For any 1-to-1 one-way function, we give an optimal construction of UOWHFs with key and output length $\Theta(n)$ by making a single call to the underlying OWF. This improves the constructions of Naor and Yung (STOC 1989) and De Santis and Yung (Eurocrypt 1990) that need key length $O(n*\omega(log n))$.
For any known-(almost-)regular one-way function with known hardness, we give an optimal construction of UOWHFs with key and output length $\Theta(n)$ and a single call to the one-way function.
For any known-(almost-)regular one-way function, we give a construction of UOWHFs with key and output length $O(n*\omega(1))$ and by making $\omega(1)$ non-adaptive calls to the one-way function. This improves the construction of Barhum and Maurer (Latincrypt 2012) that requires key and output length $O(n*\omega(log n))$ and $\omega(log n)$ calls.
For any weakly-regular one-way function introduced by Yu et al. at TCC 2015 (i.e., the set of inputs with maximal number of siblings is of an $n^{-c}$-fraction for some constant $c$), we give a construction of UOWHFs with key length $O(n*log n)$ and output length $\Theta(n)$. This generalizes the construction of Ames et al. (Asiacrypt 2012) which requires an unknown-regular one-way function (i.e., $c=0$).
Along the way, we use several techniques that might be of independent interest. We show that almost 1-to-1 (except for a negligible fraction) one-way functions and known (almost-)regular one-way functions are equivalent in the known-hardness (or non-uniform) setting, by giving an optimal construction of the former from the latter. In addition, we show how to transform any one-way function that is far from regular (but only weakly regular on a noticeable fraction of domain) into an almost-regular one-way function.
Category / Keywords: Foundations, Universal One-way Hash Functions, One-way functions, Randomized Iterate Original Publication (with major differences): IACR-CRYPTO-2015 Date: received 29 May 2014, last revised 10 Jun 2015 Contact author: yuyuathk at gmail com Available format(s): PDF | BibTeX Citation Version: 20150610:113104 (All versions of this report) Short URL: ia.cr/2014/393 Discussion forum: Show discussion | Start new discussion