
Lightweight Delegatable Proofs of Storage?

Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

Institute for Infocomm Research, Singapore1,
{xuj,jyzhou}@i2r.a-star.edu.sg

City University of Hong Kong, China2,
ayang3-c@my.cityu.edu.hk,

Hong Kong Applied Science and Technology Research Institute3,
duncanwong@astri.org

Abstract. Proofs of storage (including Proofs of Retrievability and Provable Data Possession) is a
cryptographic tool, which enables data owner or third party auditor to audit integrity of data stored
remotely in a cloud storage server, without keeping a local copy of data or downloading data back
during auditing. We observe that all existing publicly verifiable POS schemes suffer from a serious
drawback: It is extremely slow to compute authentication tags for all data blocks, due to many
expensive group exponentiation operations. Surprisingly, it is even much slower than typical network
uploading speed, and becomes the bottleneck of the setup phase of the POS scheme. We propose
a new variant formulation called “Delegatable Proofs of Storage”. In this new relaxed formulation,
we are able to construct a POS scheme, which on one side is as efficient as privately verifiable POS
schemes, and on the other side can support third party auditor and can efficiently switch auditors
at any time, close to the functionalities of publicly verifiable POS schemes. Compared to traditional
publicly verifiable POS schemes, we speed up the tag generation process by at least several hundred
times, without sacrificing efficiency in any other aspect. Like many existing schemes, we can also
speed up our tag generation process by approximately N times using N CPU cores in parallel,
before I/O cost becomes the bottleneck. We prove that our scheme is sound under Bilinear Strong
Diffie-Hellman Assumption in standard model.

Keywords: Proof of Storage, Proof of Retrievability, Third Party Verifier, Lightweight Homomor-
phic Authentication Tag, Applied Cryptography

1 Introduction

Since Proofs of Retrievability (POR [26]) and Provable Data Possession (PDP [4]) are proposed in 2007,
a lot of effort of research community is devoted to constructing proofs of storage schemes with more
advanced features. The new features include, public key verifiability [34], supporting dynamic opera-
tions [11, 20, 39] (i.e. inserting/deleting/editing a data block), supporting multiple cloud servers [16],
privacy-preserving against auditor [46], and supporting data sharing [41], etc.

1.1 Drawback of Publicly Verifiable Proofs of Storage

Expensive Setup Preprocessing. We look back into the very first feature—public verifiability, and
observe that all existing publicly verifiable POS schemes suffer from serious drawbacks: (1) Merkle Hash
Tree based method is not disk IO-efficient and not even a sub-linear memory authenticator [27]: Every bit
of the file has to be accessed by the cloud storage server in each remote integrity auditing process. (2) By
our knowledge, all other publicly verifiable POS schemes employ a lot of expensive operation (e.g. group
exponentiation) to generate authentication tags for data blocks. As a result, it is prohibitively expensive
to generate authentication tags for medium or large size data file. For example, Wang et al. [42] achieves
throughput of data pre-processing (i.e. generating authentication tag) at speed 17.2KB/s with an Intel
Core 2 1.86GHz workstation CPU, which means it will take about 17 hours to generate authentication
tags for a 1GB file. Even if the user has a CPU with 8 cores, it still requires more than 2 hours’ heavy

? (1) The full version [51] with all details of proof is available at http://eprint.iacr.org/2014/395. (2) Anjia
Yang contributes to this work when he takes his internship in Institute for Infocomm Research, Singapore. (3)
Both Jia Xu and Anjia Yang are corresponding authors.

http://eprint.iacr.org/2014/395


2 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

computation. Such amount of heavy computation is not appropriate for a laptop, not to mention tablet
computer (e.g. iPad) or smart phone. It might be weird to tell users that, mobile device should be only
used to verify or download data file stored in cloud storage server, and shoud not be used to upload (and
thus pre-process) data file to cloud. Unless a formal lower bound is proved and shows that existing study
of POS has reach optimality, it is the responsibility of our researchers to make both pre-processing and
verification of (third party verifiable) POS practically efficient, although the existing works have already
reached good amortized complexity. In this paper, we make our effort towards this direction, improving
pre-processing speed by several hundreds times without sacrificing effiency on other aspects.

In many publicly verifiable POS (POR/PDP) scheme (e.g. [4, 34, 42, 46]), publicly verifiable authen-
tication tag function, which is a variant of signing algorithm in a digital signature scheme, is applied
directly over every block of a large user data. This is one of few application scenarios that a public key
cryptography primitive is directly applied over large user data. In contrast, (1) public key encryption
scheme is typically employed to encrypt a short symmetric cipher key, and the more efficient symmetric
cipher (e.g. AES) will encrypt the user data; (2) digital signature scheme is typically applied over a short
hash digest of large user data, where the hash function (e.g. SHA256) is much more efficient (in term of
throughput) than digital signature signing algorithm.

Lack of Control on Auditing. The benefit of publicly verifiable POS schemes is that, anyone with the
public key can audit the integrity of data in cloud storage, to relieve the burden from the data owner.
However, one should not allow any third party to audit his/her data at their will, and delegation of
auditing task has to be in a controlled and organized manner. Otherwise, we cannot prevent extreme
cases: (1) on one hand, some data file could attract too much attention from public, and are audited
unnecessarily too frequently by the public, which might actually result in distributed denial of service
attack against the cloud storage server; (2) on the other hand, some unpopular data file may be audited
by the public too rarely, so that the possible data loss event might be detected and alerted to the data
owner too late and no effective countermeasure can be done to reduce the damage at that time.

1.2 Approaches to Mitigate Drawback

Outsourcing Expensive Operations. To reduce the computation burden on data owner for prepro-
cessing in setup phase, the data owner could outsource expensive operations (e.g. group exponentia-
tion) to some cloud computing server during authentication tag generation, by using existing techniques
(e.g. [25, 49]) as black-box, and verify the computation result.

However, this approach just shifts the computation burden from data owner to cloud storage server,
instead of reducing the amount of expensive operations. Furthermore, considering the data owner and
cloud computing server as a whole system, much more cost in network communication and computation
will be incurred: (1) uploading (possibly transformed) data file, to the cloud computing server, and
downloading computation results from the cloud computing server; (2) extra computation cost on both
data owner side and cloud computing server side, in order to allow data owner to verify the computation
result returned by the cloud computing server and maintain data privacy against cloud computing server.

One may argue that it could save much of the above cost, if the outsourcing of expensive operations
and proofs of storage scheme are integrated together and letting cloud storage server takes the role of
cloud computing server. But in this case, simple black-box combination of existing proofs of storage
scheme and existing privacy-preserving and verifiable outsource scheme for expensive operations, may
not work. Thus, a new sophisticated proofs of storage scheme is required to be constructed following this
approach, which remains an open problem.

Dual Instantiations of Privately Verifiable Proof of Storage. The data owner could independently
apply an existing privately verifiable POS scheme over an input file twice, in order to generate two key
pairs and two authentication tags per each data block, where one key pair and authentication tag (per
data block) will be utilized by data owner to perform data integrity check, and the other key pair and
authentication tag (per data block) will be utilized by auditor to perform data integrity check, using the
interactive proof algorithm in the privately verifiable POS scheme. The limitation of this approach is
that, in order to add an extra auditor or switch the auditor, the data owner has to download the whole
data file to refresh the key pair and authentication tags for auditor.



Lightweight Delegatable Proofs of Storage 3

Recently, [2] gave an alternative solution. The data owner runs privately verifiable POS scheme (i.e.
Shacham-Water’s scheme [34] as in [2]) over a data file to get a key pair and authentication tag per each
data block, and uploads the data file together with newly generated authentication tags to cloud storage
server. Next, the auditor downloads the whole file from cloud storage server, and independently runs the
same privately verifiable POS scheme over the downloaded file, to get another key pair and another set
of authentication tags. The auditor uploads these authentication tags to cloud storage server. For each
challenge query provided by the auditor, the cloud storage server will compute two responses, where one
is upon data owner’s authentication tags and the other is upon auditor’s authentication tags. Then the
auditor can verify the response generated upon his/her authentication tags, and keeps the other response
available for data owner.

Since [2] aims to resolve possible framing attack among the data owner, cloud storage server and
auditor, all communication messages are digitally signed by senders, and the auditor has to prove to
the data owner that, his/her authentication tags are generated correctly, where this proof method is
very expensive, and comparable to tag generation complexity of publicly verifiable POS scheme (e.g.
[4,34,42,46]). Furthermore, in this scheme, in the case of revoking or adding an auditor, the new auditor
has to download the whole file, then compute authentication tags, and prove that these tags are correctly
generated to the data owner.

We remark that our early version of this work appeared as a private internal technique report in early
2014, before [2] became available to public.
Program Obfuscation. Very recently, [14] proposed to construct publicly verifiable POR from privately
verifiable POR using indistinguishability obfuscation technique [21]. This obfuscation technique is able to
embed the data owner’s secret key in a verifier program, in a way such that it is hard to recover the secret
key from the obfuscated verifier program. Therefore, this obfuscated verifier program could be treated as
public key and given to the auditor to perform data integrity check. However, both [14] and [21] admit
that indistinguishability obfuscation is currently impractical. Particularly, [17] implements the scheme
of [21] and shows that, it requires about 9 hours to obfuscate a simple function which contains just 15
AND gates, and resulted obfuscated program has size 31.1 GB. Furthermore, it requires around 3.3 hours
to evaluate the obfuscated program on a single input.

1.3 Our Approach

To address the issues of existing publicly verifiable POS schemes, we propose a hybrid POS scheme,
which on one hand supports delegation of data auditing task and switching/adding/revoking an auditor,
like publicly verifiable POS schemes, and on the other hand is as efficient as a privately verifiable POS
scheme.

Unlike in publicly verifiable POS scheme, the data owner could delegate the auditing task to some
semi-trusted third party auditor, and this auditor is responsible to audit the data stored in cloud storage
on behalf of the data owner, in a controlled way and with proper frequency. We call such an exclusive
auditor as Owner-Delegated-Auditor or ODA for short. In real world applications, ODA could be another
server that provides free or paid auditing service to many cloud users.

Our bottom line is that, even if all auditors colluded with the dishonest cloud storage server, our
formulation and scheme should guarantee that the data owner still retains the capability to perform
POR auditing by herself.
Overview of Our Scheme. Our scheme generates two pairs of public/private keys: (pk, sk) and
(vpk, vsk). The verification public/private key pair (vpk, vsk) is delegated to the ODA. Our scheme
proposes a novel linear homomorphic authentication tag function [5], which is extremely lightweight,
without any expensive operations (e.g. group exponentiation or bilinear map). Our tag function generates
two tags (σi, ti) for each data block, where tag σi is generated in a way similar to Shacham and Waters’
privately verifiable POR scheme [34], and tag ti is generated in a completely new way. Each of tag σi
and tag ti is of length equal to 1/m-fraction of length of a data block, where the data block is treated as
a vector of dimension m1. ODA is able to verify data integrity remotely by checking consistency among
the data blocks and both tags {(σi, ti)} that are stored in the cloud storage server, using the verification
secret key vsk. The data owner retains the capability to verify data integrity by checking consistency

1 System parameter m can take any positive integer value and typical value is from a hundred to a thousand



4 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

between the data blocks and tags {σi}, using the master secret key sk. When an ODA is revoked and
replaced by a new ODA, data owner will update all authentication tags {ti} and the verification key pair
(vpk, vsk) without downloading the data file from cloud, but keep tags {σi} and master key pair (pk, sk)
unchanged.

Furthermore, we customize the polynomial commitment scheme proposed by Kate et al. [1] and
integrate it into our homomorphic authentication tag scheme, in order to reduce proof size from O(m)
to O(1).

1.4 Contributions

Our main contributions can be summarized as below:

• We propose a new formulation called “Delegatable Proofs of Storage” (DPOS), as a relaxed variant of
publicly verifiable POS. Our formulation allows data owner to delegate auditing task to a third party
auditor, and meanwhile retains the capability to perform audit task by herself, even if the auditor
colluded with the cloud storage server. Our formulation also support revoking and switching auditors
efficiently.

• We design a new scheme under this formulation. Our scheme is as efficient as privately verifiable
POS: The tag generation throughput is slightly larger than 10MB/s per CPU core on a mobile CPU
released in Year 2008. On the other side, our scheme allows delegation of auditing task to a semi-
trusted third party auditor, and also supports switching and revoking an auditor at any time, like
a publicly verifiable POS scheme. We compare the performance complexity of our scheme with the
state of arts in Table 1, and experiment shows the tag generation speed of our scheme is more than
hundred times faster than the state of art of publicly verifiable POS schemes.

• We prove that our scheme is sound (Theorem 1 and Theorem 2 on page 13) under Bilinear Strong
Diffie-Hellman Assumption in standard model.

2 Related Work

Recently, much growing attention has been paid to integrity check of data stored at untrusted servers
[3–6, 8, 9, 13, 16, 18–20, 24, 26, 32–37, 40–48, 50, 52–57]. In CCS’07, Ateniese et al. [4] defined the provable
data possession (PDP) model and proposed the first publicly verifiable PDP scheme. Their scheme used
RSA-based homomorphic authenticators and sampled a number of data blocks rather than the whole
data file to audit the outsourced data, which can reduce the communication complexity significantly.
However, in their scheme, a linear combination of sampled blocks are exposed to the third party auditor
(TPA) at each auditing, which may leak the data information to the TPA. At the meantime, Juels and
Kaliski [26] described a similar but stronger model: proof of retrievability (POR), which enables auditing
of not only the integrity but also the retrievability of remote data files by employing spot-checking and
error-correcting codes. Nevertheless, their proposed scheme allows for only a bounded number of auditing
services and does not support public verification.

Shacham and Waters [34,35] proposed two POR schemes, where one is private key verifiable and the
other is public key verifiable, and gave a rigorous proof of security under the POR model [26]. Similar
to [4], their scheme utilized homomorphic authenticators built from BLS signatures [7]. Subsequently,
Zeng et al. [55], Wang et al. [47, 48] proposed some similar constructions for publicly verifiable remote
data integrity check, which adopted the BLS based homomorphic authenticators. With the same reason
as [4], these protocols do not support data privacy. In [42, 46], Wang et al. extended their scheme to be
privacy preserving. The idea is to mask the linear combination of sampled blocks in the server’s response
with some random value. With the similar masking technique, Zhu et al. [57] introduced another privacy-
preserving public auditing scheme. Later, Hao et al. [24] and Yang et al. [53] proposed two privacy-
preserving public auditing schemes without applying the masking technique. Yuan et al. [54] gave a POR
scheme with public verifiability and constant communication cost. Ren [30] designs mutual verifiable
public POS application.

However, by our knowledge, all of the publicly verifiable PDP/POR protocols require to do a large
amount of computation of exponentiation on big numbers for generating the authentication tags upon



Lightweight Delegatable Proofs of Storage 5

Table 1. Performance Comparison of Proofs of Storage (POR,PDP) Schemes. In this table, publicly verifiable
POS schemes appear above our scheme, and privately verifiable POS schemes appear below our scheme.

Scheme
Computation

(Data Pre-process)
Communication bits Storage

Overhead
(Server)

Computation (Verifier) Computation (Prover)

exp. mul. add. Challenge Response exp. mul. pair. add. exp. mul. pair. add.

[3, 4] 2 |F |
mλ

|F |
mλ

0 log ` + 2κ 2λ |F |
m

` ` 0 0 ` 2` 0 `

[34, 35]-pub. |F |
λ

+ |F |
mλ

|F |
λ

0 `λ+` log( |F |
mλ

) (m+ 1)λ |F |
m

`+m `+m 2 0 ` m`+ ` 0 m`

[47, 48] 2 |F |
λ

|F |
λ

0 `λ+` log( |F |
mλ

)

(`+ 3)λ +

`(plog( |F |
mλ

)q
−1) |h|

|F | ` ` 4 0 ` 2` 0 `

[46] 2 |F |
λ

|F |
λ

0 `λ+ ` log( |F |
mλ

) 3λ |F | ` ` 2 0 ` 2` 0 `

[42]† |F |
λ

+ |F |
mλ

|F |
λ

0 `λ+ ` log( |F |
mλ

) (2m+ 1)λ |F |
m

`+m `+ 2m 2 0 `+m m`+ ` 1 m`

[57] |F |
mλ

+m
2 |F |
λ

+m

|F |
λ

+m
`λ+ ` log( |F |

mλ
) (m+ 3)λ |F |

m
`+m `+m 3 0 `+m

m`+ 2`
+2m

1 m`

[24] |F |
mλ

0 0 λ+ k λ 0†† |F |
mλ

|F |
mλ

0 0
log( |F |

mλ
)

+m
|F |
mλ

0 |F |
mλ

[53]
|F |
λ

+ |F |
mλ

+m
|F |
λ

0
(`+ 1)λ

+` log( |F |
mλ

)
2λ |F |

m
` 2` 2 0 `+m

m`+m
+`

m m`

[54] |F |
λ

+ 2|F |
mλ

|F |
λ

0 2λ+ ` log( |F |
mλ

) 3λ |F |
m

` 2` 4 0 `+m
m`+m

+`
0 m`

[38] 2|F |
mλ

|F |
mλ

0 |F |
m

+ 2λ 5λ |F |
m

|F |
mλ

+ 4 |F |
mλ

+ 1 5 0 |F |
mλ

+ 5 3 |F |
mλ

3 2 |F |
mλ

Our Scheme 0 2|F |
λ

2|F |
λ

3λ+ 280 6λ 2|F |
m

6 ` 7 ` 3m
m`+ 2`

+6m
0

m`+ 2`
+2m

[34, 35]-pri.††† 0 |F |
λ

|F |
λ

`λ+` log( |F |
mλ

) (m+ 1)λ |F |
m

0 `+m 0 `+m 0 m`+ ` 0 m`+ `

† [42] is a journal version of [46], and the main scheme is almost the same as [46].
We now consider the one that divides each data block into m sectors.
†† In Hao et al.’s paper [24], the authentication tags are stored at both the client
and the verifier side, rather than the server side.
††† The private key verifiable POR scheme of Shacham and Waters [34,35]. Notice that the public key verifiable POS
scheme of [34,35] also appears in this table.
κ, k are system parameters, |h| is the length of a hash output. |F | is the data file
size. λ is group element size. m is the number of sectors in each data block. ` is
the sampling size.

preprocessing the data file. This makes these schemes impractical for file of medium or large size, especially
limiting the usage on mobile device.

Although delegable POS has been studied by [29, 31, 38], unfortunately these works have the same
drawback with public POS, i.e., the cost of tag generation is extremely high.

In other related work, Curtmola et al. [16] extended Ateniese et al.’s protocol [4] to a multiple-replica
PDP scheme in which a client stores multiple replicas of a file across distributed storage servers and
can verify the possession of each replica from the different servers. Bowers et al. [8] improved the POR
model to distributed scenario with high availability and integrity, in which a set of distributed servers
can prove to a client that a stored file is intact and retrievable. Similarly, Wang et al. [44, 45] and Zhu
et al. [56] considered the auditing service for distributed data storage in cloud computing, in which the
data file is encoded and divided into multiple blocks and store these blocks on different storage servers.
In 2012, Wang et al. [40] put forward a new scenario where multiple users share data in the cloud and
they proposed a privacy-preserving public auditing mechanism on the shared data. Later, they designed
a public auditing scheme [41] for shared data with efficient user revocation.

3 Formulation

We propose a formulation called “Delegatable Proofs of Storage” scheme (DPOS for short), based on
existing POR [26, 34] and PDP [4] formulations. We provide the system model in Section 3.1 and the
trust model in Section 3.2. We will defer the security definition to Section 5, where the security analysis
of our scheme will be provided.



6 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

3.1 System Model

Definition 1 A Delegatable Proofs of Storage (DPOS) scheme consists of algorithms (KeyGen, Tag,
UpdVK, OwnerVerify), and a pair of interactive algorithms 〈P,V〉, where each algorithm is described as
below

• KeyGen(1λ)→ (pk, sk, vpk, vsk) : Given a security parameter 1λ, this randomized key generating algo-
rithm generates a pair of public/private master keys (pk, sk) and a pair of public/private verification
keys (vpk, vsk).

• Tag(sk, vsk, F )→ (ParamF , {(σi, ti)}) : Given the master secret key sk, the verification secret key vsk,
and a data file F as input, the tag algorithm generates a file parameter ParamF and authentication
tags {(σi, ti)}, where a unique file identifier idF is a part of ParamF .

• UpdVK(vpk, vsk, {ti}) → (vpk′, vsk′, {t′i}) : Given the current verification key pair (vpk, vsk) and
the current authentication tags {ti}, this updating algorithm generates the new verification key pair
(vpk′, vsk′) and the new authentication tags {t′i}.

• 〈P(pk, vpk, {( ~Fi, σi, ti)}i),V(vsk,vpk,pk,ParamF )〉 → (b, Context, Evidence): The verifier algorithm
V interacts with the prover algorithm P to output a decision bit b ∈ {1, 0}, Context and Evidence,
where the input of P consists of the master public key pk, the verification public key vpk, and file
blocks { ~Fi} and authentication tags {σi, ti}, and the input of V consists of the verification secret key
vsk, verification public key vpk, master public key pk, and file information ParamF .

• OwnerVerify(sk, pk, Context, Evidence, ParamF ))→ (b0, b1) : The owner verifier algorithm OwnerVerify
takes as input the master key pair (sk, pk) and Context and Evidence, and outputs two decision bits
b0, b1 ∈ {0, 1}, where b0 indicates accepting or rejecting the storage server, and b1 indicates accepting
or rejecting the ODA.

4

2

3

Owner Delegated AuditorData Owners

Server

vskvpkpk ,,

C
h
a
lle

n
g
e

1
vp

k
pk

t

F

i
i

,
},

,
{,



R
e
sp

o
n
se

5
(Challenge, Response)

(a) The framework of DPOS

Server

F

nii 0}{

niit 0}{

New Owner Delegated Auditor

n
i

it




0}
{.

1

),(new.2 vpkvsk

n
i

it
vp

k


0}'

{,

ne
w

.2

Data Owners

(b) Updating Verification key (vpk, vsk)

Fig. 1. Illustration of system model of DPOS.

A DPOS system is described as below and illustrated in Fig 1(a) and Fig 1(b).

Definition 2 A DPOS system among three parties—data owner, cloud storage server and auditor, can
be implemented by running a DPOS scheme (KeyGen, Tag, UpdVK,〈P,V〉,OwnerVerify) in the following
three phases, where the setup phase will execute at the very beginning, for only once (for one file); the
proof phase and revoke phase can execute for multiple times and in any (interleaved) order.
Setup phase The data owner runs the key generating algorithm KeyGen(1λ) for only once across all files,
to generate the per-user master key pair (pk, sk) and the verification key pair (vpk, vsk). For every input
data file, the data owner runs the tag algorithm Tag over the (possibly erasure encoded) file, to generate
authentication tags {(σi, ti)} and file parameter ParamF . At the end of setup phase, the data owner sends
the file F , all authentication tags {(σi, ti)}, file parameter ParamF , and public keys (pk, vpk) to the cloud
storage server. The data owner also chooses an exclusive third party auditor, called Owner-Delegated-
Auditor (ODA, for short), and delegates the verification key pair (vpk, vsk) and file parameter ParamF
to the ODA. After that, the data owner may keep only keys (pk, sk, vpk, vsk) and file parameter ParamF



Lightweight Delegatable Proofs of Storage 7

in local storage, and delete everything else from local storage.
Proof phase The proof phase consists of multiple proof sessions. In each proof session, the ODA, who
runs algorithm V, interacts with the cloud storage server, who runs algorithm P, to audit the integrity of
data owner’s file, on behalf of the data owner. Therefore, ODA is also called verifier and cloud storage
server is also called prover. ODA will also keep all (Context, Evidence) pairs, and allow data owner to
fetch and verify these pairs at any time.
Revoke phase In the revoke phase, the data owner downloads all tags {ti} from cloud storage server,
revokes the current verification key pair, and generates a fresh verification key pair and new tags {t′i}, by
running algorithm UpdVK. The data owner also chooses a new ODA, and delegates the new verification
key pair to this new ODA, and sends the updated tags {t′i} to the cloud storage server to replace the old
tags {ti}.

Definition 3 (Completeness) A DPOS scheme (KeyGen, Tag, UpdVK, 〈P,V〉, OwnerVerify) is com-
plete, if the following condition holds: For any keys (pk,sk, vpk,vsk) generated by KeyGen, for any file
F , if all parties follow our scheme exactly and the data stored in cloud storage is intact, then interactive
proof algorithms 〈P,V〉 will always output (1, . . .) and OwnerVerify algorithm will always output (1, 1).

Application of DPOS System: A Full Story. In a real world application, with our scheme (and some
other tools), data owner can delegate auditing task to ODA and ensure that, ODA performs the verification
task at the right time and with the right challenge (e.g. the challenge message is really randomly chosen).

We require three additional building blocks: (1) error correcting code (e.g Reed-Solomon code [28]),
which can correct errors in data blocks up to a certain amount; (2) timed-release encryption (e.g. [10,12]),
which can encrypt a message w.r.t. a future time point t, such that only after time t, the holder of
ciphertext can decrypt it successfully; (3) ReceiveServer (e.g. a trusted email server) with persistent
buffer storage and synchronized time clock, which can receive a message via Internet and record the
message together with the message-arrival-time.

Now let us put all pieces together: During the setup phase, the data owner runs the KeyGen algorithm
to generate master key pair (sk, pk) and verification key pair (vsk, vpk), where sk will be kept private
by data owner, vsk will be kept private by the ODA, and (pk, vpk) will be publicly available. To upload
a file F to a cloud storage server, the data owner will divide file F into equal-length blocks, and apply
error correcting code on each block independently. Then each erasure encoded block will be divided into
equal-length slices, and all slices will be permutated randomly across different blocks. For each newly
formed data block denoted as ~Fi, the data owner applies Tag algorithm to generate authentication tag
(σi, ti) using key (sk, vsk, pk). Then all data blocks { ~Fi} together with their authentication tags {σi, ti}
are uploaded to the cloud storage server. Optionally, the data owner may choose to delete the local copy of
data file and tags, in order to save local storage space. To delegate the auditing task over file F , the data
owner chooses properly N future time points (t0, t1, . . . , tN−1) and N random seeds (S0, . . . ,SN−1),
where t0 < t1 < . . . < tN−1. Data owner encrypts the seed Si w.r.t time point ti, to obtain ciphertext
CTexti. Data owner delegates auditing task to the ODA by sending all timed-release ciphertexts {CTexti}
and time points ti’s to the ODA at once. The security property of timed-release encryption will ensure
that, only after time point ti, the ODA is able to decrypt the ciphertext CTexti and thus recover the
seeds Si. ODA then derives a challenge from seed Si and starts an interactive proof session with cloud
storage server. After receiving response from server, ODA verifies whether the response is valid using
verification secret key vsk and sends her decision bit and challenge-response pair to ReceiveServer,
where ReceiveServer will keep the received challenge-response pairs together with message-arrival-time
t′i in its persistent storage device. Data owner may download all outstanding challenge-response pairs from
ReceiveServer, at any time he/she likes. Data owner can verify the response using algorithm OwnerVerify
and check whether the difference (t′i−ti) is within a reasonable range. Optionally, data owner can verify
multiple challenge-response pairs at once using batch-verification, to reduce computation time. If ODA’s
decision bit does not match data owner’s decision bit or the timing check fails, then data owner can
switch to another auditor and runs UpdVK to update the verification key pair and authentication tags
{ti}. In addition, the data owner may also add an extra auditor, and generates a pair of new verification
keys and a set of new authentication tags {t′i} by running UpdVK.



8 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

3.2 Trust Model

In this paper, we aim to protect data integrity of data owner’s file. The data owner is fully trusted,
and the cloud storage server and ODA are semi-trusted in different sense: (1) The cloud storage server
is trusted in maintaining service availability and is not trusted in maintaining data integrity (e.g. the
server might delete some rarely accessed data for economic benefits, or hide the data corruption events
caused by server failures or attacks to maintain reputation). (2) Before he/she is revoked, the ODA is
trusted in performing the delegated auditing task and protecting his/her verification secret key securely.
A revoked ODA could be potentially malicious and might surrender his/her verification secret key to the
cloud storage server.

We assume that each communication party is authenticated and all communication data among the
data owner, the cloud storage server and ODA is via some secure channel (i.e. channel privacy and integrity
are protected). Privacy-preserving against auditor and framing attack among these three parties could
be dealt with existing techniques and is out of scope of this paper.

4 Our Proposed Scheme

4.1 Preliminaries

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a randomly chosen generator
of group G. A bilinear map is a map e : G×G→ GT with the following properties:

(1) Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b ∈ Zp.
(2) Non-degeneracy: If g is a generator of G, then e(g, g) is a generator of GT , i.e. e(g, g) 6= 1.

(3) Computable: There exists an efficient algorithm to compute e(u, v) for all u, v ∈ G.

In the rest of this paper, the term “bilinear map” will refer to the non-degenerate and efficiently com-
putable bilinear map only.

For vector ~a = (a1, . . . , am) and ~b = (b1, . . . , bm), the notation
〈
~a, ~b

〉
def
=

m∑
j=1

ajbj denotes the dot

product (a.k.a inner product) of the two vectors ~a and ~b. For vector ~v = (v0, . . . , vm−1) the notation

Poly~v(x)
def
=

m−1∑
j=0

vjx
j denotes the polynomial in variable x with ~v being the coefficient vector.

4.2 Construction of the Proposed DPOS Scheme

We define our DPOS scheme (KeyGen, Tag, UpdVK, 〈P,V〉, OwnerVerify) as below, and these algorithms
will run in the way as specified in Definition 2 (on page 6). We remind that in the following description of
algorithms, some equations have inline explanation highlighted in box, which is not a part of algorithm
procedures but could be useful to understand the correctness of our algorithms.

KeyGen(1λ)→ (pk, sk, vpk, vsk) Choose at random a λ-bits prime p and a bilinear map e : G×G→ GT ,
where G and GT are both multiplicative cyclic groups of prime order p. Choose at random a generator
g ∈ G. Choose at random α, γ, ρ ∈R Z∗p, and (β1, β2, . . ., βm) ∈R (Zp)m. For each j ∈ [1,m], define

αj := αj mod p, and compute gj := gαj , hj := gρ·βj . Let α0 := 1, β0 := 1, g0 = gα
0

= g, h0 = gρ, vector

~α := (α1, α2, . . ., αm), and ~β := (β1, β2, . . . , βm). Choose two random seeds s0, s1 for pseudorandom
function PRFseed : {0, 1}λ × N→ Zp.

The secret key is sk = (α, ~β, s0) and the public key is pk = (g0, g1, . . . , gm). The verification secret
key is vsk = (ρ, γ, s1) and the verification public key is vpk = (h0, h1, . . . , hm).

Tag(sk, vsk, F )→ (ParamF , {(σi, ti)}) Split file2 F into n blocks, where each block is treated as a vector

of m elements from Zp: { ~Fi = (Fi,0, . . . , Fi,m−1) ∈ Zmp }i∈[0,n−1]. Choose a unique identifier idF ∈ {0, 1}λ.
Define a customized3 pseudorandom function w.r.t. the file F : Rs(i) = PRFs(idF , i).

2 Possibly, the input has been encoded by the data owner using some error erasure code.
3 With such a customized function R, the input idF will become implicit and this will make our expression short.



Lightweight Delegatable Proofs of Storage 9

For each block ~Fi, 0 ≤ i ≤ n− 1, compute

σi :=
〈
~α, ~Fi

〉
+Rs0(i) = α · Poly ~Fi(α) +Rs0(i) mod p (1)

ti := ρ
〈
~β, ~Fi

〉
+ γRs0(i) +Rs1(i) mod p (2)

The general information of F is ParamF := (idF , n).
UpdVK(vpk, vsk, {ti}i∈[0,n−1])→ (vpk′, vsk′, {t′i}i∈[0,n−1]) Parse vpk as (h0, . . . , hm) and vsk as (ρ, γ, s1).

Verify the integrity of all tags {ti} (We will discuss how to do this verification later), and abort if the
verification fails. Choose at random γ′ ∈R Z∗p and choose a random seed s′1 for pseudorandom function

R. For each j ∈ [0,m], compute h′j := hγ
′

j = g(ρ·γ′)·βj ∈ G. For each i ∈ [0, n − 1], compute a new
authentication tag

t′i :=γ′ (ti −Rs1(i)) +Rs′1(i) mod p.

= γ′ · ρ
〈
~β, ~Fi

〉
+ (γ′ · γ)Rs0(i) +Rs′1(i) mod p

The new verification public key is vpk′ := (h′0, . . . , h
′
m) and the new verification secret key is vsk′ :=

(γ′ · ρ, γ′ · γ, s′1).

〈P(pk, vpk, { ~Fi, σi, ti}i∈[0,n−1]),V(vsk, vpk, pk, ParamF )〉 → (b, Context, Evidence)

V1: Verifier parses ParamF as (idF , n). Verifier chooses a random subset C = {i1, i2, . . . , ic} ⊂ [0, n− 1]
of size c, where i1 < i2 < . . . < ic. Choose at random w, ξ ∈R Z∗p, and compute wiι := wι mod p for each
ι ∈ [1, c]. Verifier sends (idF , {(i, wi) : i ∈ C}, ξ) to the prover to initiate a proof session.

P1: Prover finds the file and tags {( ~Fi, σi, ti)}i corresponding to idF . Prover computes ~F ∈ Zmp , and
σ̄, t̄ ∈ Zp as below.

~F :=

(∑
i∈C

wi ~Fi

)
mod p; (3)

σ̄ :=

(∑
i∈C

wiσi

)
mod p; (4)

t̄ :=

(∑
i∈C

witi

)
mod p. (5)

Evaluate polynomial Poly~F (x) at point x = ξ to obtain z := Poly~F (ξ) mod p. Divide the polynomial
(in variable x) Poly~F (x)−Poly~F (ξ) with (x−ξ) using polynomial long division, and denote the coefficient

vector of resulting quotient polynomial as ~v = (v0, . . . vm−2), that is, Poly~v(x) ≡ Poly~F (x)−Poly~F (ξ)

x−ξ mod p.

(Note: (x − ξ) can divide polynomial Poly~F (x) − Poly~F (ξ) perfectly, since the latter polynomial evaluates to 0 at

point x = ξ.)
Compute (ψα, ψβ , φα) ∈ G3 as below

ψα :=

m−1∏
j=0

g
~F [j]
j =

m−1∏
j=0

(
gα

j
)~F [j]

= g

m−1∑
j=0

~F [j]αj

= gPoly~F (α) ∈ G; (6)

ψβ :=

m−1∏
j=0

h
~F [j]
j+1 =

m−1∏
j=0

(
gρ·βj+1

)~F [j]
= g

ρ·
m−1∑
j=0

~F [j]βj

= gρ〈~β, ~F〉 ∈ G; (7)

φα :=

m−2∏
j=0

g
vj
j =

m−2∏
j=0

(
gα

j
)vj

= g

m−2∑
j=0

vjα
j

= gPoly~v(α) ∈ G. (8)



10 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

Prover sends (z, φα, σ̄, t̄, ψα, ψβ) to the verifier.
V2: Let Context := (ξ, {(i, wi) : i ∈ C}) and Evidence := (z, φα, σ̄). Verifier sets b := 1 if the following
equalities hold and sets b := 0 otherwise.

e(ψα, g)
?
= e(φα, g

α/gξ) · e(g, g)z (9)(
e(ψα, g

α)

e (g, gσ̄)

)γ
?
=

e(ψβ , g)

e

(
g, gt̄ · g

−
∑
i∈C

wiRs1 (i)
) (10)

Output (b, Context, Evidence).
OwnerVerify(sk, pk, b, Context, Evidence, ParamF ))→ (b0, b1)
Parse Context as (ξ, {(i, wi) : i ∈ C}) and parse Evidence as (z, φα, σ̄). Verifier will set b0 := 1 if the
following equality hold; otherwise set b0 := 0.

(
e(φα, g

α/gξ)e(g, g)z
)α ?

= e(g, gσ̄) · e(g, g)

(
−
∑
i∈C

wiRs0 (i)

)
(11)

If ODA’s decision b equals to b0, then set b1 := 1; otherwise set b1 := 0. Output (b0, b1).

4.2.1 Batch Verification Alternatively, the data owner can also perform batch verification on a set

of challenge-response pairs {(Context(ι), Evidence(ι))}ι∈[1,n] as below to achieve even lower amortized
complexity: Choose weight value µι ∈R Z∗p for each ι ∈ [1, n] and verify the following equality ∏

ι∈[1,n]

e(φ(ι)
α , gα/gξ

(ι)

)µι · e(g, g)

∑
ι∈[1,n]

µι·z(ι)
α

?
=

e(g, g

∑
ι∈[1,n]

µι·σ̄(ι)

) · e(g, g)

− ∑
ι∈[1,n]

µι· ∑
i∈C(ι)

wiRs0 (i)


(12)

4.2.2 Completeness We prove in Appendix A, that if all parties are honest and data is intact, then
equalities in Eq (9), (10) and (11) will hold for certain. In addition, Eq 11 implies Eq 12 directly.

4.3 Discussion

How to verify the integrity of all tag values {ti} in algorithm UpdVK? A straightforward method is that:
The data owner keeps tack a hash (e.g. SHA256) value of t0‖t1 . . . ‖tn−1 in local storage, and updates
this hash value when executing UpdVK.

How to reduce the size of challenge {(i, wi) : i ∈ C}? Dodis et al. [19]’s result can be used to represent a
challenge {(i, wi) : i ∈ C} compactly as below: Choose the subset C using Goldreich [22]’s (δ, ε)-hitter4,
where the subset C can be represented compactly with only log n + 3 log(1/ε) bits. Assume n < 240

(sufficient for practical file size) and let ε = 2−80. Then C can be represented with 280 bits. Recall that
{wi : i ∈ C} is derived from some single value w ∈ Z∗p.

4.4 Experiment Result

We implement a prototype of our scheme in C language and using GMP 5 and PBC 6 library. We run
the prototype in a Laptop PC with a 2.5GHz Intel Core 2 Duo mobile CPU (model T9300, released in
2008). Our test files are randomly generated and of size from 128MB to 1GB. We achieve a throughput
of data preprocessing at speed slightly larger than 10 megabytes per second, with λ = 1024. Detailed
experiment data will be provided in the full paper.

In contrast, Atenesis et al. [3, 4] achieves throughput of data preprocessing at speed 0.05 megabytes
per second with a 3.0GHz desktop CPU [4]. Wang et al. [42] achieves throughput of data pre-processing
at speed 9.0KB/s and 17.2KB/s with an Intel Core 2 1.86GHz workstation CPU, when a data block is a

4 Goldreich [22]’s (δ, ε)-hitter guarantees that, for any subset W ⊂ [0, n−1] with size |W | ≥ (1−δ)n, Pr[C∩W 6=
∅] ≥ 1− ε. Readers may refer to [19] for more details.

5 GNU Multiple Precision Arithmetic Library: https://gmplib.org/
6 The Pairing-Based Cryptography Library: http://crypto.stanford.edu/pbc/

https://gmplib.org/
http://crypto.stanford.edu/pbc/


Lightweight Delegatable Proofs of Storage 11

vector of dimension m = 1 and m = 10, respectively. According to the pre-processing complexity of [42]
shown in Table 1, the theoretical optimal throughput speed of [42] is twice of the speed for dimension
m = 1, which can be approached only when m tends to +∞.

Therefore, the data pre-processing in our scheme is 200 times faster than Atenesis et al. [3, 4], and
500 times faster than Wang et al. [42], using a single CPU core. We remark that, all of these schemes
(ours and [3,4,42]) and some others can be speedup by N times using N CPU cores in parallel. However,
typical cloud user who runs the data pre-processing task, might have CPU cores number ≤ 4.

5 Security Analysis

5.1 Security Formulation

We will define soundness security in two layers. Intuitively, if a cloud storage server can pass auditor’s
verification, then there exists an efficient extractor algorithm, which can output the challenged data
blocks. Furthermore, if a cloud storage server with knowledge of verification secret key can pass data
owner’s verification, then there exists an efficient extractor algorithm, which can output the challenged
data blocks. If the data file is erasure encoded in advance, the whole data file could be decoded from
sufficiently amount of challenged data blocks.

5.1.1 Definition of Soundness w.r.t Verification of Auditor Based on the existing Provable
Data Possession formulation [4] and Proofs of Retrievability formulation [26,34], we define DPOS sound-
ness security game Gamesound between a probabilistic polynomial time (PPT) adversary A (i.e. dishonest
prover/cloud storage server) and a PPT challenger C w.r.t. a DPOS scheme E = (KeyGen, Tag, UpdVK,
〈P,V〉, OwnerVerify) as below.
Setup: The challenger C runs the key generating algorithm KeyGen(1λ) to obtain two pair of public-
private keys (pk, sk) and (vpk, vsk). The challenger C gives the public key (pk, vpk) to the adversary A
and keeps the private key (sk, vsk) securely.
Learning: The adversary A adaptively makes polynomially many queries, where each query is one of
the following:

• Store-Query(F): Given a data file F chosen byA, the challenger C runs tagging algorithm (ParamF , {(σi, ti)})←
Tag(sk, vsk, F), where ParamF = (idF , n), and sends the data file F, authentication tags {(σi, ti)},
public keys (pk, vpk), and file parameter ParamF , to A.

• Verify-Query(idF ): Given a file identifier idF chosen by A, if idF is not the (partial) output
of some previous Store-Query that A has made, ignore this query. Otherwise, the challenger
C initiates a proof session with A w.r.t. the data file F associated to the identifier idF in this
way: The adversary C, who runs the verifier algorithm V(vsk, vpk, pk, ParamF ), interacts with the
adversary A, who replaces the prover algorithm P with any PPT algorithm of its choice, and
obtains an output (b, Context, Evidence), where b ∈ {1, 0}. The challenger runs the algorithm
OwnerVerify(b, Context, Evidence) to obtain output (b0, b1) ∈ {0, 1}2. The challenger sends the two
decision bits (b, b0) to the adversary as feedback.

• RevokeVK-Query: To respond to this query, the challenger runs the verification key update algo-
rithm to obtain a new pair of verification keys (vpk′, vsk′, {t′i}) := UpdVK(vpk, vsk, {ti}), and sends
the revoked verification secret key vsk and the new verification public key vpk′ and new authentication
tags {t′i} to the adversary A, and keeps vsk′ private.

Commit: Adversary A outputs and commits on (id∗, Memo, P̃), where each of them is described as below:

• a file identifier id∗ among all file identifiers it obtains from C by making Store-Queries in Learning
phase;
• a bit-string Memo;
• a description of PPT prover algorithm P̃ (e.g. an executable binary file).

Challenge: The challenger randomly chooses a subset C∗ ⊂ [0, nF∗ − 1] of size c < λ0.9, where F∗

denotes the data file associated to identifier id∗, and nF∗ is the number of blocks in file F ∗.

Extract: Let E P̃(Memo)(vsk, vpk, pk, ParamF∗ , id
∗,C∗) denote a knowledge-extractor algorithm with oracle

access to prover algorithm P̃(Memo). More precisely, the extractor algorithm E will revoke the verifier



12 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

algorithm V(vsk, vpk, pk, ParamF∗) to interact with P̃(Memo), and observes all communication between
the prover and verifier. It is worthy pointing out that: (1) the extractor E can feed input (including
random coins) to the verifier V, and cannot access the internal states (e.g. random coins) of the prover
P̃(Memo), unless the prover P̃ sends its internal states to verifier; (2) the extractor E can rewind the
algorithm P̃, as in formulation of Shacham and Waters [34, 35]. The goal of this knowledge extractor is
to output data blocks {(i, F′i) : i ∈ C∗}.

The adversary A wins this DPOS soundness security game GameSound, if the verifier algorithm V(vsk,
vpk, pk, ParamF∗) accepts the prover algorithm P̃(Memo) with some noticeable probability 1/λτ for some
positive integer τ , where the sampling set is fixed as C∗. More precisely,

Pr

[
〈P̃(Memo),V(vsk,
vpk, pk, ParamF∗)〉 = (1, . . .)

∣∣∣∣ Sampling

set is C∗

]
≥ 1/λτ . (13)

The challenger C wins this game, if these exists PPT knowledge extractor algorithm E such that the
extracted blocks {(i, F′i) : i ∈ C∗} are identical to the original {(i, Fi) : i ∈ C∗} with overwhelming high
probability. That is,

Pr

[
E P̃(Memo)(vsk, vpk, pk, ParamF∗ , id

∗,C∗)
= {(i, Fi) : i ∈ C∗}

]
≥ 1− negl(λ). (14)

Definition 4 (Soundness-1) A DPOS scheme is sound against dishonest cloud storage server w.r.t.
auditor, if for any PPT adversary A, A wins the above DPOS security game GameSound implies that the
challenger C wins the same security game.

5.1.2 Definition of Soundness w.r.t Verification of Owner We define Game2sound by modifying
the DPOS soundness security game Gamesound as below: (1) In the Setup phase, the verification private
key vsk is given to the adversary A; (2) in the Extract phase, the knowledge extractor has oracle access
to OwnerVerify(sk, . . .), additionally.

Definition 5 (Soundness-2) A DPOS scheme is sound against dishonest cloud storage server w.r.t.
owner , if for any PPT adversary A, A wins the above DPOS security game Game2sound, i.e.

Pr

[
OwnerVerify(sk, pk, 〈P̃(Memo),V(vsk,
vpk, pk, ParamF∗)〉) = (1, . . .)

∣∣∣∣ Sampling

set is C∗

]
(15)

≥ 1/λτ , for some positive integer constant τ, (16)

implies that the challenger C wins the same security game, i.e. there exists PPT knowledge extractor
algorithm E such that

Pr

[
E P̃(Memo),OwnerVerify(sk,...)(vsk, vpk, pk, ParamF∗ , id

∗,C∗)
= {(i, Fi) : i ∈ C∗}

]
(17)

≥ 1− negl(λ) (18)

Remarks

• The two events “adversary A wins” and “challenger C wins” are not mutually exclusive.
• The above knowledge extractor formulates the notion that “data owner is capable to recover

data file efficiently (i.e. in polynomial time) from the cloud storage server”, if the cloud
storage sever can pass verification with noticeable probability and its behavior will not change any
more. The knowledge extractor might also serve as the contingency plan7 (or last resort) to recover
data file, when downloaded file from cloud is always corrupt but the cloud server can always pass the
verification with high probability.

• Unlike POR [34, 35], our formulation separates “error correcting code” out from POS scheme, since
error correcting code is orthogonal to our design of homomorphic authentication tag function. If
required, error correcting code can be straightforwardly combined with our DPOS scheme, and the
analysis of such combination is easy.

7 Cloud server’s cooperation might be required.



Lightweight Delegatable Proofs of Storage 13

5.2 Security Claim

Definition 6 (m-Bilinear Strong Diffie-Hellman Assumption) Let e : G × G → GT be a bilin-
ear map where G and GT are both multiplicative cyclic groups of prime order p. Let g be a randomly
chosen generator of group G. Let ς ∈R Z∗p be chosen at random. Given as input a (m + 1)-tuple

T = (g, gς , gς
2

. . . , gς
m

) ∈ Gm+1, for any PPT adversary A, the following probability is negligible

Pr
[
d = e(g, g)1/(ς+c) where (c, d) = A(T)

]
≤ negl(log p).

Theorem 1 Suppose m-BSDH Assumption hold, and PRF is a secure pseudorandom function. The DPOS
scheme constructed in Section 4 is sound w.r.t. auditor, according to Definition 4.

Theorem 2 Suppose m-BSDH Assumption hold, and PRF is a secure pseudorandom function. The DPOS
scheme constructed in Section 4 is sound w.r.t. data owner, according to Definition 5.

5.3 Proof of Theorem 1—Soundness w.r.t Auditor

5.3.1 Unforgeability of Our Authentication Tag under Verification Private Key Game 1 The
first game is the same as soundness security game Gamesound, except that the pseudorandom function Rs0
outputs true randomness. Precisely, for each given seed s0, the function R is evaluated in the following
way:

1. The challenger keeps a table to store all previous encountered input-output pairs (v,Rs0(v)).

2. Given an input v, the challenger lookups the table for v, if there exists an entry (v, u), then return u
as output. Otherwise, choose u at random from the range of R, insert (v,Rs0(v) := u) into the table
and return u as output.

Game 2 The second game is the same as Game 1, except that the pseudorandom function Rs1 with
seed s1 outputs true randomness. The details are similar as in Game 1.

For ease of exposition, we clarify two related but distinct concepts: valid proof and genuine proof (or
value).

Genuine Proof A proof is genuine, if it is the same as the one generated by an honest (deterministic)
prover on the same query and the same context ().

Valid Proof A proof is valid, if it is accepted by the honest verifier.

In our scheme, for each query and given context, we will show that it is hard to find two distinct
proofs (or responses) (z, . . .) and (z′, . . .), which are both accepted by ODA and z 6= z′ mod p.

Lemma 3 Suppose m-BSDH Assumption holds. In Game 2, any PPT adversary is unable to find two
distinct tuples T0 = (z, φα; σ̄, t̄, ψα, ψβ) and T1 = (z′, φ′α; σ̄, t̄, ψα, ψβ), such that both are accepted by
ODA w.r.t the same challenge and z 6= z′ mod p.

Pr
[
T0 and T1 are both accepted by ODA and T0[0]6=T1[0] and

T0[2,3,4,5]=T1[2,3,4,5], where (T0,T1)=AGame 2

]
(19)

≤ Pr [B solves m-BSDH Problem ] (20)

(Proof of Lemma 3 is given in Appendix B.2)

Lemma 4 Suppose m-BSDH Assumption holds. In Game 2, any PPT adversary is unable to find two
distinct tuples T0 = (z, φα; σ̄, t̄, ψα, ψβ) and T1 = (z′, φ′α; σ̄′, t̄′, ψ′α, ψ

′
β), such that both T0 and T1 are

accepted by ODA w.r.t the same challenge, z 6= z′ and (σ̄, t̄, ψα, ψβ) 6= (σ̄′, t̄′, ψ′α, ψ
′
β). Precisely, for any

PPT adversary A in Game 2, there exists a PPT algorithm D, such that

Pr
[
T0 and T1 are both accepted by ODA and T0[0]6=T1[0] and

T0[2,3,4,5] 6=T1[2,3,4,5], where (T0,T1)=AGame 2

]
(21)

≤ Pr [D solves m-BSDH Problem ] (22)

(Proof of Lemma 4 is given in Appendix B.3).



14 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

Algorithm 1: Simulator

Input: (P̃, Memo,V, pk, vsk, vpk,C∗, N1, N2, N3), where C∗ is a set of block indices, and N1, N2, N3 are
integers

Output: A set S, representing transcript of an execution of this algorithm
1 Initiate the set S← ∅ as empty set;
2 foreach i from 1 to N1 do
3 Choose weight vector Wi = (wi,1, . . . , wi,c) at random as in Step V1 of algorithm V ;
4 foreach j from 1 to N2 do
5 Choose value ξi,j at random as in Step V1 of algorithm V;
6 foreach k from 1 to N3 do

7 Send (C∗,Wi, ξi,j) as challenge query to algorithm P̃(Memo) and get response (zi,j,k, . . .);
8 Send this response to algorithm V(vsk, vpk, pk, ParamF∗), which outputs decision bit bi,j,k at

Step V2;
9 Update S← S ∪ {(Wi, ξi,j , zi,j,k, bi,j,k)} ;

10 Note: Different instances of revocation of P̃(Memo) are independent.

11 end

12 end

13 end

5.3.2 Construction of Knowledge Extractor We explicitly construct the knowledge extractor
algorithm using two subroutines, named Simulator Algorithm 1 (on page 14) and Solver Algorithm 2
(on page 15).

Before introducing Solver Algorithm 2 on page 15, let us define sets Sξ, SW based on set S as below:

Sξ =
{

(W, ξ) : ∃witness set W s.t. |W|≥1 and ∀z∈W,
(W,ξ,z,1)∈S

}
; (23)

SW =
{
W : ∃witness set W s.t. |W|≥m and ∀ξ∈W,

(W,ξ)∈Sξ

}
. (24)

5.3.3 Analysis of Knowledge Extractor

Lemma 5 If |SW | ≥ c, then the algorithm Solver can output { ~Fi}i∈C∗ correctly, with o.h.p.

Lemma 5 directly follows from the unforgeability of our authentication tag (i.e. Lemma 3 and Lemma 4)
and Claim 1 and Claim 2, where the two claims are as below.

Claim 1 If |SW | ≥ c, then procedure Solver will abort (i.e. output Failure) with negligible probability
(in λ). (Proof is given in Appendix B.4.1)

Claim 2 If for every tuple (W, ξ, z, 1) ∈ S, the value z is genuine (i.e. the same as computed by an honest
prover w.r.t. the same query and context (C∗,W, ξ)), then the output of Solver Algorithm 2 at Line 36

is correct, i.e. {A∗i } = { ~Fi}. (Proof is given in Appendix B.4.2)

Given the challenge (C∗,W = {wi : i ∈ C∗}, ξ) in Step V1 of verifier algorithm V, and random coin
CA of adversary A in Step P1, the response of adversary in Step P1 will be deterministic and so is the
output of the verifier in Step V2 of algorithm V. Let notations W, ξ,CA denote the random variables,
respectively.

Let function fC∗(W, ξ,CA) denote the boolean output of verifier in Step V2.

Definition 7 For any δ ∈ (0, 1),

• W is δ-good, if Pr
ξ,CA

[fC∗(W, ξ,CA) = 1] ≥ δ;

• ξ is δ-good w.r.t W , if Pr
CA

[fC∗(W, ξ, CA) = 1] ≥ δ.

Lemma 6 Let parameters N1 = d2λε−1e, N2 = N3 = d4λε−1e in Simulator Algorithm 1. Recall that
the set SW is constructed at Line 5 of Solver Algorithm 5. If adversary A can pass auditor’s verification
with probability ≥ ε, i.e. Pr

W,ξ,CA
[fC∗(W, ξ,CA) = 1] ≥ ε, then |SW | ≥ c.

Lemma 6 directly follows from Claim 3 and Claim 4 as below.



Lightweight Delegatable Proofs of Storage 15

Algorithm 2: Solver

Input: Set S, which is the output of Simulator.
Output: A guess of data blocks { ~Fiι : ι ∈ [1, c]} where {i1, . . . , ic} = C∗.

1 Find set Sξ, by filtering S;
2 foreach (W, ξ) ∈ Sξ do
3 find witness set W[W,ξ] := {z : (W, ξ, z, 1) ∈ S};
4 end
5 Find set SW , by sorting and filtering Sξ ;
6 foreach W ∈ SW do
7 find witness set W[W ] := {ξ : (W, ξ) ∈ Sξ};
8 end
9 if |SW | < |C∗| then

10 Abort and output Failure1;
11 else
12 Find subset {W ∗1 , . . . ,W ∗c } ⊂ SW ;
13 end
14 foreach i from 1 upto c do
15 if |W[W∗i ]| < m then

16 Abort and output Failure2;
17 else
18 Find subset {ξ∗i,1, . . . , ξ∗i,m} ⊂W[W∗i ];

19 end
20 foreach j from 1 to m do
21 if |W[W∗i , ξ

∗
i,j ]
| < 1 then

22 Abort and output Failure3;
23 else
24 Choose z∗i,j ∈R W[W∗i , ξ

∗
i,j ]

;

25 end

26 end
27 Find the polynomial Poly~Fi of degree (m− 1) passing all of m points {(ξ∗i,j , z∗i,j)}mj=1 ;

28 if number of polynomials found 6= 1 then
29 Abort and output Failure4 ;
30 end

31 end

32 Solve the linear system (A>1 , . . . , A
>
c )× (W ∗1

>, . . . ,W ∗c
>) = (~F

>
1 , . . . , ~F

>
c ), where Ai’s are unknown, and

W ∗i and ~F i are given, i ∈ [1, c]. Note: W ∗i = (wi, w
2
i , . . . , w

c
i ) and the coefficient matrix (W ∗1

>, . . . ,W ∗c
>) is

a simple variant of Vandermonde matrix ;
33 if number of solutions of above linear system 6= 1 then
34 Abort and output Failure5 ;
35 else
36 return the unique solution {A∗i }ci=1 ;
37 end

Claim 3 If Pr
W,ξ,CA

[fC∗(W, ξ,CA) = 1] ≥ ε, there exist at least c distinct ε/2-good Wi’s among all of N1

instances of Wi’s generated at Line 3 of Algorithm 1. (Proof is given in Appendix B.5.1)

Claim 4 If Wi is ε/2-good, then Wi ∈ SW with o.h.p. (Proof is given in Appendix B.5.2)

Proof (Proof of Theorem 1). First of all, the complexity of the extractor isO(N1·N2·N3·(TP,V + log(N1 ·N2 ·N3)))

= O( 32λ3

ε3 ×
(
TP,V + log 32λ3

ε3

)
), which is polynomial in λ, if ε > 1/poly(λ) is noticeable, where TP,V denotes

the time complexity of the interactive algorithm 〈P,V〉 and integer parameters N1, N2, N3 are specified
as in Lemma 6.

Since R is a secure pseudorandom function, the soundness security game Gamesound and Game 1 are
computationally indistinguishable. So are Game 1 and Game 2. Therefore, Lemma 3 and Lemma 4
also hold in Gamesound with negligible difference in success probability. Consequently, the premise (i.e.



16 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

if-part) of Claim 2 holds with o.h.p. Claim 1 and Claim 2 together imply Lemma 5. Lemma 6 ensures
that the premise of Lemma 5 will hold. Therefore, the conclusion (then-part) of Lemma 5 holds, that is,
the extractor algorithm constructed previous can output the selected file blocks with overwhelming high
probability as desired.

Claim 1
Claim 2

Lemma 3
Lemma 4

⇒ Lemma 5

Claim 3
Claim 4

}
⇒ Lemma 6


⇒ Theorem 1 (25)

ut

5.4 Proof of Theorem 2—Soundness w.r.t Owner

5.4.1 Unforgeability of Our Authentication Tag under Master Private Key Game 1’ The same
as Game2Sound, except that pseudo random function Rs0 is replaced by true randomness. The detail is
similar to definition of Game 1.
Game 2’ The same as Game 1’, except that pseudo random functionRs1 is replaced by true randomness.

Lemma 7 Suppose m-BSDH Assumption holds. In Game 2’, any PPT adversary is unable to find two
distinct tuples T0 = (z, φα, σ̄) and T1 = (z′, φ′α, σ̄

′), such that both T0 and T1 are accepted by data owner
w.r.t the same challenge and T0 6= T1. Precisely, for any PPT adversary A in Game 2, there exists a
PPT algorithm B, such that

Pr
[
T0 6=T1 are both accepted by owner

where (T0,T1)=AGame 2’

]
(26)

≤ Pr [B solves m-BSDH Problem ] (27)

(Proof is given in Appendix C.1)

5.4.2 Construction and Analysis of Knowledge Extractor In this case, the construction and
analysis of knowledge extractor algorithm is identical as for auditor case, except that: at Line 9 of
Simulator Algorithm 1, the decision bit bi,j,k should represent data owner’s first decision bit (i.e b0—

indicating whether data owner accepts storage server) upon response provided by P̃(Memo), instead of
auditor’s decision bit.

The rest of proof for Theorem 2 is identical to proof for Theorem 1.

6 Conclusion

We proposed a novel and efficient POS scheme. On one side, the proposed scheme is as efficient as
privately verifiable POS scheme, especially very efficient in authentication tag generation. On the other
side, the proposed scheme supports third party auditor and can revoke an auditor at any time, close to
the functionality of publicly verifiable POS scheme. Compared to existing publicly verifiable POS scheme,
our scheme improves the authentication tag generation speed by more than 100 times. How to prevent
data leakage to ODA during proof process and how to enable dynamic operations (e.g. inserting/deleting
a data block) in our scheme are in future work.

References

1. Aniket Kate, Gregory M. Zaverucha, I.G.: Constant-Size Commitments to Polynomials and Their Applica-
tions. In: ASIACRYPT’10. pp. 177–194

2. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced Proofs of Retrievability. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. pp. 831–843.
CCS ’14 (2014)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson, Z., Song, D.: Remote data
checking using provable data possession. ACM Tran. on Info. and Sys. Sec., TISSEC 2011 14(1), 12:1–12:34
(2011)



Lightweight Delegatable Proofs of Storage 17

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable data possession
at untrusted stores. In: ACM CCS’07. pp. 598–609. ACM (2007)

5. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols. In: ASI-
ACRYPT’09. LNCS, vol. 5912, pp. 319–333. Springer (2009)

6. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession. In:
SecureComm’08. pp. 9:1–9:10. ACM (2008)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal of Cryptology 17(4),
297–319 (2004)

8. Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for cloud storage. In: ACM
CCS’09. pp. 187–198. ACM (2009)

9. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implementation. In: CCSW’09. pp.
43–54. ACM (2009)

10. Casassa Mont, Marco; Harrison, K.S.M.: The HP Time Vault Service: Innovating the way confidential infor-
mation is disclosed, at the right time, http://www.hpl.hp.com/techreports/2002/HPL-2002-243.pdf

11. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. In: EUROCRYPT’13.
LNCS, vol. 7881, pp. 279–295. Springer (2013)

12. Chan, A.C., Blake, I.F.: Scalable, Server-Passive, User-Anonymous Timed Release Cryptography. In: 25th
International Conference on Distributed Computing Systems (ICDCS 2005). pp. 504–513 (2005)

13. Chang, E.C., Xu, J.: Remote integrity check with dishonest storage server. In: ESORICS’08. LNCS, vol. 5283,
pp. 223–237. Springer (2008)

14. Chaowen Guan, Kui Ren, F.Z.F.K., Yu, J.: A Symmetric-Key Based Proofs of Retrievability Supporting
Public Verification. In: (To appear in) ESORICS 2015. www.fkerschbaum.org/esorics15b.pdf

15. Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations.
Annals of Mathematical Statistics 23(4), 493507 (1952)

16. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: Multiple-replica provable data possession. In:
ICDCS’08. pp. 411–420. IEEE (2008)

17. Daniel Apon, Yan Huang, J.K.A.J.M.: Implementing Cryptographic Program Obfuscation. Cryptology ePrint
Archive, Report 2014/779 (2014), http://eprint.iacr.org/

18. Deswarte, Y., Quisquater, J.J., Säıdane, A.: Remote integrity checking: How to trust files stored on untrusted
servers. In: Integrity and Internal Control in Information Systems VI. LNCS, vol. 140, pp. 1–11. Springer
(2004)

19. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of Retrievability via Hardness Amplification. In: Proceedings of
TCC’09, LNCS, vol. 5444, pp. 109–127. Springer (2009)

20. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In: ACM CCS’09.
pp. 213–222. ACM (2009)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: Proceedings of the 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. pp. 40–49. FOCS ’13 (2013)

22. Goldreich, O.: A Sample of Samplers - A Computational Perspective on Sampling (survey). Electronic Collo-
quium on Computational Complexity (ECCC) 4(20) (1997)

23. Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, New York,
NY, USA (2006)

24. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking protocol with data dynamics
and public verifiability. TKDE’11 23(9), 1432–1437 (2011)

25. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Computations. In: Proceedings
of the Second International Conference on Theory of Cryptography. pp. 264–282. TCC’05 (2005)

26. Juels, A., Burton S. Kaliski, J.: PORs: Proofs of retrievability for large files. In: ACM CCS’07. pp. 584–597.
ACM (2007)

27. Naor, M., Rothblum, G.N.: The complexity of online memory checking. Journal of the ACM 56(1) (2009)
28. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and

Applied Mathematics 8(2), 300–304 (1960)
29. Ren, Y., Shen, J., Wang, J., Fang, L.: Outsourced data tagging via authority and delegable auditing for cloud

storage. In: 49th Annual IEEE International Carnahan Conference on Security Technology. pp. 131–134.
ICCST’15, IEEE (2015)

30. Ren, Y., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data auditing in public cloud storage.
Journal of Internet Technology 16(2), 317–324 (2015)

31. Ren, Y., Xu, J., Wang, J., Kim, J.U.: Designated-verifier provable data possession in public cloud storage.
International Journal of Security and its Applications 7(6), 11–20 (2013)

http://www.hpl.hp.com/techreports/2002/HPL-2002-243.pdf
www.fkerschbaum.org/esorics15b.pdf
http://eprint.iacr.org/


18 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

32. Schwarz, T.J.E., Miller, E.L.: Store, forget, and check: Using algebraic signatures to check remotely admin-
istered storage. In: ICDCS’06. IEEE (2006)

33. Sebé, F., Domingo-Ferrer, J., Mart́ınez-Ballesté, A., Deswarte, Y., Quisquater, J.J.: Efficient remote data
possession checking in critical information infrastructures. TKDE’08 20(8), 1034–1038 (2008)

34. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASIACRYPT’08. LNCS, vol. 5350, pp. 90–107.
Springer (2008)

35. Shacham, H., Waters, B.: Compact proofs of retrievability. Journal of Cryptology 26(3), 442–483 (2013)

36. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to keep online storage services honest. In:
HotOS’07. USENIX Association (2007)

37. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction of digital contents. Cryp-
tology ePrint Archive, Report 2008/186 (2008), http://eprint.iacr.org/2008/186

38. Shen, S.T., Tzeng, W.G.: Delegable provable data possession for remote data in the clouds. In: Proceedings
of the 13th International Conference on Information and Communications Security. pp. 93–111. ICICS’11,
Springer-Verlag, Berlin, Heidelberg (2011)

39. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: ACM CCS’13. pp.
325–336. ACM (2013)

40. Wang, B., Li, B., Li, H.: Oruta: Privacy-preserving public auditing for shared data in the cloud. In: IEEE
Cloud 2012. pp. 295–302. IEEE (2012)

41. Wang, B., Li, B., Li, H.: Public auditing for shared data with efficient user revocation in the cloud. In:
INFOCOM’13. pp. 2904–2912. IEEE (2013)

42. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure cloud
storage. IEEE Tran. on Computers 62(2), 362–375 (2013)

43. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage services. IEEE
Network Magazine 24(4), 19–24 (2010)

44. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Towards secure and dependable storate services in cloud
computing. IEEE Transactions on Services Computing 5(2), 220–232 (2012)

45. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud computing. In: Proceedings
of IWQoS’09. pp. 1–9. IEEE (2009)

46. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage security in cloud
computing. In: INFOCOM’10. pp. 525–533. IEEE (2010)

47. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for storage
security in cloud computing. In: ESORICS’09. LNCS, vol. 5789, pp. 355–370. Springer (2009)

48. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for storage
security in cloud computing. TPDS’11 22(5), 847–859 (2011)

49. Xiaofeng Chen, Jin Li, J.M.Q.T.W.L.: New Algorithms for Secure Outsourcing of Modular Exponentiations.
In: Proceedings of 17th European Symposium on Research in Computer Security. pp. 541–556. ESORICS
2012

50. Xu, J., Chang, E.C.: Towards Efficient Proofs of Retrievability. In: AsiaCCS ’12: ACM Symposium on Infor-
mation, Computer and Communications Security (2012)

51. Xu, J., Yang, A., Zhou, J., Wong, D.S.: Lightweight and privacy-preserving delegatable proofs of storage.
Cryptology ePrint Archive, Report 2014/395 (2014), http://eprint.iacr.org/2014/395

52. Yang, K., Jia, X.: Data storage auditing service in cloud computing: challenges, methods and opportunities.
World Wide Web 15(4), 409–428 (2012)

53. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage in cloud computing.
TPDS’13 24(9), 1717–1726 (2013)

54. Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communication cost in cloud.
In: Proceedings of the 2013 International Workshop on Security in Cloud Computing, Cloud Computing 2013.
pp. 19–26. ACM (2013)

55. Zeng, K.: Publicly verifiable remote data integrity. In: ICICS’08. LNCS, vol. 5308, pp. 419–434. Springer
(2008)

56. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for integrity verification in multi-
cloud storage. TPDS’12 23(12), 2231–2244 (2012)

57. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H., Yau, S.S.: Dynamic audit services for integrity verification of
outsourced storages in clouds. In: Proceedings of SAC’11. pp. 1550–1557. ACM (2011)

http://eprint.iacr.org/2008/186
http://eprint.iacr.org/2014/395


Lightweight Delegatable Proofs of Storage 19

A Proof for Completeness

If all parties are honest and data are intact, we have

e(g, g)αPoly~F (α) = e(ψα, g
α), (28)

e(g, g)Poly~F (α) = e(φα, g
α/gξ) · e(g, g)z. (29)

∀x,Poly~v(x) ≡
Poly~F (x)− Poly~F (ξ)

x− ξ mod p (30)

z = Poly~F (ξ) mod p (31)

e(g, g)αPoly~F (α) = e(ψα, g
α), (32)

e(g, g)ρβPoly~F (β) = e(ψβ , g
β), (33)

e(g, g)Poly~F (α) = e(φα, g
α/gξ) · e(g, g)z, (34)(

gσ̄/Yσ
)r−1
σ = g

∑
i∈C

wiσi
, (35)(

gt̄/Yt
)r−1
t

= g

∑
i∈C

witi
. (36)

A.0.3 Correctness of Equation (9) By combining Eq (8)(30)(31)(6), we can compute the right hand
side of Equation (9) as below:

RHS = e(gPoly~v(α), gα−ξ) · e(g, g)z = e(g, g)Poly~v(α)·(α−ξ)+z

= e(g, g)Poly~F (α) = e(ψα, g) = LHS. (37)

A.0.4 Correctness of Equation (10) Substituting Eq (32) into Eq (10), we have left hand side of Eq (10):

LHSγ
−1

(38)

=
e(g, g)αPoly~F (α)

e(g, g

∑
i∈C

wiσi
)

(39)

=
e(g, g)〈~α, ~F〉

e

(
g, g

∑
i∈C

wi(〈~α, ~Fi〉+Rs0 (i))
) (40)

=
e(g, g)〈~α, ~F〉

e (g, g)

(〈
~α,

∑
i∈C

wi ~Fi

〉
+
∑
i∈C

wiRs0 (i)

) (41)

=
e(g, g)〈~α, ~F〉

e (g, g)

(
〈~α, ~F〉+ ∑

i∈C
wiRs0 (i)

) (42)

=
1

e(g, g)

∑
i∈C

wiRs0 (i)
. (43)

We can compute the right hand side of Eq (10):



20 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

RHS (44)

=
e(g, g)ρ〈~β, ~F〉

e(g, g

∑
i∈C

witi−
∑
i∈C

wiRs1 (i)

)

(45)

=
e(g, g)ρ〈~β, ~F〉

e(g, g

∑
i∈C

wi(ti−Rs1 (i))

)

(46)

=
e(g, g)ρ〈~β, ~F〉

e

(
g, g

∑
i∈C

wi(ρ〈~β, ~Fi〉+γRs0 (i))
) (47)

=
e(g, g)ρ〈~β, ~F〉

e (g, g)

(
ρ

〈
~β,

∑
i∈C

wi ~Fi

〉
+
∑
i∈C

wi·γRs0 (i)

) (48)

=
e(g, g)ρ〈~β, ~F〉

e (g, g)

(
ρ〈~β, ~F〉+ ∑

i∈C
wi·γRs0 (i)

) (49)

=
1

e(g, g)

∑
i∈C

wi·γRs0 (i)
= LHS. (50)

A.0.5 Correctness of Equation (11)

LHS =
(
e(g, g)Poly~v(α)·(α−ξ)+z

)α
= e(g, g)αPoly~F (α) = e(g, g)〈~α, ~F〉. (51)

RHS =e(g, g

∑
i∈C

wiσi
) · e(g, g)

(
−
∑
i∈C

wiRs0 (i)

)
(52)

=e(g, g)

( ∑
i∈C

wi(σi−Rs0 (i))

)
(53)

=e(g, g)

( ∑
i∈C

wi〈~α, ~Fi〉
)

(54)

=e(g, g)

〈
~α,

∑
i∈C

wi ~Fi

〉
(55)

=e(g, g)〈~α, ~F〉 (56)

=LHS (57)

B Proof for Soundness w.r.t. Auditor

B.1 Simulate Game 2 using the input of m-BSDH Problem

Let bilinear map e : G × G → GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be as stated in the m-BSDH
Assumption. With information T, we can simulate Game 2 as below. Recall that the adversary A in this game
is the dishonest prover (i.e. the cloud storage server).
Setup. Let α := ς, which is unknown. Define αj := αj mod p for each j ∈ [1,m]. Choose at random two group
elements γ, ρ ∈R Z∗p, a vector ~u = (u1, . . . , um) ∈R Zmp , and pseudorandom function seed s1. For each j ∈ [1,m],

we can find values of gj : gj := gαj = gα
j

= gς
j

∈ G. Let g0 = g and h0 = gρ. Implicitly define the unknown

vector ~β as ρ~β − γ~α = ~u. For each j, compute hj := gγj · g
uj = gγαj+uj = gρβj = h

βj
0 ∈ G. The secret key

is sk = (α, ~β, s0), the public key is pk = (g0, g1, . . . , gm), the verification secret key is vsk = (ρ, γ, s1), and the
verification public key is vpk = (h0, h1, . . . , hm), where the random seed s0 for pseudorandom function PRF will
be determined later. Send (pk, vpk) to the adversary.

Notice that, the simulator knows values of vsk, vpk and pk, but does not know values of (α, ~β, s0).
Learning.



Lightweight Delegatable Proofs of Storage 21

• Store-Query(F ): Given a data file F chosen by the adversary A. The simulator simulates the algorithm
Tag as below: For each i ∈ [0, n − 1], choose the authentication tag σi ∈R Zp at random, which will implic-

itly define the values of the file-specific randomness Rs0(i). The simulator is able to compute: g〈~α, ~Fi〉 =
m∏
j=1

g
~Fi[j−1]
j ; gρ〈~β, ~Fi〉 =

m∏
j=1

h
~Fi[j−1]
j ; gRs0 (i) = gσi

g〈~α, ~Fi〉
. The simulator can also compute ti := γσi +〈

~u, ~Fi
〉

+Rs1(i) mod p, which is equal to γ
(〈
~α, ~Fi

〉
+Rs0(i)

)
+
〈
ρ~β − γ~α, ~Fi

〉
+Rs1(i) = ρ

〈
~β, ~Fi

〉
+

γRs0(i) +Rs1(i) as desired. Send file F and authentication tags {(i, σi, ti)} to the adversary A.

• Verify-Query: The simulator has full information of pk, vpk, and γ. Although the simulator does not know
s1, it knows values gRs1 (i) for each i ∈ [0, n − 1]. The simulator can execute the verifier algorithm V in the
proposed DPOS scheme exactly. So the simulator can find the exactly same decision bit b ∈ {1, 0} as in a real
game.

Next, the simulator tries to find the decision bit b0 of the owner. Notice that Eq 11 in algorithm OwnerVerify
can be written equivalently as below

e(φα, g
α2

/gαξ) · e(gα, g)z · e(g, g)

∑
i∈C

wiRs0 (i)

= e(g, g)σ̄ (58)

Although s0 is unknown, the simulator is still able to compute both sides of the above equation: gα
2

=

g2, g
αξ = gξ1, and the term g

∑
i∈C

wiRs0 (i)

is computed as
∏
i∈C

(
gRs0 (i)

)wi
. Recall that challenge (C, {wi}, ξ) is

chosen by simulator, (z, φα, σ̄) is (part of) response provided by adversary, and (g, g1, g2) are part of public
key pk. So the simulator can find the exactly same decision bit b0 ∈ {1, 0} as in a real game. Simulator sends
(b, b0) to the adversary as result to this query.

• RevokeVK-Query: The simulator has knowledge of vpk and vsk, and runs algorithm UpdVK(vpk, vsk, {ti})
to obtain new verification key pair (vpk′, vsk′) and new authentication tags {t′i}.

B.2 Proof for Lemma 3

Proof. Our hypothesis is: Adversary A can output such (T0, T1) as stated in Lemma 3. Let bilinear map e :

G × G → GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be as stated in the m-BSDH Assumption. We will
construct a PPT algorithm B, which will simulate Game 2 to interact with adversary A as in Appendix B.1, and
then compute (c, d) from A’s output (T0, T1), such that d = e(g, g)1/(ς+c).

The algorithm B simulates the Game 2 to interact with the adversary A, from information T , as in Ap-
pendix B.1. By the hypothesis, both T0 and T1 are valid, i.e. satisfy Eq (9) and Eq (10):

e(ψα, g) = e(φα, g
α/gξ) · e(g, g)z (59)

e(ψα, g) = e(φ′α, g
α/gξ) · e(g, g)z

′
(60)

Combining Eq (72) and Eq (73), we have

e(φα/φ
′
α, g

α/gξ) = e(g, g)z
′−z. (61)

Since z′ 6= z mod p, the inverse (z′ − z)−1 mod p exists. Let c = −ξ mod p and compute d as

d = e(φα/φ
′
α, g)(z′−z)−1 mod p ∈ GT . (62)

Output (c, d) as the solution to the m-BSDH problem. One can verify that

dα+c =
(
e(φα/φ

′
α, g)(z′−z)−1 mod p

)α−ξ
= e(φα/φ

′
α, g

α−ξ)(z′−z)−1

(63)

=
(
e(g, g)z

′−z
)(z′−z)−1 mod p

= e(g, g). (64)

B.3 Proof for Lemma 4

Proof. Our hypothesis is: Adversary A can output such (T0, T1) as stated in Lemma 4. Let bilinear map e :

G × G → GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be as stated in the m-BSDH Assumption. We will
construct a PPT algorithm D, which will simulate Game 2 to interact with adversary A, and then compute (c, d)
from A’s output (T0, T1), such that d = e(g, g)1/(ς+c).



22 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

The algorithm D simulates the Game 2 to interact with the adversary A, from information T, as in Ap-
pendix B.1. By the hypothesis, both T0 and T1 are valid, i.e. satisfy Eq (9) and Eq (10):(

e(ψα, g
α)

e (g, gσ̄)

)γ
=

e(ψβ , g)

e

(
g, gt̄ · g

−
∑
i∈C

wiRs1 (i)
) (65)

(
e(ψ′α, g

α)

e (g, gσ̄′)

)γ
=

e(ψ′β , g)

e

(
g, gt̄′ · g

−
∑
i∈C

wiRs1 (i)
) (66)

Divide Eq (65) with Eq (66), we have

(
e(ψα
ψ′α
, gα)

e(g, g)∆σ

)γ
=

e(ψβψ′β , g)

e(g, g)∆t

 ∈ GT (67)

where ∆σ := σ̄′ − σ̄ and ∆t := t̄′ − t̄.
For ease of exposition, let us represent the above Eq (67) as Aγ = B, where the meaning of variable A and

B can be explained straightforwardly by looking at Eq (67). The adversary A (i.e. the dishonest prover/cloud
storage server) has sufficient information to compute values of A and B by itself. So the adversary A is able to
compute values A and B, such that Aγ = B.

Notice that, in our scheme, among all data that the adversary (dishonest cloud storage server) owns (i.e data
blocks, authentication tags {σi, ti}, and public keys (pk, vpk)), the secret value γ only appears in the computation
of ti, where γ is perfectly protected by Rs1(i) (which is true randomness in Game 2) from the adversary A
(dishonest prover). Once a verification public/private key pair is revoked, γ will be re-randomized as γ′γ, where
γ′ is a newly chosen uniform random variable hidden from A. Therefore, γ is semantically secure against A, and
A is unable do brute-force search attack to find values of γ. Therefore, the adversary A is unable to compute a
pair (A,B) such that Aγ = B and A 6= 1. As a result, it has to be the case that A = B = 1 = e(g, g)0 ∈ GT .

We have

A =

(
e(ψα
ψ′α
, gα)

e(g, g)r
−1
σ ·r·∆σ

)
=

 e(
ψβ
ψ′
β
, gβ)

e(g, g)r
−1
t ·r·∆t

 = B = 1 ∈ GT (68)

Recall that (ψα, ψβ , σ̄, t̄) 6= (ψ′α, ψ
′
β , σ̄

′, t̄′) are distinct, by our hypothesis.

Case 1: ∆σ 6= 0 mod p. Let c = 0 ∈ Zp and compute d ∈ GT as below

d = e(
ψα
ψ′α

, g)(∆σ)−1 mod p ∈ GT . (69)

One can verify that (c, d) is a solution to the m-BSDH problem, by computing

e(g, g) =

(
e(
ψα
ψ′α

, gα)

)(∆σ)−1 mod p

(70)

e(g, g)1/(α+c) =

(
e(
ψα
ψ′α

, gα/(α+c))

)(∆σ)−1 mod p

= d ∈ GT . (71)

Case 2: ∆σ = 0 mod p. Since ∆σ = 0, A = 1 ∈ GT and α 6= 0, we can conclude ψα = ψ′α. Both tuples T0 and
T1 should also satisfy Eq (9), we have

e(ψα, g) = e(φα, g
α/gξ) · e(g, g)z (72)

e(ψ′α, g) = e(φ′α, g
α/gξ) · e(g, g)z

′
(73)

Notice ψα = ψ′α, and z 6= z′. The same as proof of Lemma 3, we let c = −ξ mod p and compute d as d =

e(φα/φ
′
α, g)(z′−z)−1 mod p ∈ GT , where (c, d) will be a solution to the m-BSD problem.

Therefore, Pr [(c, d) solves m-BSDH problem] = Pr [A wins Lem 4 ]. ut



Lightweight Delegatable Proofs of Storage 23

B.4 Proof of Lemma 5

B.4.1 Proof of Claim 1

Proof. Failure1 Loot at the “if” statement at Line 9 of Solver Algorithm 2 (on page 15). Since our hypothesis
of Claim 1 is |SW | ≥ c, we have Pr[Solver outputs Failure1] = 0.
Failure2 Loot at codes around the “if” statement at Line 15 of Solver Algorithm 2. By the definition of SW ,
for each W ∈ SW , there exists an witness set W[W ] with size at least m. Thus, Pr[Solver outputs Failure2] = 0.
Failure3 Loot at codes around the “if” statement at Line 21 of Solver Algorithm 2. By definition of set SW ,
since ξ∗i,j ∈W[W∗i ], where W[W∗i ] is the witness set for W ∗i ∈ SW , we have (W ∗i , ξ

∗
i,j) ∈ Sξ. By definition of set Sξ,

the witness set W[W∗i ,ξ
∗
i,j ]

has size at least 1. Therefore, Pr[Solver outputs Failure3] = 0.

Failure4 Look at codes from Line 27 to Line 29 of Solver Algorithm 2. According to Lagrange polynomial
interpolation method, the polynomial of degree (m− 1) that passes through all of m distinct points do exit and
is unique. Thus, Pr[Solver outputs Failure4] = 0.
Failure5 Look at codes from Line 32 to Line 34 of Solver Algorithm 2. In the linear equation system at Line 32,
the coefficient matrix is (W ∗1

>, . . . ,W ∗c
>), where row vector W ∗i = (wi, w

2
i , . . . , w

c
i ) for i ∈ [1, c] and all wi’s are

distinct (See codes around Line 12 of Algorithm 2). It is straightforward to find that this coefficient matrix has
non-zero determinant, due to the property of Vandermonde matrix. Therefore, the linear equation system has
unique solution, and Pr[Solver outputs Failure5] = 0.

For the above reason, if set SW has size at least c, then with overwhelming high probability, the procedure
Solver will output a solution (i.e. return a value at Line 36), instead of abort with failure. ut

B.4.2 Proof of Claim 2

Proof. By definition of sets Sξ and SW , these sets only concern tuple (W, ξ, z, b) ∈ S with b = 1. So at Line 27,
the value z∗i,j is genuine for any i ∈ [1, c], j ∈ [1,m], by the assumption of Claim 2.

Since polynomial with degree (m − 1) and passing m distinct points is unique (Lagrange polynomial), the
resulting polynomial Poly~Fi at Line 27 is genuine. Recall Eq (3) at Step P1 of prover algorithm P1,

~F i =
∑
ι∈C∗

wι ~Fι mod p. (74)

Therefore, { ~Fι}ι∈C∗ is a solution to the linear equation system at Line 32. Since this linear equation system has
unique solution A∗i ’s, we have { ~Fι}ι∈C∗ = {A∗i : i ∈ [1, c]}. More precisely, letting C∗ = {ι1, ι2, . . . , ιc}, where
ι1 < ι2 < ι3 < . . . < ιc, we have ~Fιi = A∗i for each i ∈ [1, c].

ut

B.5 Proof of Lemma 6

Claim 5 Suppose Pr
W,ξ,CA

[fC∗(W, ξ,CA) = 1] ≥ ε. We have

1. Pr[W is (ε/2)-good] > ε/2;
2. If W is (ε/2)-good, then Pr[ξ is (ε/4)-good w.r.t W ] > ε/4.

Proof (Proof of Claim 5). Treating W as the first parameter of function fC∗ , and the 2-tuple (ξ,CA) as the second
parameter, we apply Lemma 8 and have Pr[W is (ε/2)-good] > ε/2. Define a new function

fW,C∗(ξ,CA)
def
= fC∗(W, ξ,CA).

Given that W is (ε/2)-good, we apply Lemma 8 again on function fW,C∗(·, ·), where the first parameter of fW,C∗

is ξ, and the second parameter is CA. We get Pr[ξ is (ε/4)-good w.r.t. W ] > ε/4.
ut

B.5.1 Proof of Claim 3

Proof. Looking at Line 3 of Simulator Algorithm 1, N1 instances of value W will be generated and denoted
as W1, . . . ,WN1 . Define ri = 1 if Wi is (ε/2)-good, otherwise ri = 0. Then (r1, . . . , rN1) can be considered as
the result of N1 independent Bernoulli experiment with probability Pr[ri = 1] = Pr[W is ε/2-good]. We have
probability Pr[W is ε/2-good] > ε/2, under our hypothesis that Pr

W,ξ,CA
[fC∗(W, ξ,CA) = 1] ≥ ε, according to

Claim 5. Therefore, Pr[ri = 1] > ε/2 for each i.
Notice that N1 = dλ(ε/2)−1e. We apply Lemma 9 on r1, . . . , rN1 which are results of N1 independent Bernoulli

experiment with probability δ = Pr[ri = 1] > ε/2. With overwhelming high probability in λ, there exist d := c <



24 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

λ0.9 distinct indices i1, . . . , ic ∈ [1, N1], such that rij = 1 for each j ∈ [1, c]. As a result, for each j ∈ [1, c], Wij is
ε/2-good.

Since all Wi’s are chosen independently and uniformly randomly from a domain of size (p − 1), the collision
probability is

Pr [∃a 6= b ∈ {i1, . . . , ic}, Wa = Wb] (75)

≤

(
c

2

)
Pr [Wi1 = Wi2 ] <

1

2
c2 · 1

p− 1
(76)

which is negligible in λ ≈ log p. Consequently, all Wi1 , . . . ,Wic are distinct with o.h.p. (1− 1
2
c2 · 1

p−1
). Claim 3 is

proved.

B.5.2 Proof of Claim 4

Proof (Proof of Claim 4). By applying Claim 5, if Wi is (ε/2)-good, then Prξ[ξ is (ε/4)-good w.r.t Wi] > ε/4.

Let rj = 1 if ξi,j is ε/4-good w.r.t. Wi, and rj = 0 otherwise. Then (r1, . . . , rN2) can be considered as the
result of N1 independent Bernoulli experiment with probability Pr[rj = 1] = Pr[ξ is (ε/4)-good w.r.t Wi] > ε/4.

Notice that N2 = dλ(ε/4)−1e. Applying Lemma 9 over rj ’s, with overwhelming high probability, there exist
d := m < λ0.9 indices jι, ι ∈ [1,m], such that rjι = 1 and thus ξi,jι is ε/4-good w.r.t. Wi.

For each ι ∈ [1,m], we can show that (Wi, ξi,jι) ∈ Sξ as below: Let rk = 1 if bi,jι,k = 1, otherwise rk = 0.
Pr[rk = 1] = Pr[bi,jι,k = 1] = Pr

CA
[fC∗(Wi, ξi,jι , CA) = 1] ≥ ε/4. Notice that N3 = dλ(ε/4)−1e. Applying Lemma 9

over rk’s, with overwhelming high probability, there exists at least one index k∗ ∈ [1, N3], such that rk∗ = 1,
which implies that bi,jι,k∗ = 1. Therefore, (Wi, ξi,jι , zi,jι,k∗ , bi,jι,k∗ = 1) ∈ S. By definition of Sξ, (Wi, ξi,jι) ∈ Sξ
with {zi,jι,k∗} as witness set.

Consequently, Wi ∈ SW with {ξi,jι}ι∈[1,m] as witness set. Claim 4 is proved.

C Proof of Soundness w.r.t Owner

C.1 Proof of Lemma 7

Proof. Simulate Game 2’ using the input of m-BSDH problem, as in Appendix B.1, with the difference that vsk
is given to the adversary in setup phase. Since both T0 = (z, φα, σ̄) and T1 = (z′, φ′α, σ̄

′) are valid, i.e. satisfying
Eq (11) in algorithm OwnerVerify, we have

(
e(φα, g

α/gξ)e(g, g)z
)α ?

= e(g, gσ̄) · e(g, g)

(
−
∑
i∈C

wiRs0 (i)

)
(77)

(
e(φ′α, g

α/gξ)e(g, g)z
′)α ?

= e(g, gσ̄
′
) · e(g, g)

(
−
∑
i∈C

wiRs0 (i)

)
(78)

Combining Eq (77) and Eq (78), we have(
e(φ′αφ

−1
α , gα/gξ)e(g, g)z

′−z
)α ?

= e(g, gσ̄
′−σ̄) (79)

Case 1: σ̄′ = σ̄. If z′ = z, then we have e(φ′αφ
−1
α , gα/gξ) = e(g, g)0, which implies that ξ = α or φ′α = φα.

Otherwise, z′ 6= z. Thus the inverse (z′ − z)−1 mod p exits. Let c = 0 and compute d as below

d = e(φ′αφ
−1
α , gα/gξ)(z′−z)−1

∈ GT (80)

It is easy to verify that dα+c = dα = e(g, g).

Case 2: σ̄′ 6= σ̄. Thus the inverse (σ′ − σ)−1 mod p exits. Let c = 0 and compute d as

d =
(
e(φ′αφ

−1
α , gα/gξ)e(g, g)z

′−z
)(σ̄′−σ̄)−1 mod p

∈ GT (81)

It is easy to verify that dα+c = dα = e(g, g). ut



Lightweight Delegatable Proofs of Storage 25

D Two Lemmas on Random Sampling

In this section, we provide two lemmas on random sampling which will simplify our proof of main theorem. These
lemmas may have appeared (implicitly) in the cryptography literature. Here we do not declare any contribution
on them.

Lemma 8 Let X and Y be two finite sets. Let X denote a random variable over the domain X and Y denote a
(dependent or independent) random variable over the domain Y. Consider any function f : X× Y→ {0, 1}, such
that Pr[f(X ,Y) = 1] ≥ ε > 0 for some real value ε. For any constant a ∈ (0, 1

2
), define a set Sa = {x ∈ X :

Pr[f(x,Y) = 1] ≥ aε}. We have

Pr[X ∈ Sa] ≥
(

1− a
1
ε
− a

)
>

1

2
ε = O(ε).

Proof (Proof of Lemma 8). We have

ε (82)

≤ Pr[f(X ,Y) = 1] (83)

=
∑
x∈Sa

Pr[f(x,Y) = 1]Pr[X = x] +

∑
x∈X\Sa

Pr[f(x,Y) = 1]Pr[X = x] (84)

≤
∑
x∈Sa

1 · Pr[X = x] +
∑

x∈X\Sa

aε · Pr[X = x] (85)

= aε+ (1− aε)
∑
x∈Sa

Pr[X = x] (86)

⇒ Pr[X ∈ Sa] =
∑
x∈Sa

Pr[X = x] ≥
(

1− a
1
ε
− a

)
∈ (

1

2
ε, ε] = O(ε).

ut

Lemma 9 Let κ be an integer. Let δ, ε ∈ (0, 1] be two real values and δ ≥ ε. Let t = dκε−1e. Independently sample
t number of values r1, . . . , rt from {0, 1} under the Bernoulli distribution with probability δ. Let d be a positive
integer and d ≤ κc for some real valued constant c ∈ (0, 1). Then with overwhelming high probability (w.r.t. κ),
there exist d distinct indices i1, i2, . . . , id ∈ [1, t] such that ∀j ∈ [1, d], rij = 1.

We remark that the original form of Chernoff bound [15,23] does not serve our purpose.

Proof (Proof of Lemma 9). Let us consider the set S = {i ∈ [1, t] : ri = 1}. We will show that the size of set S is
at least d with overwhelming high probability.

For each index i ∈ [1, t], we have Pr[ri = 1] = δ ≥ ε.

Pr[|S| < d] =

d−1∑
j=0

Pr[|S| = j] =

d−1∑
j=0

(
t

j

)
δj(1− δ)t−j (87)

≤
d−1∑
j=0

(
t

j

)
εj(1− ε)t−j (88)

≤
d−1∑
j=0

(
t

d− 1

)
εd−1(1− ε)t−d+1 (89)

≤ d(κ+ 1)d−1e−κ+O(κc) (90)

≤ κc

eO(κ)
(91)

where e is the base of natural logarithm.

Now we explain the above inference. Equation (88) can be derived from Equation (87), since for each j ∈
{0, 1, 2, . . . , d− 1}, function f(δ) = δj(1− δ)t−j , δ ∈ (0, 1), has a negative first order derivative since κ > κc ≥ d,
and is thus a monotone decreasing function of δ ∈ (0, 1).



26 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong3

Equation (89) can be derived from Equation (88), since the probability mass function of a binomial distribution
is a bell shape (like normal distribution) and reach its maximum at j = t · ε ≥ κ > d. That is, for 0 ≤ j < d < t · ε,
the function g(j) =

(
t
j

)
(ε)j (1− ε)t−j is a monotone increasing function of j.

Equation (90) can be derived from Equation (89), due to the following two Equations (92) and (93).

(1− ε)t−d+1 = (1− ε)
1
ε
×(εt+ε(−d+1)) ≤ (1− ε)

1
ε
×(κ−εκc)

<

(
1

e

)κ−O(κc)

= e−κ+O(κc). (92)

(
t

d− 1

)
εd−1 ≤ td−1εd−1 = (tε)d−1 ≤ (κ+ 1)d−1 (93)

Equation (91) can be derived from Equation (90), since

(κ+ 1)d−1

eκ−O(κc)
≤ (κ+ 1)(κc−1)

eκ−O(κc)
= e(κc−1) ln(κ+1)−κ+O(κc) = e−O(κ). (94)

So de−O(κ) ≤ κc · e−O(κ) is negligible in κ. Recall that d < κc for constant c ∈ (0, 1).
Therefore, Pr[|S| < d] is negligible in κ and the set S has size at least d with overwhelming high probability

(1− Pr[|S| < d]) in κ.


	Lightweight Delegatable Proofs of Storage
	Introduction
	Drawback of Publicly Verifiable Proofs of Storage
	Approaches to Mitigate Drawback
	Our Approach
	Contributions

	Related Work
	Formulation
	System Model
	Trust Model

	Our Proposed Scheme
	Preliminaries
	Construction of the Proposed DPOS Scheme
	Batch Verification
	Completeness

	Discussion
	Experiment Result

	Security Analysis
	Security Formulation
	Definition of Soundness w.r.t Verification of Auditor
	Definition of Soundness w.r.t Verification of Owner

	Security Claim
	Proof of Theorem 1—Soundness w.r.t Auditor
	Unforgeability of Our Authentication Tag under Verification Private Key
	Construction of Knowledge Extractor
	Analysis of Knowledge Extractor

	Proof of Theorem 2—Soundness w.r.t Owner
	Unforgeability of Our Authentication Tag under Master Private Key
	Construction and Analysis of Knowledge Extractor 


	Conclusion
	Proof for Completeness
	Correctness of Equation (9)
	Correctness of Equation (10)
	Correctness of Equation (11)


	Proof for Soundness w.r.t. Auditor
	Simulate Game 2 using the input of m-BSDH Problem
	Proof for Lemma 3
	Proof for Lemma 4
	Proof of Lemma 5
	Proof of Claim 1
	Proof of Claim 2

	Proof of Lemma 6
	Proof of Claim 3
	Proof of Claim 4


	Proof of Soundness w.r.t Owner
	Proof of Lemma 7

	Two Lemmas on Random Sampling


