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Abstract. Homomorphic signatures enable anyone to publicly perform computations on signed data
and produce a compact tag to authenticate the results. In this paper, we construct two bounded fully
homomorphic signature schemes, as follows.

– For any two polynomials d = d(λ), s = s(λ), where λ is the security parameter. Our first scheme
is able to evaluate any circuit on the signatures, as long as the depth and size of the circuit are
bounded by d and s, respectively. The construction relies on indistinguishability obfuscation and
injective (or polynomially bounded pre-image size) one-way functions.

– The second scheme, removing the restriction on the size of the circuits, is an extension of the first
one, with succinct verification and evaluation keys. More specifically, for an a-prior polynomial
d = d(λ), the scheme allows to evaluate any circuit on the signatures, as long as the depth of the
circuit is bounded by d. This scheme is based on differing-inputs obfuscation and collision-resistant
hash functions and relies on a technique called recording hash of circuits.

Both schemes enjoy the composition property. Namely, outputs of previously derived signatures can be re-
used as inputs for new computations. The length of derived signatures in both schemes is independent of
the size of the data set. Moreover, both constructions satisfy a strong privacy notion, we call semi-strong
context hiding, which requires that the derived signatures of evaluating any circuit on the signatures of
two data sets are identical as long as the evaluations of the circuit on these two data sets are the same.
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1 Introduction

Cloud computing allows users with limited storage capacity to securely outsource their data to a
remote server. Meanwhile, it also allows the server to reliably perform computations over the data.
Recent groundbreaking work of fully homomorphic encryption [38] shows how to maintain privacy
of outsourced data in this setting. In this work, we focus on the orthogonal question of providing
integrity/authenticity of outsourced data.

More specifically, assume Alice outsources her data (m1, ...,mk) along with signatures for the
messages to an (untrusted) server. At some later point in time, Bob queries the server for a compu-
tation of a circuit on the data, denoted by C(m1, ...,mk). The server computes m← C(m1, ...,mk)
and sends it to Bob. Now the problem is that Bob wants to be sure that m is indeed the value
obtained by evaluating C on Alice’s data. A trivial solution would be the server sends all Alice’s
data along with the signatures to Bob, Bob first verifies each message by checking the signature
and then computes C on them. However, this solution vanishes the advantage of outsourcing and
requires large bandwidth of Bob to download the whole data. Further, if Alice requests the data be
kept private, with only m to be public. This trivial solution does not even work.

Homomorphic signatures [44,18] can be used to address this problem. With a homomorphic
signature scheme, Alice signs messages m1, ...,mk, producing signatures σ1, ..., σk and uploads the
message-signature pairs to the server. When Bob requires some computation C on Alice’s messages,
the server (publicly) produces a new signature for the value m ← C(m1, ...,mk). Validation of the
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signature asserts that m is indeed the result by applying C on Alice’s data. An important feature
of homomorphic signatures is that the length of the produced signature is much shorter than k
(say sublinear in k). And also, the derived signature should not reveal anything about the data set
m1, ...,mk beyond what can be learned from m.

The previous homomorphic signature schemes only support restricted class of functions such as
linear functions (e.g. [17,36,19,9]) or constant degree polynomials [18]. Recently, Gennaro and Wichs
[37] formally defined and constructed the secret-key analogue of homomorphic signature, that is ho-
momorphic message authenticators. Their construction makes use of fully homomorphic encryptions
to evaluate arbitrary circuits. Subsequent works in [24,25] also gave practical homomorphic message
authentication schemes for bounded circuits. However, constructing fully homomorphic signatures
or even homomorphic signatures for more complex functions remains an important open problem.

1.1 Our Contributions

The main contributions of this work are two bounded fully homomorphic signature schemes. More
specifically, letM be the message space with polynomial size. For any two polynomials d = d(λ), s =
s(λ) in security parameter λ, our first scheme is able to evaluate any such circuit over M on the
signatures that the depth and size of the circuit are bounded by d and s, respectively. This scheme
also supports composition in the sense that the outputs of authenticated computations can also be
used as inputs for new computations. Our first scheme relies on indistinguishability obfuscation and
injective (or polynomially bounded pre-image size) one-way functions.

Our second scheme is extended from the first one, and removes the restriction on the size of the
circuits by applying differing-inputs obfuscation and collision-resistant hash functions. For any priori
given polynomial d = d(λ), the scheme enables to evaluate any circuit on the signatures as long as
the depth of the circuit is bounded by d. This scheme has succinct evaluation and verification keys,
and still supports composition.

Both schemes are selectively unforgeable, i.e. the adversary should claim the message and circuit
he wants to forge ahead of time. Although our unforgeability model is selective, it is strengthened
in following two aspects. (I) In the signature query phase, almost all the previous models (except
the one in [32]) require the adversary to query the signatures of all the messages belonging to one
data set at the same time, while our model allows the adversary to adaptively query one message
at a time, and even intersperse queries from different data sets. (II) The adversary in our model is
allowed to specify the tag (used to bind together the messages from the same data set) on his own
choice. While all previous models (for publicly verifiable schemes) require the tag be unpredictable
and chosen by the challenger uniformly at random.

The length of derived signatures in our schemes is λ, which is independent of the size of the data
sets. Moreover, our signature schemes are deterministic (the signing algorithms are deterministic)
and satisfy a privacy notion we call semi-strong context hiding, which is weaker than strong context
hiding [2] and stronger than weak context hiding [19,18]. Informally speaking, strong context hiding
requires derived signatures be distributed as independent fresh signatures on the same message.
Therefore, it even hides the operations on the signatures. Weak context hiding only requires derived
signatures do not reveal information of the original messages beyond what is learned from the
derived messages and assumes the original signatures are not public. Semi-strong context hiding
does not hide the fact that derivation took place, however it hides the information of the original
messages even the original signatures are exposed (which commonly happens in real environments).
More specifically, our schemes satisfy the following property: for any circuit C (in the admissible
circuit family) and any two tuples of messages (m1, ...,mk), (m′1, ...,m

′
k), the derived signatures of

evaluating C on the signatures of these two tuples of messages are exactly the same as long as
C(m1, ...,mk) = C(m′1, ...,m

′
k).
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1.2 Overview of Our Techniques

The basic idea of this work is inspired from the signature scheme proposed by Sahai and Waters
[51]. In that construction, the signatures are essentially the classical PRF MACs. In order to make
it publicly verifiable, they created an obfuscated verification program that checks the MACs. Sahai
and Waters [51] showed that this construction is selectively unforgeable under indistinguishability
obfuscation and one-way functions. Informally speaking, indistinguishability obfuscation requires
that obfuscations of any two distinct (equal-size) programs that implement identical functionalities
be computationally indistinguishable.

Our first idea comes from that one could create an obfuscated re-signing program for each gate
in the circuits and put them in the evaluation key. More specifically, the re-signing programs work
as follows. Taking an addition gate for example. With input two message-signature-circuit tuples
(m1, σ1, C1), (m2, σ2, C2), the program first checks the validity of each signature (i.e. checks the
PRF). It then outputs the computation of the PRF on m1 +m2 along with the description of C1 +C2

as a derived signature. Here, (m1,m2) and (σ1, σ2) are derived messages and signatures by evaluating
(C1, C2) on the original messages and signatures, respectively.

At the first sight, this construction works well since the derived signature binds the derived
message and the circuit together. However, the major technique challenge is to formally prove that
the scheme is unforgeable. We extend the “punctured program” method of Sahai and Waters [51]
and make use of puncturable PRFs [51]. A punctured PRF key can compute all the inputs except ones
in a particular polynomial-size punctured set. Let m∗, C∗ be the challenge message and circuit. In
the security proof, we will excise out the information of the evaluation of the PRF in the punctured
set {m∗‖C∗}, i.e. F.Eval(K,m∗‖C∗), in the programs. In the verification program, the puncturing
process is direct by using a punctured key on the set {m∗‖C∗} as done in [51]. However, there is no
method to remove F.Eval(K,m∗‖C∗) in the re-signing programs, because itself is the output of the
program when the derived message is m∗ and the circuit is C∗.

Before moving on, we first informally recall what is a valid forgery in a homomorphic sig-
nature scheme. Let m∗, C∗ be the challenge message and circuit the adversary wants to forge,
a basic requirement is that for any messages (m̃1, ..., m̃k) the adversary queries to the signing
oralce must satisfy that m∗ 6= C∗(m̃1, ..., m̃k). Otherwise, the scheme is trivially unsecure, be-
cause the adversary can evaluate C∗ on the queried signatures to obtain a valid signature on m∗.
For simplicity of exposition, we now consider C∗ ends up with an addition gate. For two tuples
(m1, σ1, C1), (m2, σ2, C2), if σ1, σ2 both pass the verification and such that m1 + m2 = m∗ and
C1 + C2 = C∗, then it must be the case that m1 6= C1(m̃1, ..., m̃k) or m2 6= C2(m̃1, ..., m̃k)
for every query (m̃1, ..., m̃k). Suppose not, there exists at least one query (m̃1, ..., m̃k) such that
m∗ = m1 +m2 = (C1 +C2)(m̃1, ..., m̃k) = C∗(m̃1, ..., m̃k) which violates the rules in the experiment.
Therefore, σ1 or σ2 must be a valid forgery for (m1, C1) or (m2, C2) respectively.

The observation above is still not sufficient to make the security proof go through. In additionally,
we modify our scheme by evaluating the circuits level by level. For any two polynomials d = d(λ), s =
s(λ), let Cd,s be the set of circuits with depth and size bounded by d and s, respectively. The scheme
first generates d+1 PRF keys K0,K1, ...,Kd and uses K0 as the signing key. For each level 1 ≤ j ≤ d,
we create an evaluation program for each gate and publish the indistinguishability obfuscation of
these programs as the evaluation key. These evaluation programs first check the validity of the input
signatures using Kj−1, and then re-sign (compute the PRF) the evaluation of the messages and the
description of the new circuit using Kj .

This chain structure allows us to prove the security by induction on the depth d. Denote Πj,n the
homomorphic scheme for circuits in Cj,s for 0 ≤ j ≤ d. Notice that Π0,s is essentially the signature
scheme presented by Sahai and Waters [51], since we do not define evaluation programs in this case.
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Assuming Πd−1,s is selectively unforgeable for circuits in Cd−1,s, we show that Πd,s is selectively
unforgeable for circuits in Cd,s.

Roughly speaking, for challenge message m∗ and circuit C∗ ∈ Cd,s, we assume the depth of C∗

is d and C∗ ends up with an addition gate. We would like to point out that if the depth of C∗ is
less than d, then there is a direct reduction from Πd−1,s. One can also use a similar analysis when
the output gate of C∗ is another gate not addition. In each evaluation program (for different gates)
at depth d, we modify the program to puncture out the point {m∗‖C∗} of the PRF indexed by
key Kd. For an input ((m1, σ1, C1), (m2, σ2, C2)), the modified program first checks the validity of
the signatures σ1, σ2. After the verification (if they both pass), the modified program simply aborts
if m1 � m2 = m∗ and C1 � C2 = C∗; otherwise it uses a punctured key K ′d on the set {m∗‖C∗}
to compute the PRF on (m1 �m2‖C1 � C2). Where � is the gate corresponding to this evaluation
program. In the programs that do not evaluate an addition gate, this modification does not change
the functionality. This is because Kd and K ′d compute the same PRF value on all inputs except
m∗‖C∗, and the abort condition in the modified program will never be triggered since C1 �C2 6= C∗

when � is not an addition gate. Thus the property of indistinguishability obfuscator guarantees
that efficient adversaries will not detect these modifications. In the program that evaluates the
addition gate, there indeed exists differing inputs which satisfy that σ1 and σ2 pass the verification,
m1 +m2 = m∗, C1 + C2 = C∗ and C1, C2 are circuits in Cd−1,s

From the analysis before, we conclude that one of the signatures in a differing input must be a
valid forgery for some circuit in Πd−1,s. This naturally leads us to use differing-inputs obfuscation
which says that if an efficient adversary can distinguish the obfuscations of two circuits, then there
exists an efficient extractor outputs a differing input. Taking a closer look to the differing inputs,
we show that the number of inputs the two programs differ is at most 2|M|, where M is the
message space. Fortunately, Boyle, Chung and Pass [21] said that an indistinguishability obfuscator
is sufficient to extract differing inputs when this number is polynomial. Therefore, we fix the message
size to be polynomial and make our first scheme use indistinguishability obfuscation again.

However, in the proof of the induction, we actually face another problem. Notice that in order
to simulate the evaluation programs at depth d, the simulator has to know the PRF key Kd−1 (for
the verification of the input signatures) which is embedded in the evaluation programs in Πd−1,s.
To address this problem, we also create verification programs on each level, and obfuscate these
programs. Instead of directly using the PRF key to verify the validity of the input signatures, each
evaluation program uses the obfuscated verification program at the previous level. Note that these
obfuscated verification programs can be given in Πd−1,s. The evaluation key in our scheme now
actually consists of obfuscated evaluation programs embedded with other obfuscations.

A drawback of the above scheme is that the admissible circuits have restrictions both on size and
depth. Further, the size of evaluation and verification keys is linear in both the upper bounds d, s
of the circuits depth and size. This is because the evaluation and verification programs are needed
in each level to make the proof go through, and they directly take the descriptions of the circuits
as inputs. We then use differing-inputs obfuscation and collision-resistant hash functions to remove
the restriction on the size which yields the second scheme. This scheme has succinct evaluation and
verification keys with size only depending on the upper bound d. In order to get this scheme, we put
forward a technique called recording hash of circuits. Intuitively, the recording hash of a circuit C
maps it to a string of fixed length while recording the computation of C. Recording hash suits our
construction very well, because when evaluating the signatures we need to bind the computation of
the circuits while compressing their size. We expect it to have other applications.
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1.3 Related Work

Homomorphic Signatures and Message Authenticators. Recently, many papers have con-
sidered the problem of homomorphic signatures and message authentications (private verification)
for restricted functions (linear functions). This line of research was initiated by Johnson et.al. [44]
and became very popular because of the important application to network coding. Constructions for
linear functions have been proposed in [1,17,36,8,19,27,9,28,32,10,26]. Other similar notions called
proofs of data and retrievability for oursourced storage have also been considered in [6,52,7,31].

The first homomorphic signature scheme considered a larger class of homomorphisms beyond
linear functions was given by Boneh and Freeman [18], who showed a realization for constant degree
polynomial functions in the random oracle model. In that work, they also presented a general
definition along the same lines as the definition we use in this work, and posed an interesting open
problem to construct fully homomorphic signatures for arbitrary functions.

Very recently, Gennaro and Wichs [37] proposed the first fully homomorphic message authen-
tication scheme which relies on fully homomorphic encryption schemes. Subsequent works in [24]
and [25] also showed how to get practical homomorphic message authentication schemes for some
bounded circuits. However, these schemes only provide private verification and barely consider the
privacy of the data sets.

Succinct Non-Interactive Argument of Knowledge. One possible solution to construct homo-
morphic signatures is to rely on computationally sound (CS) proofs [47] or, more generally, Succinct
Non-interactive ARguments of Knowledge (SNARKs) [16]. In a nutshell, SNARK allows to create a
short argument for any NP statement. The length of the argument is independent of the statement
and witness. However, constructing SNARKs is known to require the random oracle model [47] or non-
falsifiable assumptions [40]. Further, the derived signatures (the arguments) using SNARK are not as
compact as the original signatures, while the length of the derived and original signatures is the same
in our schemes. We note that although assuming the existence of indistinguishability/differing-inputs
obfuscator is probably a non-falsifiable assumption, there is still a possibility that our schemes rely
on falsifiable assumptions if constructions of indistinguishability/differing-inputs obfuscator from
falsifiable assumptions are given. A recent progress on this aspect was made in [39].

Verifiable Computation and Memory Delegation. Other works considered similar notions
such as verifiable computation [42,5,29,35,15,49,48] and memory delegation [30]. In the setting of
verifiable computation, one wants to delegate computationally heavy tasks to a power server while
maintaining the ability to verify the result efficiently. The aim of verifiable computation is trying to
minimize the computation, while in our setting is to minimize communication. Memory delegation
allows a client to outsource a large amount of data to an untrusted server and later can efficiently
verify computations on data. Current constructions require the client to keep a state and have a
time-consuming offline phase where the running time of the client is polynomial on the size of the
data.

2 Preliminaries

The security parameter throughout the paper is λ. For an integer n = n(λ), the integer set {1, ..., n}
is denoted by [n]. A function negl(λ) is negligible, if it vanishes faster than the inverse of any
polynomial in λ. For two bit string x, y, the concatenation of x and y is denoted by x‖y. PPT means
probabilistic polynomial time.
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2.1 Arithmetic Circuits

We provide a brief overview of arithmetic circuits and refer the reader to [53] for more details. An
arithmetic circuit C over a field F and a set of variables X = {x1, ..., xk} is a directed acyclic graph
as follows. The nodes in the graph are called gates. Gates with in-degree 0 are called input gates
while gates with out-degree 0 are called output gates. Each input is labeled by either a variable
from X or a constant in F. Gates with in-degree and out-degree greater than 0 are called internal
gates. Gates labeled with × are called product gates, while gates labeled with + are called addition
gates. In this paper, we focus on circuits with a single output node and where the in-degree of each
product and addition gate is 2. The size of a circuit is the number of its gates. The depth of a circuit
is the longest path from input to output.

In this work, we consider arithmetic circuits on fields with polynomial size. We restrict without
loss of generality that product gates and addition gates do not get inputs labeled by constants. This
can be done as follows: One could view a circuit C(x1, ..., xk) over F as a multivariable polynomial
f(x1, ..., xk) over F. Since the size of F is polynomial, each monomial in f with coefficient a ∈ F can be
written as a summation of a such monomials, and the size of this decomposition form will not increase
too much. Therefore, one could set f(x1, ..., xk) = f ′(x1, ..., xk) + c, where c is the constant term of
f and the coefficients of f ′ are all 1s. Notice that f ′(x1, ..., xk) could be implemented by a circuit
over F with all the input gates labeled by the variables in X. Moreover, in homomorphic signatures,
authenticating whether a message is derived from the data set by evaluating f is equivalent to
authenticate whether it is derived from the same data set by evaluating f ′, because f is public. We
would like to point out that, we restrict the circuits only to avoid duplicative work and save space,
and we could also take general product and addition gates into account and the constructions and
proofs are followed in a very direct way. In an extreme case, one could think of the field as F2 and
the circuits we consider are actually boolean circuits.

We also insist that each wire in the circuit over F connects gates at consecutive level. If this is not
the case, we can then add identity gates to make it so. Therefore, we consider circuits with product
gates (×), addition gates (+) and identity gates (=) as internal gates. We also define the size of a
circuit C, denoted by |C|, as the length of the binary representation of C. This definition of circuit
size is (polynomially) equivalent to the definition before. For two polynomials d = d(λ), s = s(λ),
let Cd,s be the family of circuits over F with depth and size bounded by d and s, respectively. For
any circuit C ∈ Cd,s with |C| < s, we can represent it with a bit string of length s by padding the
circuit. For simplicity of exposition, we do not explicitly use this padding.

2.2 Recording Hash of Circuits

In this subsection, we put forward the notion of recording hash of circuits. Let h : {0, 1}∗ → {0, 1}λ
be a hash function. Let C be a family of circuits over field F. For any C ∈ C, we define the recording
hash of C with respect to h, denoted by RHh,C(C), recursively as follows:

RHh,C(C) =



h(C), if the depth of C is 0;

h
(
RHh,C(C1)‖+ ‖RHh,C(C2)

)
, if C = C1 + C2;

h
(
RHh,C(C1)‖ × ‖RHh,C(C2)

)
, if C = C1 × C2;

h
(
RHh,C(C1)‖ =

)
, if C = (C1 =) (C ends up with an identity gate).

In the above hash function, we view the gates +,×,= as binary strings. Recording hash aims to
compress the size of the circuits while recording the evaluation. We remark that recording hash is
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similar to but different from Merkle hash tree [46]. The major difference is that recording hash also
binds the description of each gate of the circuit which is crucial in our construction.

2.3 Indistinguishability and Differing-inputs Obfuscations and Puncturable PRFs.

Indistinguishability obfuscation introduced by Barak et al. [12,13] says that obfuscations of two
functionally equivalent circuits are indistinguishable. We review the formal definition in Appendix
A. A very recent breakthrough work by Garg et al.[33] gave the first candidate of indistinguishability
obfuscator for all polynomial-size circuits. Other follow-up constructions in [50,11,4,39] were also
proposed based on this basic one. A stronger notion called differing-inputs obfuscation was also
introduced in [12,13], and many interesting applications are given based on it very recently, e.g.
[3,14,21]. Differing-inputs obfuscation says that if a PPT algorithm can distinguish the obfuscations
of two circuits, then there exists a PPT extractor outputs an input on which the two circuits differ.
The formal definition is given in Appendix B. An interesting result given in [21] says that if the
circuits only differ in polynomial many inputs, then an indistinguishability obfuscator is already
a differing-inputs obfuscator for these circuits. We describe the result in Lemma 2. Puncturable
PRFs [51] are special cases of constrained PRFs [20,45,22]. A punctured PRF key associated with a
polynomial-size set S is a secret key that allows to evaluate a PRF at all x except x ∈ S. While
the values on all the points in S appear pseudorandom to adversaries. We recall the definition of
puncturable PRFs in Appendix C.

3 Homomorphic Signatures

Informally, a homomorphic signature scheme [18] consists of the usual Setup,Sign,Verify algorithms
as well as an additional evaluation algorithm Eval that translates circuits on messages to circuits
on signatures. If σ1, ..., σk are valid signatures for m1, ...,mk, then Eval((m1, σ1), ..., (mk, σk), C) is a
valid signature for C(m1, ...,mk). We mention that in the definition of [18], the evaluation algorithm
only takes the signatures as inputs. Our constructions also need to take the messages as inputs,
and this does not affect the functionality of homomorphic schemes. To prevent mixing of data from
different data sets when evaluating circuits, Sign,Verify and Eval take an additional tag τ as input.
The tag serves to bind together messages from the same data set.

A homomorphic signature scheme Π = (Setup,Sign,Verify,Eval) is formally defined as follows.

Setup(λ, k) : Takes as input the security parameter λ, an integer k indicating the maximal size for a
data set. We note that k is given for simplicity, our constructions can be easily extend to variable
data set size. It outputs a signing key sk, a verification key vk and an evaluation key ek. Where
vk and ek will define a message spaceM, a signature space Σ and a set C of admissible circuits
C :Mk →M.

Sign(sk, τ,m, i) : Takes as input a signing key sk, a tag τ ∈ {0, 1}λ, a message m ∈M and an index
i ∈ [k], outputs a signature σ ∈ Σ.

Verify(vk, τ,m, σ, C) : Takes as input a verification key vk, a tag τ ∈ {0, 1}λ, a message m ∈ M, a
signature σ ∈ Σ and a circuit C ∈ C. It outputs either 1 or 0. We note that the indices i ∈ [k]
are degraded circuits with depth 0 in C.

Eval(ek, τ, {(mi, σi)}i∈[k], C) : Takes as input an evaluation key ek, a tag τ ∈ {0, 1}λ, a tuple of
message-signature pair {(mi, σi)}i∈[k] and a circuit C ∈ C, outputs a signature σ ∈ Σ.

For correctness, we require that for any (sk, vk, ek)← Setup(λ, k), the following holds:
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1. For all tags τ ∈ {0, 1}λ, all messages m ∈ M, and all i ∈ [k], if σ ← Sign(sk, τ,m, i) then we
have Verify(vk, τ,m, σ, i) = 1.

2. For all tags τ ∈ {0, 1}λ, all tuples (m1, ...,mk) ∈Mk and all circuits C ∈ C, if σi ← Sign(sk, τ,mi, i),
we have Verify(vk, τ, C(m1, ...,mk),Eval(ek, τ, {(mi, σi)}i∈[k], C), C) = 1.

We say a signature as above is homomorphic for circuits in C (overM). A signature scheme is fully
homomorphic, if it is homomorphic for all polynomial-size circuits. A bounded fully homomorphic
signature scheme is a homomorphic signature scheme where the Setup algorithm takes as additional
inputs d, s (now (sk, vk, ek)← Setup(λ, k, d, s)) and the resulting scheme is homomorphic for circuits
in Cd,s.

3.1 Unforgeability

Loosely speaking, the unforgeability model for homomorphic signature schemes allows the adversary
to make adaptive signature queries on data sets of his choosing as well as a tag τ for the data set he
queries. Eventually, the adversary will produce a message-signature pair (m∗, σ∗) as well as a circuit
C∗ and a tag τ∗. The adversary wins if (τ∗,m∗, σ∗, C∗) passes the validity check and (τ∗,m∗) 6=
(τj , C

∗(mj1, ...,mjk)) for all queries
(
τj , (mj1, ...,mjk)

)
. This captures the fact of two types of forg-

eries. In a type I forgery (τ∗ 6= τj for all j), the successful verification of the tuple (τ∗,m∗, σ∗)
indicates that it is a valid signature for some message not queried to the signing oracle. This type
corresponds to usual signature forgery. In a type II forgery (τ∗ = τj but m∗ 6= C∗(mj1, ...,mjk) for
some j), the successful verification of the tuple (m∗, σ∗, C∗) indicates that it authenticates m∗ as
C∗(mj1, ...,mjk) but in fact this is not the case. Our unforgeability game is adapted from [18], but
with a few differences. That will be compared afterwards.

A homomorphic scheme Π = (Setup, Sign,Verify,Eval) is selectively unforgeable, if for any PPT
algorithm A, the winning probability of A in the following experiment is negligible.

Sel-UF Experiment:
(τ∗,m∗, C∗, st)← A(λ, k)
(sk, vk, ek)← Setup(λ, k)

σ∗ ← ASign(sk,·,·,·)(vk, ek, st)
If Verify(vk, τ∗,m∗, σ∗, C∗) = 1, then A wins.

The adversary first claims the tag τ∗, the message m∗ and the circuit C∗ he wants to forge. When
making the signature query, A submits a tag τ and a message m, if m is the first message corre-
sponding to τ , the challenger sets a counter iτ = 1. Otherwise, the challenger increases the counter
iτ by 1. The challenger answers A with the signature σ ← Sign(sk, τ,m, iτ ). A can repeat the inter-
action at most k times for one τ , but polynomial many tags. A basic requirement here is that the
messages associated with the same tag A asked are subject to (τ∗,m∗) 6= (τj , C

∗(mj1, ...,mjk)) for
all j, where (mj1, ...,mjk) are the messages corresponding to τj .

Comparisons of the Models. The unforgeability model defined above are different from the one
in [18] as follows. (I) The (adaptive) unforgeability model defined in [18] allows the adversary to
output the challenge tag, message and circuit depending on the queries he made. While our model
only considers this selective version. We note that one could use standard complexity leveraging
method to prove adaptive unforgeability of our schemes. (II) In [18], the adversary is required to
submit all messages belonging to one data set at the same time, after which he receives all the
signatures on all the messages at once. In our security model, the adversary is allowed to adaptively
query one message at a time, and even to intersperse queries from different data sets. A similar model
was also considered in [32]. (III) In [18], their model requires the tag in the system be unpredictable.
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When issuing the signature queries, the tag is chosen by the challenger uniformly at random. While
in our model, we allow the adversary to choose the tag on his own choice.

3.2 Privacy

Privacy here means that given signature on a data set (m1, ...,mk), the derived signature of the
derived message C(m1, ...,mk) does not leak any information about (m1, ...,mk) beyond what is
learned from C(m1, ...,mk). More precisely, the definition captures that given signatures on a number
of messages derived from two different data sets, the attacker can not tell which data set the derived
signatures came from, this holds even the attacker is given the signing key. Ahn et al. [2] defined
a stronger notion, called strong context hiding, that requires the derived signatures be distributed
as independent fresh signatures on the same message. Therefore, it even hides the operations on
the signatures. Boneh and Freeman [18,19] also gave a weaker privacy notion, called weak context
hiding, that assumes the original signatures are not public. Our schemes can not hide the fact that
derivation took place, then they can not achieve strong context hiding. Interestingly, our schemes
ensure the privacy even the original signatures are exposed. More specifically, the derived signatures
of our schemes are identical as long as the derived messages are the same. We call it semi-strong
context hiding.

A homomorphic signature Π = (Setup, Sign,Verify,Eval) is semi-strong context hiding, if for
any circuit C (in the admissible circuits), any two tuples of messages m0 = (m01, ...,m0k), m1 =
(m11, ...,m1k) such that C(m0) = C(m1), then

Eval(ek, τ, {(m0i, σ0i)}i∈[k], C) = Eval(ek, τ, {(m1i, σ1i)}i∈[k], C),

for all τ ∈ {0, 1}`, σ0i ← Sign(sk, τ,m0i, i) and σ1i ← Sign(sk, τ,m1i, i) for i ∈ [k].

Note that the above equality holds even the signing key and the original signatures are exposed.
Therefore, this notion of privacy is stronger than weak context hiding.

3.3 Length Efficiency

A homomorphic signature is said length efficient, if the length of derived signatures is independent
of the size k of the data set. The requirement of length efficiency is to avoid the following trivial
solution. The Eval algorithm outputs the circuits C and all the message-signature pairs in the data
set. The recipient first checks the validity of each signature and then evaluates C on the original
signed messages. Obviously, this construction is not length efficient, since the size of the “derived
signature” is linear in the data size. Moreover, it is not context hiding since a “derived signature”
reveals everything about the original data set.

4 Constructions

In this section, we give our constructions of bounded fully homomorphic signature schemes. Let the
message space M be a field with polynomial size. The circuits over M contain addition gates (+),
product gates (×) and identity gates (=). Each wire in C connects gates at consecutive level. For
polynomials d = d(λ), s = s(λ), denote Cd,s the circuits over M with depth and size bounded by d
and s, respectively.

Let iO be an indistinguishability obfuscator for all polynomial size circuits. Our first homomor-
phic signature scheme, denoted by Πd,s = (Setupd,s,Signd,s,Verifyd,s,Evald,s), for circuits in Cd,s is
described as follows.
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Setupd,s(λ, k, d, s) : It takes as input the security parameter λ, the number of input index k = k(λ),
the upper bounds d and s of depth and size of circuits. It first generates an injective one-way func-
tion f : {0, 1}λ → {0, 1}` with ` = `(λ) and a puncturable PRF F = (F.Key,F.Puncture,F.Eval)
that maps from {0, 1}λ ×M×{0, 1}s to {0, 1}λ. It then generates d+ 1 PRF keys K0, ...,Kd ←
F.Key(1λ) and computes the programs {Verifyi}0≤i≤d, {Eval+i }i∈[d], {Eval

×
i }i∈[d] and {Eval=i }i∈[d]

defined in Fig. 1, 2, 3, 4. It outputs the signing key sk = K0, the verification key vk =
{iO(Verifyi)}0≤i≤d and the evaluation key ek = {(iO(Eval+i ), iO(Eval×i ), iO(Eval=i ))}i∈[d]. We
note that, the algorithm first generates iO(Verifyi) for 0 ≤ i ≤ d and embeds them to the e-
valuation programs. The message space is M, the signature space is {0, 1}λ and the admissible
circuits set is Cd,s.

Verifyi
Constants: f, s,Ki

Input: c = (τ,m, σ, C).
1. If f(σ) = f(F.Eval(Ki, τ‖m‖C)) and C ∈ Ci,s output 1; otherwise output 0.

Fig. 1.

Eval+i
Constants: s,Ki

Input: c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2).
1. If τ1 = τ2 continue; otherwise output ⊥.

2. If C1 ∈ Ci−1,s and C2 ∈ Ci−1,s continue; otherwise output ⊥.

3. If iO(Verifyi−1)(τ1,m1, σ1, C1) = 1 and iO(Verifyi−1)(τ2,m2, σ2, C2) = 1 continue; otherwise output ⊥.

4. Set τ = τ1 = τ2, m = m1 +m2 and C = C1 + C2. // C is the description of circuit .

5. Set σ = F.Eval(Ki, τ‖m‖C).

6. Output σ.

Fig. 2.

Eval×i
Constants: s,Ki

Input: c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2).
1. If τ1 = τ2 continue; otherwise output ⊥.

2. If C1 ∈ Ci−1,s and C2 ∈ Ci−1,s continue; otherwise output ⊥.

3. If iO(Verifyi−1)(τ1,m1, σ1, C1) = 1 and iO(Verifyi−1)(τ2,m2, σ2, C2) = 1 continue; otherwise output ⊥.

4. Set τ = τ1 = τ2, m = m1 ×m2 and C = C1 × C2.// C is the description of the circuit.

5. Set σ = F.Eval(Ki, τ‖m‖C).

6. Output σ.

Fig. 3.

Signd,s(sk, τ,m, i) : It takes as input the singing key sk = K0, a tag τ ∈ {0, 1}λ, a message m ∈M
and an index i ∈ [k]. It then computes σ = F.Eval(K0, τ‖m‖i) and outputs σ. The algorithm
actually pads i to have length s. For simplicity, we do not explicitly use this padding.
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Eval=i
Constants: s,Ki

Input: c1 = (τ1,m1, σ1, C1).
1. If C1 ∈ Ci−1,s continue; otherwise output ⊥.

2. If iO(Verifyi−1)(τ1,m1, σ1, C1) = 1 continue; otherwise output ⊥.

3. Set τ = τ1, m = m1 and C = (C1 =).// (C1 =) means C1 padded with an identity gate.

4. Set σ = F.Eval(Ki, τ‖m‖C).

5. Output σ.

Fig. 4.

Verifyd,s(vk, τ,m, σ, C) : It outputs iO(VerifydC )(τ,m, σ, C), where dC is the depth of C. Note that
if C is the input index, then dC = 0.

Evald,s(ek, τ, {(mi, σi)}i∈[k], C) : For C ∈ Cd,s, the algorithm evaluates the message-signature pairs

according to C with inputs {(τ,mi, σi, i)}i∈[k] by using {iO(Eval+i ), iO(Eval×i ), iO(Eval=i )}i∈[d]
on each level. The algorithm outputs the output σ of the dC-th level evaluation as the derived
signature, where dC is the depth of C.
We would like to point out that the evaluation algorithm has the data set (m1, ...,mk) and
the circuit C. Therefore, it could compute all the intermediate messages and subcircuits which
will be fed into the evaluation programs in each level. When verifying this derived signature, τ ,
C(m1, ...,mk) and C are additionally provided. Similar consideration was also taken into account
in all previous homomorphic signature schemes such as the ones in [18].

4.1 Correctness, Privacy and Length Efficiency

We show the correctness, privacy and length efficiency of our scheme in the following lemma.

Lemma 1. The homomorphic signature Πd,s = (Setupd,s, Signd,s,Verifyd,s,Evald,s) defined above is
correct, semi-strong context hiding and length efficient with respect to Cd,s.

Proof. We first prove the correctness. For a fresh signature σ = F.Eval(K0, τ‖m‖i), it is easy to
verify that iO(Verify0)(τ,m, σ, i) = 1. For a derived signature σ ← Evald,s(ek, τ, {(mi, σi)}i∈[k], C),
where σi ← Signd,s(sk, τ,mi, i) and C ∈ Cd,s. Since the evaluation algorithm evaluates the original
message-signature pairs exactly according to C, the derived signature must have the form σ =
F.Eval(KdC , τ‖C(m1, ...,mk)‖C), where dC is the depth of the circuit C. Thus, one can easily check
that iO(VerifydC )(τ, C(m1, ...,mk), σ, C) = 1.

As to the semi-strong context hiding property. For any two tuples of messages (m01, ...,m0k) and
(m11, ...,m1k) and any circuit C ∈ Cd,s such that C(m01, ...,m0k) = C(m11, ...,m1k) , m. According
to the evaluation algorithm, we have that

Evald,s(ek, τ, {m0i, σ0i}i∈[k], C) = F.Eval(KdC , τ‖m‖C) = Evald,s(ek, τ, {m1i, σ1i}i∈[k], C),

where τ ∈ {0, 1}λ is arbitrary, σ0i = F.Eval(K0, τ‖m0i‖i) and σ1i = F.Eval(K0, τ‖m1i‖i) for i ∈ [k].
The length of fresh and derived signatures in our scheme is λ, which is independent of k. ut

4.2 Selective Unforgeability

We first define a series of homomorphic schemes Πj,s = (Setupj,s, Signj,s,Verifyj,s,Evalj,s) for circuits
in Cj,s, where 0 ≤ j ≤ d. Then, we prove the security of Πd,s by induction on the depth d. Note that
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Π0,s is a standard signature scheme, since it does not generate an evaluation key in our construction.
We give the following theorems.

Theorem 1. Assuming iO is an indistinguishability obfuscator, F is a puncturable PRF and f is a
one-way function, then Π0,s is selectively unforgeable for circuits in C0,s.

The proof is essentially the same as the one in [51]. We give it in Appendix D.

Theorem 2. Assuming Πd−1,s is selectively unforgeable for circuits in Cd−1,s, iO is an indistin-
guishability obfuscator, F is a puncturable PRF and f is an injective one-way function, then Πd,s is
selectively unforgeable for circuits in Cd,s

We briefly describe the intuition here and the formal proof is given in Appendix E. 3 The
proof is shown as a sequence of hybrid experiments where the first experiment is the real selective
unforgeability experiment. We prove the winning probabilities of any efficient adversary must be
negligibly close between successive experiments. Finally, we show that any efficient adversary only
wins with negligible probability in the last experiment.

Let (τ∗,m∗, C∗) be the challenge output by the adversary at the beginning of the experiment.
If the depth of C∗ is less than d, then it is easy to show that a forgery for Πd,s is also a forgery for
Πd−1,s. Hence, we consider the case that the depth of C∗ is d. We extend the “punctured program”
method of Sahai and Waters [51] and want to remove a key element of the program.

The point (τ∗‖m∗‖C∗) of the PRF in the depth-d evaluation and verification programs is aimed
to be punctured out. We first show how to modify the verification program, which is similar to [51].
The modified verification program we call Sim.Verifyd is hardwired with constants τ∗,m∗, C∗ and
z∗ = f(F.Eval(Kd, τ

∗‖m∗‖C∗)). It changes the verification step to compare f(σ) and z∗ when the
input contains (τ∗,m∗, C∗) and uses a punctured key K ′d ← F.Puncture(Kd, {τ∗‖m∗‖C∗}) to check
other inputs. It is easy to see that the input-output behaviour of these two programs are identical.
By the property of indistinguishability obfuscator, any PPT adversary detects this modification only
with negligible probability.

Dealing with the evaluation programs is more challenging. Without loss of generality, we assume
C∗ ends up with an addition gate (+) and the analysis for other cases are similar. Let us first
consider the easier situations. We modify the depth-d evaluation programs corresponding to the
product and identity gates to Sim.Eval×d and Sim.Eval=d . These two modified programs are hardwired
with constants τ∗,m∗, C∗. They simply abort if (τ,m,C) = (τ∗,m∗, C∗) after the validity check of
the input signatures. Otherwise, they use K ′d to re-sign the message and circuit. These modifications
do not change the input-output behaviour between the modified and original programs. Notice that
the output gate of C∗ is an addition gate (+), while these two programs evaluate a product gate
(×) or an identity gate (=). The abort condition above will never be triggered and the evaluations
of the punctured PRF under Kd and K ′d are identical for all points except (τ∗‖m∗‖C∗). Again, by
the property of indistinguishability obfuscator, any PPT adversary detects the modifications only
with negligible probability.

The modified program Sim.Eval+d is similar to Sim.Eval×d and Sim.Eval=d . However, Sim.Eval+d and
Eval+d inherently have differing inputs and we can not directly apply the property of indistinguisha-
bility obfuscator. In a bit more details, a differing input (c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2))
must satisfy that τ1 = τ2 = τ∗, C1 + C2 = C∗, C1 ∈ Cd−1,s, C2 ∈ Cd−1,s and c1, c2 pass the ver-
ification at depth (d − 1). Recall that in the selective unforgeability experiment, all the messages
(mj1, ...,mjk) associated with some tag τj the adversary queried to the signing oracle must satisfy

3 We note that the proof is easily extended when f has polynomially bounded pre-image size.
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that (τ∗,m∗) 6= (τj , C
∗(mj1, ...,mjk)). With this, we have that for any messages (mj1, ...,mjk) as-

sociated with tag τj that the adversary queried, must satisfy that (τ1,m1) 6= (τj , C1(mj1, ...,mjk))
or (τ2,m2) 6= (τj , C2(mj1, ...,mjk)). Therefore, a differing input must contain a valid forgery for a
circuit in Cd−1,s. Furthermore, we show that if the message space size is polynomial and f is injec-
tive (or has polynomially bounded pre-image size) then there are only polynomial differing inputs.
According to Lemma 2, we conclude that if there exists a PPT adversary distinguishes these two
obfuscated programs, then there exists a PPT extractor outputs a differing input, which is a valid
forgery for Πd−1,s.

The rest of the proof is somehow straightforward, we choose z∗ = f(r∗) for uniform r∗ instead
of generating r∗ as r∗ = F.Eval(Kd, τ

∗‖m∗‖C∗). This is safe due to the pseudorandomness of PRF.
In this case, one can easily show that any PPT adversary can output a forgery only with negligible
probability if f is a one-way function.

Remark 1. This scheme supports composition in the sense that outputs of previously derived signa-
tures can be used as inputs for new computations. More specifically, if σi is a derived signature for
yi = Ci(m1, ...,mk) for i = 1 to t, one could compute a derived signature σ for y = C(y1, ..., yt) on
the inputs (σ1, .., σt) as long as the depth and size of the circuit C(C1, ..., Ct) are bounded by d and
s, respectively.

Remark 2. The size of the evaluation and verification keys in this scheme is linear in the upper
bounds d, s of the circuits depth and size, which might be undesired in some settings. In the next
subsection, we extend this scheme to get a construction with succinct evaluation and verification
keys whose size only depends on the upper bound d.

4.3 Removing the Restriction on the Circuit Size

In this subsection, we describe our second scheme and remove the restriction on the circuit size. This
construction uses the recording hash function for circuits and relies on differing-inputs obfuscation
and collision-resistant hash functions.

For any polynomial d = d(λ), let Cd be the set of all circuits overM with depth bounded by d. Let
h : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function and RHh,Cd be a recording hash function
for circuits in Cd with respect to h. Let diO be a differing-inputs obfuscator for all polynomial-size
circuits. Our second scheme Πd = (Setupd, Signd,Verifyd,Evald) is described as follows.

Setupd(λ, k, d) : It takes as input the security parameter λ, the number of input index k and the
upper bound d of the depth. It first generates a one-way (not necessarily injective) function
f : {0, 1}λ → {0, 1}` with ` = `(λ) and a puncturable PRF F = (F.Key,F.Puncture,F.Eval) that
maps from {0, 1}λ ×M× {0, 1}λ to {0, 1}λ. It then generates d+ 1 PRF keys K0,K1, ...,Kd ←
F.Key(1λ) and the programs {dVerifyi}0≤i≤d, {dEval+i }i∈[d], {dEval

×
i }i∈[d] and {dEval=i }i∈[d] as in

Fig 5, 6. Because of the similarity of the evaluation programs, we only describe the programs for
the addition gate to save space. It then outputs the signing key sk = K0, the verification key vk =
{diO(dVerifyi)}0≤i≤d and the evaluation key ek = {(diO(dEval+i ), diO(dEval×i ), diO(dEval=i ))}i∈[d].

dVerifyi
Constants: f,Ki

Input: c = (τ,m, σ, t).
1. If f(σ) = f(F.Eval(Ki, τ‖m‖t)) output 1; otherwise output 0.

Fig. 5.
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dEval+i
Constants: Ki, h
Input: c1 = (τ1,m1, σ1, t1), c2 = (τ2,m2, σ2, t2).
1. If τ1 = τ2 continue; otherwise output ⊥.

2. If diO(dVerifyi−1)(τ1,m1, σ1, t1) = 1 and diO(dVerifyi−1)(τ2,m2, σ2, t2) = 1 continue; otherwise output ⊥.

3. Set τ = τ1, m = m1 +m2 and t = h(t1‖+ ‖t2).

4. Set σ = F.Eval(Ki, τ‖m‖t).

5. Output σ.

Fig. 6.

Signd(sk, τ,m, i) : It takes as input the signing key sk = K0, a tag τ ∈ {0, 1}λ, a message m ∈ M
and an index i ∈ [k]. It then computes t = h(i) and outputs σ = F.Eval(K0, τ‖m‖t).

Verifyd(vk, τ,m, σ, C) : It first computes t = RHh,Cd(C) and then outputs diO(dVerifydC ), where dC
is the depth of C.

Evals(ek, τ, {mi, σi}i∈[k], C) : The evaluation algorithm is the same as the one in Πd,s, except that
it takes (τ,mi, σi, h(i)) as inputs to the evaluation programs for i ∈ [k].

For correctness, according to the evaluation algorithm, the derived signature of fresh signatures
(τ, {mi, σi}i∈[k]) on circuit C ∈ Cd is of the form σ = F.Eval(τ‖C(m1, ...,mk)‖RHh,Cd(C)). It is easy
to see that it will pass the verification.

The proofs of privacy and length efficiency of Πd easily follow from Πd,s, and we establish the
unforgeability as follows.

Theorem 3. Assuming diO is a differing-inputs obfuscator, f is a one-way function, h is a collision-
resistant hash function and F is a puncturable PRF, then Πd is selectively unforgeable for circuits in
Cd.

The proof of Theorem 3 is very similar to the proofs of Theorem 1, 2. We only roughly describe
it to avoid duplicated work. The difference here is how to modify the evaluation programs. As in
the proof of Theorem 2, we consider the evaluation program dEval+d .

Given challenge tag τ∗, message m∗ and circuit C∗ ∈ Cd. The modified program, denoted by
Sim.dEval+d , is hardwired with constants τ∗,m∗, t∗ = RHh,Cd(C∗). For an input (c1 = (τ1,m1, σ1, t1), c2
= (τ2,m2, σ2, t2)), it runs the first three steps as in dEval+d . Then, it aborts if (τ,m, h(t1‖+ ‖t2)) =
(τ∗,m∗, t∗); otherwise it uses K ′d ← F.Puncture(Kd, {τ∗‖m∗‖t∗}) to re-sign other inputs. Due to
the property of differing-inputs obfuscator, if any PPT adversary can distinguish diO(dEval+d ) and
diO(Sim.dEval+d ), then there exists a PPT extractor outputs a differing input.

Let (c1 = (τ1,m1, σ1, t1), c2 = (τ2,m2, σ2, t2)) be a differing input, it then must satisfy that
τ∗ = τ1 = τ2, m

∗ = m1+m2, t
∗ = h(t1‖+‖t2) and σ1, σ2 pass the verification. Denote C∗ , C1+C2,

we have t∗ = RHh,Cd(C∗) = h
(
RHh,Cd(C1)‖+ ‖RHh,Cd(C2)

)
due to the definition of recording hash.

We consider the following cases. (I) If (t1, t2) 6= (RHh,Cd(C1),RHh,Cd(C2)), then one can efficiently
find a collision of the hash function h. (II) If (t1, t2) = (RHh,Cd(C1),RHh,Cd(C2)), similar analysis
shows that c1, c2 must contain at least one forgery for circuits C1, C2, respectively. Here the number
of differing inputs is inherently super-polynomial, even |M| is polynomial. However, we remark that
|M| still needs to be polynomial to make the proof go through, because in the selective unforgeable
experiment, the simulator needs to guess which differing input the extractor will output ahead of
time. More details can be seen in Lemma 9 for a similar situation in Πd,s.
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Remark 3. The size of the evaluation and verification keys in Πd is only linear in the upper bound
d of the circuit depth. Πd still supports composition.

Remark 4. We conjecture that the candidates in [33,50,23,11,39] are differing-inputs obfuscators for
all polynomial-size circuits. Garg et al. [34] recently showed that the existence of general-purpose
differing-inputs obfuscator with auxiliary inputs leads to attacks on some new assumptions they
made. We note that no evidence (so far) shows that their attacks on the differing-inputs obfuscator
apply to the specific circuits in our construction.

5 Conclusion and Open Problems

In this paper, we propose two bounded fully homomorphic signature schemes, allowing users to
publicly verify computations over previous signed data.

Our work leaves several interesting open questions. First, it will be very nice to construct un-
bounded fully homomorphic signature schemes. A simple try is that one could use only one PRF key
in the evaluation key in our second scheme. However, we do not know how to prove its security.

Second, it would be interesting to achieve adaptive unforgeability of our constructions without
complexity leveraging. The reason we only achieve selective unforgeability is that we make use of
the “punctured program” technique. A promising direction is to adapt the methods in [43], where
the authors showed how to achieve adaptively secure signature schemes from indistinguishability
obfuscation.
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A Indistinguishability Obfuscation

The notion of indistinguishability obfuscation was first introduced by Barak et al. [12,13]. A uniform
PPT machine iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following
holds:

1. For all λ ∈ N, every C ∈ Cλ, every input x in the domain of C, we have that

Pr[C̃ ← iO(C) : C̃(x) = C(x)] = 1.

2. For any PPT algorithm D, any two circuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for all input x, then
we have

|Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| ≤ negl(λ).

A recent breakthrough work of Garg et al. [33] first shows how to get a candidate construction
of indistinguishability obfuscators for all polynomial-size circuits under novel algebraic hardness
assumptions.

B Differing-Inputs Obfuscation

A stronger notion called differing-inputs obfuscation or extractability obfuscation was also intro-
duced in [12,13]. Very recently, many interesting applications were given based on it [3,14,21]. A
uniform PPT machine diO is called a differing-inputs obfuscator for a circuit class {Cλ}λ∈N if the
following holds.

1. For all λ ∈ N, every C ∈ Cλ, every input x in the domain of C, we have that

Pr[C̃ ← diO(C) : C̃(x) = C(x)] = 1.

2. For any PPT distinguisher D and polynomial p(λ), there exists a PPT extractor E and polynomial
q(λ) such that the following holds. For all λ ∈ N, any two circuits C0, C1 ∈ Cλ and any auxiliary
input z,

|Pr[C̃ ← diO(C0) : D(C̃, C0, C1, z) = 1]− Pr[C̃ ← diO(C1) : D(C̃, C0, C1, z) = 1]| ≥ 1

p(λ)

=⇒ Pr[x← E(C0, C1, z) : C0(x) 6= C1(x)] ≥ 1

q(λ)
.

An interesting result given in [21] says that if any two circuits differ on at most polynomial many
inputs, then an indistinguishability obfuscator on those circuits is also a differing-inputs obfuscator.
More specifically, we describe the following lemma.
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Lemma 2 ([21] Lemma 6.3). Let N = N(λ) be a polynomial, iO be an indistinguishability obfus-
cator. For any distinguisher D and polynomial p(λ), there exists a PPT extractor E and polynomial
tE(λ,N) such that the following holds. For any two circuits C0, C1 differ on at most N inputs and
any auxiliary input z,

|Pr[C̃ ← iO(C0) : D(C̃, C0, C1, z) = 1]− Pr[C̃ ← iO(C1) : D(C̃, C0, C1, z) = 1]| ≥ 1

p(λ)

=⇒ Pr[x← E(C0, C1, z) : C0(x) 6= C1(x)] ≥ 1− negl(λ)

and E terminates within time tE(λ,N).

All the applications based on differing-inputs obfuscation proposed before conjecture that differing-
inputs obfuscator for polynomial-size circuits exists by assuming the candidate in [33] is a differing-
inputs obfuscator or assuming the candidates satisfy a stronger security, virtual black-box security,
in an ideal model [23,11] are differing-inputs obfuscators for NC1 circuits and amplifying them to
obfuscate polynomial-size circuits by fully homomorphic encryption. Garg et al [34] showed that
the existence of general-purpose differing-inputs obfuscator with auxiliary inputs leads to attacks
on some new assumptions they made. Although the assumptions may be false, it reminds us to be
cautious to general-purpose differing-inputs obfuscators with auxiliary inputs.

C Puncturable Pseudorandom Functions

We recall the definition of puncturable PRF given in [51]. A puncturable family of PRFs consists of
three algorithms F = (F.Key,F.Puncture,F.Eval):

– Key Generation F.Key(1λ) takes as input the security parameter λ and outputs a PRF key K.
– Punctured Key Generation F.Puncture(K,S) takes as input a PRF key K, a set S ⊂ {0, 1}λ

and outputs a punctured key KS .
– Evaluation F.Eval(K,x) is a deterministic algorithm that takes as input a key K (punctured

key or PRF key), a string x ∈ {0, 1}λ and outputs y.

A family of PRFs F = (F.Key,F.Puncture,F.Eval) is puncturable if it satisfies the following properties:

– Functionality preserved under puncturing. Let K ← F.Key(1λ), KS ← F.Puncture(K,S).
Then, for all x /∈ S, F.Eval(K,x) = F.Eval(KS , x).

– Pseudorandom at punctured points. For every adversary A = (A1,A2) such that A1(λ)
outputs a set S ⊂ {0, 1}λ and x ∈ S, for any K ← F.Key(1λ) and KS ← F.Puncture(K,S), the
following holds.

|Pr[A2(KS , x,F.Eval(K,x)) = 1]− Pr[A2(KS , x, U) = 1]| ≤ negl(λ)

where U denotes the uniform distribution.

The GGM tree-based construction of PRFs [41] from one-way functions are easily seen to yield
puncturable PRFs, as recently observed by [20,45,22].

D Proof of Theorem 1

Before giving the proof, we note that the Π0,s scheme is actually a standard signature scheme. It
does not involve an evaluation algorithm. More specifically, Π0,s = (Setup0,s,Sign0,s,Verify0,s), where
the signing key is sk = K0, the verification key is vk = iO(Verify0).
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We give the proof as a sequence of hybrid experiments where the first one corresponds to the o-
riginal experiment of the Π0,s scheme. We prove that the winning probabilities of any PPT adversary
must be negligibly close between successive experiments. Then, we show that any PPT adversary in
the final experiment wins only with negligible probability.

Hyb0 : This experiment is the same as the selective unforgeability experiment. More specifically, it
does the following.

1. The adversary A outputs the challenge tag τ∗ ∈ {0, 1}λ, challenge message m∗ ∈ M and the
challenge index i∗ ∈ [k] he wants to forge.

2. The challenger runs the Setup0,s(λ, k, 0, s) algorithm and gives vk = iO(Verify0) to A and keeps
the signing key sk = K0.

3. A submits a query (τ,m) to the signing oracle. If m is the first message corresponding to τ , the
challenger sets a counter iτ = 1. Otherwise, the challenger increases the counter iτ by 1. The
challenger responds to A with the signature σ = F.Eval(K0, τ‖m‖iτ ). A can query the oracle at
most k times for one τ (but for polynomial many tags). Let {mji}i∈[k] be the messages A queried
corresponding to τj , they must satisfy (τ∗,m∗) 6= (τj ,mj(i∗)) for all j.

4. A outputs a forgery σ∗. If iO(Verify0)(τ
∗,m∗, σ∗, i∗) = 1, then A wins. Let X0 be the event that

A wins.

Hyb1 : This experiment is the same as Hyb0 except the challenger sets z∗ = f(F.Eval(K0, τ
∗‖m∗‖i∗)),

generates K ′0 ← F.Puncture(K0, {τ∗‖m∗‖i∗}) and modifies the Verify0 program to Sim.Verify0, where
Sim.Verify0 is defined in Fig. 7. Let X1 be the event that A wins.

Sim.Verify0
Constants: f, s,K′0, τ

∗,m∗, i∗, z∗

Input: c = (τ,m, σ, i).

1. If (τ,m, i) = (τ∗,m∗, i∗), test if f(σ) = z∗. If it is true, output 1; otherwise output 0.

2. Else, test if f(σ) = f(F.Eval(K′0, τ‖m‖i∗)). If it is true, output 1; otherwise output 0.

Fig. 7.

Hyb2 : This experiment is the same as Hyb1, except that the challenger chooses r∗ ← {0, 1}λ
uniformly at random and sets z∗ = f(r∗). Let X2 be the event that A wins.

Lemma 3. Assuming iO is an indistinguishability obfuscator, then Pr[X0] ≤ Pr[X1] + negl(λ).

Proof. We note that the only difference between the two experiments is that Hyb0 uses iO(Verify0)
as the verification key while Hyb1 uses iO(Sim.Verify0). It is also easy to see that Verify0 and
Sim.Verify0 have the same input-output behaviour. Suppose there exists a PPT adversary A such
that Pr[X0]−Pr[X1] ≥ 1/poly(λ), we now construct an algorithm B to break the indistinguishability
obfuscator.

Receiving (τ∗,m∗, i∗) from A, B generates the one-way function f , the signing key K0 ←
F.Key(1λ) and the punctured key K ′0 ← F.Puncture(K0, {τ∗‖m∗‖i∗}). B then creates the program-
s Verify0 and Sim.Verify0 and submits them to his iO challenger and receives iO(Verify). B sets
vk = iO(Verify) and sends it to A, and answers A’s signing queries with K0. B outputs 1 if A wins.
Note that if Verify = Verify0, then A is in Hyb0; if Verify = Sim.Verify0, then A is in Hyb1. ut
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Lemma 4. Assuming F is a puncturable PRF, then Pr[X1] ≤ Pr[X2] + negl(λ).

Proof. Suppose there exists a PPT adversary A such that Pr[X1]−Pr[X2] ≥ 1/poly(λ), we construct
a PPT algorithm B to break the pseudorandomness of the puncturable PRF. Receiving (τ∗,m∗, i∗)
from A, B submits the punctured set {τ∗‖m∗‖i∗} to his PRF challenger. B gets K ′ and r, where
K ′ ← F.Punture(K, {τ∗‖m∗‖i∗}) and either r = F.Eval(K, τ∗‖m∗‖i∗) or r is uniformly random
from {0, 1}λ. B generates f and creates Sim.Verify0 by setting K ′0 = K ′ and z∗ = f(r). B then
sends iO(Sim.Verify0) to A and answers A’s signing queries using K ′. Note that A will never query
(τ∗,m∗, i∗), then B will answer correctly. Finally, B outputs 1 if A wins. If r = F.Eval(K, τ∗‖m∗‖i∗),
then A is in Hyb1, if r ← {0, 1}`, then A is in Hyb2. ut

Lemma 5. Assuming f is a one-way function, then Pr[X2] ≤ negl(λ).

Proof. LetA be a PPT adversary that outputs a valid forgery in Hyb2, we construct a PPT algorithm
B to break the one-wayness of f . Receiving z∗ = f(r∗) with r∗ ← {0, 1}` from the one-way function
challenger, B generates the signing key sk = K0 and the verification key vk by using f , z∗ and
the punctured key K ′0 ← F.Puncture(K0, {τ∗‖m∗‖i∗}). B answers the signing queries from A with
sk and outputs whatever A outputs. Note that if A outputs a valid forgery σ∗, it must satisfy
Sim.Verify0(τ

∗,m∗, i∗) = 1. Therefore, we have f(σ∗) = z∗, and σ∗ is a pre-image of z∗. ut

E Proof of Theorem 2

Proof. Let (τ∗,m∗, C∗) be the challenge output by the adversary at the beginning of the experiment.
We consider two cases as follows.

Case 1: If the depth of C∗ is less than d, denoted by dC∗ ≤ d − 1. We show that Πd,s is s-
electively unforgeable for circuits in Cd,s, assuming Πd−1,s is selectively unforgeable for circuits
in Cd−1,s. Let A be a PPT adversary attacks Πd,s, we construct a PPT adversary B to attack
Πd−1,s. Receiving (τ∗,m∗, C∗) from A, B outputs (τ∗,m∗, C∗) as the challenge to the scheme
Πd−1,s. Then B receives the verification key vk′ = {iO(Verifyi)}0≤i≤d−1 and the evaluation key
ek′ = {(iO(Eval+i ), iO(Eval×i ), iO(Eval=i ))}i∈[d−1]. B then creates the verification program Verifyd
and the evaluation programs Eval+d , Eval×d and Eval=d by generating a fresh PRF key Kd ← F.Key(1λ)
4. B sets ek = (ek′, iO(Eval+d ), iO(Eval×d ), iO(Eval=d )) and vk = (vk′, iO(Verifyd)) and sends ek, vk to
A. B answers A’s queries using his own signing oracle. Notice that B will always answer A’s queries
correctly. B outputs whatever A outputs. It is easy to see that if A outputs a valid forgery with
non-negligible probability, then B will outputs a valid forgery with the same probability.

Case 2: If the depth of C∗ is d. We give the proof as a sequence of hybrid experiments where the
first one corresponds to the original experiment of the Πd,s scheme. We prove that the winning
probabilities of any PPT adversary are negligibly close between successive experiments. Finally, we
show that any PPT adversary in the final experiment wins only with negligible probability.

Hyb0 : This experiment is the same as the selective unforgeability experiment. More specifically, it
does the following.

1. The adversaryA outputs the challenge tag τ∗ ∈ {0, 1}λ, challenge messagem∗ ∈M and challenge
circuit C∗ ∈ Cd,s he wants to forge. Without loss of generality, we assume C∗ ends up with an
addition gate (+), and we can prove the theorem in a similar way for other cases.

2. The challenger runs the Setupd,s(λ, k, d, s) algorithm and gives vk = {iO(Verifyi)}0≤i≤d and

ek = {(iO(Eval+i ), iO(Eval×i ), iO(Eval=i ))}i∈[d] to A and keeps the signing key sk = K0.

4 The one-way function f is implicitly given in the verification key.
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3. A submits a query (τ,m) to the signing oracle. If m is the first message corresponding to τ , the
challenger sets a counter iτ = 1. Otherwise, the challenger increases the counter iτ by 1. The
challenger answers A with signature σ = F.Eval(K0, τ‖m‖iτ ). A can query the oracle at most
k times for one τ (but for polynomial many tags). Let {mji}i∈[k] be the messages A queried
corresponding to τj , they must satisfy (τ∗,m∗) 6= (τj , C

∗(mj1, ...,mjk)) for all j.
4. A outputs a forgery σ∗. If iO(Verifyd)(τ

∗,m∗, σ∗, C∗) = 1, then A wins. Let Xd
0 be the event

that A wins.

Hyb1 : This experiment is the same as Hyb0 except the challenger sets z∗ = f(F.Eval(Kd, τ
∗‖m∗‖C∗)),

generates K ′d ← F.Puncture(Kd, {τ∗‖m∗‖C∗}) and modifies the Verifyd program to Sim.Verifyd, where
Sim.Verifyd is defined in Fig. 8. Let Xd

1 be the event that A wins.

Sim.Verifyd
Constants: f, s,K′d, τ

∗,m∗, C∗, z∗

Input: c = (τ,m, σ, C).

1. If (τ,m,C) = (τ∗,m∗, C∗), test if f(σ) = z∗ and C ∈ Cd,s. If it is true, output 1; otherwise output 0.

2. Else, test if f(σ) = f(F.Eval(K′d, τ‖m‖C)) and C ∈ Cd,s. If it is true, output 1; otherwise output 0.

Fig. 8.

Hyb2 : This experiment is the same as Hyb1 except the challenger modifies Eval×d to Sim.Eval×d ,
where Sim.Eval×d is defined in Fig. 9 and K ′d ← F.Puncture(Kd, {τ∗‖m∗‖C∗}) is the punctured key
as in Hyb1. Let Xd

2 be the event that A wins.

Sim.Eval×d
Constants: s,K′d, τ

∗,m∗, C∗

Input: c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2).

1. If τ1 = τ2 continue; otherwise output ⊥.

2. If C1 ∈ Cd−1,s and C2 ∈ Cd−1,s continue; otherwise output ⊥.

3. If iO(Verifyd−1)(τ1,m1, σ1, C1) = 1 and iO(Verifyd−1)(τ2,m2, σ2, C2) = 1 continue; otherwise output ⊥.

4. Set τ = τ1 = τ2, m = m1 ×m2 and C = C1 × C2.

5. If (τ,m,C) = (τ∗,m∗, C∗) output ⊥.

6. Set σ = F.Eval(K′d, τ‖m‖C).

7. Output σ.

Fig. 9.

Hyb3 : This experiment is the same as Hyb2 except the challenger modifies Eval=d to Sim.Eval=d ,
where Sim.Eval=d is defined in Fig. 10 and K ′d ← F.Punture(Kd, {τ∗‖m∗‖C∗}) is the punctured key
as in Hyb2. Let Xd

3 be the event that A wins.

Hyb4 : This experiment is the same as Hyb3 except the challenger modifies the program Eval+d
to Sim.Eval+d , where Sim.Eval+d is defined in Fig. 11 and K ′d ← F.Punture(Kd, {τ∗‖m∗‖C∗}) is the
punctured key as in Hyb3. Let Xd

4 be the event that A wins.
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Sim.Eval=d
Constants: s,K′d, τ

∗,m∗, C∗

Input: c1 = (τ1,m1, σ1, C1).

1. If C1 ∈ Cd−1,s continue; otherwise output ⊥.

2. If iO(Verifyd−1)(τ1,m1, σ1, C1) = 1 continue; otherwise output ⊥.

3. Set τ = τ1, m = m1 and C = (C1 =).

4. If (τ,m,C) = (τ∗,m∗, C∗) output ⊥.

5. Set σ = F.Eval(K′d, τ‖m‖C).

6. Output σ.

Fig. 10.

Sim.Eval+d
Constants: s,K′d, τ

∗,m∗, C∗

Input: c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2).

1. If τ1 = τ2 continue; otherwise output ⊥.

2. If C1 ∈ Cd−1,s and C2 ∈ Cd−1,s continue; otherwise output ⊥.

3. If iO(Verifyd−1)(τ1,m1, σ1, C1) = 1 and iO(Verifyd−1)(τ2,m2, σ2, C2) = 1 continue; otherwise output ⊥.

4. Set τ = τ1 = τ2, m = m1 +m2 and C = C1 + C2.

5. If (τ,m,C) = (τ∗,m∗, C∗) output ⊥.

6. Set σ = F.Eval(K′d, τ‖m‖C).

7. Output σ.

Fig. 11.
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Hyb5 : This experiment is the same as Hyb4 except the challenger chooses r∗ ← {0, 1}λ uniformly
at random and sets z∗ = f(r∗). Let Xd

5 be the event that A wins.

Lemma 6. Assuming iO is an indistinguishability obfuscator, then Pr[Xd
0 ] ≤ Pr[Xd

1 ] + negl(λ).

Proof. We note that the only difference between the two experiments is that Hyb0 includes iO(Verifyd)
in the verification key while Hyb1 includes iO(Sim.Verifyd). It is also easy to see that Verifyd and
Sim.Verifyd have the same input-output behaviour. Suppose there exists a PPT adversary A such
that Pr[Xd

0 ]−Pr[Xd
1 ] ≥ 1/poly(λ), we now construct an algorithm B to break the indistinguishability

obfuscator.

Receiving (τ∗,m∗, C∗) from A, B creates the programs Verifyd and Sim.Verifyd. B then sub-
mits them to his iO challenger and receives iO(Verify). Note that B can first generate the one-
way function f , generate a fresh key Kd ← F.Key(1λ), and then compute the punctured key
K ′d ← F.Puncture(Kd, {τ∗‖m∗‖C∗}). B then generates the signing key sk = K0, the verification
programs {Verifyi}0≤i≤d−1 and the evaluation programs {(Eval+i ,Eval

×
i ,Eval

=
i )}i∈[d]. B then set-

s the evaluation key ek = {(iO(Eval+i ), iO(Eval×i ), iO(Eval=i ))}i∈[d] and the verification key vk =
({iO(Verifyi)}0≤i≤d−1, iO(Verify)). B sends ek, vk to A and answers A’s signing queries with K0. B
outputs 1 if A wins. Note that if Verify = Verifyd, then A is in Hyb0; if Verify = Sim.Verifyd, then
A is in Hyb1. ut

Lemma 7. Assuming iO is an indistinguishability obfuscator, then Pr[Xd
1 ] ≤ Pr[Xd

2 ] + negl(λ).

Proof. The only difference between Hyb1 and Hyb2 is the difference between the programs Eval×d
and Sim.Eval×d . Kd is used to re-sign the product of the two messages in Eval×d . While K ′d is used in
Sim.Eval×d , where K ′d is a punctured key on {τ∗‖m∗‖C∗}. We show that the input-output behaviour
of the two programs are identical and the claim follows from the property of the indistinguishability
obfuscator. More specifically, we show that the modified program will never abort in Step 5 for all
the inputs and the PRF function indexed by K ′d in Sim.Eval×d will not evaluate the point (τ∗‖m∗‖C∗).
This is true because the C∗ ends up with an addition gate (+) and Sim.Eval×d is the evaluation of a
product gate (×). The string of the circuit will never equal to C∗ in Step 5.

Suppose there exists a PPT adversary A such that Pr[Xd
1 ] − Pr[Xd

2 ] ≥ 1/poly(λ), we now
construct a PPT algorithm B to break the indistinguishability obfuscator. Receiving (τ∗,m∗, C∗)
from A, B first generates f , d + 1 PRF keys K0, ...,Kd ← F.Key(1λ) and then computes K ′d ←
F.Puncture(Kd, {τ∗‖m∗‖C∗}). B creates the verification programs {Verifyi}0≤i≤d−1 and Sim.Verifyd,
then generates the evaluation programs {Eval+i ,Eval

×
i ,Eval

=
i }i∈[d−1], Eval=d , Eval+d , Eval×d and Sim.Eval×d .

B submits Eval×d and Sim.Eval×d to his iO challenger and receives iO(Eval×). B sets sk = K0, vk =
({iO(Verifyi)}0≤i≤d−1, iO(Sim.Verifyd)) and vk = ({iO(Eval+i ), iO(Eval×i ), iO(Eval=i )}i∈[d−1], iO(Eval+d ),
iO(Eval=d ), iO(Eval×)). B sends vk, ek to A and answers A’s queries with sk = K0. B outputs 1 if A
wins. Note that if Eval× = Eval×d , then A is in Hyb1, if Eval× = Sim.Eval×d , then A is in Hyb2. ut

Lemma 8. Assuming iO is an indistinguishability obfuscator, then Pr[Xd
2 ] ≤ Pr[Xd

3 ] + negl(λ).

Proof. The only difference between Hyb2 and Hyb3 is the difference between the programs Eval=d
and Sim.Eval=d . We note that the input-output behaviour of these two programs are identical. The
argument is similar to Lemma 7. ut

Lemma 9. Assuming Πd−1,n is selectively unforgeable for circuits in Cd−1,n, i.e. Pr[Xd−1
0 ] ≤ negl(λ),

iO is an indistinguishability obfuscator, and f is injective, then Pr[Xd
3 ] ≤ Pr[Xd

4 ] + negl(λ).
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Proof. Note that we assume the C∗ ends up with an addition gate (+). The difference between
Hyb3 and Hyb4 is the difference between the programs Eval+d and Sim.Eval+d . We note that these
two programs differs on inputs (c1, c2), where c1 = (τ1,m1, σ1, C1), c2 = (τ2,m2, σ2, C2), satisfying
that Sim.Eval+d runs to Step 5 on (c1, c2) and τ∗ = τ1 = τ2, m

∗ = m1 +m2, C
∗ = C1 + C2.

Let C∗ , C∗1 +C∗2 . It must be C1 = C∗1 and C2 = C∗2 . Because σ1, σ2 both pass the verification,
it therefore should be the case that f(σi) = f(F.Eval(Kd−1, τ

∗‖mi‖C∗i )) for i = 1, 2. Since f is
injective, this is equivalent to σi = F.Eval(Kd−1, τ

∗‖mi‖C∗i ) for i = 1, 2. Due to the determinism of
the PRF function, we know that the number of differing inputs equals to the number of the pairs
(m1,m2) such that m1 + m2 = m∗. Thus there are at most 2|M| possible number of inputs that
differ these two programs. (If C∗ ends up with a product gate, then this upper bound is 2|M|)

Let c1 = (τ∗,m1, σ1, C
∗
1 ), c2 = (τ∗,m2, σ2, C

∗
2 ) be a differing input on these two programs. We

claim that this input satisfies:

(τ∗,m1) 6= (τj , C
∗
1 (mj1, ...,mjk)) or (τ∗,m2) 6= (τj , C

∗
2 (mj1, ...,mjk)) for all j, (1)

where (mj1, ...,mjk) are the messages queried by A corresponding to τj . Suppose not, i.e. there
exists some j such that (τ∗,m1) = (τj , C

∗
1 (mj1, ...,mjk)) and (τ∗,m2) = (τj , C

∗
2 (mj1, ...,mjk)). This

implies

(τ∗,m∗) = (τ∗,m1 +m2) = (τj , C
∗
1 (mj1, ...,mjk) + C∗2 (mj1, ...,mjk)) = (τj , C

∗(mj1, ...,mjk)).

This contradicts the strategy of A in the selective unforgeability experiment.

Assume that there exists a PPT algorithm A such that Pr[Xd
3 ] − Pr[Xd

4 ] ≥ 1/poly(λ), we now
construct a PPT algorithm B = (B1,B2) to break the security of Πd−1,n for circuits in Cd−1,n.

After receiving (τ∗,m∗, C∗) from A, B1 chooses (m̄, C̄)←M× {C∗1 , C∗2} uniformly at random.
Notice that (τ∗, m̄, C̄) satisfies (1), i.e. (τ∗, m̄) 6= (τj , C̄(mj1, ...,mjk)) for all queries (τj ,mj1, ...,mjk),
with probability at least 1/(2|M|). B1 gives (τ∗, m̄, C̄) to B2, then B2 submits it to the chal-
lenger in the selective unforgeability experiment on Πd−1,s and receives the evaluation key ek′ =
{(iO(Eval+i ), iO(Eval×i ), iO(Eval=i ))}i∈[d−1], and the verification key vk′ = {iO(Verifyi)}0≤i≤d−1. B2
passes (ek′, vk′) to B1.
B1 is viewed as a distinguisher for iO(Eval+d ) and iO(Sim.Eval+d ). B1 generates the PRF key Kd ←

F.Key(1λ) and the punctured key K ′d ← F.Punture(Kd, {τ∗‖m∗‖C∗}). B1 then creates verification
and evaluation keys iO(Sim.Verifyd), iO(Sim.Eval×d ) and iO(Sim.Eval=d ) as in Hyb4. Note that B1
gets the obfuscation iO(Verifyd−1) from B2, then he can embed it to the evaluation programs. After
that, B1 generates the programs Eval+d and Sim.Eval+d and submits them to his iO challenger and
receives iO(Eval+). B1 sets the verification key vk = (vk′, iO(Sim.Verifyd)) and the evaluation key
ek = (ek′, iO(Sim.Eval×d ), iO(Sim.Eval=d ), iO(Eval+)) and sends them to A. B1 answers A’s signing
queries using B2’s signing oracle on the Πd−1,n scheme. If (τ∗, m̄) 6= (τj , C̄(mj1, ...,mjk)) for all
the queried messages (mj1, ...,mjk) corresponding to τj , then all the queries of A can be answered
correctly. B1 outputs 1 if A wins.

Note that if Eval+ = Eval+d then A is in Hyb3, if Eval+ = Sim.Eval+d , then A is in Hyb4. Since A
can distinguish Hyb3 and Hyb4 with advantage 1/poly(n), then B1 can distinguish iO(Eval+d ) and
iO(Sim.Eval+d ) with advantage 1

2|M|·poly(λ) . Because there are at most 2|M| inputs differ these two
programs and by the statement of Lemma 2, there exists an extractor E outputs a differing input
(c1, c2) with probability 1− negl(λ).

As discussed above, (c1, c2) must satisfy condition (1). Without loss of generality, we assume
c1 = (τ∗,m1, σ1, C

∗
1 ) satisfying (τ∗,m1) 6= (τj , C

∗
1 (mj1, ...,mjk)) for all the queries (τj ,mj1, ...,mjk).

Since (m̄, C̄) is chosen uniformly at random from M × {C∗1 , C∗2}, then (m̄, C̄) = (m1, C
∗
1 ) with

probability 1/(2|M|). Finally B2 outputs σ1 in the experiment on Πd−1,s. Note that since (c1, c2) is a
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differing input, then it holds that iO(Verifyd−1)(τ
∗,m1, σ1, C

∗
1 ) = 1 and C∗1 ∈ Cd−1,n. Therefore σ1 is a

valid forgery, which implies B = (B1,B2) is a PPT adversary such that Pr[Xd−1
0 ] ≥ 1

2|M| ·(1−negl(λ)).

We conclude that for any PPT adversary A, we have Pr[Xd
3 ]− Pr[Xd

4 ] ≤ negl(λ). ut

Lemma 10. Assuming F is a puncturable PRF, then Pr[Xd
4 ] ≤ Pr[Xd

5 ] + negl(λ).

Proof. Suppose there exists a PPT adversary A such that Pr[Xd
4 ]−Pr[Xd

5 ] ≥ 1/poly(λ), we construct
a PPT algorithm B to break the pseudorandomness of the puncturable PRF. Receiving (τ∗,m∗, C∗)
from A, B submits the punctured set {τ∗‖m∗‖C∗} to his PRF challenger. B gets K ′ and r from
the challenger, where K ′ ← F.Punture(K, {τ∗‖m∗‖C∗}) and either r = F.Eval(K, τ∗‖m∗‖C∗) or r is
uniformly random from {0, 1}λ. Then B generates the signing key sk = K0, the verification key vk
and the evaluation key ek as in Hyb4 by setting K ′d = K ′ and z∗ = f(r). B sends (vk, ek) to A and
answers A’s query using sk. Finally, B outputs 1 if A wins. Note that if r = F.Eval(K, τ∗‖m∗‖C∗),
then A is in Hyb4, if r ← {0, 1}`, then A is in Hyb5. ut

Lemma 11. Assuming f is a one-way function, then Pr[Xd
5 ] ≤ negl(λ).

Proof. LetA be a PPT adversary that outputs a valid forgery in Hyb5, we construct a PPT algorithm
B to break the one-wayness of f . Receiving z∗ = f(r∗) with r∗ ← {0, 1}` from the one-way function
challenger, B generates the signing key sk, verification key vk and evaluation key ek by using f and
z∗ as in Hyb5. B answers the signing queries with sk and outputs whatever A outputs. Note that
if A outputs a valid forgery σ∗, it must satisfy Sim.Verifyd(τ

∗,m∗, σ∗, C∗) = 1. Therefore, we have
f(σ∗) = z∗, and σ∗ is a pre-image of z∗. ut

Theorem 2 follows from Lemma 6, 7, 8, 9, 10, 11. ut
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