
Fully secure constrained pseudorandom functions

using random oracles

Dennis Hofheinz

September 17, 2014

Note. This is an out of date draft and here for reference only. This paper
has been superseded and replaced by the paper “Adaptively Secure Constrained
Pseudorandom Functions” [32] which proves a more general result under weaker
assumptions.

Abstract

A constrained pseudorandom function (CPRF) PRF allows to derive constrained evaluation
keys that only allow to evaluate PRF on a subset of inputs. CPRFs have only recently been
introduced independently by three groups of researchers. However, somewhat curiously, all of
them could only achieve a comparatively weak, selective-challenge form of security (except for
small input spaces, very limited forms of constrained keys, or with superpolynomial security
reductions).

In this paper, we construct the first fully secure CPRF without any of the above restrictions.
Concretely, we support “bit-fixing” constrained keys that hardwire an arbitrary subset of the in-
put bits to fixed values, we support exponentially large input spaces, and our security reduction
is polynomial. We require very heavyweight tools: we assume multilinear maps, indistinguisha-
bility obfuscation, and our proof is in the random oracle model. Still, our analysis is far from
tautological, and even with these strong building blocks, we need to develop additional techniques
and tools.

As a simple application, we obtain the first adaptively secure non-interactive key exchange
protocols for large user groups.

Keywords: constrained pseudorandom functions, adaptive security, non-interactive key ex-
change.

1 Introduction

Motivation. Pseudorandom functions (PRFs [28]) are a fundamental cryptographic tool.
Intuitively, a pseudorandom function PRF takes a key K and a preimage X, and assigns it an
image PRFK(X), such that it is infeasible to distinguish oracle access to PRFK(·) (for unknown
K) from oracle access to a truly random function. PRFs can be constructed from one-way
functions [28, 35] and have found applications in all areas of cryptography.

Quite recently, a useful extension of PRFs has been discovered1, in which keys K can be
constrained to a subset S of preimages, such that a constrained key KS can be used only to
evaluate PRFK(X) for X ∈ S. In the corresponding security experiment, an adversary can
ask for arbitrary constrained keys KS (for sets S from a class S of allowed subsets), and must
later distinguish a challenge image PRFK(X∗) from a random bitstring. Depending on the class
S of allowed subsets, this enables applications such as searchable encryption [37], broadcast
encryption [37, 7], and identity-based non-interactive key exchange [7].

1The concurrent works [37, 7, 9] all describe the same concept, although under different names and with
different constructions; we will mostly adopt the terminology of [7].
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However, most existing constructions of such constrained PRFs (CPRFs) achieve only a
comparatively weak, selective-challenge form of security, in which the challenge preimage X∗

must be chosen by the adversary in advance.2 In particular, this leads to applications which
only enjoy a selective-challenge (or, non-adaptive) form of security. Below, we will explain the
difficulty of constructing fully secure CPRFs, and how to overcome it.

Our contribution. We present a new proof strategy for the construction of fully secure
CPRFs. In particular, we construct the first fully secure “bit-fixing” CPRF (for constrained
keys that hardwire a subset of the preimage bits to arbitrary bit values). Bit-fixing PRFs
subsume almost all CPRF examples from [37, 7, 9].3 In particular, plugging our CPRF into [7,
Theorem 6.2] directly enables a broadcast encryption scheme with optimal ciphertext length
and polynomial security reduction. We also obtain the first adaptively secure non-interactive
key exchange protocols for large user groups (both in the identity-based [46, 18, 27, 44, 22, 7,
8] and in the public-key setting [15, 21]).

Our proof strategy requires several heavyweight tools. In particular, we assume multilin-
ear maps (however in a way that is compatible with the recent candidates [24, 17]), indistin-
guishability obfuscation, and a random oracle. Moreover, even given these powerful tools, the
construction and its analysis are far from straightforward. Hence, although efficient and fully
secure in the usual polynomial sense, our CPRF should not be considered practical by any
means. In fact, we view our scheme as a proof of concept, and as a way to showcase our proof
strategy. However, at least for our public-key non-interactive key exchange, we can implement
our strategy without indistinguishability obfuscation.

In what follows, we will give some technical details on our results.

Selectively secure CPRFs. For concreteness, say that we want to construct a bit-fixing
CPRF PRF, i.e., one that allows for constrained keys KSX

for sets of the form SX = {X =

(xi)
`
i=1 | xi = xi or xi = ⊥} with X = (xi)

`
i=1 ∈ ({0, 1} ∪ {⊥})`. An adversary A on PRF may

first ask for polynomially many constrained keys KSX
, and then gets challenged on a preimage

X∗. The goal of a successful simulation is to be able to prepare all KSX
, but not to be able to

compute PRFK(X∗).
Now if X∗ = (x∗i )

`
i=1 is known in advance, then the simulation can set up the function

PRFK(·) in an “all-but-one” way, such that all images except PRFK(X∗) can be computed. For
instance, the selective-security simulation from [7] (building on ideas from [40, 6]) sets up

PRFK(X) = e(g, . . . , g)
∏`

i=1 αi,xi (for K = (αi,b)i,b), (1)

where e is an (`− 1)-linear map, and the simulation knows all αi,1−x∗i (while the αi,x∗i are only

known “in the exponent,” as g
αi,x∗

i ). This setup not only allows to compute PRFK(X) as soon
as there is an i with xi 6= x∗i (such that the corresponding αi,xi = αi,1−x∗i is known); also,
assuming a graded multilinear map (as in [24, 17]), evaluation can be delegated. (For instance,
a constrained key that allows to evaluate all inputs with x1 = 1 would contain α1,1 and gαi,b for
all other i, b.)

Why achieving full security is difficult. However, observe now what happens when A
chooses the challenge preimage X∗ only after asking for constrained keys. Then, the simulation
may be forced to commit to the full function PRFK(·) (information-theoretically) before even

2This are exceptions for special classes of subsets and preimages. Namely, [7] present a fully secure CPRF for
a restricted class of “left-right” subsets S that fix either the left or the right half of the preimage (see also [46]).
Furthermore, [37] construct fully secure CPRFs both for polynomially-small preimage spaces, and for classes of
subsets S that cover intervals of preimages, where preimages are interpreted as integers. Finally, [23] prove the
full security of a CPRF for subsets S that fix a prefix of the preimage. Besides, [7, 9] also show full security
for their CPRFs using a complexity leveraging argument (i.e., by guessing X∗ in advance), which leads to an
exponential security reduction for standard preimage sizes.

3The exception are “circuit PRFs” (constructed in [7] with selective-challenge security), which allow to con-
strain keys to arbitrary preimage sets recognized by efficient circuits C.
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knowing where “not to be able to evaluate.” For instance, for the CPRF from [7] sketched
above, already a few suitably chosen constrained keys (for subsets Si) fully determine PRFK(·),
while the corresponding subsets Si leave exponentially many potential challenge preimages X∗

uncovered. If we assume that the simulation either can or cannot evaluate PRFK on a given
preimage (at least once PRFK(·) is fully determined), we have the following dilemma. Let C be
set of preimages that the simulation cannot evaluate. If C is too small, then X∗ ∈ C will not
happen sufficiently often, so that the simulation cannot learn anything from A. But if C is too
large, then the simulation will not be able to construct “sufficiently general” constrained keys
for A (because the corresponding sets S would intersect with C).4

This argument eliminates not only guessing X∗ (at least when aiming at a polynomial
reduction), but also the popular class of “partitioning arguments” (e.g., [16, 40, 4, 48, 31]).
(Namely, while guessing X∗ corresponds to |C| = 1 above, partitioning arguments consider
larger sets C. However, the argument above excludes sets C of any size for relevant classes S
of constraining sets and superpolynomial preimage space.) In particular, since the selectively-
secure CPRFs from [37, 7, 9] fulfill the assumptions of the argument, it seems hopeless to prove
them fully secure, at least for standard preimage sizes.

Idea 1: adapt the function on the fly. Hence, to construct a bit-fixing CPRF, we must
contradict the assumptions in the negative argument above. Concretely, we will not fully
determine PRFK initially, but have PRFK(X) depend also on a random oracle query H(X)
that must be made explicitly for each X. Unfortunately, the most straightforward strategy
(simply setting PRFK(X) = PRF′K(H(X)) for some selectively secure CPRF PRF′K) does not
work. Concretely, permuting the preimages arbitrarily destroys their structure, and hence makes
delegation (or, the construction of constrained keys) impossible.5 Hence, we need another idea.

Idea 2: tagged preimages that enable imperfections of constrained keys. Our idea is
to associate a tag TX = H(X) to each preimage X. The image PRFK(X) will then depend on
X and TX , so we can write PRFK(X) = PRF′K(X,TX) for a suitable function PRF′K . During
the simulation, we will be able to evaluate PRF′K(·, ·) everywhere (even for X = X∗), except
when TX = TX for a special tag TX (that depends on X). We will then adaptively program
the random oracle such that H(X) = TX precisely for the challenge preimage X∗. Note that
since we do not perturb the preimages themselves with H, this approach does not destroy any
structure on preimages, as necessary for key delegation. Furthermore, the TX will be fixed in
advance, and so PRF′K can be set up in a selectively-secure manner similar to (1).

However, we still need a way to hide the imperfections of constrained keys (i.e., the special
tags TX for which evaluation fails). Otherwise, A may be able to distinguish the simulation
(in which H(X∗) is programmed to TX∗) from the real security game (in which H(X∗) is truly
random) by somehow “interpolating” TX∗ from the imperfections of known constrained keys.
In fact, since our delegation mechanism will be highly structured, the arising imperfections TX
will be highly correlated for different constrained keys. Hence, we need another trick to hide
the imperfections of the constrained keys.

Idea 3: hide key imperfections. Intuitively, we will hide the imperfections of constrained
keys (i.e., the special tags TX for which this key fails) by obfuscating the functionality of
these keys. However, since we will employ indistinguishability obfuscation [1, 30, 25], this
only guarantees that the obfuscations of two constrained keys with the same imperfections
are indistinguishable. To introduce these imperfections in the first place, we cannot rely on
obfuscation alone, and hence we need another tool.

We introduce obfuscations with a new tool we call “extensible testers.” Intuitively, an

4In fact, for many classes S of allowed constraining sets, A can easily ask for constrained keys that, taken
together, allow to evaluate PRFK everywhere except on X∗. For instance, in our case, A could ask for all keys
KSi with Si = {X = (xi)i | xi = 1− x∗i }. Hence, in this case, the simulation must fail already whenever |C| ≥ 2.

5However, for CRPFs with simply structured constraining sets (such as left-right CPRFs, for which the
constraining sets S are closed under component-wise hashing), a variation of this strategy may already work [7].
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extensible tester T is an obfuscation of a point function [14], such that T (Z) = 1 precisely for
one hidden input Z. (In our case, Z will be a whole set of bitstrings.) However, unlike with
indistinguishability obfuscation, such a tester T for a random Z cannot be distinguished from
the obfuscation of an all-zero function. Additionally, a tester T with T (Z) = 1 is extensible in
the sense that T and Z′ allow to derive a tester T ′ with T (Z∪Z′) = 1. (In other words, the set
that T tests for can be extended by another known set Z′.) We instantiate extensible testers
using the (non-multilinear) decisional Diffie-Hellman assumption.

We use extensible testers to encode for which tags TX evaluation should fail. (We give details
on how this is done below, after presenting our construction.) This way, these imperfections
TX are hidden and can be introduced or modified without changing A’s view noticeably.

Putting things together. We obtain a CPRF that in fact does not look so different from
the bit-fixing CPRF from [7]. Our CPRF is of the form PRFK(X) = PRF′K(X,H(X)), where we
interpret H(X) as a vector T = (Ti)

`
i=1 of d-bitstrings Ti. (Hence, a tag T is actually a vector

of ` bitstrings, and each bitstring is of length d.) The function PRF′K is defined through

PRF′K(X, (Ti)
`
i=1) = e(g, . . . , g)

∏`
i=1

∏d
j=1 αi,xi,j,ti,j (for K = (αi,b,j,c)i,b,j,c and Ti = (ti,j)

d
j=1),

(2)
where e is an (`d − 1)-linear map. In the scheme, a constrained key for a subset S of inputs
consists of an obfuscation of the function PRF′K(·, ·) with hardwired αi,b,j,c, but restricted to
inputs X ∈ S. (That is, on inputs (X,T ) with X /∈ S, the obfuscated function outputs ⊥.)
In the simulation, we will first add imperfections to each generated constrained key. Then, we
will replace the obfuscated keys with functionally identical keys that only require knowledge of
a subset of the αi,b,j,c. This way, we end up with a simulation that does not know the αi,b,j,c
necessary to compute PRFK(X∗) = PRF′K(X∗, TX∗).

A more technical explanation. To get a glimpse of the argument used in the reduction,
suppose that for every i, b, j, we know only either αi,b,j,0 or αi,b,j,1 (but not both) in plain. We
also know all αi,b,j,c “in the exponent” (i.e., as gαi,b,j,c). This allows to evaluate PRF′K(X,T )
for all X,T , except when T = TX for a single vector TX that reflects which αi,b,j,c we don’t
know. (In this case, the product

∏
i,j αi,xi,j,ti,j in the exponent of (2) contains no known factor.)

Observe that the i-th component of this vector TX depends only on xi; hence, we can write
TX = (T i,xi)i for bitstrings T i,b that do not depend on X.

Now suppose we want to generate a constrained key that allows to evaluate PRF′K(·, ·) with
some bits of the first input X fixed to certain values. More formally, the key should evaluate
PRF′K(X,T ) whenever xi ∈ {xi,⊥} for a given partial assignment X = (xi)i ∈ {0, 1,⊥}d.
However, by our setup, we can only expect to evaluate PRF′K(X,T ) whenever Ti 6= T i,xi for
at least one i. Consequently, all generated constrained keys will fail on inputs (X,T ) with
T = TX = (T i,xi)i, unlike constrained keys in the original scheme. These failures introduced
by our setup are the “imperfections” mentioned above.

We must hence solve two tasks: to bridge our simulation and the original scheme, we must
introduce these same imperfections into honestly generated keys. Besides, we must make sure
that H(X∗) = TX∗ for A’s challenge input X∗ to embed a computational challenge into the
computation of PRFK(X∗). We first describe how to introduce imperfections into honestly
generated constrained keys. Namely, we start with implanting an extensible tester T for the set
Z = {T i,xi}xi 6=⊥ into each constrained key for a bitmask X = (xi)i. Furthermore, we program
this constrained key such that the evaluation of PRF′K(X,T ) fails if T ({Ti}xi 6=⊥) = 1. In other
words, evaluation fails as soon as the input could be problematic in case of a setup of the αi,b,j,c
as in the simulation. During this step, we assume knowledge of all αi,b,j,c, and hide the values
T i,b even from the simulation. (At this point, we use the extensibility of testers to introduce
the T i,b consistently across all generated constrained keys.)

However, to embed a computational challenge, we must also program the random oracle H
such that H(X∗) = TX∗ . This programming in itself is easy to perform, but requires knowledge
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of TX∗ = (T i,x∗i )i. Hence, introducing imperfections as above becomes much harder with
a programmed H(X∗). We postpone a more technical description of the difficulties and our
solution strategy (which heavily involves the extensibility of testers) to the proof of Lemma 4.2.

More on related techniques. Our use of obfuscated keys with imperfections resembles the
“punctured programs” technique of [45], however with a twist: unlike [45], we also hide where
the puncturing takes place, even from the simulation itself. That is, from a conceptual point
of view, we hardwire an obfuscated point function into the obfuscated program, such that the
program executes normally unless the point function evaluates to 1 on the program input. This
idea of obfuscating (point) obfuscations to subtly change program behavior also appears in the
concurrent and independent works [12, 11], although in different contexts.

Roughly, [12] uses this idea to program a (puncturable) PRF at a hidden input, in order
to construct a Universal Computational Extractor (i.e., a standard-model version of a random
oracle). On the other hand, [11] constructs a leakage-resilient public-key encryption scheme in
which the public key pk is a point function obfuscation of the secret key sk . (In their scheme,
a ciphertext is the obfuscation of a function that uses pk to “test” whether the right sk is
being used for decryption.) We mention that neither [12] nor [11] requires their point function
obfuscations to be “extensible” (like our extensible testers). Instead, however, [12, 11] both rely
on point function obfuscators that are secure against auxiliary inputs [14, 2].

Furthermore, we note that tags that introduce isolated “points of failure” have already
been used in several works (e.g., [36, 47, 13]). Finally, many works employ random oracles to
introduce adaptivity into a simulation, e.g., [20, 29, 5, 43]. We view our contribution primarily as
a new combination (of course with twists and adaptations, as sketched above) of these concepts.

Note on a related work of Fuchsbauer et al. Independently and concurrently, Fuchsbauer
et al. [23] have also investigated the adaptive security of constrained PRFs. They provide two
main results: first, they show an exponential lower bound for the reduction loss of fully secure
bit-fixing CPRFs (and thus provide a formal foundation for our intuitive reasoning given above
under “Why achieving full security is difficult”). Our result circumvents their lower bound
by the use of a random oracle; indeed, to a certain extent, we believe that their lower bound
justifies our use of random oracles. [23] also show that the classic Goldreich-Goldwasser-Micali
(GGM) PRF [28] actually is a fully secure prefix-fixing CPRF (i.e., a CPRF with keys that fix
an arbitrary prefix of the input bitstring), although with a quasi-polynomial security reduction.
Compared to our result, their result provides a weaker notion of CPRFs with an asymptotically
worse security reduction, but under a significantly weaker computational assumption, and in
the standard model. (Their technique to show adaptive security is entirely different from ours:
they use a clever combination of the classic GGM analysis with the prefix-guessing technique
of [42, 34, 10].)

Outline. In Section 2, we fix some notation and recall some definitions (including a definition
of constrained PRFs). In Section 3, we define and construct extensible testers, as discussed
above. We present and analyze our constrained PRF in Section 4. In Section 5, we discuss
the compatibility of our construction with the recent candidates of “approximate” multilinear
maps from [24, 17]. Finally, in Section 6, we give details on our non-interactive key exchange
application.

2 Preliminaries

Generic notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N is the
security parameter. For a finite set S, s← S denotes the process of sampling s uniformly from
S. For a probabilistic algorithm A, y ← A(x) denotes the process of running A on input x and
with randomness R, and assigning y the result. If A’s running time is polynomial in k, A is
called probabilistic polynomial-time (PPT). A function f : N → R is negligible if it vanishes
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faster than the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). Two sequences
X = (Xk)k∈N and Y = (Yk)k∈N of random variables are computationally indistinguishable

(written X
c
≈ Y ) if Pr [A(X) = 1] − Pr [A(Y ) = 1] is negligible for every PPT A. We write

X
s
≈µ Y for a function µ : N→ R if the statistical distance between Xk and Yk is at most µ(k)

for all k. We may simply write X
s
≈ Y if X

s
≈µ Y for some negligible function µ. Finally, if Xk

and Yk are identically distributed for every k (i.e., if X
s
≈0 Y ), then we write X ≡ Y .

Groups with multilinear maps. Our constructions make use of multilinear maps. While
we formulate our constructions with respect to the standard mathematical notion of multi-
linear maps (to be defined below), we stress that they can be implemented with the recent
candidates [24, 17] of approximate multilinear maps. (We will give more details in Section 5.)

Formally, an D-linear setting G := ((Gi)i, g, p, (ei,j)i,j) consists of cyclic groups G1, . . . ,GD

of prime order p, and a generator g with G1 = 〈g〉. We also assume bilinear maps ei,j :
Gi ×Gj → Gi+j for any i, j ≥ 1 with i + j ≤ D. We insist that the ei,j are non-degenerate
in the sense that ei,j(gi, gj) 6= 1 for any gi ∈ Gi, gj ∈ Gj with gi, gj 6= 1. In fact, if we let
g1 := g and gi := e1,i−1(g, gi−1) ∈ Gi, then this implies Gi = 〈gi〉. This setting G may depend
on the security parameter, and we assume that it is publicly known. For instance, G may be
chosen upon key generation in our constrained PRF, and can be implicitly contained in all keys
(constrained or not) handed out.

Bracket notation. To simplify the exposition, we will write [x]i instead of gxi ∈ Gi for any
x ∈ Zp and the generators gi as defined above. We will also write [x]i · [y]j := ei,j([x]i , [y]j),
so that we have [x]i · [x]j = [x · y]i+j . Occasionally, we will also write α · [x]i := [α · x]i for
α ∈ Zp. Finally, to avoid the overuse of braces in vectors of group elements, we will abbreviate
([x1]i , . . . , [xn]i) with [x1, . . . , xn]i. This notation will help to express “computations in the
exponent” in a more direct and intuitive fashion. (We note that a similar notation has been
used in [24, 17, 19].)

Multilinear decisional Diffie-Hellman problem. We use the following popular multilinear
variant of the decisional Diffie-Hellman problem:

Definition 2.1 (D-MDDH). We say that the D-linear decisional Diffie-Hellman (short: D-
MDDH) assumption holds in G if the following advantage function is negligible for all PPT
adversaries A:

Advmddh
G,D,A(k) = Pr

[
A([x1]1 , . . . , [xD+1]1 ,

[
D+1∏
i=1

xi

]
D

) = 1

]
−Pr [A([x1]1 , . . . , [xD+1]1 , [z]D) = 1] .

Here, the probability is over x1, . . . , xD+1, z ← Zp and A’s randomness.

In groups without multilinear map. We will also use bracket notation in groupsG without
multilinear map. (Since in that case, there is only one group, we will drop the subscript from our
bracket notation; that is, we will write [x] := gx ∈ G.) The common decisional Diffie-Hellman
assumption then arises as a special case of Definition 2.1:

Definition 2.2 (DDH). We say that the decisional Diffie-Hellman (short: DDH) assumption
holds in G if the following advantage function is negligible for all PPT adversaries A:

AdvddhG,A(k) = Pr [A([x, y] , [x · y]) = 1]− Pr [A([x, y] , [z]) = 1] .

The probability is over x, y, z ← Zp and A’s randomness.

Indistinguishability obfuscation. Intuitively, an indistinguishability obfuscator transforms
a circuit C into one which (up to computational indistinguishability) depends only on the
functionality of C:
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Definition 2.3 (Indistinguishability obfuscator). An indistinguishability obfuscator iO is a
PPT algorithm that, on input 1k and a circuit C, outputs an obfuscated circuit iO(C). (We
usually drop the first input 1k for readability.) We require that for every PPT adversary A, the
advantage function

Advind-obfiO,A (k) = Pr
[
Expind-obfiO,A (k) = 1

]
− 1/2

is negligible, where the experiment Expind-obfiO,A is defined as follows:
1. A chooses two functionally identical circuits C0, C1 of equal size,
2. the experiment tosses a coin b← {0, 1}, and sends iO(Cb) to A,
3. A outputs a guess b′ for b, and the experiment outputs 1 if and only if b′ = b.

Although formalized already in [1] (and further investigated in [30]), indistinguishability
obfuscators could only be constructed very recently [25] (under a case-tailored computational
assumption). However, since then, significant research on the applications [25, 45, 33, 26, 38,
8] and limitations [3, 41] of indistinguishability obfuscation has been conducted.

Constrained and bit-fixing pseudorandom functions. The concept of constrained pseu-
dorandom functions (CPRFs) has been formalized in several concurrent works [37, 7, 9]. In a
nutshell, CPRFs are pseudorandom functions whose keys can be “constrained” to a subset of
preimages:

Definition 2.4 (CPRF). A constrained pseudorandom function (CPRF) PRF with input length
` = `(k), output length `′ = `′(k), and for a system S ⊆ {0, 1}` of sets, consists of the following
three PPT algorithms:
Key generation. KGen samples a key K.
Delegation. KDel(K,S), for a key K and a set S ∈ S, outputs a constrained key KS.
Evaluation. KEval(KS , X), for a constrained key KS and a preimage X ∈ S, outputs an image

PRFK(X) ∈ {0, 1}`′. We require that this image only depends on K and X (but not on S).
We require that for all PPT distinguishers A, the advantage function

AdvcprfPRF,A(k) = Pr
[
ExpcprfPRF,A(k) = 1

]
− 1/2

is negligible, where the experiment ExpcprfPRF,A is defined as follows:
1. the experiment samples K ← KGen and gives A oracle access to KDel(K, ·) at any point,
2. A decides to be challenged on a preimage X∗ = (x∗i )

`
i=1 ∈ {0, 1}` that is not contained in

any set S for which A has previously queried KDel,
3. the experiment tosses a coin b← {0, 1}; if b = 0, then A gets PRFK(X∗), and if b = 1, then
A gets a uniformly chosen {0, 1}`′-element,

4. finally, after potentially further querying KDel(K, ·) (but only on sets S which do not contain
X∗), A outputs a guess b′ for b, and the experiment outputs 1 if and only if b′ = b.

In this work, we will focus on bit-fixing PRFs, for which S consists of all sets SX (for
X = (xi)

`
i=1 ∈ ({0, 1} ∪ {⊥})`), where

SX =
{
X = (xi)

`
i=1 | ∀i : xi = xi or xi = ⊥

}
.

In other words, a set SX contains all preimages X that match the partial assignment X. In
the following, all CPRFs will be bit-fixing CPRFs, and we will write KDel(K,X) instead for
KDel(K,SX) for brevity.
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3 Extensible testers

3.1 Definition

Intuitively, an extensible tester allows to obfuscate a multiset6 Z over some domain X . Slightly
abusing language, we will call the obfuscation TZ of Z itself the “tester.” We require that it
is possible to extend a tester TZ for Z to a tester TZ∪Z′ for a larger multiset Z ∪ Z′, knowing
only TZ and Z′ (but not Z). Besides, we want that a tester TZ does not reveal the multiset Z it
obfuscates, in a sense to be defined. Finally, for technical reasons, we also require the existence
of a special tester T⊥ that cannot be extended (in the sense that the extension of T⊥ only yields
a re-randomized copy of T⊥ again) and matches no multiset. Formally:

Definition 3.1 (Extensible tester). Let X be an efficiently samplable domain (that may depend
on the security parameter k), and let µET = µET(k) be a real-valued function. An extensible
tester ET over X with statistical defect µET consists of the following PPT algorithms:
• Mark takes either ⊥ or a multiset Z over X as input, and outputs a tester T .
• Test takes a tester T and a multiset Z over X as input and outputs a verdict b ∈ {0, 1}.
• Extend takes a tester T and a multiset Z′ over X as input and outputs a tester T ′.

We require the following:
Correctness. For all k,Z, we have Test(Mark(Z),Z) = 1 always.
Extensibility. For all k,Z,Z′, we have

Extend(Mark(Z),Z′)
s
≈µET Mark(Z ∪ Z′)

Extend(Mark(⊥),Z)
s
≈µET Mark(⊥).

Soundness. For all k and all Z 6= ∅, we have Test(Mark(⊥),Z) = 0 always.
Indistinguishability. For every PPT adversary A and independently uniform z← X ,

Advet-indET,A(k) := Pr [A(Mark(⊥)) = 1]− Pr [A(Mark({z})) = 1]

is negligible.

Note that the soundness property is rather weak: we only exclude false positives for the
“empty tester” T⊥. However, together with our indistinguishability and extensibility require-
ments, actually false positives for any multiset that contains at least one random element are
excluded, at least in a computational sense. Specifically, we will need the following:

Lemma 3.2. An extensible tester ET in the sense of Definition 3.1 also satisfies the following
properties for independently uniform z1, z2, z3 ← X :

(Mark({z1}),Mark({z1}))
c
≈ (Mark({z1}),Mark({z2})) (3)

(Mark({z1, z2}),Mark({z1}), z2)
c
≈ (Mark({z1, z2}),Mark({z1}), z3). (4)

Proof. To show (3), consider

(Mark({z1}),Mark({z1}))
s
≈ (T{z1},Extend(T{z1}, ∅))

c
≈ (T⊥,Extend(T⊥, ∅))

s
≈ (Mark(⊥),Mark(⊥))

c
≈ (Mark({z1}),Mark(⊥))

c
≈ (Mark({z1}),Mark({z2}))

6Recall that a multiset is a set in which elements can occur more than once. In the following, all multisets
will be implicitly assumed to be finite.
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for T{z1} ← Mark({z1}) and T⊥ ← Mark({⊥}). Here, the “
c
≈”s follow from indistinguishability,

and the “
s
≈”s from extensibility of ET. Similarly, (4) can be seen as follows:

(Mark({z1, z2}),Mark({z1}), z2)
s
≈ (Extend(T{z1}, {z2}), T{z1}, z2)

c
≈ (Extend(T⊥, {z2}), T⊥, z2)

s
≈ (Mark(⊥),Mark(⊥), z2)

s
≈ (Mark(⊥),Mark(⊥), z3)

s
≈ (Extend(T⊥, {z2}), T⊥, z3)

c
≈ (Extend(T{z1}, {z2}), T{z1}, z3)

s
≈ (Mark({z1, z2}),Mark({z1}), z3),

where again T{z1} ← Mark({z1}) and T⊥ ← Mark({⊥}).

3.2 Construction from DDH

Our construction of extensible testers is a variant of the DDH-based point function obfuscation
of Canetti [14]. (Concretely, we use two instances of the [14]-obfuscation in parallel, to enable
the construction of “illegal” testers T⊥ that do not match anything.) We assume a public
group G = 〈g〉 of prime order p. As already mention in Section 2, we will write [x] for gx for
consistency, and to simplify notation. We now present our extensible tester ET over Z∗p.

Marking and testing. We start with our marking and testing algorithms:
• Mark(⊥) outputs T⊥ = [r, rx0, s, sx1] for uniform r, s, x0, x1 ← Z∗p subject to x0 6= x1.
• Mark(Z) outputs TZ = [r, rx, s, sx] for uniform r, s← Z∗p and x =

∏
z∈Z z.

• Test(T ,Z), for T = [r, u, s, v], outputs 1 iff [u] = x · [r] and [v] = x · [s] for x =
∏

z∈Z z.
Now when trying to extend a tester T = [r, u, s, v] by a multiset Z′, a first attempt could be
to compute T ′ = ([r] , x′ [u] , [s] , x′ [v]) for x′ =

∏
z′∈Z′ z

′. This would indeed yield a tester for
Z ∪ Z′ (resp. ⊥) if T was a tester for Z (resp. ⊥). However, the resulting T ′ would not be fresh
(i.e., independently distributed). Hence, to describe our actual extension algorithm, we need a
means to re-randomize testers.

Re-randomizing testers. Algorithm reRand(T ), for T = [r, u, s, v], computes and outputs

T ′ = (α [r] + β [s] , α [u] + β [v] , γ [r] + δ [s] , γ [u] + δ [v]) = [αr + βs, αu+ βv, γr + δs, γu+ δv]

for uniform α, β, γ, δ ← Zp subject to αr + βs 6= 0 and γr + δs 6= 0. (Note that although
reRand does not have access to r and s in plain, these events can be tested for with [r] and [s]
only. Hence, reRand can choose such α, β, γ, δ.) The following lemma will be instrumental in
analyzing reRand:

Lemma 3.3. Fix any r, s, x0, x1 ∈ Z∗p. For uniform α, β ∈ Zp conditioned on αr + βs 6= 0,
consider the elements (t, w) := (αr + βs, αrx0 + βsx1) ∈ Z2

p. We have:
(a) if x0 6= x1, then t and w are independently uniform Z∗p-elements,
(b) if x0 = x1, then w = (t · x0 mod p) for independently uniform t ∈ Z∗p.

Proof. In both cases, t ∈ Z∗p is uniform by assumption. For the first claim, observe that we can
write x1 = x0 + ∆ (for ∆ 6= 0) and thus w = (αr + βs)x0 + βs∆. But even conditioning on
u = αr + βs, the values of β and thus also w is uniform. The second claim is immediate.

The extension algorithm. Re-randomizing the simple extension procedure sketched above
thus yields:
• Extend(T ,Z′), for T = [r, u, s, v], outputs reRand([r] , x′ [u] , [s] , x′ [v]) for x′ =

∏
z′∈Z′ z

′.

Theorem 3.4 (DDH-based extensible tester). Under the DDH assumption in G, the construc-
tion ET above constitutes an extensible tester over Z∗p with statistical defect 1/|G| in the sense
of Definition 3.1.
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Proof. We need to check the properties from Definition 3.1. Correctness is clear from the
construction, and extensibility follows from Lemma 3.3: for any tester T for ⊥, Lemma 3.3 (a)
implies that reRand(Z) is uniformly distributed over (G \ {1})4. Thus, reRand(Z) is a fresh
tester for ⊥, except with probability 1/p. But if T is a tester for Z, Lemma 3.3 (b) yields that
reRand(T ) is of the form [r, rx, s, sx] for fresh r, s, and x =

∏
z∈Z z. Hence, reRand(T ) is a fresh

tester for Z.
For soundness, consider a tester T⊥ = [r, rx0, s, sx1] as output by Mark(⊥). Since x0 6= x1,

there is no x with [u] = x · [r] and [v] = x · [s]. Hence, Test(T⊥,Z) will always output 0,
independently of Z.

To show indistinguishability, assume a distinguisher D between Mark(⊥) and Mark({z}) (for
uniform z ∈ Z∗p). We construct a DDH distinguisher D′ that distinguishes between [r, x, rx] and
[r, x, y] (for uniform r, x, y ← Z∗p). Concretely, D′([r, x, z]) sets up

T = reRand([r] , [z] , [s] , s · [x]) = reRand([r, z, 1, x]).

and outputs whatever D(T ) outputs. Now T is distributed statistically close to Mark(⊥) or
Mark({x}), depending on whether z is random or z = rx. Thus, D′ is a successful DDH-distin-
guisher whenever D successfully distinguishes Mark(⊥) and Mark({z}).

4 Our constrained PRF

4.1 Construction

We are now ready to define our constrained PRF, where input length ` = `(k) and output
length `′ = `′(k) may be arbitrary efficiently computable and polynomially bounded functions.

Ingredients. We assume the following ingredients:
• We make use of an indistinguishability obfuscator iO in the sense of Definition 2.3. In what

follows, we implicitly assume a suitable circuit representation of obfuscated functions. We
also assume a padding of these circuits as necessary to guarantee that the circuits obfuscated
in the scheme and in the prove have the same size. (It will be clear that this is always
possible.)
• We use an extensible tester ET over a domain X in the sense of Definition 3.1. In the

following, we will use the bit representation of elements S ∈ X and may write S = (ti)
d
i=1 ∈

{0, 1}d for an appropriate d (that may of course depend on the security parameter k).
• We assume an D-linear setting G as in Section 2 for D = `d− 1.
• Finally, we assume a family H of key derivation functions h : GD → {0, 1}`

′
. We require

that ((h, h(g)) has statistical distance at most εH from (h, r), where h← H, g ← GD, and
r ← {0, 1}`′ are uniformly chosen.

Key generation. KGen chooses 4`d random exponents αi,b,j,c for (i, b, j, c) ∈ [`] × {0, 1} ×
[d]× {0, 1}, as well as h← H. Output of KGen is

K = ((αi,b,j,c)i,b,j,c∈[`]×{0,1}×[d]×{0,1}, h).

Images. For a key K as above and an input X = (xi)
`
i=1 ∈ {0, 1}`, we define

PRFK(X) = h

 ∏
(i,j)∈[`]×[d]

αi,xi,j,ti,j


`d−1


for H(X) = (Ti)

`
i=1 ∈ X ` and the bit representation Ti = (ti,j)

d
j=1 ∈ {0, 1}d.

Delegation. For convenience, we say that a complete assignment X = (xi)
`
i=1 ∈ {0, 1}`

matches a partial assignment X = (xi)
`
i=1 ∈ ({0, 1} ∪ {⊥})` if and only if xi = xi for all i with
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xi 6= ⊥. Now KDel(K,X), for a partial assignment X = (xi)
`
i=1, outputs

KX = iO(GK,X),

where the function GK,X is defined through

GK,X(X,T ) =

h
([∏

i,j αi,xi,j,ti,j

]
`d−1

)
if X matches X

⊥ else

for X = (xi)i and T = (Ti)i = ((ti,j)j)i as above. Note that for any complete assignment X
that matches X, we have GK,X(X,H(X)) = PRFK(X).

Evaluation. KEval(iO(GK,X), X) outputs iO(GK,X)(X,H(X)) = GK,X(X,H(X)).

4.2 Security analysis

Correctness of the construction is immediate. We turn to its security analysis.

Roadmap. In our (game-based) proof, we start with the interaction of an adversary A with the
constrained PRF PRF as in Definition 2.4. We follow the strategy outlined in the introduction:
our first goal will be to give out “imperfect” partial evaluation keys to A. These keys fail
to evaluate a preimage on specific (computationally hidden) “special” tags T . We will then
program the random oracle such that the tag T ∗ for the challenge preimage X∗ finally selected
by A is special in the above sense. The main difficulty during these steps is to “synchronize”
the imperfections in the constrained keys with the programming of H(X∗). This step (from
Game 4 to Game 5) is outsourced into Lemma 4.2.

We then pave the way to a reduction to the MDDH assumption in Game 6. Namely, Game 6
only uses a subset of the key exponents αi,b,j,c, as outlined in the introduction. Consequently,
this game is only able to hand out imperfect constrained keys, and is not able to compute the
challenge image PRFK(X∗) on its own. A final reduction to the MDDH assumption then allows
to replace PRFK(X∗) with a random value. At this point, A has no advantage in winning the
security experiment.

We now turn to a formal proof.

Theorem 4.1. The construction PRF from Section 4 is a constrained PRF in the sense of
Definition 2.4, assuming that iO is an indistinguishability obfuscator, ET is an extensible tester,
and the (`d− 1)-MDDH assumption holds in G. Concretely, for every PPT adversary A, there
are adversaries B, C, D, E, and F (of roughly the same complexity as A) with∣∣∣AdvcprfPRF,A(k)

∣∣∣ ≤ qkey ·
(∣∣∣Advind-obfiO,B (k)

∣∣∣+
∣∣∣Advet-indET,C (k)

∣∣∣+ (1 + 4`(`− 1)qH(qkey + 5)) · µET
)

+ qH ·
(

20`(`− 1)qkey ·
∣∣∣Advet-indET,D (k)

∣∣∣+ qkey ·
∣∣∣Advind-obfiO,E (k)

∣∣∣+
∣∣∣Advmddh

G,`d−1,F (k)
∣∣∣+ εH

) ∣∣∣, (5)

where qkey = qkey(k) and qH = qH(k) bound the number of A’s constrained key and random
oracle queries, and µET = µET(k) denotes the statistical defect of ET.

Proof. Game 1 is the original CPRF game with adversary A. Without loss of generality, we
make the following assumptions about A:
• A always makes exactly qkey = qkey(k) constrained key queries,
• A always makes exactly qH = qH(k) random oracle queries, all of them distinct,
• A always queries H(X∗) at some point before asking for a challenge on X∗ = (x∗i )

`
i=1 ∈

{0, 1}`.
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In the following, let out i be the final output of Game i. (That is, out i = 1 if and only if A
correctly predicts whether the challenge image it receives is real or random.) By construction,

Pr [out1 = 1]− 1/2 = AdvcprfPRF,A(k). (6)

In Game 2, we change the way constrained keys are generated for A. Concretely, instead
of KX = iO(GK,X) (as defined in Section 4 for a query X = (xi)i), we compute KX =
iO(GK,X,T )) for a freshly chosen T ← Mark(⊥) and the function GK,X,T defined as follows:

GK,X,T (X,T ) =

h
([∏

i,j αi,xi,j,ti,j

]
`d−1

)
if X matches X and Test(T , {Ti}xi 6=⊥) = 0

⊥ else.
(7)

Thus, the only difference to GK,X is the additional check for Test(T , {Ti}xi 6=⊥) = 0. By the
soundness property of ET, however, the tester T will not match anything. Hence, GK,X and
GK,X,T are functionally identical, and the indistinguishability of iO yields that

Pr [out2]− Pr [out1] = qkey · Advind-obfiO,B (k) (8)

for a suitable iO-distinguisher B, and using a standard hybrid argument.
In Game 3, we again change the way constrained keys are generated. Namely, we construct

KX = iO(GK,X,T ) as in Game 2, but for

T ← Mark({Ri}xi 6=⊥)

and independently uniform Ri ← X chosen freshly for each X. We claim that a combination of
the extensibility and indistinguishability of ET yields∣∣Pr [out3]− Pr [out2]

∣∣ ≤ qkey ·
(
Advet-indET,C (k) + µET

)
. (9)

for a suitable ET-distinguisher C. Concretely, C embeds its own input T ′ (where either T ′ ←
Mark(⊥) or T ′ ← Mark({z}) for random z) into a single constrained key for a partial assignment
X. (We stress that X does not have to be known in advance.) Let i1, . . . , iw be the indices of
the non-⊥ positions of X, i.e., {i1, . . . , iw} := {i | xi 6= ⊥}. Then, C sets up KX = iO(GK,X,T )
for

T ← Extend(T ′, {Ri2 , . . . , Riw})

and independently random Rij . The extensibility of ET implies that T has statistical distance
at most µET to Mark(⊥) (resp. Mark({Ri}xi 6=⊥)) if T ′ ← Mark(⊥) (resp. T ′ ← Mark({z}), where
we implicitly set z = Ri1). Hence, C can prepare a single constrained key as in Game 2 or
Game 3, depending on its own challenge. A standard hybrid argument over all constrained key
queries shows (9).

In Game 4, we initially choose 2` random values T i,b ← X (for i ∈ [`] and b ∈ {0, 1}). We
also guess the index j∗ ∈ [qH] of A’s H-query to the challenge preimage X∗. We now program
H such that A’s j∗-th H-query X = (xi)

`
i=1 is answered with (T i,xi)

`
i=1. Note that this does not

change A’s view at all, since all T i,b are independently random (and at this point only used to
program H). If our guess for j∗ is incorrect, we abort (with a uniform bit as output). Note that
we guess j∗ correctly with probability 1/qH, and independently of A’s success. We obtain

Pr [out4]−
1

2
=

1

qH

(
Pr [out3]−

1

2

)
. (10)

(In other words, A’s distinguishing advantage just dropped by a polynomial factor of qH.)
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In Game 5, we again modify the construction of the testers T used to prepare constrained
keys for A. Concretely, instead of setting up T ← Mark({Ri}xi 6=⊥) for fresh Ri ← X (as in
Game 4), we set up

T ← Mark({T i,xi}xi 6=⊥)

for the initially chosen T i,b ← X from Game 4. (In particular, all imperfections of the con-
strained keys are now “coordinated” as opposed to freshly random as in Game 4.) We postpone
a proof of the following lemma until after the main proof.

Lemma 4.2. For a suitable PPT adversary D, we have∣∣Pr [out5]− Pr [out4]
∣∣ ≤ 20`(`− 1)qkey · Advet-indET,D (k) + (4`(`− 1)qkey(qkey + 5)) · µET. (11)

At this point, it is useful to briefly summarize our situation. In Game 5, A only gets imperfect
constrained keys. Specifically, these keys don’t work for a preimage X if the corresponding tag
T = H(X) contains T i,xi at the relevant positions. Besides, the “correct” tag H(X∗) for the
challenge preimage X∗ is now programmed to (T i,x∗i )i. Thus, even if A could ask for constrained
keys that match X∗, by now all of these keys would fail on X∗.

However, the experiment itself still uses the full secret key K to construct all constrained
keys, and thus can evaluate even PRFK(X∗). Hence, our next step is to put the experiment
into a position in which it can only produce imperfect constrained keys. Specifically, not even
the experiment will be able to compute PRFK(X∗) (or even only distinguish PRFK(X∗) from a
random image).

As a first step, in Game 6, we prepare all constrained keys differently. Concretely, recall
that in Game 5, we compute constrained keys as KX = iO(GK,X,T )) for a function GK,X,T
(as in (7)) that is constructed from K and T ← Mark({T i,xi}xi 6=⊥). Instead, we now compute
KX = iO(GK,X,T )) for a function GK,X,T (to be defined) that only uses a “weak key”

K =
( [

αi,b,j,ti,b,j

]
1
, αi,b,j,1−ti,b,j

)
(i,b,j)∈[`]×{0,1}×[d]

,

where T i,b = (ti,b,j)
d
j=1 denotes the bit representation of the T i,b ∈ X . (In other words, K

contains only some αi,b,j,c “in plain,” and others only “in the exponent.” The αi,b,j,c given only
in the exponent are determined by the T i,b.)

The obfuscated function GK,X,T is defined exactly like GK,X,T (from (7)), but a final non-⊥
output is computed as

h
(∏

i,j

αi,xi,j,ti,j


`d−1

)
= h

(
αi′,xi′ ,j′,ti′,j′ ·

∏
(i,j)∈[`]×[d]
(i,j) 6=(i′,j′)

[
αi,xi,j,ti,j

]
1

)
,

where (i′, j′) is the lexicographically smallest tuple with ti′,j′ 6= ti′,xi′ ,j′ . We may assume that

such a tuple (i′, j′) exists: indeed, we may assume that X matches X (since otherwise, GK,X,T
outputs ⊥). Hence, any X,T with ti,j = ti,xi,j for all i, j would satisfy Test(T , {Ti}xi 6=⊥) = 1 by
construction of T , and would thus also lead to a ⊥-output. (Note that here, we crucially rely
on the fact that all of the considered functions GK,X , GK,X,T , and GK,X,T output ⊥ on inputs

X that do not match X.)
Thus, GK,X,T and GK,X,T compute the same function. By the indistinguishability of iO,

Pr [out6]− Pr [out5] = qkey · Advind-obfiO,E (k) (12)

for a suitable iO-distinguisher E .

One crucial property we will use next is that Game 6 really only uses
[
αi,b,ti,b,j

]
1

(and not

the exponents αi,b,ti,b,j themselves), except for constructing the final challenge key PRFK(X∗).
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In Game 7, we substitute any real image PRFK(X∗) handed to A with h([z]D) for an
independent random group element [z]D ∈ GD. We claim that

Pr [out6]− Pr [out7] = Advmddh
G,`d−1,F (k) (13)

for a suitable adversary F . Concretely, F gets as input ([xi,j ]1)(i,j)∈[`]×[d] and a challenge [z]`d−1,
with either z =

∏
i,j xi,j , or a random z. Now F simulates Game 6, setting up[
αi,b,j,ti,b,j

]
1

= α′i,b,j · [xi,j ]1 =
[
α′i,b,j · xi,j

]
1

for uniform α′i,b,j . (14)

All αi,b,j,1−ti,b,j are chosen uniformly by, and thus fully known to F , without embedding any of

the [xi,j ]1. By our remark above, this setup suffices to perfectly simulate Game 6, except for a
real challenge image PRFK(X∗). If we use that H(X∗) = (T i,x∗i )`i=1 = ((ti,x∗i ,j)

d
j=1)

`
i=1 (by our

change in Game 4), we can write

PRFK(X∗) =

∏
i,j

αi,x∗i ,j,ti,x∗, j


`d−1

=

∏
i,j

α′i,x∗i ,j

 ·
∏
i,j

xi,j


`d−1

.

Hence, if we let F prepare a real challenge for A as (
∏
i,j α

′
i,x∗i ,j

) · [z]`d−1, then this induces a

view as in Game 6 if z =
∏
i,j xi,j , and a view as in Game 7 if z is random. This shows (13).

Finally, in Game 8, A is challenged with an independently random `′-bitstring (instead of
h([z]D)) in case b = 0. Hence, now A is always challenged with a random `′-bitstring, regardless
of b. By our assumption on H, we have∣∣Pr [out8]− Pr [out7]

∣∣ ≤ εH. (15)

Besides, since now A’s view is independent of b, we have

Pr [out8] = 1/2. (16)

Putting (6,8,9,10,11,12,13,15,16) together shows (5) as desired.

It remains to prove Lemma 4.2.

Proof of Lemma 4.2. We construct a series of hybrids between Game 4 and Game 5. For each
hybrid step, we construct a distinguisher D′ in the sense of Lemma 3.2.

The hybrids. Consider the hybrid game Hj′,i′ , in which
• the first j′ − 1 of A’s constrained key queries are answered as in Game 4 (i.e., with a tester
T ← Mark({Ri}xi 6=⊥) for independently random Ri),
• the last qkey− j′ of A’s constrained key queries are answered as in Game 5 (i.e., with a tester
T ← Mark({T i,xi}xi 6=⊥) for the initially chosen T i,b),
• the j′-th constrained key query is answered with a tester

T ← Mark({Ri}xi 6=⊥
i≤i′
∪ {T i,xi}xi 6=⊥

i>i′
)

for independently random Ri.
Clearly, Hqkey+1,0 is the same as Game 4, H1,0 is Game 5, and Hj′,qH is identical to Hj′+1,0.
Hence, we only need to show that any two hybrids Hj′,i′−1 and Hj′,i′ have indistinguishable
outputs.

Intuition for reduction. Before we describe D′, a little more intuition is in order. The
only difference between two adjacent hybrids Hj′,i′−1 and Hj′,i′ is a single value used in the

14



preparation of the tester from A’s j′-th constrained key query.7 Call this tester T ∗, and call
this value z. In Hj′,i′−1, we have z = T i′,xi′ , and in Hj′,i′ , the value z is independently random.

Hence, we need to justify replacing (a specific use of) T i′,xi′ with a random value. What makes

this complicated is the fact that T i′,xi′ is also used elsewhere: first, testers prepared upon

later constrained key queries may depend on T i′,xi′ , and, second, T i′,xi′ is required in plain to
program H in case x∗i′ = xi′ .

To simplify things, we will consider the cases x∗i′ = xi′ and x∗i′ 6= xi′ separately. (Our
reduction will guess in which case we are and abort if the guess turns out to be wrong.)

First, in case x∗i′ 6= xi′ , our simulation will not need to know T i′,xi′ in plain to program H.

Yet, we still need to be able to prepare later testers that involve T i′,xi′ . Here, the extensibility
of testers comes in handy: such later testers can be prepared by extending a single given tester
T2 for T i′,xi′ . Furthermore, by (3), even given T2 and another tester T1 for a value z, we cannot

distinguish the cases z = T i′,xi′ and z = Ri′ for an independently random Ri′ . Thus, we can use
T1 to prepare the j′-th tester T ∗. Depending on z, this simulates either Hj′,i′−1 or Hj′,i′ for A
perfectly (but up to ET’s statistical defects).

The case x∗i′ = xi′ is a little more involved, since the simulation will need to know T i′,xi′
in plain to program H. Recall that we only need to replace one use of T i′,xi′ in a single tester
T ∗. Moreover, observe that there must be at least one index i∗ such that xi∗ = 1 − x∗i∗ .
(In other words, there must be an index i∗ in which A’s target preimage X∗ differs from A’s
j′-th constrained key query.) Observe that the corresponding value T i∗,xi∗ will be used in
the generation of T ∗, but will not have to known in plain to the simulation. (Indeed, H is
programmed with T i∗,1−xi∗ , and later constrained key queries can be generated by extending
a given tester for T i∗,xi∗ as necessary.) Hence, by (4), we can use T i∗,xi∗ as a “cover” behind
which we can replace z = T i′,xi′ with z = Ri′ in T ∗ (and only there).

The reduction. We can now describe D′ in more detail. For convenience, we will describe
a single D′ that behaves either as a distinguisher against (3), or one against (4), depending on
an (initial) internal coin toss. First, D′ uniformly guesses j′ ∈ [qkey], as well as i′ ∈ [`] and
b′ ∈ {0, 1}. If b′ = 1, then D′ also uniformly chooses i∗ ∈ [`] \ {i′} and a bit b∗. Intuitively, D′
will now try to simulate either Hj′,i′−1 or Hj′,i′ , depending on its own input. (However, as it
will turn out, this simulation can fail, in which case D′ outputs 0. We will make sure that the
failure probability will be independent of i′, j′.)

Specifically, D′ will answer the first j′ − 1 constrained key queries as in Game 4, using
testers prepared with independently random values Ri. (Observe that this does not require any
trapdoor information.) Also as in Game 4, D′ will program H(X∗) = (T i,x∗i )`i=1 for initially

chosen T i,x∗i ; however, note that so far the values T i,1−x∗i have not been used at all.

For the (j′)-th constrained key query, say, X = (xi)
`
i=1, D′ prepares a tester T ∗ as follows.

First, we may assume that xi′ 6= ⊥, since Hj′,i′−1 and Hj′,i′ perform identically for xi′ = ⊥.
(More specifically, if xi′ = ⊥, then D′ can continue and finish the simulation as in Hj′,i′ without
embedding its own challenge at all.) Furthermore, we will interpret D′’s initial guess bit b′ as
follows: if b′ = 0, we will prepare for xi′ = 1 − x∗i′ (and D′ will act as a (3)-distinguisher); if
b′ = 1, we will prepare for xi′ = x∗i′ (and D′ will act as a (4)-distinguisher).

Case 1: xi′ 6= x∗i′. Concretely, in case b′ = 0, D′ expects a challenge (T1, T2), where T1 ←
Mark({z1}) and T2 ← Mark({z2}), such that either z1 = z2, or both z1, z2 and independently
random. Here, D′ will implicitly set T i′,xi′ = z2. (All other T xi,b will be chosen by D′ initially.)
T1 will be used to construct T ∗ through

T ∗ ← Extend(T1, {Ri}xi 6=⊥
i<i′
∪ {T i,b}xi 6=⊥

i>i′
) ≡ Mark({Ri}xi 6=⊥

i<i′
∪ {z1} ∪ {T i,b}xi 6=⊥

i>i′
)

7Technically, if A’s j′-th query satisfies xi′ = ⊥, then this value is not even used, and Hj′,i′−1 and Hj′,i′

proceed identically. The interesting case is of course xi′ 6= ⊥.
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for freshly random Ri. The testers for all remaining constrained key queries are prepared as
in Game 5, by extending T2 (and thus using z2 as the value of T i′,xi′ ). Concretely, upon A’s

j-th constrained key query (with j > j′) for some X
′

= (x′i)i, D′ prepares a tester T ′ for the
multiset Z′ = {T i,x′i}x′i 6=⊥. If x′i′ 6= xi′ , then T i′,xi′ /∈ Z′, and thus D′ knows all values in Z′ in
plain. However, if x′i′ = xi′ , then D′ prepares

T ′ ← Extend(T2, {T i,x′i}x′i 6=⊥
i 6=i′

).

Observe that either way, this yields a tester T ′ as prepared in Game 5, with T i′,xi′ = z2.

Hence, unless xi′ = x∗i′ (in which case D′ fails, because it cannot program H(X∗) with T i′,xi′ ),
and up to statistical defects introduced by Extend, this setup yields a perfect view of Hj′,i′−1 if
z1 = z2, and of Hj′,i′ if z1, z2 are independent.

Case 2: xi′ = x∗i′. In case b′ = 1, D′ expects a challenge (T1, T2, z3) for T1 ← Mark({z1, z2})
and T2 ← Mark({z1}), with either z3 = z2, or independently random z3. As already indicated,
D′ now prepares for xi′ = x∗i′ . Note that in this case, there must be an i 6= i′ with xi = 1− x∗i
(since otherwise, X∗ would match X, which would violate the rules of the experiment). We
will interpret the initially chosen i∗ as a guess for the smallest such i, and b∗ as a guess for xi′ .
In particular, D′ fails (potentially only later, when X and X∗ are known) if these guesses turn
out to be wrong. (Note that D′ fails except with probability 1/2(` − 1) here.) Otherwise, D′
computes

T ∗ ← Extend(T1, {Ri}xi 6=⊥
i<i′
i 6=i∗

∪ {T i,b}xi 6=⊥
i>i′
i 6=i∗

) ≡ Mark({Ri}xi 6=⊥
i<i′
i 6=i∗

∪ {z1, z2} ∪ {T i,b}xi 6=⊥
i>i′
i 6=i∗

)

for freshly random Ri. This implicitly sets T i∗,xi∗ = z1 (if i∗ > i′) or Ri∗ = z1 (if i∗ < i′). Since
we assumed xi∗ = 1−x∗i∗ , we will never have to unveil z1 in plain, and further constrained keys
involving T i∗,xi∗ can be generated from T2 as necessary.

Specifically, say that A’s j-th constrained key query (for j > j′) is X
′

= (x′i)i. D′ must
prepare a tester T ′ for the multiset Z′ = {T i,x′i}x′i 6=⊥. If i∗ < i′, then D′ knows all T i,b in plain
(because the only value unknown to D′ is z1 = Ri∗ , which is only used to construct T ∗). Hence,
in that case, D′ can directly prepare T ′ from a known multiset Z′. If, on the other hand, i∗ > i′,
then T i∗,xi∗ = z1 is unknown to D′. Hence, for x′i∗ = xi∗ , D′ must compute T ′ as

T ′ ← Extend(T1, {T i,x′i}x′i 6=⊥
i 6=i∗

).

Again, either way, this yields a tester T ′ as prepared in Game 5, with T i∗,xi∗ = z1.
Moreover, D′ will initially set up T i′,b∗ = T i′,xi′ = z3. This implies that if z2 = z3 (and unless

D′ fails), then D′ perfectly simulates Hj′,i′−1 (up to statistical defects of Extend), and if z2, z3
are independent, then D′ perfectly simulates Hj′,i′ (again up to Extend’s statistical defects).

Wrapping up. Summarizing, in either case, unless D′ fails, and up to Extend’s defects, D′
provides a perfect view of Hj′,i′−1 or Hj′,i′−1, depending on its own challenge. Now if we let D′
fail artificially (i.e., more often than necessary) in case b′ = 0, the probability of failure can be
fixed to 1/4(` − 1), independently of i′ and j′. Furthermore, in either case, Extend is invoked
at most qkey times, creating a statistical defect of at most qkey · µET. Thus, if we write εD′ for
D′’s advantage in distinguishing the left-hand-side from the right-hand-side of (3), resp. (4), a
standard hybrid argument (over i′, j′) thus yields

|εD′ | ≥
1

4`(`− 1)qkey
·
∣∣Pr [out5]− Pr [out4]

∣∣− qkey · µET. (17)

On the other hand, an inspection of the proof of Lemma 3.2 yields the concrete reduction∣∣εD′∣∣ ≤ 5 · Advet-indET,D(k) + 5 · µET (18)

for a suitable adversary D on ET’s indistinguishability. Combining (17) and (18) shows (11).
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5 On recent candidates for approximate multilinear maps

5.1 Current candidates for approximate multilinear maps

We have claimed that our construction can be implemented with the recent candidates [24, 17]
of approximate multilinear maps. What makes our claim nontrivial is that the constructions
from [24, 17] only provide “approximations” of multilinear maps, in the following sense:
Randomized encodings. Instead of group elements, these works define “randomized encod-

ings.” Essentially, a randomized encoding is a group element with an additional noise term.
This means that there is a whole set of encodings Enc (g) of a group element g. This has
several effects which we describe in the following.

Canonical forms. It is possible to extract a “canonical form” Ext (enc) from an encoding enc.
This canonical form is the same for two given encodings of the same group element g, and
different for two given encodings of different group elements.8 Canonical forms can thus
also be used to compare group elements (although, e.g., [24] describe a more direct isZero
algorithm for comparison). Moreover, the canonical form of a uniformly random group
element is also (statistically close to) uniform.

Leakage through noise. Even though two computations (e.g., [y]2 = [x]1 · [x]1 and [y′]2 =
([x]1 + [y]1) · ([x]1− [y]1) +

[
y2
]
2
) yield the same group element, the computed encodings (in

this case of [y]2 and [y′]2) may not be the same. Specifically, an encoding may leak (through
its noise term) the sequence of operations used to construct it. Note, however, that the
induced canonical forms of two encodings of the same group element are the same, at least
with high probability.

No exponents. It is not immediately possible to explicitly use arbitrary “exponents.” It is
possible to choose (almost) uniformly distributed “level-0 encodings,” which correspond to
exponents. However, these can only be used in a black-box way, and without using their
explicit Zp-representation.

Noise growth. Each operation on encodings increases the size of their noise terms. (More
specifically, the noise term of the result of an operation is larger than the noise terms of
the inputs.) In particular, each encoding can be used only for an a-priori limited number of
operations. After that, its noise term becomes too large, and its canonical form may change.

We also note that there is an even more recent third candidate of approximate multilinear
maps [39]. This candidate follows the first candidate [24], yet is significantly more efficient.
However, this efficiency comes at a cost: unlike [24, 17], the candidate [39] supports only
computational (but not decisional) hardness assumptions, and in particular no multilinear DDH
assumption. Thus, we do not know how to prove our construction secure with this most recent
candidate implementation of multilinear maps.

5.2 Our constructions with the current candidates

Necessary adaptations to the scheme. To use our CPRF from Section 4 with encodings
instead of group elements, we make the following changes:
• Key generation chooses uniform level-0 encodings αi,b,j,c instead of exponents.

8There is a negligible error in both cases. More specifically, with negligible probability over the implicit noise
of the given encodings, we can have false positives and false negatives when comparing encoded group elements
by their canonical form. Even worse, it is conceivable that through a clever choice of concrete (completely valid)
encodings, such errors can be provoked deliberately. However, if we assume that encodings are re-randomized
prior to computing the canonical form (using a suitable reRand algorithm as described in [24, 17]), this error can
at least be made negligible for all pairs of (sufficiently low-noise) encodings. (The price to pay here is that the
algorithm to compute a canonical form becomes probabilistic.)
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• Evaluation outputs not the encoding (of a group elements), but its canonical form:

PRFK(X) = Ext

 ∏
(i,j)∈[`]×[d]

αi,xi,j,ti,j


`d−1


(Similarly for the output of the function GK,X used for constrained keys.)

We emphasize that we do not intend to use encodings instead of group elements for our extensible
tester ET. (Recall that ET only assumes a cyclic group in which the DDH assumption holds,
but no multilinear or even only bilinear operation. While it is conceivable to use encodings also
for this group, this would seem to unnecessarily complicate things.) As a result, we also do not
need to explicitly compare encodings of group elements.

Dealing with imperfect canonical forms. However, we emphasize that there is a subtlety
here concerning the computation of the canonical form. Concretely, recall that we assume that
computing a canonical form first re-randomizes the given encoding (cf. Footnote 8). (Otherwise,
it might be feasible to find preimages for which correctness is violated with certainty.) Hence,
computing a canonical form requires randomness, although of course the evaluation algorithm
of the PRF should be deterministic.

As a solution, we can first of all (polynomially) scale the security parameter of the multilinear
maps construction, such that errors become less likely, in the following sense. Namely, any two
encodings of the same group element are mapped to the same canonical form, except with
probability at most 1/2p(k), where p can be an arbitrary a-priori fixed polynomial. We can then
add a single string R of random coins (long enough to compute a single canonical form) to K
and each derived constrained key. This R is then used as randomness for the final canonical
form computation. We can then choose p so large that with overwhelming probability over R,
the PRF is perfectly correct, in the sense that all constrained keys compute a single function
PRFK(·), constrained to the respective subset. (A concrete such polynomial p can be derived
from a union bound over all possible constrained keys and preimages.)

We mention that the bit-fixing PRF from [7] faces similar problems (although no explicit
discussion of the problem or a solution is provided there).

Necessary adaptations to the proof. The modifications from Game 1 to 5 do not affect any
computations on encodings, and hence do not require any adaptations. However, in Game 6, we
change the way images are computed from constrained keys. In particular, while the functions
GK,X,T from Game 6 compute the same group element as the functions GK,X,T from Game 5,
the respective encodings may differ. However, since GK,X,T and GK,X,T only actually output
canonical forms, their output behavior is also identical, except with negligible probability over
the setup (i.e., the randomness R above). This observation enables the game hop from Game 5
to Game 6 exactly as in the main proof, but with an additional negligible statistical error term.

The modification in Game 7 is justified using a reduction to the MDDH assumption. This
reduction applies equally in a setting with encodings, of course using the encoding-based MDDH
assumption from [24]. Finally, the change from Game 8 applies literally, using Ext as key deriva-
tion.

6 Application: adaptively secure NIKE for large user groups

As a simple application of fully secure constrained CPRFs, we construct the first adaptively
secure identity-based non-interactive key exchange protocol (ID-NIKE, [46, 18, 27, 44, 22, 7, 8])
for large user groups. Both protocol and security proof are very simple, and can be viewed as
an extension of a similar result for the two-party case from [46, 7].

Our concrete ID-NIKE construction also gives rise to a public-key non-interactive key ex-
change (PK-NIKE, [15, 21]) for large user groups. (Perhaps somewhat surprisingly, there is
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no known general construction of PK-NIKE protocols from ID-NIKE protocols. However, as it
turns out, the specific structure of our CPRF also works in a public-key context.) Interestingly,
our PK-NIKE does not require indistinguishability obfuscation, and is also the first of its kind
(even in the random oracle model).

6.1 ID-NIKE security model

We follow the security models presented in [22, 8].

Definition 6.1 (ID-NIKE). An n-user identity-based non-interactive key exchange (ID-NIKE)
consists of the following algorithms:
Master key generation. Gen(1k) generates a master secret key msk.
User key extraction. Extract(msk , id) (for an identity id ∈ {0, 1}k) outputs a user secret key

usk id .
Shared key evaluation. Key(usk id , I) (for a set I ⊆ {0, 1}k of n identities with id ∈ I)

outputs a shared key KI ∈ {0, 1}k.
For correctness, we require that the output of Key is deterministic and only depends on I.
Formally, for all msk ← Gen(1k) and all I ⊆ {0, 1}k with |I| = n, there is a single value KI
such that Key(usk id , I) = KI for all id ∈ I and all usk id ← Extract(msk , id).

Definition 6.2 (Security of an ID-NIKE). We say that an n-user ID-NIKE ID-NIKE is adap-
tively secure if the advantage function

Advid-nikeID-NIKE,A(k) = Pr
[
Expid-nikeID-NIKE,A(k) = 1

]
− 1/2

is negligible for all PPT adversaries A. Here, experiment Expid-nikeID-NIKE,A is defined as follows:

1. the experiment samples msk ← Gen(1k), and gives A oracle access to Extract(msk , ·); also,
A gets access to an oracle OK that, on input a set I ⊆ {0, 1}k of n identities, returns a
shared key KI (as defined in Definition 6.1),

2. at some point, A decides on a target set I∗ ⊆ {0, 1}k of n identities,
3. the experiment tosses a coin b← {0, 1}; if b = 0, then A gets KI∗, and if b = 1, then A gets

a uniformly chosen {0, 1}k-element,
4. after potentially more oracle queries, A outputs a guess b′, and the experiment outputs 1 if

b = b′.
We only quantify over A that guarantee that (a) I∗ does not contain any identity queried to
Extract, and (b) I∗ is never queried to OK .

6.2 Our ID-NIKE protocol

For any polynomial n = n(k), our n-user ID-NIKE is readily obtained from a bit-fixing CPRF
PRF = (KGen,KDel,KEval) with input length ` = nk and output length `′ = k:
Master key generation. Gen(1k) outputs msk ← KGen(1k).
User key extraction. Extract(msk , id) returns usk id = (Kid ,i)

n
i=1 for Kid ,i ← KDel(msk , Xi)

with
Xi = (⊥(i−1)k, id ,⊥(n−i)k) ∈ ({0, 1} ∪ {⊥})`k. (19)

Observe that these constrained keys Kid ,i allow to evaluate PRF on all preimages X of the
form X = (id1, . . . , idn) ∈ {0, 1}nk with id i∗ = id for some i∗.

Shared key evaluation. Key(usk id , I) first writes I = {id1, . . . , idn} with id i < id i+1 (in
lexicographic order) and id i∗ = id . Then, Key outputs

KI = PRFK(id1, . . . , idn) = KEval(Kidi∗ , (id1, . . . , idn)). (20)

Correctness is obvious from (20). Security can be directly reduced to the security of PRF:
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Theorem 6.3 (Security of ID-NIKE). ID-NIKE is adaptively secure, assuming PRF is a bit-
fixing CPRF. Concretely, for every adversary A on ID-NIKE’s adaptive security, there is a PRF
distinguisher B (of roughly the same complexity as A) with

AdvcprfPRF,B(k) = Advid-nikeID-NIKE,A(k). (21)

Proof. B simulates A, and translates and answers A’s queries as follows:
• an Extract(msk , id) query is translated into n constrained key queries for X1, . . . , Xn (as in

(19)), and answered with usk id = (Kid ,i)
n
i=1,

• an OK(I) query (for I = {id1, . . . , idn} in lexicographic order) is translated into a con-
strained key query for X = (id1, . . . , idn) ∈ {0, 1}nk, and the resulting PRFK(id1, . . . , idn)
is returned to A,
• similarly, a challenge user set I∗ = {id∗1, . . . , id∗n} chosen by A is translated into a challenge

preimage X∗ = (id∗1, . . . , id
∗
n), and the resulting challenge image is handed to A.

Finally, B relays A’s guess bit b′. This immediately shows (21), assuming that all of B’s queries
are allowed (in the sense of the CPRF experiment from Definition 2.4). Hence, we have to
check that A’s queries do not lead to KDel queries from B which allow to evaluate PRFK(X∗).
However, this is clear by the rules of the ID-NIKE adaptive security experiment. (Specifically,
A may not query Extract on any id∗i . Hence, the resulting keys from KDel queries do not allow
to evaluate PRFK(X∗). A similar argument holds for A’s OK queries.)

Hence, if we use ID-NIKE with our bit-fixing CPRF from Section 4, we obtain an adaptively
secure n-user ID-NIKE for arbitrary polynomials n = n(k). Of course, this ID-NIKE uses the
same heavyweight tools as our CPRF; in particular, it requires indistinguishability obfuscation,
multilinear maps, and its security proof is performed only in the random oracle model. We also
mention that, although only secure in a static sense, the recent ID-NIKE from [8] enjoys certain
interesting properties that our scheme does not have. (Specifically, the scheme from [8] does
not require a trusted setup, nor does it require the number n of users to be fixed in advance.)

6.3 PK-NIKE security model

Our formalization in the public-key setting follows the “CKS-heavy” model of [21], although of
course for a larger number of users. Specifically, our security experiment allows adaptive and
active attacks.

Definition 6.4 (PK-NIKE). An n-user public-key-based non-interactive key exchange (PK-
NIKE) consists of the following algorithms:
Parameter generation. Pars(1k) chooses public parameters pars.
Key generation. Gen(pars, id) (for an identity id ∈ {0, 1}k) outputs a public key pk id and a

secret key sk id .
Shared key evaluation. Key(pars, sk id , I, (pk id )id∈I) (for a set I ⊆ {0, 1}k of n identities

with id ∈ I and associated public keys pk id) outputs a shared key K ∈ {0, 1}k.
For correctness, we require that the output of Key is deterministic and only depends on I and
the set of public keys. Formally, for all pars ← Pars(1k), all I ⊆ {0, 1}k with |I| = n, and all
(pk id , sk id )← Gen(pars, id) (for all id ∈ I), there is a K with Key(pars, sk id , I, (pk id )id∈I) = K
for all id ∈ I, except with negligible probability over the involved pk id , sk id .9

Definition 6.5 (Adaptive PK-NIKE security). We say that an n-user PK-NIKE PK-NIKE is
adaptively secure if the advantage function

Advid-nikePK-NIKE,A(k) = Pr
[
Exppk-nikePK-NIKE,A(k) = 1

]
− 1/2

is negligible for all PPT adversaries A. Here, experiment Exppk-nikePK-NIKE,A is defined as follows:

9We allow for a negligible correctness error in view of our upcoming PK-NIKE.
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1. the experiment samples pars ← Pars(1k), hands pars to A, and gives A oracle access to the
following oracles at any point:
• Opk , on input id ∈ {0, 1}k, samples (pk id , sk id )← Gen(pars, id) and returns pk id ,
• Osk , on input id ∈ {0, 1}k and pk id (where Opk (id) has been queried earlier), returns sk id ,

and overwrites the previously generated key pk id for id with pk id (for later OK queries),
• OK , on input an ordered set I = {id1, . . . , idn} ⊆ {0, 1}k (where Opk (id) has been queried

for all id ∈ I, and no Osk query has been made for id1), returns Key(sk id1 , I, (pk id )id∈I),
2. at some point, A decides on a target set I∗ = {id∗1, . . . , id∗n} ⊆ {0, 1}k of n identities (where
Opk (id∗i ) has been queried earlier for all i),

3. the experiment tosses a coin b ← {0, 1}; if b = 0, then A gets Key(sk id∗1
, I∗, (pk id∗)id∗∈I∗),

and if b = 1, then A gets a uniformly chosen {0, 1}k-element,
4. after potentially more oracle queries, A outputs a guess b′, and the experiment outputs 1 if

b = b′.
We only quantify over A that guarantee that (a) I∗ does not contain any identity queried to
Osk , (b) I∗ is never queried to OK , and (c) Opk is queried at most once for each identity.

6.4 Our PK-NIKE protocol

We now describe our PK-NIKE PK-NIKE, where we use the same ingredients and assumptions
from our CPRF from Section 4, except for the indistinguishability obfuscator. (As with our
CPRF, we assume that the group setting is externally given for simplicity. To make the group
setting explicit, it can be published as part of the public parameters.)
Parameter generation. Pars(1k) samples a key derivation function h← H and sets pars = h.

Key generation. Gen(pars, id) chooses 2nk random exponents α
(id)
i,j,b for (i, j, b) ∈ [n] × [k] ×

{0, 1}, as well as n uniform k-bitstrings Sid
i = (sidi,j)

k
j=1 ∈ {0, 1}k, and returns

pk id =
(

id , (
[
α
(id)
i,j,b

]
1
)(i,j,b)∈[n]×[k]×{0,1}

)
sk id =

(
(Sid
i )ni=1, (α

(id)

i,j,1−sidi,j
)(i,j)∈[n]×[k]

)
.

Shared key evaluation. Key(sk id , I, (pk id )id∈I) parses I = {id1, . . . , idn} (with id i < id i+1),
sets

(Ti)
n
i=1 = H((id i, pk i)

n
i=1) ∈ ({0, 1}k)n,

and writes (ti,j)
k
j=1 := Ti. The shared key K is defined as

K = h

 ∏
(i,j)∈[n]×[k]

α
(idi)
i,j,ti,j


nk−1

 .

This key can be computed from sk idi∗ as soon as sk idi∗ contains one exponent among the

α
(idi∗ )
i∗,j,ti∗,j

. This is the case if and only if Ti∗ 6= S
idi∗
i∗ . (Hence, the scheme has a negligible

correctness error.)
Again, we stress that we do not use indistinguishability obfuscation in this construction.

Theorem 6.6 (Security of PK-NIKE). PK-NIKE is adaptively secure in the random oracle model,
provided that the (nk − 1)-MDDH assumption holds in G.

Proof sketch. Since the proof is very similar to the security proof of our CPRF, we only give
a sketch. Intuitively, the security reduction knows all involved secret keys sk id during all
stages of the proof, but guesses which of A’s random oracle queries refers to the challenge set

I∗ = {id∗1, . . . , id∗n} of identities. The answer to this query is programmed to (S
id∗i
i )ni=1. If the

guess was correct, then this programming will be perfectly oblivious to A (since the S
id∗i
i are

perfectly hidden until the secret key of some identity id∗ ∈ I∗ is corrupted via an Osk query).
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Furthermore, a correct guess implies that the simulation cannot compute the challenge key
Key(sk id∗1

, I∗, (pk id∗)id∗∈I∗). Even more, an (nk − 1)-MDDH challenge can thus be embedded
exactly as in Game 7 of our CPRF proof (or, more specifically, as in (14)).

Note that this security reduction loses a factor of qH, where qH denotes the number of A’s
random oracle queries. In particular, our reduction only has a polynomial loss.
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[16] Jean-Sébastien Coron. “On the Exact Security of Full Domain Hash”. In: Proceedings of CRYPTO
2000. Lecture Notes in Computer Science 1880. Springer, 2000, pp. 229–235.
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