Cryptology ePrint Archive: Report 2014/387
New candidates for multivariate trapdoor functions
Jaiberth Porras, John B. Baena, Jintai Ding
Abstract: We present a new method for building pairs of HFE polynomials of high degree, such that the map constructed with such a pair is easy to invert. The inversion is accomplished using a low degree polynomial of Hamming weight three, which is derived from a special reduction via Hamming weight three polynomials produced by these two HFE polynomials. This allows us to build new candidates for multivariate trapdoor functions in which we use the pair of HFE polynomials to fabricate the core map. We performed the security analysis for the case where the base field is $GF(2)$ and showed that these new trapdoor functions have high degrees of regularity, and therefore they are secure against the direct algebraic attack. We also give theoretical arguments to show that these new trapdoor functions over $GF(2)$ are secure against the MinRank attack as well.
Category / Keywords: public-key cryptography / Multivariate cryptography, HFE polynomials, HFE cryptosystem, trapdoor functions, Zhuang-zi algorithm
Date: received 28 May 2014
Contact author: jbbaena at unal edu co
Available format(s): PDF | BibTeX Citation
Version: 20140530:122225 (All versions of this report)
Short URL: ia.cr/2014/387
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]