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Abstract
Formal verification of the security of software systems is gradually
moving from the traditional focus on idealized models, to the more
ambitious goal of producing verified implementations. This trend
is also present in recent work targeting the verification of crypto-
graphic software, but the reach of existing tools has so far been
limited to cryptographic primitives, such as RSA-OAEP encryp-
tion, or standalone protocols, such as SSH. This paper presents a
scalable approach to formally verifying implementations of higher-
level cryptographic systems, directly in the computational model.

We consider circuit-based cloud-oriented cryptographic proto-
cols for secure and verifiable computation over encrypted data. Our
examples share as central component Yao’s celebrated transforma-
tion of a boolean circuit into an equivalent “garbled” form that
can be evaluated securely in an untrusted environment. We lever-
age the foundations of garbled circuits set forth by Bellare, Hoang,
and Rogaway (CCS 2012, ASIACRYPT 2012) to build verified im-
plementations of garbling schemes, a verified implementation of
Yao’s secure function evaluation protocol, and a verified (albeit par-
tial) implementation of the verifiable computation protocol by Gen-
naro, Gentry, and Parno (CRYPTO 2010). The implementations are
formally verified using EasyCrypt, a tool-assisted framework for
building high-confidence cryptographic proofs, and critically rely
on two novel features: a module and theory system that supports
compositional reasoning, and a code extraction mechanism for gen-
erating implementations from formalizations.

Keywords. Garbled Circuits, Secure Function Evaluation, Verifiable
Computation, Verified Implementations, EasyCrypt.

1. Introduction
Research on formally verifying the security of software systems
was initiated almost 40 years ago, and has established a number
of significant landmarks, including security proofs for separation
kernels, hypervisors, virtual machines, and web browsers. For their
most part, these works have focused on idealized models. However,
a recent trend is to build verified implementations. Transposing the
guarantees from models to implementations offers a much higher
degree of assurance, and prevents the possibility of introducing
attack vectors via implementation mistakes or abstraction gaps.

The recent security controversy has placed cryptographic soft-
ware under the spotlight and has raised justified concerns with re-
spect to the potential exploitation of backdoors at two different
levels: i. those that undermine the theoretical security guarantees
offered by protocols included in cryptographic standards; ii. those

that thwart the practical security of cryptographic software imple-
mentations. One potential way to rebuild trust in cryptographic
software is to employ formal methods to rule out the existence of
such backdoors, by building and deploying formally verified cryp-
tographic implementations.

One application area where the adoption of this strategy is
both particularly pressing and challenging is that of cloud com-
puting. Here, the need to reduce the level of trust placed in service
providers can only be addressed by deploying a new generation of
advanced cryptographic protocols that allow end-users to protect
their data, whilst taking advantage of the technical and economic
benefits of the cloud paradigm. These protocols enable secure and
verifiable computation over encrypted data and can be seen as cryp-
tographic virtual machines supporting arbitrary computations; to
highlight this fact, we will refer to them as cryptographic systems.

Developing verified implementations of cryptographic systems
seems unfathomable because their security hinges on rather sophis-
ticated cryptographic constructions, whose security must itself be
verified formally. We identify at least three significant challenges
towards achieving this goal, and argue below that these challenges
have not yet been met satistactorily by existing tools for verifying
the security of cryptographic constructions such as CryptoVerif [11]
and earlier versions (v0.2) of EasyCrypt [22]; we discuss F7 [33] at
the end of the introduction.

The first challenge is to provide support for a broader scopus of
cryptographic proof techniques. EasyCrypt v0.2 and CryptoVerif
excel at modelling basic game-playing techniques such as equiv-
alences, failure events, reductions, eager/lazy sampling. However,
a number of standard concepts and techniques from provable se-
curity, such as hybrid arguments or rewinding, have resisted thus
far formalization in these systems. In addition, comparatively little
work has been done in formalising computational security proofs
for simulation-based notions of security. Indeed, simulation-based
proofs are markedly distinct from the reductionistic arguments typ-
ically addressed by CryptoVerif or EasyCrypt v0.2; they intrinsi-
cally require existential quantification over adversarial algorithms
and the ability to instantiate security models with concrete algo-
rithms (the simulators) that serve as witnesses as to the validity of
the security claims. Notable exceptions include formal accounts of
zero-knowledge protocols [44] and computational differential pri-
vacy [55]; however, these simulation-based proofs are developed in
simplified settings, as further elaborated in the related work section.

The second challenge is to ensure that the verification tools per-
mit taming the complexity of cryptographic systems. CryptoVerif
and EasyCrypt v0.2 have primarily been used to verify crypto-



graphic primitives, such as Full-Domain Hash signatures or OAEP,
or standalone protocols, such as Kerberos or SSH. While these
examples can be intricate to verify, there is a difference of scale
with cryptographic systems, which typically involve several layers
of cryptographic constructions. Scalability is a well-known bottle-
neck for formal verification, that has been addressed with varying
degrees of success over the last 40 years. However, CryptoVerif
and EasyCrypt v0.2 do not offer any mechanism that specifically
addresses this issue, and it is not even clear how (and which) mech-
anisms used elsewhere could be added in order for formalizations
to scale to larger systems.

The third challenge is to enable a new workflow of specification,
validation, and prototyping for building verified implementations
of cryptographic systems. To ensure that these implementations can
have a practical impact, one must develop integrated environments
in which cryptographers can specify cryptographic algorithms, per-
form lightwheight validation (e.g., using a type-checking mecha-
nism), formalize security proofs, and generate reasonably efficient
implementations. What we envision here is a formal counterpart
to existing prototyping systems for cryptography [66–99]. Although
CryptoVerif and EasyCrypt v0.2 have made preliminary steps in
this direction, they fall short of providing the functionalities that
are expected by practice-oriented cryptographers (see section 77).

These challenges can be summarised as an important open ques-
tion: can we realistically hope to build practical verified implemen-
tations of cryptographic systems in the near future?

CONTRIBUTIONS. In this paper we answer this open question pos-
itively, by presenting a new version of EasyCrypt and an associated
methodology that enables us to obtain the first verified implemen-
tations of cryptographic systems. More specifically, we provide:

1. verified implementations of two variants of Yao’s garbled cir-
cuits, following the foundational framework put forth by Bel-
lare, Hoang and Rogaway [1010, 1111], and an n-fold extension of
the oblivious transfer protocol by Bellare and Micali [1212], in the
hashed version presented by Naor and Pinkas [1313] (n being the
size of the selection string). These are generic components that
can be used in many cryptographic systems;

2. a verified implementation of Yao’s two-party secure function
evaluation (SFE) protocol based on garbled circuits and obliv-
ious transfer. This protocol allows two parties holding private
inputs x1 and x2, to jointly evaluate any function f(x1, x2) and
learn its result, whilst being assured that no additional informa-
tion about their respective inputs is revealed. Two-party SFE
provides a general distributed solution to the problem of com-
puting over encrypted data in cloud scenarios;

3. a verified (albeit partial) implementation of a verifiable compu-
tation (VC) protocol due to Gennaro, Gentry, and Parno (GGP).
This protocol allows a client to delegate the computation of an
arbitrary function f to an untrusted worker, while keeping its
data secret and being able to verify that the result is correct. It is
based on Yao’s garbled circuits and fully homomorphic encryp-
tion (FHE),11 and it was one of the first to address verifiability
in the specific scenario of cloud computing.

1 The fact that it relies on FHE explains why we only have a partial imple-
mentation: there does not yet exist a practical instantiation for this compo-
nent. The modularity of our approach implies that a working implementa-
tion can be derived if and when a suitable FHE scheme becomes available.
We also note that that many exciting developments [1414, 1515] have taken place
in VC since the original GGP paper. However, this protocol uses Yao’s
garbled circuits in a totally different way than that required by Yao’s SFE
protocol, which makes it ideal for our demonstration purposes.

In addition to their practical relevance, these examples are appeal-
ing because they crystallize many facets of the issues that arise in
the formalization of cryptographic systems.

We adopt the latest version22 (v1.0) of EasyCrypt, which en-
hances the initial prototype described in [22] in multiple directions.
In particular, it provides a lightweight module system that is able to
reflect the logical design of cryptographic systems and the modular
structure of their proofs. This version also incorporates a new code
generation mechanism to produce reasonably efficient functional
implementations of cryptographic algorithms from EasyCrypt de-
scriptions. Using the new features of EasyCrypt and our own ex-
tensions, we are able to formalize complex reasonings that arise in
our examples and were previously out of reach.

Highlights of our formalization include:

• a formally verified library of generic hybrid arguments. The li-
brary is based on formalizing security games as parametrisable
modules, and critically uses quantification over modules. We
use hybrid arguments in the security proofs for oblivious trans-
fer and for garbled circuits. However, the library can be used
for other purposes, and will contribute to build a broad scopus
of formally verified cryptographic techniques;
• simulation-based proofs where simulators and attackers can be

seen as interchangeable adversarial algorithms, which can ei-
ther be concrete, existentially quantified, or universally quanti-
fied. In particular, the generic statements of security for the SFE
protocol involve two alternations of quantifiers, which would be
challenging to handle even in a hand-written proof.
• layered security proofs in which general compositional theo-

rems can be proven using abstract views of cryptographic prim-
itives, and instantiations of these primitives can be proven se-
cure down to one or more computational assumptions. This type
of modular reasoning, which is not necessary when performing
reductionistic proofs (even complex ones), is essential to permit
tackling security proofs of high-level protocols.

Moreover, using the new code generation mechanism provided by
EasyCrypt we are able to derive a verified implementation for the
SFE protocol, and a verified (but partial) implementation of the VC
protocol. We include experimental results showing the practicality
of our verified implementation of Yao’s SFE protocol.

COMPARISON WITH F7. Bhargavan et al. [33] develop a type-
based approach for the verification of cryptographic implementa-
tions written in a dialect of ML. Their approach is based on re-
finement types, which are counterparts to assertions in typed func-
tional languages, and allows proving security in a symbolic setting
where cryptographic primitives are idealized. Subsequently, Four-
net et al. [1616] extend this approach towards proving security in the
computational setting, using an intricate combination of type ab-
straction and refinement types. They then use their system to build
verified implementations of TLS [1717]. In particular, they have cur-
rently verified the TLS handshake protocol.

However, F7 does not provide any support for relational nor
probabilistic reasonings, both of which are central to cryptographic
proofs. As a consequence, large and critical parts of cryptographic
proofs cannot be stated (let alone verified) using F7 and must in-
stead be carried out using pen and paper. Accordingly, there is a
significant gap between F7 statements and the provable security
guarantees that are commonly sought by cryptographers. We be-
lieve that this gap is not only hard to apprehend, but might also be
problematic to close. As evidence, their most recent work on TLS
uses EasyCrypt (v1.0) to carry out some intricate parts of the proof.

2 http://www.easycrypt.infohttp://www.easycrypt.info
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IMPLEMENTATION-LEVEL DESCRIPTIONS. It is common practice
in cryptographic implementations to separate the randomness sam-
pling operations from the rest of the implementation. There are two
reasons for this: on one hand, general-purpose programming lan-
guages are not probabilistic, and so randomness must invariably
be obtained via some sort of system/library call and handled ex-
plicitly; on the other hand, developers (particularly in open-source
scenarios) often give the end-users the possibility (and responsibil-
ity) to choose their preferred randomness sampling procedure (see,
for example, the NaCl cryptographic library33).

We take the same approach, describing various cryptographic
algorithms as deterministic functional operators, so that we imme-
diately get for free a one-to-one mapping between the EasyCrypt
functional definitions and ML code. The randomness generation
procedures, which we see as ideal specifications of the required
distributions that must be available in practical applications, are de-
scribed separately as EasyCrypt modules.

2. Two-party protocols and oblivious transfer
We present a variant of a classic oblivious transfer protocol [1212, 1313]
and discuss its security proof. Its small size and relative simplicity
make it a good introductory example to EasyCrypt formalization.

TWO-PARTY PROTOCOLS. We first start by generically defining
two-party protocols, that generalize both Secure Function Evalua-
tion and Oblivious Transfer, and their security. In EasyCrypt, dec-
larations pertaining to abstract concepts meant to later be refined
can be grouped into named theories such as the one shown in Fig-
ure 11. Any lemma proved in such a theory is also a lemma of any
implementation (or instantiation) where the theory axioms hold.

theory Protocol.
type input1, output1. type input2, output2.
op validInputs: input1 → input2 → bool.
op f: input1 → input2 → output1 ∗ output2.

type rand1, rand2, conv.
op prot: input1→ rand1→ input2→ rand2→ conv ∗ output1 ∗ output2.
. . .

end Protocol.

Figure 1: Abstract Two-Party Protocol.

Two parties want to compute a functionality f on their joint in-
puts, each obtaining their share of the output. This may be done
interactively via a protocol prot that may make use of additional
randomness (passed in explicitly for each of the parties) and pro-
duces, in addition to the result, a conversation trace of type conv
that describes the messages publicly exchanged by the parties dur-
ing the protocol execution. In addition, the input space may be re-
stricted by a validity predicate validInputs. This predicate expresses
restrictions on the adversary-provided values, typically used to ex-
clude trivial attacks not encompassed by the security definition.

Following the standard approach for secure multi-party compu-
tation protocols, security is defined using simulation-based defini-
tions. In this case we capture honest-but-curious (or semi-honest, or
passive) adversaries. We consider each party’s view of the protocol
(typically containing its randomness and the list of messages ex-
changed during a run), and a notion of leakage for each party, mod-
elling how much of that party’s input may be leaked by the protocol
execution (for example, its length). Informally, we say that such a
protocol is secure if each party’s view can be efficiently simulated
using only its inputs, its outputs and the other party’s leakage. For-
mally, we express this security notion using two games (one for
each party). We display one of them in Figure 22, in the form of

3 http://nacl.cr.yp.tohttp://nacl.cr.yp.to

an EasyCrypt module. Note that modules are used to model games
and experiments, but also schemes, oracles and adversaries.

Module type AdvProt
i (i ∈ {1, 2}) tells us that an adversary

impersonating Party i is defined by two procedures: i. choose that
takes no argument and chooses a full input pair for the functionality,
and ii. distinguish, that uses Party i’s view of the protocol execution
to produce a boolean guess as to whether it was produced by the
real system or the simulator. Since the module type is not parame-
terized, the adversary is not given access to any oracles (modelling
a non-adaptive adversary). We later show how oracle access can be
given to both abstract and concrete modules. Note that procedures
in the same module may share state, and it is therefore not neces-
sary to explicitly add state to the module signature. A module that
implements all procedures in a given module type is said to imple-
ment that type. Note that, for example, any module implementing
Sim also implements Sim1. We omit module types for the random-
ness generators R1 and R2, as they only provide a single procedure
gen taking some leakage and producing some randomness. We also
omit the dual security game for Party 2.

The security game, modelled as module Sec1, is explicitly pa-
rameterized by two randomness-producing modules R1 and R2, a
simulator S1 and an adversary A1. This enables the code of pro-
cedures defined in Sec1 to make queries to any procedure that ap-
pears in the module types of its parameters. However, they may
not directly access the internal state or procedures that are imple-
mented by concrete instances of the module parameters, when these
are hidden by the module type. The game implements, in a sin-
gle experiment, both the real and ideal worlds. In the real world,
the protocol prot is used with adversary-provided inputs to con-
struct the adversary’s view of the protocol execution. In the ideal
world, the functionality is used to compute Party 1’s output, which
is then passed along with Party 1’s input and Party 2’s leakage to
the simulator, which produces the adversary’s view of the system.
We prevent the adversary from trivially winning by denying it any
advantage when it chooses invalid inputs.

A two-party protocol prot (parameterized by its randomness-
producing modules) is said to be secure with leakage Φ = (φ1, φ2)
whenever, for any adversaryAi implementing AdvProt

i (i ∈ {1, 2}),
there exists a simulator Si implementing Simi such that

Adv
ProtiΦ
prot,Si,R1,R2

(Ai) = |2 · Pr[Seci(R1,R2, Si,Ai) : res]− 1|

is small, where res denotes the Boolean output of procedure main.
Intuitively, the existence of such a simulator Si implies that the

protocol conversation and output cannot reveal any more informa-
tion than the information revealed by the simulator’s input.

Throughout the paper we omit the indices representing random-
ness generators whenever they are clear from the context.

OBLIVIOUS TRANSFER PROTOCOLS. We can now define oblivi-
ous transfer, restricting our attention to a specific notion useful for
constructing general SFE functionalities. To do so, we clone the
Protocol theory, which makes a literal copy of it and allows us to
instantiate its abstract declarations with concrete definitions. When
cloning a theory, everything it declares or defines is part of the
clone, including axioms and lemmas. Note that lemmas proved in
the original theory are also lemmas in the clone. The partial instan-
tiation is shown in Figure 33. We restrict the input, output and leak-
age types for the parties, as well as the leakage functions and the
functionality f. The chooser (Party 1) takes as input a list of Boolean
values (i.e., a bit-string) she needs to encode, and the sender (Party
2), takes as input a list of pairs of messages (which can also be
seen as alternative encodings for the Boolean values in Party 1’s
inputs). Together, they compute the array encoding the chooser’s
input, revealing only the lengths of each other’s inputs. We declare
an abstract constant n that bounds the size of the chooser’s input.

http://nacl.cr.yp.to


type leak1, leak2. op φ1 : input1 → leak1. op φ2 : input2 → leak2.
type view1 = rand1 ∗ conv. type view2 = rand2 ∗ conv.

module type Sim = {
proc sim1(i1: input1, o1: output1, l2: leak2) : view1

proc sim2(i2: input2, o2: output2, l1: leak1) : view2

}.

module type Simi = {
proc simi(ii: inputi, oi: outputi, l3−i: leak3−i) : viewi

}.

module type AdvProt
i = {

proc choose(): input1 ∗ input2
proc distinguish(v: viewi) : bool
}.

module Sec1(R1: Rand1, R2: Rand2, S: Sim1, A1: AdvProt
1 ) = {

proc main() : bool = {
var real, adv, view1, o1, r1, r2, i1, i2;
(i1,i2) = A1.choose();

real
$← {0,1};

if (!validInputs i1 i2)

adv
$← {0,1};

else {
if (real) {

r1 = R1.gen(φ1 i1);
r2 = R2.gen(φ2 i2);
(conv, ) = prot i1 r1 i2 r2;
view1 = (r1, conv);
} else {

(o1, ) = f i1 i2;
view1 = S.sim1(i1, o1, φ2 i2);
}
adv = A1.distinguish(view1);
}
return (adv = real);
}
}.

Figure 2: Security of a two-party protocol protocol.

clone Protocol as OT with
type input1 = bool array,
type output1 = msg array,
type leak1 = int,
type input2 = (msg ∗ msg) array,
type output2 = unit,
type leak2 = int,

op φ1 (i1: bool array) = length i1,

op φ2 (i2: (msg ∗ msg) array) = length i2,

op f (i1: bool array) (i2: (msg ∗ msg) array) = i1 i2
.

op validInputs(i1: bool array) (i2: (msg ∗ msg) array) =

0 < length i1 ≤ nmax ∧ length i1 = length i2,
. . .

Figure 3: Instantiating Two-Party Protocols into Abstract SFE.

This introduces an implicit quantification on the bound n in all re-
sults we prove. Defining OT security is then simply a matter of
instantiating the general notion of security for two-party protocols
via cloning. Looking ahead, we use AdvOTi

to denote the resulting
instance of Adv

Proti(length,length) , and similarly, we write AdvOT
i the

types for adversaries against the OT instantiation.

AN OBLIVIOUS TRANSFER PROTOCOL. To define a concrete two-
party OT protocol, one now only has to define the types of random-
ness and conversations and the protocol itself, with its individual
computation and message exchange steps.

In the following, we abuse notation and denote operators, their
lifting to arrays of the same length, and their lifting to one array

argument and one scalar argument in the same way, writing v to
single out array variables. For an array of pairs a, we write a0 for
the array of its first components (i.e. fst a), and a1 for the array of
its second components. We also denote multiplicatively operations
in a group G of prime order q, using a given generator g.

In Figure 44, we describe our OT protocol in a purely functional
manner, making any local state shared between the various stages
of a given party explicit. For example, step1 outputs the sender’s
local state sts, for later use by step3.

op step1 (m:(msg ∗ msg) array) (r:int array ∗ G) =
let (c,hkey) = r in

let sts = (m,gc ,hkey) in

let m1 = (hkey,gc ) in
(sts,m1).

op step2 (b:bool array) (r:G array) m1 =
let (hkey,gc) = m1 in

let stc = (b,hkey,r) in

let m2 = if b then gc / gr else gr in
(stc,m2).

op step3 sts (r:G) m2 =
let (m,gc,hkey) = sts in
let e = (H(hkey,m2

r) ⊕ m0,H(hkey,(gc/m2)r) ⊕ m1) in
let m3 = (gr,e) in
m3.

op finalize stc m3 =

let (b,hkey,x) = stc in
let (gr,e) = m3 in

let res = H(hkey,grx ) ⊕ eb in

res.

clone OTProt as SomeOT with
type rand1 = G array,
type rand2 = (G array ∗ G) ∗ G,

op prot (b:input1) (rc:rand1) (m:input2) (rs:rand2) =
let (sts,m1) = step1 m (fst rs) in

let (stc,m2) = step2 b rc m1 in
let m3 = step3 sts (snd rs) m2 in
let res = finalize stc m3 in
let conv = (m1,m2,m3) in
(conv,(res,())).

Figure 4: Our Concrete Oblivious Transfer Protocol.

We prove this protocol secure in the standard model via a reduc-
tion to the decisional Diffie-Hellman assumption and an entropy-
smoothing assumption on the hash function. We let AdvDDH(A)
and AdvES(A) be the advantage of an adversary A breaking the
DDH and the Entropy Smoothing assumptions, respectively.

Theorem 1 (OT-security of SomeOT). For all i ∈ {1, 2} and
OTi adversary Ai of type AdvOT

i against the SomeOT protocol,
we can construct two efficient adversaries DDDH and DES, and a
efficient simulator S such that

AdvOTi

SomeOT,S(Ai) ≤ n · AdvDDH(DDDH) + n · AdvES(DES).

Proof (Sketch). We first reduce to n-ary variants of the assump-
tions, constructing adversaries DDDHn and DESn. Security against
malicious senders (i = 1) is information theoretic, since the
sender’s view of a protocol execution is statistically indistinguish-
able from a random view. To prove security against malicious
choosers (i = 2), we consider a simulator S that replaces the cho-
sen components of the ciphertexts e0 and e1 (in step2) by random
bitstrings. The proof that the real world is computationally close
to the ideal world follows the following strategy: DDDHn is used to
justify the replacement of the public keys corresponding to chosen
messages by random group elements, and DESn to replace the hash



of random group elements by random bitstrings. We further reduce
both n-ary variants to the corresponding standard assumption using
a single generic lemma described below.

USING GENERIC LEMMAS. In the proof of Theorem 11, both reduc-
tions first go to n-ary versions of the DDH and Entropy-Smoothing
hypotheses before reducing these further to standard assumptions.
Both of these two “n-ary to unary” reductions are in fact proved
by simply applying a generic lemma, which we formalize inde-
pendently of these particular applications as part of EasyCrypt’s
library of verified transformations. The objective of this library is
to formalize often-used proof techniques once and for all, enabling
the user to perform proofs “by a hybrid argument”, or “by eager
sampling”, whilst formally checking that all side conditions are ful-
filled at the time the lemma is applied. We now describe the generic
hybrid argument used in the proof of Theorem 11 and others.

type input, output, inleaks, outleaks.

module type Orcl = { proc o( :input) : output }.

module type Orclb = {
proc leaks( :inleaks): outleaks
proc oL( :input) : output
proc oR( :input) : output
}.

module type AdvHy (Ob:Orclb, O:Orcl) = { proc main () : bool }.

module Ln (Ob:Orclb, A:AdvHy) = {
module O: Orcl = { . . . } (∗ increment C.c and call Ob.oL ∗)
module A’ = A(Ob, O);
proc main () : bool = { C.c = 0; return A’.main(); }
}.
module Rn (Ob:Orclb, A:Adv) = { . . . (∗ Same as Ln but use Ob.oR ∗) }.

op q : int.

module B(A:AdvHy, Ob:Orclb, O:Orcl) = {
module LR = {
var l, l0 : int
proc orcl(m:input):output = {
var r : output;
if (l0 < l) r = Ob.oL(m);
else if (l0 = l) r = O.orcl(m);
else r = Ob.oR(m);
l = l + 1; return r;
}
}
module A’ = A(Ob,LR)
proc main():outputA = {
var r:outputA;

LRB.l0
$← [0..q−1]; LRB.l = 0; return A’.main();

}
}.

lemma Hybrid: ∀ (Ob:Orclb{C,B}) (A:AdvHy {C,B,Ob}),
Pr[Ln(Ob,A): res∧ C.c ≤ n] − Pr[Rn(Ob,A): res∧ C.c ≤ n]
= q ∗ (Pr[Ln(Ob,B(A)): res∧ B.l ≤ n ∧ C.c ≤ 1]

− Pr[Rn(Ob,B(A)): res∧ B.l ≤ n ∧ C.c ≤ 1]).

Figure 5: Abstract Definitions for Hybrid Argument.

As described in Figure 55, consider an adversary parametrized
by two modules. The first parameter Ob, implementing the mod-
ule type Orclb, provides a leakage oracle, a left oracle oL and right
oR. The second parameter O, implementing module type Orcl, pro-
vides a single oracle o. The goal of an adversary implementing type
AdvHy is to guess in at most n queries to O.o if it is the left oracle
Ob.oL or the right oracle Ob.oR. To express the advantage of such
an adversary, we write two modules: the first one, Ln, defines a
game where the adversary is called with O.o equal to Ob.oL, the

second one, Rn, uses Ob.oR instead. Both Ln and Rn use a vari-
able C.c to count the number of queries made to their oracle by
the adversary. We define the advantage of an adversary A in dis-
tinguishing Ob.oL from Ob.oR as the difference of the probability
of games Ln(Ob,A) and Rn(Ob,A) returning 0. Given any distin-
guishing adversary A, we construct a distinguishing adversary B
that may use A but always makes at most one query to oracle O.o.

The Hybrid lemma relates the advantages of any adversary A
with the advantage of its constructed adversary B whenA is known
to make at most q queries to O.o. Note that the validity of the
Hybrid lemma is restricted to adversaries that do not have a direct
access to the counter C.c, or to the memories of B and Ob, this
is denoted by the notation AdvHy{C,B,Ob} in the EasyCrypt code.
Other lemmas shown in this paper also have such restrictions in
their formalizations, but they are as expected (that is, they simply
enforce a strict separation of the various protocols’, simulators’
and adversaries’ memory spaces) and we omit them for clarity.
The construction of B is generic in the underlying adversary A,
which can remain completely abstract. We underline that, for all
A implementing module type AdvHy, the partially-applied module
B(A) implements AdvHy as well and can therefore be plugged
in anywhere a module of type AdvHy is expected. This ability to
generically construct over abstract schemes or adversaries is central
to handling modularity in EasyCrypt.

Finally, we observe that the Hybrid lemma applies even to an
adversary that may place queries to the individual Ob.oL and Ob.oR
oracles. It is of course applicable (and is in fact often applied) to
adversaries that do not place such queries.

3. Garbling schemes
Garbling schemes [1010] (Figure 66) are operators on functionalities
of type func. Such functionalities can be evaluated on some input
using an eval operator. In addition, a functionality can be garbled
using three operators (all of which may consume randomness).
funG produces the garbled functionality, inputK produces an input-
encoding key, and outputK produces an output-encoding key. The
garbled evaluation evalG takes a garbled functionality and some
encoded input and produces the corresponding encoded output. The
input-encoding and output-decoding functions are self-explanatory.
In practice, we are interested in garbling functionalities encoded as

type func, input, output.
op eval : func → input → output.
op valid: func → input → bool.

type rand, funcG, inputK, outputK.
op funcG : func → rand → funcG.
op inputK : func → rand → inputK.
op outputK: func → rand → outputK.

type inputG, outputG.
op evalG : funcG → inputG → outputG.
op encode: inputK → input → inputG.
op decode: outputK → outputG → output.

Figure 6: Abstract Garbling Scheme.

Boolean circuits and therefore fix the func and input types and the
eval function. Circuits themselves are represented by their topology
and their gates. A topology is a tuple (n,m, q,A,B), where n is
the number of input wires, m is the number of output wires, q is
the number of gates, and A and B map to each gate its first and
second input wire respectively. A circuit’s gates are modelled as
a map G associating output values to a triple containing a gate
number and the values of the input wires. Gates are modelled
polymorphically, allowing us to use the same notion of circuit for
Boolean circuits and their garbled counterparts. We only consider



projective schemes [1010], where Boolean values on each wire are
encoded using a fixed-length random token. This fixes the type
funcG of garbling schemes, and the outputK and decode operators.

Following the Garble1 construction of Bellare et al. [1010], we
construct our garbling scheme using a variant of Yao’s garbled cir-
cuits based on a pseudo-random permutation, via an intermediate
Dual-Key Cipher (DKC) construction. We denote the DKC encryp-
tion with E, and DKC decryption with D. Both take four tokens as
argument: a tweak that we generate with an injective function and
use as unique IV, two keys, and a plaintext (or ciphertext). Some
intuition about the construction is given in Appendix A.1A.1. We give
functional specifications to the garbling algorithms in Figure 77. For
clarity, we denote functional folds using stateful for loops.

type topo = int ∗ int ∗ int ∗ int array ∗ int array.
type α circuit = topo ∗ (int ∗ α ∗ α ,α ) map.

type leak = topo.

type input, output = bool array.
type func = bool circuit.

type funcG = token circuit.
type inputG, outputG = token array.
op evalG f i =

let ((n,m,q,A,B),G) = f in
let evalGate = λ g x1 x2,

let x1,0 = lsb x1 and x2,0 = lsb x2 in
D (tweak g x1,0 x2,0) x1 x2 G[g,x1,0,x2,0] in

let wires = extend i q in (∗ extend the array with q zeroes ∗)
let wires = map (λ g, evalGate g A[g] B[g]) wires in (∗ decrypt wires ∗)
sub wires (n + q − m) m.

type rand, inputK = ((int ∗ bool),token) map.
op encode iK x = init (length x) (λ k, iK[k,x[k]]).

op inputK (f:func) (r:((int ∗ bool),token) map) =
let ((n, , , , ), ) = f in filter (λ x y, 0 ≤fst x < n) r.

op funcG (f:func) (r:rand) =
let ((n,m,q,A,B),G) = f in
for (g,xa,xb) ∈ [0..q] ∗ bool ∗ bool

let a = A[g] and b = B[g] in
let ta = r[a,xa] and tb = r[b,xb] in

G̃[g,ta,tb] = E (tweak g ta tb) ta tb r[g,G[g,xa,xb]]

((n,m,q,A,B),G̃).

Figure 7: SomeGarble: our Concrete Garbling Scheme.

SECURITY OF GARBLING SCHEMES. The privacy property of gar-
bling schemes required by Yao’s SFE protocol is more conveniently
captured using a simulation-based definition. Like the security no-
tions for protocols, the privacy definition for garbling schemes is
parameterized by a leakage function upper-bounding the informa-
tion about the functionality that may be leaked to the adversary. (We
consider only schemes that leak at most the topology of the circuit.)
Consider efficient non-adaptive adversaries that provide two proce-
dures: i. choose takes no input and outputs a pair (f,x) composed
of a functionality and some input to that functionality; ii. on input
a garbled circuit and garbled input pair (F,X), distinguish outputs
a bit b representing the adversary’s guess as to whether he is in-
teracting with the real or ideal functionality. Formally, we define
the SIM-CPAΦ advantage of an adversaryA of type AdvGb against
garbling scheme Gb = (funcG,inputK,outputK) and simulator S as

AdvSIM-CPAΦ

Gb,R,S (A) = |2 · Pr[SIM(R, S,A) : res]− 1| .

A garbling scheme Gb using randomness generator R is SIM-CPAΦ-
secure if, for all adversaryA of type AdvGb, there exists an efficient
simulator S of type Sim such that AdvSIM-CPAΦ

Gb,R,S (A) is small.

type leak.
op Φ: func → leak.

module type Sim = {
fun sim(x: output, l: leak): funcG ∗ inputG
}.

module type AdvGb = {
fun choose(): func ∗ input
fun distinguish(F: funcG, X: inputG) : bool
}.

module SIM(R: Rand, S: Sim, A: AdvGb) = {
fun main() : bool = {
var real, adv, f, x, F, X;
(f,x) = A.gen query();

real
$← {0,1};

if (!valid f x)

adv
$← {0,1};

else {
if (real) {

r = R.gen(Φ f);
F = funcG f r;
X = encode (inputK f r) x;
} else {

(F,X) = S.sim(f(x),Φ f);
}
adv = A.dist(F,X);
}
return (adv = real);
}
}.

Figure 8: Security of garbling schemes.

Following [1010], we establish simulation-based security via a
general result that leverages a more convenient indistinguishability-
based security notion denoted IND-CPAΦtopo : we formalize a gen-
eral theorem stating that, under certain restrictions on the leakage
function Φ, IND-CPAΦ-security implies SIM-CPAΦ security. This
result is discussed below as Lemma 11.

A MODULAR PROOF. The general lemma stating that IND-CPA-
security implies SIM-CPA-security is easily proved in a very ab-
stract model, and is then as easily instantiated to our concrete gar-
bling setting. We describe the abstract setting to illustrate the proof
methodology enabled by EasyCrypt modules on this easy example.

module type Adv IND = {
fun choose(): ptxt ∗ ptxt
fun distinguish(c:ctxt): bool
}.

module IND (R:Rand, A:Adv IND) = {
fun main(): bool = {
var p0, p1, p, c, b, b’, ret, r;
(p0,p1) = A.choose();
if (valid p0 ∧ valid p1 ∧ Φ p0 = Φ p1) {

b
$← {0,1};

p = if b then p1 else p0;
r = R.gen(|p|);
c = enc p r;
b’ = A.distinguish(c);
ret = (b = adv);
}
else ret

$← {0,1};
return ret;
}
}.

Figure 9: Indistinguishability-based Security for Garbling Schemes.



The module shown in Figure 99 is a slight generalization of the stan-
dard IND-CPA security notions for symmetric encryption, where
some abstract leakage operator Φ replaces the more usual check
that the two adversary-provided plaintexts have the same length.We
formally prove an abstract result that is applicable to any circum-
stances where indistinguishability-based and simulation-based no-
tions of security interact. We define the IND-CPA advantage of an
adversaryA of type Adv IND against the encryption operator enc us-
ing randomness generator R with leakage Φ as

AdvIND-CPAΦ

enc,R (A) = |2 · Pr[Game IND(R,A): res]− 1|

where R is the randomness generator used in the concrete theory.
In the rest of this subsection, we use the following notion of

invertibility. A leakage function Φ on plaintexts (when we instanti-
ate this notion on garbling schemes these plaintexts are circuits and
their inputs) is efficiently invertible if there exists an efficient al-
gorithm that, given the leakage corresponding to a given plaintext,
can find a plaintext consistent with that leakage.

Lemma 1 (IND-CPA-security implies SIM-CPA-security). If Φ is
efficiently invertible, then for every efficient SIM-CPA adversary
A of type AdvGb, one can build an efficient IND-CPA adversary B
and an efficient simulator S such that

AdvSIM-CPAΦ
enc,S (A) = AdvIND-CPAΦ

enc (B).

Proof (Sketch). Using the inverter for Φ, B computes a second
plaintext from the leakage of the one provided by A and uses this
as the second part of her query in the IND-CPA game. Similarly,
simulator S generates a simulated view by taking the leakage it
receives and computing a plaintext consistent with it using the Φ-
inverter. The proof consists in establishing that A is called by B in
a way that coincides with the SIM-CPA experiment when S is used
in the ideal world, and is performed by code motion.

FINISHING THE PROOF. We reduce the IND-CPAΦtopo-security of
SomeGarble to the DKC-security of the underlying DKC primitive
(see [1010]). In the lemma statement, c is an abstract upper bound on
the size of circuits (in number of gates) that are considered valid.
The lemma holds for all values of c that can be encoded in a token
minus two bits.

Lemma 2 (SomeGarble is IND-CPAΦtopo -secure). For every effi-
cient IND-CPA adversary A of type AdvGb−IND, we can construct
a efficient DKC adversary B such that

Adv
IND-CPAΦtopo

SomeGarble (A) ≤ (c + 1) · AdvDKC
SomeGarble(B).

Proof (Sketch). The constructed adversary B, to simulate the gar-
bling scheme’s oracle, samples a wire `0 which is used as pivot
in a hybrid construction where: i. all tokens that are revealed by
the garbled evaluation on the adversary-chosen inputs are garbled
normally, using the real DKC scheme; otherwise ii. all tokens for
wires less than `0 are garbled using encryptions of random tokens
(instead of the real tokens representing the gates’ outputs); iii. to-
kens for wire `0 uses the real-or-random DKC oracle; and iv. all
tokens for wires greater than `0 are garbled normally.

Here again, the generic hybrid argument (Figure 55) can be
instantiated and applied without having to be proved again, yielding
a reduction to an adaptive DKC adversary. A further reduction
allows us to then build a non-adaptive DKC adversary, since all
DKC queries made by B are in fact random and independent.

From Lemmas 11 and 22, we can conclude with a security theorem
for our garbling scheme.

Theorem 2 (SomeGarble is SIM-CPAΦtopo -secure). For every
SIM-CPA adversary A that implements AdvGb, one can construct
an efficient simulator S and a DKC adversary B such that

Adv
SIM-CPAΦtopo

SomeGarble,S (A) ≤ (c + 1) · AdvDKC
SomeGarble(B).

Proof (Sketch). Lemma 11 allows us to construct from A the simu-
lator S and an IND-CPA adversary C. From C, Lemma 22 allows us
to construct B and conclude.

4. Constructing a Secure SFE Protocol
We now explain how garbled circuits and oblivious transfer can
be combined to provide a general secure function evaluation pro-
tocol, and formalize a generic security proof, parameterized by a
secure garbling scheme and a secure oblivious transfer protocol.
We then instantiate the abstract argument with our concrete oblivi-
ous transfer protocol (Section 22) and our concrete garbling scheme
(Section 33) and conclude.

YAO’S SFE CONSTRUCTION. As discussed briefly in Section 22,
we model SFE as a two-party protocol. We consider the function-
ality to be evaluated, encoded as a circuit, as part of Party 2’s input
and set up the leakage function to let it become public. We de-
note with AdvSFEi

and AdvSFE
i the instantiations of AdvProti and

AdvProt
i to the SFE construction. We preface the definition of our

generic SFE construction with two named clones of the abstract
garbling scheme and oblivious transfer theories. This allows us to
essentially parameterize the SFE protocol with a garbling scheme
and an oblivious transfer protocol. Instantiating these parameters is
simply done by instantiating the Gb and OT theories with concrete
definitions and proofs. In Figure 1010, we formalize a standard SFE
construction detailed informally in Appendix A.1A.1.

clone Garble as Gb.
clone OT as OT.

clone Protocol as SFE with
type rand1 = OT.rand1,
type input1 = bool array,
type output1 = Gb.output,
type leak1 = int,
type rand2 = OT.rand2 ∗ Gb.rand,
type input2 = Gb.func ∗ bool array,
type output2 = unit,
type leak2 = Gb.func ∗ int,
op f i1 i2 = let (c,i2) = i2 in Gb.eval c (i1 || i2),(),
type conv = (Gb.funcG ∗ token array ∗ Gb.outputK) ∗ OT.conv,
op validInputs (i1:input1) (i2:input2) =

0 < length i1 ∧ Gb.validInputs (fst i2) (i1 || snd i2),
op prot (i1:input1) (r1:rand1) (i2:input2) (r2:rand2) =

let (c,i2) = i2 in
let fG = Gb.funG c (snd r2) in
let oK = Gb.outputK c (snd r2) in
let iK = Gb.inputK c (snd r2) in
let iK1 = (take (length i1) iK) in
let (ot conv, (t1, )) = OT.prot i1 r1 iK1 (fst r2) in
let GI2 = Gb.encode (drop (length i1) iK) i2 in
(((fG,GI2,oK),ot conv), (Gb.decode oK (Gb.evalG fG (t1 || GI2)),())).

Figure 10: Abstract SFE Construction.

Theorem 3 (Abstract SFE security). For any oblivious trans-
fer protocol OT and any garbling scheme Gb, let SFEa be the
SFE protocol built using Yao’s construction from OT and Gb.
For all randomness generators RG, RO1 and RO2 , we can con-
struct SFE randomness generators RSFE1 and RSFE2 such that, for
all SFE adversary A = (A1,A2) implementing type AdvSFE =
(AdvSFE

1 ,AdvSFE
2 ), OT simulator SO and garbling simulator SG,

we can construct efficient adversaries AO = (AO1 ,AO2 ) of type



AdvOT = (AdvOT
1 ,AdvSFE

2 ) and AG of type AdvGb and an efficient
simulator S, such that the following inequalities hold.

Adv
SFE1

Φ
SFEa,S

(A1) ≤ Adv
OT1

Φ

OT,SO (AO1 ) + Adv
SIM-CPAΦ

Gb,SG (AG)

Adv
SFE2

Φ

SFEa,S
(A2) ≤ Adv

OT2
Φ

OT,SO (AO2 )

Proof (Sketch). Since no additional randomness is used by the SFE
protocol, the SFE randomness generators are trivially constructed
from the randomness generators for OT and garbling. The proof
then follows the argument sketched in [1010]. From the adversary A,
we can easily construct AO and AG by moving some of the code
from the SFE protocol into the adversary. The security assumptions
on the oblivious transfer protocol and garbling scheme can then
be used to build two simulators SO and SG. In turn, these can be
combined into a valid simulator S for the full SFE protocol.

A CONCRETE SFE PROTOCOL. Finally, we instantiate OT with the
concrete oblivious transfer protocol we proved secure in Section 22
and Gb with the concrete garbling scheme we proved secure in Sec-
tion 33 in the construction. The security proof for this concrete con-
struction immediately follows from Theorems 33, 11 and 22. However,
we take this opportunity to implement some instantiation-specific
optimizations across abstraction boundaries and translate high-
level programming constructs like maps and higher-order functions
into more efficient data structures such as arrays. We also instan-
tiate the constants n and c as described further in Section 66 and
discharge any axioms affecting them. A separate proof that our ef-
ficient implementation is perfectly equivalent to the one on which
we performed the security proof yields the final security theorem.

Theorem 4 (Security of the concrete SFE protocol). For all SFE
adversary A against the Concrete SFE protocol, we construct an
efficient simulator S and efficient adversaries BDKC, BDDH and BES,
such that the following inequalities hold:

Adv
SFE1

Φtopo

Concrete,S(A) ≤ (c + 1) · AdvDKC(BDKC) + ε,

Adv
SFE2

Φtopo

Concrete,S(A) ≤ ε,

where ε = n · AdvDDH(BDDH) + n · AdvES(BES).

Proof (Sketch). By functional equivalence of the Concrete proto-
col and SFE(SomeOT,SomeGarble) (called SFEc below), we prove

Adv
SFE1

Φtopo

Concrete,S(A) = Adv
SFE1

Φtopo

SFEc,S
(A) and it suffices to bound the

latter. This can be done by applying Theorem 33 and using the ad-
versaries constructed in Theorems 11 and 22 along with the corre-
sponding bounds to conclude.

5. Verifiable Computation
We now move to our second example of a verifiable computation
protocol, in order to further demonstrate the wide applicability of
our techniques. In Appendix AA, the interested reader will find a de-
scription of the functionality and security properties required of a
verifiable computation protocol. Here we give only the highlights
of how we formalize the seminal construction proposed by Gen-
naro, Gentry and Parno (GGP) [1818].

For the GGP protocol we require a garbling scheme that pro-
vides authenticity guarantees, and so we need a slightly differ-
ent construction from that presented in the previous sections. In-
tuitively, authenticity imposes that, given one opening of the gar-
bled circuit, it is infeasible to find a valid encoding of an incorrect

output. For Yao’s construction to display this property, it is neces-
sary that the decoding key includes the labels for the output wires,
so that garbled outputs can be checked for consistency. In our for-
malisation, this consistency check is handled by a new algorithm
called valid outG. Formalising this new garbling scheme requires
little effort, as one can simply (re-)define the operators shown in
Figure 1111 and inherit all the original definitions from the formalisa-
tion presented before. The resulting scheme corresponds to Garble2
in [1010].

op outputK (fn:fun t) (r:rand t) =
let (n, m, q, aa, bb) = fst fn in
init m (λ i, (proj r[(n+q−m+i,false)], proj r[(n+q−m+i,true)])).

op valid outG (oK:outputK t) (oG:outputG t) =
alli (λ i x, x = fst oK[i] ∨ x = snd oK[i]) oG.

op decode (oK:outputK t) (oG:outputG t) =
mapi (λ i x, x=snd oK[i]) oG.

Figure 11: Modified garbling scheme

The GGP verifiable computation protocol can be explained as
follows. Take the garbling of the circuit to be delegated to be a
public key that is given to the worker. The authenticity property
immediately yields a weak form of verifiability, whereby the del-
egating party can securely outsource the computation of a single
input. Verifiability is lost when more than one computation is dele-
gated because, intuitively, if the worker sees more than one opening
of the circuit, then it may be able to mix the two garbled outputs it
obtained to generate a new forged one. To enable the verifiable del-
egation of multiple inputs using the same garbled circuit, the client
in the GGP protocol encrypts each newly encoded input using a
fresh FHE key pair. This ensures that, whilst the worker is still able
to evaluate the garbled circuit (homomorphically) it will never be
able to combine two garbled outputs into a new one: intuitively, the
FHE guarantees that the different evaluations become independent,
in the sense that one cannot (even homomorphically) use data from
previous evaluations to produce a forgery on the next one.

Our formalisation of an abstract FHE scheme in EasyCrypt
(Figure 1212) is extremely simple. It is a standard public key encryp-
tion scheme, for which there exists an additional associated algo-
rithm which, given a transformation function g, maps fresh cipher-
texts encrypting any message x to homomorphically transformed
ones encrypting g(x). As shown below, for our purposes it suffices
to formalize and axiomatize the homomorphism w.r.t. the concrete
transformation g that performs the evaluation of a garbled circuit.
Additionally, the FHE scheme is assumed to be IND−CPA-secure.

op gen : randg t → pkey t ∗ skey t.
op enc : pkey t → plaini t → rande t → cipheri t.
op hom eval : (inputG t → outputG t) → cipheri t → ciphero t.
op dec : skey t → ciphero t → plaino t.

axiom homomorphic : ∀ f x r rg re,
Scheme.validRand f r ⇒ validInputs f x ⇒
let fG = funG f r in
let iK = inputK f r in
let xG = Input.encode iK x in
let oK = outputK f r in

let (pk,sk) = gen rg in
let ci = enc pk xG re in
let co = hom eval (Scheme.evalG fG) ci in

dec sk co = evalG fG xG.

Figure 12: Abstract Fully-Homomorphic Encryption scheme

We present our proof of security for the GGP protocol as an
additional contribution, which may be of independent interest. The



structure of our argument is markedly simpler than that presented
in [1818], as it directly relies on the formalisation of garbling schemes
subsequently put forth by Bellare et al. [1010, 1111]. On the other hand,
our formalisation complements the presentation in [1111], where a
detailed proof is presented only for one-time secure schemes.

We show that the security of the GGP protocol can be proven
solely based on the security of the underlying FHE scheme and the
adaptive authenticity of the underlying garbling scheme denoted
aut1 in [1111]. In this form of authenticity, the attacker gets to see the
garbled circuit before she chooses the input for which she wishes
to produce a forged output. We do not require obliviousness in our
proof. As shown in [1111], this is needed for a one-time-secure variant
of the GGP construction that does not rely on FHE and uses only
Yao’s garbled circuits. However, it is no longer required when we
can rely on FHE for privacy.

We split our presentation in two parts: first we describe the nec-
essary steps to establish the correctness and authenticity properties
of the garbling scheme; then we sketch the proof of security for the
GGP protocol.

5.1 Correctness and authenticity of the garbling scheme
Proving the correctness of the modified garbling scheme involved
little overhead with respect to the proof constructed for the original
one presented in the previous sections. Indeed, the bulk of the
inductive argument that establishes a correct opening of all the
gates throughout the circuit is identical for both constructions, and
only the final decoding operation needs to be handled differently.

Our proof of adaptive authenticity for Garble2 reflects the cur-
rent state of the art: to the best of our knowledge, there is currently
no proof that this construction meets the notion of aut1 security
proposed in [1111] down to standard assumptions. Indeed, Bellare,
Hoang and Rogaway point out a gap in the original proof of secu-
rity of the GGP protocol that corresponds precisely to this issue.
One plausible solution to this problem, suggested in [1111], is to sim-
ply assume that Garble2 provides this level of security. We go a bit
further, and reduce the adaptive authenticity of Garble2 to a simpler
property, which we call aPriv. The question of whether Garble2
satisfies aPriv can be seen both as an interesting open problem and
a computational assumption that underlies the security of our in-
stantiation of the GGP protocol. The details follow.

Theorem 5 (Adaptive Authenticity). For all efficient authenticity
adversaries A against Garble2, we can construct efficient adver-
sary B against the aPriv property of Garble2 such that:

AdvAuth
Garble2(A) ≤ 2 ·m ·

(
AdvaPriv

Garble2(B) + 2−λ
)
.

where m is an upper bound on the number of output wires, and λ
is the length of the random tokens used in the dual-key cipher.

Proof (Sketch). Our proof combines the proof strategies of Bellare
et al. [1010] for (non-adaptive) authenticity and the proof sketch
presented in the GGP paper [1818] for the verifiability of the GGP
protocol. We first guess (one of) the output bit(s) i that will be
flipped by the adversary’s forgery, and we also bet on which will
be the correct value of this bit β: this costs us a factor of 2 · m in
the reduction. We then rely on the aPriv property to jump to a final
game where we replace the function f chosen by the adversary with
another function f ′. Function f ′ is identical to f in all gates except
output gate i, where all entries in the truth table now encode bit β.
The aPriv property has been tailored to be as weak as possible and
still allow this transition. It imposes that, for adversarially chosen
(f, f ′, i, β) such that f and f ′ are related as described above, the
garblings of f and f ′ are indistinguishable. The attacker gets to
adaptively choose an input x, for which it will receive an encoding
(under the usual restriction that f and f ′ collide on input x); and it

is also given the two decoding tokens for output bit i (not the entire
decoding key).

Observing that, by construction, the garbling of f ′ is indepen-
dent from the token that the adversary needs to guess in order to
successfully forge (this corresponds to β̄), the proof is completed
by showing that a forgery in this final game is equivalent to guess-
ing a uniformly distributed token.

5.2 GGP protocol security proof sketch
The proof of correctness for the GGP protocol is straightforward
once the correctness of the underlying FHE is assumed and that of
the underlying garbling scheme is proven. Similarly, as presented
in [1818], the privacy result follows via a hybrid argument from the
IND−CPA security of the underlying FHE. We sketch here, in more
detail, our security proof for the verifiability property, which is
where we depart from [1818] and establish an equivalent result using
a simpler game hopping argument.

Theorem 6 (Verifiability). For all efficient verifiability adversaries
A against the GGP protocol, we can construct efficient adversaries
BFHE and BGarble2 such that:

AdvVerif
GGP(A) ≤ q2 ·AdvIND-CPA

FHE (BFHE)+q ·AdvAuth
Garble2(BGarble2).

where q is an upper bound on the number of problem generation
queries placed by the adversary.

Proof (Sketch). The verifiability adversary can place up to q queries
to a problem generation oracle. Our first step in the proof is to
guess which of these queries will be selected by the adversary to
produce a forgery. We call this query l. This introduces a factor
of q in the reduction. We then use the security of the underlying
FHE to modify the answers to all the problem generation queries
except query l, so that the encoding provided to the adversary in
encrypted form is totally unrelated to the garbled circuit that has
been delegated. In this final game, the proof can be concluded
by reducing directly to the (adaptive) authenticity property for the
underlying garbling scheme that we have presented above.

6. Experimental Results
In this section we present a performance evaluation of an SFE
implementation generated from the EasyCrypt formalisation de-
scribed in Sections 22 to 44. The major part of this implementation
has been obtained via the extraction mechanism included in the
more recent version of EasyCrypt, with the exception of the low-
level operations left abstract in the formalisation, namely:
• abstract core libraries such as cyclic algebraic structures,

DKC encryption, or the entropy-smoothing hash of SomeOT. These
are implemented using the CryptoKit library.44 As DKC scheme
we use the AES-based algorithm presented by Bellare et al [1010].
• a front-end that parses circuits and runs the extracted SFE

code (instrumented to perform time measurements).
We fix the bound c on circuit sizes to be the largest OCaml

integer (2k−1– 1 on a k-bit machine), allowing us to represent
circuits without having to use arbitrary precision arithmetic whilst
remaining large enough to encode all practical circuits. We use
this same value to instantiate n. Inputs are generated randomly
using OCaml’s Rand module, and the cryptographic randomness
is generated using CryptoKit’s RNG.

Our preliminary results show that, whilst being slower than
optimized implementations of SFE [1919, 2020], the performance of
the extracted program is compatible with real-world deployment,
providing some evidence that the (unavoidable) overhead implied

4 See http://forge.ocamlcore.org/projects/cryptokit/http://forge.ocamlcore.org/projects/cryptokit/

http://forge.ocamlcore.org/projects/cryptokit/


by our formal verification and code extraction approach is not
prohibitive. We now present our experimental results in details.

METHODOLOGY. In addition to the overall execution time of the
SFE protocol and the splitting of the processing load between the
two involved parties, we also measure various speed parameters
that permit determining the weight of the underlying components:
the time spent in executing the OT protocol, and the garbling and
evaluation speeds for the garbling scheme. Our measured execution
times do not include serialisation and communication overheads
(which are out of the scope of this work), nor do they include the
time to sample the randomness (which can be pre-generated). We
run our experiments on an x86-64 Intel Core 2 Duo clocked at a
modest 1.86 GHz with a 6MB L2 cache. The extracted code and
parser are compiled with ocamlopt version 4.00.1. The tests are run
in isolation, using the OCamlSys.time operator for time readings.
We run tests in batches of 100 runs each, noting the median of the
times recorded in the runs.

TEST CIRCUITS AND RESULTS. Our measurements are conducted
over circuits made publicly available by the cryptography group at
the University of Bristol, 55 precisely for the purpose of enabling
the testing and benchmarking of multiparty-computation and ho-
momorphic encryption implementations. A simple conversion of
the circuit format is carried out to ensure that the representation
matches the conventions adopted in the formalisation.

A subset of our results are presented in Table 11, for cir-
cuits COMP32 (32-bit signed number less-than comparison),
ADD32 (32-bit number addition), ADD64 (64-bit number addi-
tion), MUL32 (32-bit number multiplication), AES (AES block
cipher), SHA1 (SHA-1 hash algorithm). The semantics of the eval-
uation of the arithmetic circuits is that each party holds one of the
operands. In the AES evaluation we have that P1 holds the 128-
bit input block, whereas P2 holds the 128-bit secret key. Finally,
in the SHA1 example we model the (perhaps artificial) scenario
where each party holds half of a 512-bit input string.

We present the number of gates for each circuit as well as the ex-
ecution times in milliseconds. A rough comparison with results pre-
sented in, for example [1919], where an execution of the AES circuit
takes roughly 1.6 seconds (albeit including communications over-
head and randomness generation time) allows us to conclude that
real-world applications are within the reach of the implementations
generated using the approach described in this paper. Furthermore,
additional optimisation effort can lead to significant performance
gains, e.g., by resorting to hardware support for low-level cryp-
tographic implementations as in [2020], or implementing garbled-
circuit optimisations such as those allowed by XOR gates [2121].

7. Related work
We concentrate on closely related work on the verification of multi-
party computation protocols and cryptographic software imple-
mentations. We refer to Appendix BB for other related work in cryp-
tography, and to [2222] for a more extensive account of the use of
formal methods in (symbolic and computational) cryptography.

Dahl and Damgård et al. [2323] consider the symbolic analysis of
specifications extracted from two-party SFE protocol descriptions,
and show that the symbolic proofs of security are computationally
sound in the sense that they imply security in the standard UC
model for the original protocols. This complements earlier work
by Backes et al. [2424], who develop computationally sound methods
for protocols that use secure multi-party computation as a primitive.
However, these works do not consider verified implementations.

5 http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

WYSTERIA [2525] is a new programming language for mixed-
mode multiparty computations. Its design is supported by a rigor-
ous pen-and-paper proof that typable programs do not leak infor-
mation in unintended ways. However, their guarantees are cast in
the setting of language-based security, rather than in the usual style
of provable security. Independently, Pettai and Laud [2626] have de-
veloped a static analysis for proving that SHAREMIND applications
are secure against active adversaries. They show that programs ac-
cepted by their analysis satisfy a simulation-based notion called
black-box security.

There have also been efforts to use formal methods for generat-
ing circuits. For instance, Holzer et al [2727] present a compiler that
uses CBMC to translate ANSI C programs into circuits that can
be used as inputs to the secure computation framework of Huang
et al. [1919]. This compiler can also be used as a front-end to our
verified implementation of Yao’s protocol.

There have been many attempts to develop tools that support
verified implementations. Many of these tools support proofs in
the symbolic model of cryptography. There are some notable ex-
ceptions, however. For instance, Cadé and Blanchet [2828] present a
mechanism to generate functional code from CryptoVerif models,
and use it to generate a verified implementation of SSH. Similarly,
Almeida et al [2929] use a verified compiler to generate a verified
x86 implementation of PKCS#1 v2.1 encryption from an Easy-
Crypt formalization. Finally, Kuesters et al [3030] develop a frame-
work to verify cryptographic applications written in Java, and use
it to verify a non-trivial cloud storage system. Another practical ap-
proach to achieve high-confidence cryptographic implementations
is to use prototyping systems for cryptography [66–99]. In a series
of works starting from [3131], Akinyele et al advocate the conver-
gence between such systems and verification tools; in particular,
their latest work [3232] combines AutoBatch and EasyCrypt to gen-
erate verified implementations of batch verifiers.

8. Conclusions and future work
We have demonstrated by example that it is already possible to
build nearly practical verified implementations of cryptographic
systems using EasyCrypt. However, further steps are required to
encourage the systematic development of verified implementations;
the next logical step is to achieve a tight integration between proto-
typing tools like [66–99] and verification tools like EasyCrypt.

In addition, we believe that it will be essential to support prin-
cipled approaches for verifying implementations of cryptographic
systems, taking fully into account the environment in which they
are deployed in the real world. This involves developing and for-
malizing non-destructive compositionality results, which has re-
cently been identified as a major challenge for cryptography it-
self [3333]. The natural starting point for this task are the existing
theoretical frameworks that deal with this issue, such as the Uni-
versal Composability [3434] framework. More immediately, we also
intend to formalize recent developments in multi-party and verifi-
able computation, notably [1515].
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A. Background
A.1 Yao’s Garbled Circuits and Yao’s SFE Protocol
Excellent descriptions of Yao’s contributions can be found in [1010,
3535]. Yao’s idea of garbling the circuit computing f consists infor-
mally of: i. expressing such a circuit as a set of truth tables (one
for each gate) and meta information describing the wiring between
gates; ii. replacing the actual Boolean values in the truth tables with
random cryptographic keys, called labels; and iii. translating the
wiring relations using a system of locks: truth tables are encrypted
one label at a time so that, for each possible combination of the in-
put wires, the corresponding labels are used as encryption keys that
lock the label for the correct Boolean value at the output of that
gate. Then, given a garbled circuit for f and a set of labels repre-
senting (unknown) values for the input wires encoding x1 and x2,
one can obliviously evaluate the circuit by sequentially computing
one gate after another: given the labels of the input wires to a gate,
only one entry in the corresponding truth table will be decryptable,
revealing the label of the output wire. The output of the circuit will
comprise the labels at the output wires of the output gates.

To build a SFE protocol between two honest-but-curious parties,
one can use Yao’s garbled circuits as follows. Bob (holding x2) gar-
bles the circuit and provides this to Alice (holding x1) along with:
i. the label assignment for the input wires corresponding to x2, and
ii. all the information required to decode the Boolean values of the
output wires. In order for Alice to be able to evaluate the circuit,
she should be able to obtain an the correct label assignment for
x1. Obviously, Alice cannot reveal x1 to Bob, as this would totally
destroy the goal of SFE. Furthermore, Bob cannot reveal informa-
tion that would allow Alice to encode anything other than x1, since
this would reveal more than f(x1, x2). To solve this problem, Yao
proposed the use of an oblivious transfer (OT) protocol. This is a
(lower-level) SFE protocol for a very simple functionality that al-
lows Alice to obtain the labels that encode x1 from Bob, without
revealing anything about x1 and learning nothing more than the la-
bels she requires.66 The protocol is completed by Alice evaluating
the circuit, recovering the output, and providing the output value
back to Bob.77 The combined security of the garbled circuit tech-
nique and the OT protocol guarantee that f can be securely evalu-
ated in this manner.

A.2 Verifiable Computation
We recall the notion of a Verifiable Computation (VC) scheme
introduced by Gennaro, Gentry and Parno [1818] and informally
describe the associated security notions. Subsequent works have
taken slightly different approaches to the formalisation of secu-
rity, namely by strengthening the verifiability requirement to allow
for fully adaptive queries and, sometimes, dropping the privacy re-
quirement. However, the essence of the primitive remains the same.

A VC scheme is a protocol between two polynomial-time par-
ties, a client and a worker, that enables them to collaborate on the

6 Luckily, efficient OT protocols exist that can be used for this specific pur-
pose, thereby eliminating what could otherwise be a circular dependency.
7 This is a simplified view of Yao’s protocol. It suffices because we are
dealing with honest-but-curious adversaries assumed to follow the protocol.

computation of a function f : {0, 1}n −→ {0, 1}m. It consists of
four steps:

Preprocessing A one-time stage in which the client computes
some auxiliary (public and private) information associated with
f . This phase can take time comparable to computing the func-
tion from scratch, but it is performed only once, and its cost is
amortized over all the future executions.

Input Preparation When the client wants the worker to compute
f(x), it prepares some auxiliary (public and private) informa-
tion about x. The public information is sent to the worker.

Output Computation Once the worker has the public information
associated with f and x, it computes a string πx which encodes
the value f(x) and returns it to the client.

Verification From the value πx, the client can compute the value
f(x) and verify its correctness.

The crucial efficiency requirement is that Input Preparation and
Verification must take less time than computing f from scratch
(ideally linear time, O(n + m)). Also, the Output Computation
stage should take roughly the same amount of computation as f , so
as not to overburden the worker.

Two security properties are required from a VC protocol, veri-
fiability and privacy. Privacy imposes that, given the output of the
Preprocessing stage, a malicious worker is unable to distinguish be-
tween two input-prepared values of its choosing, given access to an
oracle from which it can obtain arbitrary input-prepared values.

Verifiability is defined by means of a game in which the mali-
cious worker gets access to the output of the Preprocessing stage,
and can request up to q input-prepared values of its choosing. The
adversary is then required to output a proof which causes the ver-
ification procedure to accept an incorrect value for the delegated
computation on one of the q inputs it requested from its oracle.

In the definition put forth in the GGP [1818] paper, which we
adopt, the worker cannot be allowed to know whether verification
procedures were successful or not. This is due to a limitation of the
GGP construction, which has been addressed in subsequent work.
This discussion is not relevant in the context of this paper, where
we simply use the GGP protocol to demonstrate the capabilities of
our formal verification infrastructure.

B. Additional related work
B.1 Yao’s techniques in practice
The original SFE protocol proposed by Yao has been the subject
of renewed interest. On one hand, it is now widely accepted that
this generic protocol offers the best performance tradeoff to evalu-
ate important classes of functions [3636], which means that it plays
an important role in the current state-of-the-art of practice-oriented
SMPC research. On the other hand, Yao’s garbled circuits have
found new uses in the construction of novel and powerful cryp-
tographic primitives such as Functional Encryption [3737] and Veri-
fiable Computation [1818] that are intrinsically higher order in their
operation, i.e., they take as input parameters the description of func-
tions that must be applied to secret data.

Fairplay [3838] was the first of a series of works that demonstrated
the practical applicability of Yao’s technique. Tasty [3939] was later
introduced as a general framework to generate efficient implemen-
tations of secure computation protocols, following a series of pa-
pers where various optimizations and extensions of Yao’s protocol
were proposed [2121, 3636, 4040]. The secure computation framework of
Huang et al. [1919] introduces an API-based framework in which to
implement secure computation applications based on Yao’s proto-
col, exploring various implementation optimizations and commu-
nications pipelining that improve the performance of the resulting



implementations. This system was proposed as a kind of virtual
machine in which circuits can be securely evaluated.

The recently proposed JustGarble [2020] system gives a highly
efficient implementation of garbled circuits that can be used for
various applications, namely secure two-party computation. The
implementation relies of highly efficient constructions of dual-
key ciphers and resorts to hardware implementations of various
operations, namely AES.

B.2 Verifiable Computation
The problem of efficiently verifying complex computations was
first addressed in the context of Interactive Proofs [4141, 4242], where
a powerful (possibly super-polynomial) prover can (probabilisti-
cally) convince a weak verifier of the validity of statements that
the verifier could not compute on its own. Probabilistically check-
able proofs (PCPs) permit achieving the same goal, whilst reducing
the workload on the verifier by limiting the parts of the proof that
need to be checked [4343–4545]; other contributions that aimed to re-
duce the verifier’s effort can be found in the work of Kilian [4646, 4747]
and Micali [4848].

More recently, the advent of cloud computing has led re-
searchers to consider application scenarios where also the work
of the prover, including the actual computation to be verified, is
polynomial-time, so as to capture computation delegation. An ex-
ample of this approach is the GGP verifiable computation protocol
that we covered in this paper, as well as other FHE-based solu-
tions [1818, 4949–5151]. A very promising line of work in a different
direction has considered alternative ways of representing computa-
tions using arithmetic constructions [1414, 5252, 5353], which have very
recently given rise to quasi-practical implementations [1515].
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