Affine-evasive Sets Modulo a Prime

Divesh Aggarwal

October 16, 2014

Abstract

In this work, we describe a simple and efficient construction of a large subset S of \mathbb{F}_p, where p is a prime, such that the set $A(S)$ for any non-identity affine map A over \mathbb{F}_p has small intersection with S.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central step in the construction of non-malleable codes against affine tampering over \mathbb{F}_p, for a prime p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate of non-malleable codes against affine tampering over \mathbb{F}_p from $\log \log p$ to a constant, and consequently the rate for non-malleable codes against split-state tampering for n-bit messages is improved from $n^6 \log^7 n$ to n^6.

*Department of Computer Science, New York University. Email: divesha@cs.nyu.edu.
1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of error-correction and error-detection codes. Informally, given a tampering family \(\mathcal{F} \), an NMC \((\text{Enc, Dec})\) against \(\mathcal{F} \) encodes a given message \(m \) into a codeword \(c \leftarrow \text{Enc}(m) \) in a way that, if the adversary modifies \(m \) to \(c' = f(c) \) for some \(f \in \mathcal{F} \), then the message \(m' = \text{Dec}(c') \) is either the original message \(m \), or a completely “unrelated value”. As has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CG14a, CG14b] NMCs aim to handle a much larger class of tampering functions \(\mathcal{F} \) than traditional error-correcting or error-detecting codes, at the expense of potentially allowing the attacker to replace a given message \(x \) by an unrelated message \(x' \). NMCs are useful in situations where changing \(x \) to an unrelated \(x' \) is not useful for the attacker (for example, when \(x \) is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions \(\mathcal{F}_{\text{all}} \). In particular, it does not include functions of the form \(f(c) := \text{Enc}(h(\text{Dec}(c))) \), since \(\text{Dec}(f(\text{Enc}(m))) = h(m) \) is clearly related to \(m \). One of the largest and practically relevant tampering families for which we can construct NMCs is the so-called split-state tampering family where the codeword is split into two parts \(c_1||c_2 \), and the adversary is only allowed to tamper with \(c_1, c_2 \) independently to get \(f_1(c_1)||f_2(c_2) \). A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14] have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so far) information-theoretically secure construction in the split-state model from \(n \)-bit messages to \(n^7 \log^7 n \)-bit codewords (i.e., code rate \(n^6 \log^7 n \)). The security proof of this scheme relied on an amazing property of the inner-product function modulo a prime, that was proved using results from additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was the construction of NMC against affine tampering modulo \(p \). This was achieved by constructing an affine-evasive set of size \(p^{1/\log \log p} \) modulo a prime \(p \). It was asked as an open question whether there exists an affine-evasive set of size \(p^{\Theta(1)} \), which will imply constant rate NMC against affine-tampering and rate \(n^6 \) NMC against split-state tampering.\(^1\) We resolve this question in the affirmative by giving an affine-evasive set of size \(\Theta(p^{1/4}) \).

2 Explicit Construction

For any set \(S \subset \mathbb{Z} \), let \(aS + b = \{as + b | s \in S\} \). By \(S \mod p \subseteq \mathbb{F}_p \), we denote the set of values of \(S \) modulo \(p \).

We first define an affine-evasive set \(S \subseteq \mathbb{F}_p \).

Definition 1 A non-empty set \(S \subseteq \mathbb{F}_p \) is said to be \((\gamma, \nu)\)-affine-evasive if \(|S| \leq \gamma p \), and for any \((a, b) \in \mathbb{F}_p^2 \setminus \{(1, 0)\} \), we have

\[
|S \cap (aS + b \mod p)| \leq \nu |S|.
\]

\(^1\) Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 5 for more details.
Now we give a construction of an affine-evasive set.

Let \(Q := \{q_1, \ldots, q_t\} \) be the set of all primes less than \(\frac{1}{2}p^{1/4} \). Define \(S \subset \mathbb{F}_p \) as follows:

\[
S := \left\{ \frac{1}{q_i} \pmod{p} \mid i \in [t] \right\}.
\]

(1)

Thus, \(S \) has size \(\Theta\left(\frac{p^{1/4}}{\log p}\right) \) by the prime number theorem.

Theorem 1 For any prime \(p \), the set \(S \) defined in Equation (1) is \((\frac{1}{2}p^{-3/4}, O(p^{-1/4} \cdot \log p)) \)-affine-evasive.

Proof. Clearly,

\[|S| = t \leq \frac{1}{2}p^{1/4} = \frac{1}{2}p^{-3/4} \cdot p. \]

Fix \(a, b \in \mathbb{F}_p \), such that \((a, b) \neq (1, 0) \). Now, we show that \(|S \cap (\mathbb{Z} \cdot aS + b \pmod{p})| \leq 3 \). Assume, on the contrary, that there exist distinct \(\alpha_i \in Q \) for \(i \in \{0, 1, 2, 3\} \) such that \(1/\alpha_i \pmod{p} \in S \cap (\mathbb{Z} \cdot aS + b \pmod{p}) \). We have

\[
\frac{a}{\beta_i} + b = \frac{1}{\alpha_i} \pmod{p} \quad \text{for} \quad i = 0, 1, 2, 3,
\]

(2)

where \(\beta_i, \alpha_i \in Q \) for \(i \in \{0, 1, 2, 3\} \), and \(\alpha_i \neq \alpha_j \) for any \(i \neq j \).

For any \(i \), if \(\beta_i = \alpha_i \), then \(b \cdot \beta_i = 1 - a \pmod{p} \), which has at most one solution (since we assume \((a, b) \neq (1, 0) \)). Thus, without loss of generality, we assume that \(\beta_i \neq \alpha_i \), for \(i \in \{1, 2, 3\} \), and \(\beta_1 < \beta_2 < \beta_3 \).

From Equation (2), we have that

\[
\frac{a}{\beta_1} + b - \frac{a}{\beta_2} - b = \frac{1}{\alpha_1} - \frac{1}{\alpha_2} \pmod{p},
\]

which on simplification implies

\[
(\alpha_3 - \alpha_1)(\beta_2 - \beta_1)\beta_3\alpha_2 = (\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3 \pmod{p}.
\]

Note that both the left-hand and right-hand side of the above equation takes values between \(\frac{-p}{16} \) and \(\frac{p}{16} \), and hence the equality holds in \(\mathbb{Z} \) (and not just in \(\mathbb{Z}_p \)).

\[
(\alpha_3 - \alpha_1)(\beta_2 - \beta_1)\beta_3\alpha_2 = (\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3.
\]

(3)

By equation 3, we have that \(\beta_3 \) divides \((\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3 \). Clearly, \(\beta_3 \) is relatively prime to \(\alpha_3, \beta_2, \) and \(\beta_3 - \beta_1 \). Therefore, \(\beta_3 \) divides \((\alpha_2 - \alpha_1) \). This implies

\[
\beta_3 \leq |\alpha_2 - \alpha_1|.
\]

(4)

Also, from equation 3, we have that \(\alpha_2 \) divides \((\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3 \), which by similar reasoning implies \(\alpha_2 \) divides \(\beta_3 - \beta_1 \). Thus, using that \(\beta_3 > \beta_1 \),

\[
0 < \alpha_2 \leq \beta_3 - \beta_1 < \beta_3.
\]

(5)

Similarly, we can obtain \(\alpha_1 \) divides \(\beta_3 - \beta_2 \), which implies

\[
0 < \alpha_1 \leq \beta_3 - \beta_2 < \beta_3.
\]

(6)

Equation (5) and (6) together imply that \(|\alpha_2 - \alpha_1| < \beta_3 \), which contradicts Equation (4). \(\Box \)
3 Affine-evasive function and Efficient NMCs

Affine-evasive function. We recall here the definition of affine-evasive functions from [ADL14]. Affine-evasive functions immediately give efficient construction of NMCs against affine-tampering.

Definition 2 A surjective function \(h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\perp\} \) is called \((\gamma, \delta)\)-affine-evasive if for any \(a, b \in \mathbb{F}_p \) such that \(a \neq 0 \), and \((a, b) \neq (1, 0) \), and for any \(m \in \mathcal{M} \),

1. \(\Pr_{U \leftarrow \mathbb{F}_p}(h(aU + b) \neq \perp) \leq \gamma \)
2. \(\Pr_{U \leftarrow \mathbb{F}_p}(h(aU + b) \neq \perp \mid h(U) = m) \leq \delta \)
3. A uniformly random \(X \) such that \(h(X) = m \) is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an affine-evasive set \(S \).

Lemma 1 ([ADL14, Claim 5]) Let \(S \subseteq \mathbb{F}_p \) be a \((\gamma, \nu)\)-affine-evasive set with \(\nu \cdot K \leq 1 \), and \(K \) divides \(|S| \). Furthermore, let \(S \) be ordered such that for any \(i \), the \(i \)-th element is efficiently computable in \(O(\log p) \). Then there exists a \((\gamma, \nu \cdot K)\)-affine-evasive function \(h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\perp\} \).

Note that the above result requires that for any \(i \), the \(i \)-th element of \(S \) is efficiently computable for some ordering of the set \(S \). This is not possible for our construction since for our construction this would mean efficiently sampling the \(i \)-th largest prime. However, this requirement was made just to make sure that \(h^{-1} \) is efficiently samplable. We circumvent this problem by giving a slightly modified definition of the affine-evasive function \(h \) in the proof of Lemma 2. Before proving this, we state the following result that we will need.

Theorem 2 ([HB88]) For any \(n \in \mathbb{N} \), and any \(n' \leq n \) such that \(n^{12/7} \geq n \),

\[
\pi(n) - \pi(n - n') = \Theta\left(\frac{n'}{\log n}\right),
\]

where \(\pi(n) \) denote the number of primes less than \(n \).

Lemma 2 Let \(\mathcal{M} \) be a finite set such that \(|\mathcal{M}| \geq 2 \), and let \(p \geq |\mathcal{M}|^{16} \) be a prime. There exists an efficiently computable \((p^{-3/4}, O(|\mathcal{M}| \log p \cdot p^{-1/4}))\)-affine-evasive function \(h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\perp\} \).

Proof. Without loss of generality, let \(\mathcal{M} = \{1, \ldots, K\} \), for some integer \(K \). Let \(S \subseteq \mathbb{F}_p \) be as defined in Section 2. Define \(S_1, \ldots, S_K \) to be a partition of \(S \) as follows.

\[
S_i := \left\{ s \in S \left| \frac{1}{s} \in \left[\frac{i - 1}{2K} \cdot p^{1/4}, \frac{i}{2K} \cdot p^{1/4} \right] \right. \right\}. \tag{7}
\]

Now let \(n_i = \frac{p^{1/4}}{2K} \) and \(n' = \frac{b^{1/4}}{2K} \). By the construction of \(S_i \), \(|S_i| = \pi(n_i) - \pi(n_i - n') \). We will bound \(|S_i| \) for all \(i \in [K] \) using Theorem 2. To do this, we need to verify that for all \(i \), \(n_i^{12/7} \geq n_i \).

Since \(n_i < n_j \) for all \(i < j \), it is sufficient to show this for \(i = K \), i.e., \(n_i = \frac{b^{1/4}}{2} \).

\[
\frac{n_i^{12/7}}{n_K} = \frac{2p^{3/7}}{(2K)^{12/7}p^{1/4}} = \frac{p^{5/28}}{2^{5/7} \cdot K^{12/7}} \geq \frac{K^{5.16/28}}{2^{5/7} \cdot K^{12/7}} = \frac{K^{8/7}}{2^{5/7}} > 1,
\]

\(^2\) The assumption \(K \) divides \(|S| \) is just for simplicity.
where we used the fact that \(p \geq K^{16} \), and \(K \geq 2 \). Also note that \(n_i \) is upper bounded by \(\frac{p^{1/4}}{2} \), and hence \(\log n_i = O(\log p) \). Thus, using Theorem 2, we get that each \(S_i \) has size at least \(\Theta(\frac{p^{1/4}}{K \log p}) \).

Let \(h : \mathbb{F}_p \rightarrow \mathcal{M} \cup \{\perp\} \) be defined as follows:

\[
h(x) = \begin{cases} i & \text{if } x \in S_i \\ \perp & \text{otherwise}. \end{cases}
\]

The statement \(\Pr(h(aU + b) \neq \perp) \leq p^{-3/4} \) is obvious by the definition of \(S \), and the observation that \(aU + b \) is uniform in \(\mathbb{F}_p \).

Also, for any \(m \in \mathcal{M} \), and for any \((a, b) \neq (1, 0)\), and \(a \neq 0 \),

\[
\Pr(h(aU + b) \neq \perp | h(U) = m) = \frac{\Pr(aU + b \in S \land U \in S_m)}{\Pr(U \in S_m)} \leq \frac{\Pr(aU + b \in S \land U \in S)}{|S_m|/p} = \frac{p}{|S_m|} \Pr(U \in S \cap (a^{-1}S - ba^{-1}) \pmod{p}) = O(K \log p \cdot p^{-1/4}).
\]

Also, sampling a uniformly random \(X \) such that \(h(X) = m \) is equivalent to sampling a uniformly random prime \(q \) in the interval

\[
I := \left[\frac{m - 1}{2K} p^{1/4}, \frac{m}{2K} p^{1/4} \right)
\]

and computing \(1/q \pmod{p} \). Sampling \(q \) can be done in time polynomial in \(\log p \) by repeatedly sampling a random element in \(I \) until we get a prime. Computing \(1/q \pmod{p} \) can be done efficiently using Extended Euclidean Algorithm.

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a uniformly random \(X \) such that \(h(X) = m \) is efficiently samplable for any given \(m \).

Efficient NMCs. We recall here the definition of non-malleable codes for completeness.

Definition 3 Let \(\mathcal{F} \) be some family of tampering functions. For each \(f \in \mathcal{F} \), and \(m \in \mathcal{M} \), define the tampering-experiment

\[
\text{Tamper}^f_m := \left\{ c \leftarrow \text{Enc}(m), \hat{c} \leftarrow f(c), \hat{m} = \text{Dec}(\hat{c}) \right\}
\]

which is a random variable over the randomness of the encoding function \(\text{Enc} \). We say that a coding scheme \((\text{Enc}, \text{Dec}) \) is \(\varepsilon \)-non-malleable w.r.t. \(\mathcal{F} \) if for each \(f \in \mathcal{F} \), there exists a distribution (corresponding to the simulator) \(D_f \) over \(\mathcal{M} \cup \{\perp, \text{same}^*\} \), such that, for all \(m \in \mathcal{M} \), we have that the statistical distance between \(\text{Tamper}^f_m \) and

\[
\text{Sim}^f_m := \left\{ \hat{m} \leftarrow D_f \right. \left. \right| \begin{array}{l} \text{Output: } m \text{ if } \hat{m} = \text{same}^*, \text{ and } \hat{m}, \text{ otherwise.} \end{array} \right\}
\]

is at most \(\varepsilon \). Additionally, \(D_f \) should be efficiently samplable given oracle access to \(f(\cdot) \).
Using Lemma 2 and the construction of [ADL14], we get the following results.

Theorem 3 There exists an efficient coding scheme \((\text{Enc}, \text{Dec})\) encoding \(k\)-bit messages to \(\Theta(k + \log(\frac{1}{\varepsilon}))\) bit codewords that is \(\varepsilon\)-non malleable w.r.t. the family of affine tampering functions \(\mathcal{F}_{\text{aff}}\).

Theorem 4 There exists an efficient coding scheme \((\text{Enc}, \text{Dec})\) encoding \(k\)-bit messages to \(\Theta((k + \log(\frac{1}{\varepsilon}))^7)\) bit codewords that is \(\varepsilon\)-non malleable w.r.t. the family of split-state tampering functions \(\mathcal{F}_{\text{split}}\).

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants \(c, c' > 0\) such that the following holds. For any finite field \(\mathbb{F}_p\) of prime order, and any \(n > c'\), let \(L, R \in \mathbb{F}_p^n\) be uniform, and fix \(f, g : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n\). Let \(\mathcal{D}\) be the family of convex combinations of \(\{(U, aU + b) : a, b \in \mathbb{F}_p\}\) where \(U \in \mathbb{F}_p\) is uniform. Then there exists \(D \in \mathcal{D}\) such that \(
\Delta(\langle L, R \rangle, \langle f(L), g(R) \rangle ; D) \leq p^{-cn}.
\)

Theorem 5 Assuming Conjecture 1, there exists an efficient coding scheme \((\text{Enc}, \text{Dec})\) encoding \(k\)-bit messages to \(\Theta(k + \log(\frac{1}{\varepsilon}))\) that is \(\varepsilon\)-non malleable w.r.t. the family of split-state tampering functions \(\mathcal{F}_{\text{split}}\).

References

