this phase can be expressed as 2F · 2k, where F
represents a time cost of a computationally complex
function such as a hash or a PRF. Time cost for each
stage of the attack is summarized in Table 5. Note
that complexity of guessing the key is dramatically
smaller than the claimed complexities. In contrast to
statements of [2] which claims guessing the secret key
for C(47, 24, 11) needs more than one hundred year,
in the following example we instantiate the key is
extracted in practical time, e.g. about 2 hours.

Phase Time Cost

Collecting Samples |Se| · Ctime

Recovering State D · (E[X] · |Se|+ |Se|)
Retrieving Key 2k · 2F

TABLE 5
Time Cost of the Key Recovery Attack

Example 2. We choose C(47, 24, 11) linear block code as the
example case of our proposed key recovery attack. Note that
from (1) we get |Se| = 220.72. For the first phase of the attack
we use the given estimated values in [2] to calculate time
cost. In this respect response time of a tag for this code is
provided as between 166.3− 1330.2 µs. In our computations
we take mean of this interval as Ctime = 748, 25 µs for time
cost of a single query response and obtain |Se| · Ctime = 1279
seconds. Next, we perform the second phase of the attack
that run Algorithm 3.2 under the configuration shown in
Table 2. The algorithm computes each candidate in about 3.7
milliseconds and we attain the correct state in average 5630
seconds through several trials. In the last step, we make an
exhaustive search with size of 2k for the solution obtained
from previous stage. We conduct this procedure by using
the crypto library of OpenSSL whose details are shown in
Table 4 and assuming used hash function is SHA-256 with
running it twice. This process costs 86 seconds in average
and to estimate cost of PHOTON-80 we multiply this with
3 and get 258 seconds. As a result, total time cost of our
attack now becomes 7167 seconds (depicted in Table 6), i.e.
the attack is completed about in two hours.
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Phase Time in seconds

Collecting Samples 1279

Recovering State 5630

Retrieving Key 258

TOTAL 7167

TABLE 6
Experimentally Time Cost for C(47, 24, 11)

One can see that computational complexity of the pro-
posed attack depends on maximum of |Se| and |2k|, i.e.
attack complexity can be described by O(max

n,k
(|Se|, 2k)).

Comparison of our attack complexities with the claimed
values in [2] for different code examples is illustrated in
Table 7. As a remark all examined linear block codes are
mentioned in [2].

Code Our Attack Claim of [2]

C(24, 12, 8) O(212) O(223.18)

C(47, 24, 11) O(224) O(244.72)

C(63, 24, 15) O(229.23) O(253.23)

C(63, 39, 9) O(239) O(258.28)

C(127, 36, 39) O(274.26) O(2110.26)

TABLE 7
Comparison of Computational Complexities in Key

Recovery for Different Codes

Remark 5. Notice that |Se| is indeed number of correctable
error patterns and from coding theory it is well known that
|Se| ≤ 2n−k. Therefore the real attack complexity will be ≤
O(max

n,k
(2n−k, 2k)) which will be very helpful to evaluate a

rough estimate of computational complexity for a given linear
block code.

5 CONCLUSION

In this paper, we have investigated security of the
lightweight RFID protocol CMC and presented two at-
tacks namely the tracking and the key recovery attacks.
By launching the former we have demonstrated that
an adversary may have non-negligible advantage in
distinguishing the tags, so it is addressed that the target
protocol cannot ensure untraceability property. In addi-
tion to this, the latter attack blows up the whole security
claims of the protocol and secret key of a selected tag
can be extracted in practical time depending on the
adopted linear block code. Although use of error cor-
recting codes alleviate load of the reader in computation
process and they can be implemented easily at the tag
side, linearity characteristic of these codes are exploited
in our attack strategy. Indeed apart from examination
of RFID security systems, our proposed attack calls

attention to the paramount importance of the fact that
linear block codes should be carefully deployed in crypto
systems, otherwise its advantageous points may weaken
the security of the system in favor of an attacker. Finally,
we have given implementation details of our attacks and
shown that they can be realizable by just using a PC.
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