
Indistinguishability Obfuscation

from the Multilinear Subgroup Elimination Assumption

Craig Gentry Allison Lewko Amit Sahai Brent Waters

November 4, 2014

Abstract

We revisit the question of constructing secure general-purpose indistinguishability obfusca-

tion (iO), with a security reduction based on explicit computational assumptions over multi-

linear maps. Previous to our work, such reductions were only known to exist based on meta-

assumptions and/or ad-hoc assumptions: In the original constructive work of Garg et al. (FOCS

2013), the underlying explicit computational assumption encapsulated an exponential family of

assumptions for each pair of circuits to be obfuscated. In the more recent work of Pass et al.

(Crypto 2014), the underlying assumption is a meta-assumption that also encapsulates an expo-

nential family of assumptions, and this meta-assumption is invoked in a manner that captures

the specific pair of circuits to be obfuscated. The assumptions underlying both these works

substantially capture (either explicitly or implicitly) the actual structure of the obfuscation

mechanism itself.

In our work, we provide the first construction of general-purpose indistinguishability obfus-

cation proven secure via a reduction to a natural computational assumption over multilinear

maps, namely, the Multilinear Subgroup Elimination Assumption. This assumption does not

depend on the circuits to be obfuscated (except for its size), and does not correspond to the

underlying structure of our obfuscator. The technical heart of our paper is our reduction, which

gives a new way to argue about the security of indistinguishability obfuscation.

1 Introduction

Program obfuscation has been a longstanding goal in cryptography, though for many years general

solutions seemed elusive. Recently, this changed dramatically with the introduction of a gen-

eral indistinguishability obfuscation (iO) candidate by Garg, Gentry, Halevi, Raykova, Sahai, and

Waters [GGH+13b]. This candidate was constructed in two stages: First a candidate iO con-

struction was given for NC1 circuits, and then it was proven that assuming the Learning With

Errors (LWE) assumption, iO for NC1 circuits implies iO for all polynomial-size circuits. Sub-

sequently, several papers have shown a wide range of cryptographic applications of iO, including

core primitives [SW13], functional encryption [GGH+13b], deniable encryption [SW13], two round

multi-party computation [GGHR13], non-interactive multi-party key exchange [BZ13], and many

others.

The combination of an indistinguishability obfuscation candidate plus the demonstration of

myriad cryptographic applications raises the possibility that iO could serve as a type of “central

hub” - a foundation on which most cryptographic primitives, new and old, can be built. However,

it is imperative that we gain greater confidence in the security of iO constructions for NC1 circuits.

The works of [GGH+13b, BR13, BGK+13] made one kind of progress toward this goal by providing

proofs of security in an idealized adversary model, where the adversary is limited to “generic

multilinear” attacks.

However, ideally, we would like to follow the Golwasser-Micali [GM84] paradigm and base the

security of iO on a believable assumption using a reduction in the standard model that considers

arbitrary (computationally bounded) adversaries. Ideally, this assumption should be as different

from our obfuscation techniques as possible, so the reduction carries significant information about

how security is achieved.

Achieving this goal is the central focus of this paper. To this end, we provide a qualitatively

new security reduction for a candidate iO construction that we believe significantly advances our

understanding of the security of iO. We reduce security to the Multilinear Subgroup Elimination

Assumption, recently introduced by [GLW14]. Informally speaking, the Multilinear Subgroup Elim-

ination Assumption can be seen as a natural analogue in the multilinear setting of the Subgroup

Decision Assumption [BGN05] from the bilinear setting. An important feature of this assumption

is that it does not directly deal with programs, or encompass the inner workings of obfuscation

mechanisms, as we discuss further below.

To describe the challenges that must be overcome to prove the security of iO from different

kinds of assumptions, we first give a brief overview of what iO security entails and how previous

construction candidates have been analyzed. Informally, indistinguishability obfuscation requires

that for any two program descriptions P0 and P1 from some class that are functionally equivalent

(i.e. for all inputs x we have that P0(x) = P1(x)), no computationally bounded attacker can

distinguish iO(P0) from iO(P1) with better than negligible advantage.

In all previous constructions of indistinguishability obfuscation based on concrete assump-

tions [GGH+13b, PST13], the security of the construction is based on families of assumptions

(in the case of [PST13], such a family is called a meta-assumption) where the precise assumption

being used depends quite intricately on the notion of indistinguishability obfuscation, embedding

the actual programs to be obfuscated themselves into the assumption. Furthermore, these families

1

of assumptions have also (explicitly or implicitly) embedded the actual structure of the iO con-

struction into the assumption, thus “assuming away” a great deal of the computational hardness

underlying the construction.

Our work: iO security from a natural assumption. With this motivation, we set out to

answer the following question:

Can we prove the security of indistinguishability obfuscation

from a natural assumption over multilinear maps?

In fact, our result works with a natural sub-exponential hardness assumption over multilinear

encodings recently introduced by [GLW14], that we call the Multilinear Subgroup Elimination

Assumption, under which we can prove the security of our construction of indistinguishability

obfuscation. This assumption makes no reference, explicitly or implicitly, to pairs of programs, or

even programs at all. The assumption only depends on the maximum length of a matrix branching

representation for the family of programs to be obfuscated. This assumption also provides a concrete

target for the cryptanalysis of multilinear maps, since it focuses attention on a single assumption.

The Multilinear Subgroup Elimination Assumption states the following: In a composite-order

k-multilinear setting, suppose there is one special prime factor c together with k distinguished

prime factors a1, . . . , ak, along with other prime factors. Then the assumption requires that given

generators of all prime-order subgroups except for the subgroup of order c, and random elements

of all composite-order subgroups that include c and exactly k − 1 distinguished prime factors, the

adversary cannot distinguish a random element in a composite-order subgroup of order c · a1 · · · ak,
from a random element in a composite-order subgroup of order a1 · · · ak. The formal statement of

this assumption is given in Section 5.3.

We prove security by means of a new reduction technique that yields significant insight into

the nature of iO. Critically, the new hybrid argument we develop allows us to isolate the “key”

step at which the actual program switches in a new way: this isolation lets us deal with this key

transformation in an information-theoretic manner, which departs fundamentally from previous

reduction-based security arguments for iO. Our new hybrid argument technique is the technical

heart of our paper. We elaborate on our techniques in Section 1.1.

The 2n security loss. Our hybrid argument has a 2n security loss, where n is the length of the

inputs to the two programs P0 and P1. However, such a security loss seems inherent (this issue

was first observed by [GGSW13] in the context of witness encryption) whenever we consider a

natural (black-box) reduction to an instance-independent assumption. To see why such a security

loss seems hard to avoid, let us suppose that we want to prove security of an iO scheme under an

instance-independent assumption α, but without such a security loss. A (black-box) reduction of

security must be able to take an attacker on a candidate iO system for any functionally equivalent

pair P0, P1 of programs and turn it into an attacker on the underlying assumption α. However:

any such reduction should confirm that the programs are functionally equivalent – something that

in general should take roughly 2n time (barring a major and unexpected advance in complexity

theory). Otherwise, if the reduction does not confirm this, then it should also apply to programs

that are almost functionally equivalent. As a result, one could use the reduction algorithm to

2

directly and efficiently break the assumption: In particular, consider an attacker that first receives

the challenge from the assumption and then chooses a program pair P0, P1 that have different

outputs on some secret input x∗, where the secret x∗ is known to the attacker, but x∗ is hidden

from the reduction inside the programs P0, P1. For instance, the attacker constructs a program

Pb such that Pb(x) outputs 0 unless x comes a sparse pseudorandom set S, such that the attacker

knows an efficient method to sample x ∈ S. If x does lie in S, then P0(x) outputs 0, but P1(x)

outputs 1. Note that P0 and P1 are almost equivalent, except on this sparse pseudorandom set

S. The attacker then runs the reduction and gets a challenge obfuscated program P ∗. The attack

algorithm is trivially able to simulate a distinguisher between P ∗ ← iO(P0) and P ∗ ← iO(P1) by

querying P ∗(x∗), where x∗ ∈ S is sampled by the adversary. It then continues to run the reduction

algorithm, which eventually must break the assumption. This strategy will actually work in the

case of a reduction algorithm that proceeds obliviously without learning whether the two program

descriptions are indeed functionally equivalent. Therefore, it seems that such a reduction without

a 2n security loss is implausible1.

Note that in contrast, a reduction to an exponentially large family of assumptions can essentially

choose which assumption it wishes to use based on the program descriptions P0, P1. For example,

in the case of [GGH+13b], the assumption chosen simply embeds an actual obfuscation of one of the

program descriptions. If one ever fed the reduction a pair of non-functionally equivalent programs,

then the reduction would map this to a false assumption. Since this false assumption is by definition

not in the family of assumptions, there is no contradiction. Similarly in [PST13], for a pair of

non-functionally equivalent programs, the [PST13] reduction would attempt to invoke their meta-

assumption on an underlying distribution for which (existentially) there is a generic attack – and

the meta-assumption is defined so that it does not have to hold in this case. Thus, we can see how

such a reduction can avoid the need for discovery of functional equivalence by simply “passing” the

problem of dealing with problematic instances into the assumption description itself. As a result,

strictly speaking, our assumption is incomparable to [GGH+13b] or [PST13], since those works rely

on a family of assumptions against polynomial-time adversaries, whereas our assumption requires

security against sub-exponential adversaries.

Finally, we believe that because our new reduction technique more directly deals with the

complexity introduced by obfuscation, it will likely have other implications. Indeed, thinking more

speculatively, we believe that our reduction ideas are the most likely to set us on an eventual path

to a reduction under a classic assumption such as (sub-exponentially secure) LWE. At the same

time, getting such a reduction appears quite challenging at the moment, as it remains unknown

how to emulate the key features of multilinear maps that we need using only LWE.

1.1 Our Techniques: An intuitive Overview

Let us first step back, and think about our central goals when building a reduction to argue the

security of iO. Recall that iO demands that iO(P0) is indistinguishable from iO(P1) whenever P0

and P1 are functionally equivalent. In any hybrid argument that proceeds from iO(P0) to iO(P1),

apparently there will be some critical hybrid step(s) in which some actual underlying computation

switches in some way from “something like P0” to “something like P1.” In all previous works based

1However, formalizing this intuition remains an important open question.

3

on explicit computational assumptions [GGH+13b, PST13], the assumption itself was invoked to

handle this case: In [GGH+13b], the iO property itself followed directly from the assumption.

Clearly, if we wish to avoid this, we need to find some other way of dealing with this critical moment

when some computation shifts from P0 to P1. For inspiration, we look to the original argument

on the security of obfuscation in a generic security model [GGH+13b]: this generic proof does not

contain a reduction at all, so it may seem (and it indeed mostly is) of little use to us. However,

this generic proof identifies a powerful information-theoretic manner of dealing with the shift from

P0 to P1 as it manifests itself in the generic security argument, specifically in the context of the

obfuscated computation on a single input. This is done by means of Kilian’s simulation [Kil88]. We

begin by asking, can we invoke this information-theoretic argument in the context of a reduction?

In order to do so, we will need to establish a hybrid argument that essentially changes the

computation from P0 to P1 input-by-input, and thereby isolates the critical computation to a single

input. As such, there will be a number of technical hurdles – most notably, we need the obfuscation

scheme itself to be decomposable into 2n variations that somehow isolate each individual input.

A trivial “straw man” idea for allowing our obfuscation to be decomposable into 2n variations

would be to have 2n separate parallel copies of the obfuscator, where only one is “active” for each

possible input. In fact, this idea of parallel copies of obfuscation, each of which is active only on

certain inputs, does turn out to be quite useful intuitively. However, clearly we cannot afford a 2n

blowup in the actual obfuscation size. So instead, we must find a succinct way to decompose the

space of 2n possible inputs into a polynomial set of different buckets, which cover all 2n inputs2.

Each such bucket will be associated with the partial obfuscation of one particular program P , where

P = P0 or P = P1, but there will be many different buckets of inputs that will be associated with

the same program. The obfuscation can be partial, because each such obfuscation only has to work

with the set of active inputs associated with the bucket to which it is connected. Crucially, we will

want to move to a collection of buckets where there is one particular bucket that only corresponds

to a single active input x∗. We will maintain the invariant that only when there is at most a single

active input x∗ isolated in a bucket, do we switch the associated program from P = P0 to P = P1.

As we discussed above, the key argument of this step will turn out to be information-theoretic in

nature, thus letting us address the thorny issue of how to move from an obfuscation of one program

to the obfuscation of another3.

Another primary motivation of this invariant is what it guarantees for every other hybrid step

in our argument: In other hybrid steps, we will need to transfer inputs from one bucket to another,

so that we can proceed to isolate some other input x̂∗. But when we transfer some inputs from

one bucket to another, critically we only move inputs from buckets associated with a program P to

other buckets that are associated with the same program P . This means that the hybrid arguments

associated with such transfers of inputs between buckets intuitively do not care about hiding any

program. They can hold with respect to adversaries that fully know which programs are associated

2For building intuition, it is useful to think of these buckets as forming a partition of all 2n inputs. However, in

our actual argument, there will be hybrids where an input is in multiple buckets (in our actual proof, these “buckets”

correspond to “columns of an input-activated matrix”). However, the set of inputs in buckets associated with P0 will

always be disjoint from the set of inputs in buckets associated with P1.
3We do also employ other non-information-theoretic arguments even when dealing with a bucket with only a single

active input, but these arguments are intuitively about how to securely “zero out” parts of an obfuscation that are

only needed for inactive inputs.

4

with which buckets. As such, we can design algebraic (computational) reduction techniques for all

of these hybrids, based on assumptions that do not need to be tailored to specific programs.

The above discussion is intended to give some intuitive “flavor” of our techniques. To actually

implement these ideas, we proceed to define a number of intermediate abstractions that we use to

translate this intuition to rigorous constructions and proofs.

1.2 Our Techniques: A technical guide

We now provide a technical guide to our reduction strategy. We begin by reviewing concepts that

arose in recent related work and highlighting important similarities and differences with this work.

We then proceed to describing our actual abstractions and construction techniques.

Progress on the Witness Encryption Front. The starting point of our exploration is the

recent work of Gentry, Lewko, and Waters [GLW14]. As we already noted, the assumption under

which we are able to base security is the Multilinear Subgroup Elimination Assumption introduced

in [GLW14]. However, the problem addressed in this earlier work was different – witness encryption.

In a witness encryption system [GGSW13], an encryptor will encrypt a message m to an instance

x of some NP language L. A user can decrypt if they have an `-bit witness w ∈ {0, 1}` that x ∈ L.

A witness encryption system is secure if for any instance x /∈ L, it should be hard to distinguish

an encryption of m0 from an encryption of m1. Although witness encryption does not deal with

obfuscating programs, it proves quite instructive to think about witness encryption.

In particular, the task of designing a security reduction for a witness encryption system involves

a similar challenge to the one described above for iO, as a reduction to an instance independent

problem should intuitively discover if x is indeed not in L. To address this, [GLW14] introduces a

high level abstraction called positional witness encryption, that is inspired by work on fully collusion-

resilient traitor tracing and broadcast encryption [BSW06, BW06]. Positional witness encryption

behaves as standard witness encryption with the exception that the encryption algorithm takes an

additional position input t ∈ [0, 2`]. The added semantics are that decryption will work as long

as the witness w (interpreting it as an `-bit integer) used for decrypting is greater or equal to the

position t. A security property for positional witness encryption asks that for any instance x, no

attacker should be able to distinguish an encryption to index t from one to index t + 1, as long a

t is not a valid witness that x ∈ L. In this way, one can build a sequence of hybrids across all the

possible witnesses one-by-one when x /∈ L, since in this case no witnesses are valid.

This suggests to us an analogue that we call positional indistinguishability obfuscation, in which

a pair of programs are obfuscated, but where one program is active for the first t inputs, while the

other is active for inputs greater than or equal to t. (We elaborate on this further momentarily.)

At a high level, the [GLW14] strategy uses a hybrid where the position t is embedded in a

compact cryptographic data structure. This data structure is used to “save” the work done in the

hybrid steps for each witness candidate tested so far. This data structure in turn is implemented

by multilinear encodings and proven under assumptions that depend only on the instance size. The

data structure of [GLW14] uses a kind of “divide-and-conquer” technique to attack each clause of

a CNF formula separately. Since our work deals with general programs that we do not know how

divide in this way, such a strategy will not work for us, and we develop a different strategy for

building and using a compact cryptographic data structure for obfuscation. A significant technical

5

contribution of our work is to construct the individual security components of our cryptographic

data structure for obfuscation in such a way that we are then able to embed these components into

the Multilinear Subgroup Elimination Assumption to argue security.

Positional Indistinguishability Obfuscation. As we mentioned above, our outermost layer of

abstraction inserts a positional parameter t into a new variant of indistinguishability obfuscation.

In our context, this parameter t will control an interpolation of two programs, allowing us to invoke

one program for inputs less than t and another program for the remaining inputs. The precision of

t will allow us to argue about a single isolated input, which we can then translate into a proof of

security for all inputs through a hybrid argument. More precisely, a positional indistinguishability

obfuscation scheme takes in two programs, P0 and P1, and a position t that partitions the possible

inputs. It will produce an obfuscated program that evaluates to P0(x) for inputs x ≥ t and evaluates

to P1(x) for inputs x < t.

There are three required security properties. The first requires that when t = 0, an obfuscation

of P0 and P1 is indistinguishable from an obfuscation of P0 and P0. This makes sense because P1

does not effect the evaluation in this case. Analogously, the second security property requires that

when t = 2n (where n represents the bit length of inputs), an obfuscation of P0 and P1 is indistin-

guishable from an obfuscation of P1 and P1. The most interesting security property, termed position

indistinguishability, requires that an obfuscation of P0, P1 with position t is indistinguishable from

one with position t+ 1 when P0(t) = P1(t). These properties allow us to perform a simple hybrid

argument to obtain standard iO. Naturally, this hybrid iterates over all the 2n possible inputs, so

it incurs 2n security loss and thus necessitates complexity leveraging.

Input-Activated Obfuscation: the technical heart of our work. We construct positional

indistinguishability obfuscation from a mid-layer abstraction that we call input-activated obfusca-

tion. This primitive defines a mild notion of obfuscation for a data structure that consists of an

n × ` × 2 matrix M with entries in {0, 1} and an ordered set of ` programs P1, . . . , P` associated

to the columns of M . Jointly, this matrix and these programs describe a function on n-bit inputs

that behaves as follows. First, each column j of M defines a boolean function fj : {0, 1}n → {0, 1}
that describes on which inputs the jth column is active. On each input x, the evaluation of the

obfuscated structure must agree with the value of Pj(x) for every index j ∈ [`] such that fj(x) = 1.

(This imposes a constraint on the combinations of matrices and programs that are valid to consider.

Correctness is simply not required on any input for which these constraints are violated.)

There are four required security properties for an input-activated obfuscation scheme. Two of

the security properties, inter-column and intra-column security, describe small, localized changes to

the matrix M that can be made indistinguishably when the relevant columns have equal associated

programs and precise conditions are met by the matrix entries involved. The remaining two security

properties describe conditions under which a single program Pj in the list can be changed, namely

when its associated column function fj never evaluates to 1 (we call this completely inactive program

security), or when fj evaluates to 1 on a single input where old and new program agree (we call

this single-input program switching security).

The technical heart of our paper is our construction of input-activated obfuscation from mul-

tilinear maps based on the Multilinear Subgroup Elimination Assumption, found in Section 5. As

6

outlined in our intuition above, Kilian’s information theoretic argument will play a starring role in

implementing the single-input program switching security property. The main idea behind imple-

menting the inter-column and intra-column security properties, where some localized changes occur

to the set of activated inputs, is to implement the different parallel obfuscations by embedding them

into different prime-order subgroups. Then the Multilinear Subgroup Elimination Assumption will

allow us to move between hybrids where certain parts of the program are either activated, if the

assumption gave us a challenge element whose order included the special prime factor c, to hybrids

where these parts of the program are inactivated, if the assumption gave us a challenge element

whose order did not include the special prime factor c.

Using Input-Activated Obfuscation. We then show how to build positional indistinguisha-

bility obfuscation from input-activated obfuscation. Recall that an instance of our positional in-

distinguishability obfuscation is described by two programs P0, P1 and a position t. These can be

embedded into the data structure of an input-activated obfuscation scheme by using t to determine

the matrix entries and using P0, P1 to populate the list of associated programs. More precisely, we

form our matrix as a concatenation of three pieces, which we call M t−1
L , M t

R, and a scratch column

S. The columns of M t−1
L will all be associated to the program P0, while the columns of M t

R will

all be associated to P1. Initially, the scratch column S will be associated to P0. The main idea is

that the columns of M t−1
L will be “activated” only on the inputs x ≥ t, meaning their associated

boolean functions fj evaluate to 0 for all inputs x < t. Analogously, the columns of M t
R will be

activated only on inputs x < t. This ensures that the evaluation rules of the input-activated obfus-

cation scheme match up with the desired behavior of the positional indistinguishability obfuscation

scheme.

To prove the position indistinguishability security property for the resulting positional indis-

tinguishability obfuscation scheme, we must employ the security properties of the input-activated

obfuscation primitive in a hybrid fashion to gradually change the encodings M t−1
L ,M t

R to M t
L,M

t+1
R .

To get from M t−1
L to M t

L, we need to “deactivate” the input t. The techniques from [GLW14] give

us a way of doing this using the scratch column, essentially allowing us to change to M t−1
L while

populating the scratch column with entries that will activate solely on the input t. These adjust-

ments can be accomplished with our inter-column and intra-column security properties because the

scratch column and all the columns of the left matrix are associated to the same program P0.

Once we have isolated this input t in the scratch column, we can use our single-input program

switching property to change the program associated with the scratch column to P1. This relies

on the fact that P0(t) = P1(t). We can then use the intra-column and inter-column security

properties similarly within M t
R and the scratch column to obtain M t+1

R . We can then restore

the scratch column to its original state. To prove the remaining security properties for positional

indistinguishability obfuscation (ensuring that a program that is never activated can be switched),

we can simply invoke completely inactive program security.

Our framework thus far is agnostic with respect to the type of program descriptions employed.

To instantiate our framework from concrete assumptions about multilinear encodings, we will use

matrix branching programs. However, if one obtained a different low-level instantiation for a

different form of program description, all of our abstractions and security reductions described so

far could be reused.

7

Open Problems and Future Work. Our work provides a natural security reduction mapping

indistinguishability obfuscation to a natural assumption over multilinear maps. However, an im-

portant goal is to bridge the gap between this assumption over general multilinear maps and actual

assumptions over instantiations of such multilinear maps. As stated above, a central open problem

along these lines would be to reduce the Multilinear Subgroup Elimination Assumption, or a vari-

ant of it, to a well-studied assumption like the Learning With Errors (LWE) assumption. Indeed,

building instantiations of multilinear maps under various mathematical frameworks is a very active

area of investigation [GGH13a, CLT13, GGH14] with notable cryptanalysis results [CHL+14] as

well. We leave as an important direction for future work to find concrete instantiations of multilin-

ear maps where a variant of the Multilinear Subgroup Elimination Assumption can be stated and

utilized for our reduction.

2 Positional Indistinguishability Obfuscation

We will first give our definition of positional indistinguishability obfuscation system. Then we show

how it implies (standard) indistingusihability obfuscation by a hybrid argument.

We define a positional indistinguishability obfuscation scheme for for a program description class

{Pλ} with inputs of size n(λ). (For ease of exposition we will sometimes refer to n(λ) as just n

when it is clear from context.) For our purposes a program description 4 will be an encoding of a

computable function. The system consists of two algorithms:

Obfuscation. The algorithm ObfuscatePIO(1λ, P0, P1, t) takes as input a security parameter

1λ, two program descriptions P0, P1 ∈ {Pλ}, and a position index t ∈ [0, 2n] and outputs an

obfuscated program description P .

Evaluation. The algorithm EvalPIO(P, x) takes as input a program description P (con-

structed from program description class {Pλ}) and a length n input x and gives an output in

the image of {Pλ}.

Given an input string x ∈ {0, 1}n we will sometimes slightly abuse notation and also refer to

x as an integer in [0, 2n − 1] where the most significant bit is the leftmost bit. In other words, we

consider the integer x = Σn
i=1xi · 2n−1, where xi is the i-th bit of the string x. Similarly, sometimes

we will abuse notation in the other way, and consider an integer x ∈ [0, 2n − 1] to be a string.

Definition 2.1 ((Perfect) Correctness of Positional Indistinguishability Obfuscation). For any

security parameter λ, any pair of program descriptions P0, P1 ∈ {Pλ} and for any input x ∈ {0, 1}n
we have that

EvalPIO
(
ObfuscatePIO(1λ, P0, P1, t), x

)
=

{
P0(x) if x ≥ t
P1(x) if x < t.

2.1 Security of Positional Indistinguishability Obfuscation

The security of positional indistinguishability obfuscation is given in terms of three security prop-

erties.
4We will sometimes use the terms program and program description interchangeably.

8

Program Description Hiding A. The first property is parameterized by two program descrip-

tions P0, P1. Informally, the security property states that if one encrypts to the “first’ position t = 0

(where n is the input length for program description class {Pλ}) that no attacker can distinguish

whether an obfuscated program description P is a positional obfuscation to the pair of program

descriptions (P0, P1) or (P0, P0). Intuitively, this is because there is no input that will actually

“use” P1.

We define the (parameterized) advantage of an attacker as

A : HidingPIOAdvA,P0,P1
(λ) =

Pr[A(ObfuscatePIO(1λ, P0, P1, t = 0)) = 1]− Pr[A(ObfuscatePIO(1λ, P0, P0, t = 0)) = 1].

Definition 2.2 (Program Description Hiding A Security of Positional Indistinguishability Ob-

fuscation). We say that a positional indistinguishability obfuscation for program description class

{Pλ} is Program Hiding A secure if for any probabilistic poly-time attack algorithm A there exists

a negligible function in the security parameter negl(·) such that for all program description pairs

P0, P1 ∈ {Pλ} we have A : HidingPIOAdvA,P0,P1
(λ) ≤ negl(λ).

Program Description Hiding B. The second property is very similar to the first except it

is stated for the opposite end (t = 2n) of the index spectrum. Here no attacker can distinguish

whether an obfuscated program description P is a positional obfuscation to the pair of program

descriptions (P0, P1) or (P1, P1).

We define the (parameterized) advantage of an attacker as

B : HidingPIOAdvA,P0,P1
(λ) =

Pr[A(ObfuscatePIO(1λ, P0, P1, t = 2n)) = 1]− Pr[A(ObfuscatePIO(1λ, P1, P1, t = 2n)) = 1].

Definition 2.3 (Program Description Hiding B Security of Positional Indistinguishability Obfusca-

tion). We say that a positional indistinguishability obfuscation for program description class {Pλ}
is Program Description Hiding B secure if for any probabilistic poly-time attack algorithm A there

exists a negligible function in the security parameter negl(·) such that for all program description

pairs P0, P1 ∈ {Pλ} we have B : HidingPIOAdvA,P0,P1
(λ) ≤ negl(λ).

Position Indistinguishability. The third, and most significant, security game is positional in-

distinguishability. Informally, this security game states that it is hard to distinguish between a

positional obfuscation to position t from an encryption to t + 1 when the program descriptions

P0, P1) have the same output on input t: i.e. P0(t) = P1(t). Positional indistinguishability security

is parameterized by program descriptions P0, P1 ∈ {Pλ} and a position t ∈ [0, 2n − 1] where n is

the input length. We define the (parameterized) advantage of an attacker as

PosPIOAdvA,P0,P1,t(λ) =

Pr[A(EncryptPWE(1λ, P0, P1, t+ 1)) = 1]− Pr[A(EncryptPWE(1λ, P0, P1, t)) = 1].

9

Definition 2.4 (Position Indistinguishability Security of Positional Indistinguishability Obfus-

cation). We say that a positional indistinguishability obfuscation scheme for program description

class {Pλ} is Position Indistinguishability secure if for any probabilistic poly-time attack algorithm

A there exists a negligible function in the security parameter negl(·) such that for all P0, P1 ∈ {Pλ},
and any t ∈ [0, 2n − 1] where P0(t) = P1(t) we have PosPIOAdvA,P0,P1,t(λ) ≤ negl(λ).

We let PosPIOAdvA,P0,P1(λ) be the maximum value of PosPIOAdvA,P0,P1,t(λ) over t ∈ [0, 2n]

for each λ.

2.2 Building Indistinguishability Obfuscation from Positional Indistinguisha-
bility Obfuscation

We now describe how to build indistinguishability obfuscation from positional indistinguishability

obfuscation, in a rather simple way. To obfuscate a program description P ∈ {Pλ} simply do

a positional indistinguishability obfuscation to position t = 0 and use P as the inputs for both

program descriptions.

Like for positional witness encryption, the proof comes from a hybrid security argument. Con-

sider two program descriptions P0, P1 ∈ {Pλ} that are different, but are functionally equivalent,

I.e. for all x ∈ [0, 2n − 1] : P0(x) = P1(x). Then no attacker can distinguish an obfuscation to

position t to one of t+ 1. This argument is repeatedly applied to “move” the encryption position

from 0 to 2n. The cost of performing this hybrid is a security factor of 2n and thus it innately

requires complexity leveraging. The utilization of the abstraction is that each individual step of

the hybrid is only concerned with whether the two program descriptions agree on one particular

input. This isolation will eventually lead to security from instance independent assumptions.

We now formally describe the construction of indistinguishability obfuscation from positional

indistinguishability obfuscation. We follow with a security proof.

iO(1λ, P) calls ObfuscatePIO(1λ, P, P, t = 0).

Eval(P, x) calls EvalPIO(P, x).

The correctness of the indistinguishability obfuscation system follows immediately from the

correctness properties of positional indistinguishability obfuscation.

We now state and prove our the security theorem.

Theorem 2.5. Consider the constructed indistinguishability obfuscation scheme for a program

description class {Pλ} and the indistinguishability property for any pairs of program descriptions

P0, P1 ∈ {Pλ} where P0(x) = P1(x) ∀x. We have that for any polynomial time attacker A

IOAdvA,P0,P1(λ) ≤ 2n · PosPIOAdvA,P0,P1(λ) + 2n · PosPIOAdvA,P1,P1(λ)+

A : HidingPIOAdvA,P0,P1
(λ) + B : HidingPIOAdvA,P0,P1

(λ).

Proof. We now give prove the theorem by a simple hybrid argument. The hybrid sequence defines

a how an obfuscated program description is generated. We enumerate the hybrid steps below to

for program descriptions P0, P1 where P0(x) = P1(x) ∀x.

10

• Hybstart: The first hybrid generates the obfuscated program description as:

ObfuscatePIO(1λ, P0, P0, t = 0)

We observe that this is defined to be an obfuscation of P0 as iO(1λ, P0).

• Hybi for i ∈ [0, 2n]: In Hybi the obfuscated program description is generated as

ObfuscatePIO(1λ, P0, P1, t = i)

We observe that for any algorithm A, its advantage in distinguishing between Hybstart and

Hyb0 can be at most A : HidingPIOAdvA,P0,P1
(λ). In addition, for all i ∈ [0, 2n − 1], the ad-

vantage of A in distinguishing between Hybi and Hybi+1 can be at most PosPIOAdvA,P0,P1(λ).

This follows from the fact that P0(i) = P1(i). It follows that the advantage in distinguishing

between Hyb0 and Hyb2n is at most 2n · PosPIOAdvA,P0,P1(λ).

• Hyb′i for i ∈ [0, 2n]: In Hyb′i the obfuscated program description is generated as

ObfuscatePIO(1λ, P1, P1, t = i)

Note that the proof will proceed through these hybrids in the reverse order, starting with Hyb′2n
and proceeding to Hyb′0. We observe that for any algorithm A, its advantage in distinguishing

between Hyb2n and Hyb′2n can be at most B : HidingPIOAdvA,P0,P1
(λ). In addition, for all

i ∈ [0, 2n − 1], the advantage of A in distinguishing between Hyb′i+1 and Hyb′i can be at most

PosPIOAdvA,P1,P1(λ). It follows that the advantage in distinguishing between Hyb′2n and Hyb′0
is at most 2n · PosPIOAdvA,P1,P1(λ).

• We finally note that Hyb′0 is defined to be an obfuscation of P1 as iO(1λ, P1).

Using the above hybrids we can draw a sequence that connects between an obfuscation. The

sequence is Hybstart,Hyb0,Hyb1 . . .Hyb2n ,Hyb
′
2n ,Hyb

′
2n−1, . . . ,Hyb

′
0. The theorem follows from the

observations about the adversarial advantages between each hybrid.

Required Security from Positional Indistinguishability Obfuscation. If all of the terms

in our reduction were polynominal in n (and thus λ) then the only requirement we would have is

that any poly-time algorithm have negligible advantage in each of our security games. However,

there is an exponential term of 2n attached to the positional game. Therefore we will need to use

complexity leveraging and for all poly-time algorithms A and all P0, P1 ∈ Pλ we demand that:

PosPIOAdvA,P0,P1(λ) = negl(λ) · 2−n

where negl(λ) is some negligible function. This requirement will be passed down to our next level

of abstraction and eventually to our multi-linear encoding instantiation. At the instantiation level

the security parameter will be increased to match this condition.

11

3 Input-Activated Obfuscation

In this section, we will describe an abstraction that we call Input-Activated Obfuscation (iaO). The

core of this abstraction will be a n × ` × 2 matrix M with entries in {0, 1}, and an ordered set

of ` programs, P = (P1, P2, . . . , P`) from a specified family of programs {Pλ}, parameterized by

a security parameter λ. We abuse standard terminology slightly by saying that such a matrix M

has n rows and ` columns. We say that every row-column pair (i, j) where i ∈ [n], j ∈ [`] has two

associated “slots,” denoted by Mi,j,0 and Mi,j,1.

We will call the matrix M an input-activated matrix. This is because for each column j of an

input-activated matrix M , we define a corresponding boolean function fj : {0, 1}n → {0, 1}, where

program Pj is active on input x iff fj(x) = 1. These functions fj are defined as follows:

fj(x) =

{
1, if Mi,j,xi = 1 for all i ∈ [n];

0, otherwise.

We will sometimes abuse terminology and say that column j of an input-activated matrix itself

evaluates to 1 on an input x iff fj(x) = 1.

An input-activated obfuscation scheme consists of two algorithms:

Creation. The creation algorithm Create(λ,M,P) takes in a security parameter λ, an n× `× 2

input-activated matrix M , and an ordered set P = (P1, P2, . . . , P`) of ` programs from Pλ. It

produces an input-activated obfuscation T .

Evaluation. The evaluation algorithm Eval(T, x ∈ {0, 1}n) takes in an input-activated obfusca-

tion T and an n-bit input x, and outputs 0 or 1.

These two algorithms should satisfy several properties. Note that because iaO deals with the

parallel obfuscation of several programs simultaneously, even the correctness property requires some

care to define.

Correctness. We define perfect correctness as follows. Consider an input x ∈ {0, 1}n. We let

Sx ⊆ [`] denote the set of column indices j that are active on input x, i.e. such that fj(x) = 1.

Then if Sx 6= ∅ and Pj = Pj′ for all j, j′ ∈ Sx, we require that Eval(T, x) = Pj(x) for all j ∈ Sx.

(This must hold for all inputs x.)

Observe that correctness only imposes a restriction on the output of the evaluation algorithm

in certain cases. Indeed, we take care that these are the only cases that will arise in our use of the

iaO abstraction.

We next define security properties for an input-activated obfuscation scheme. We define each

property in terms of a game between a challenger and an attacker.

Inter-column Security Game. This game is parameterized by a security parameter λ, an

n× `×2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`) in Pλ, two column

indices j and k in [`], a row index i∗ in [n], and a slot index β ∈ {0, 1} such that Mi∗,j,β = 1. We

require that Pj = Pk. By this, we mean that the program descriptions must be identical. Note

that this is a more stringent requirement than simply saying they must agree on all inputs. We

12

further require the following conditions on the jth and kth columns of M . For every row i and slot

γ ∈ {0, 1}, except for i = i∗ and γ = 1 − β, if Mi,k,γ = 1, then Mi,j,γ = 1 as well. When this

condition holds, we say that column j dominates column k, although strictly speaking this is not

required in slot 1−β of row i∗. All of these parameters are given both to the challenger and to the

attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P)

to produce an input-activated obfuscation T . If b = 1, it forms M ′ by copying M except for

flipping just one entry: M ′i∗,k,β = 1 if Mi∗,k,β = 0, and M ′i∗,k,β = 0 if Mi∗,k,β = 1. It then runs

Create(λ,M ′, P) to produce T . The challenger gives T to the attacker, who finally must guess the

value of the bit b.

Note that because we require Mi∗,j,β = 1, the change imposed by the inter-column game does

not change the actual set of inputs that are active across the union of columns j and k. This is

because any inputs that become active or become inactive on column k when Mi∗,k,β changes are

active in column j.

Definition 3.1. We say an input-activated obfuscation scheme has inter-column security if for

every polynomial attacker A, there exists a negligible function negl(λ) such that the attacker’s

advantage in the Inter-Column Game is ≤ negl(λ), for any valid settings of M,P, j, k, i∗, β.

Intra-column Security Game. This game is parameterized by a security parameter λ, a n×`×2

input-activated matrix M , an ordered set of programs P = (P1, . . . , P`), an index j of a column

in M such that there is some row i∗ where both slots take the value 0, and an alternate column

C ∈ {0, 1}n×2 such that the i∗ row also has both slots equal to 0. All of these parameters are given

both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P)

to produce T . If b = 1, it forms M ′ by replacing the jth column of M with C, and then runs

Create(λ,M ′, P) to produce T . It gives T to the attacker, who must then guess the value of the

bit b.

Definition 3.2. We say an input-activated obfuscation scheme has intra-column security if for

every polynomial attacker A, there exists a negligible function negl(λ) such that the attacker’s

advantage in the Intra-column Game is ≤ negl(λ), for any valid settings of M,P, j, C.

Completely Inactive Program Security Game. This game is parameterized by a security

parameter λ, a n× `× 2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`),

an alternate program P ∗, and an index j ∈ [`] such that the jth column of M contains all zero

entries. All of these parameters are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P) to

produce T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗, and then runs

Create(λ,M ′, P ′) to produce T . It gives T to the attacker, who must then guess the value of the

bit b.

Definition 3.3. We say an input-activated obfuscation scheme has completely inactive program

security if for every polynomial attacker A, there exists a negligible function negl(λ) such that the

13

attacker’s advantage in the Completely Inactive Program Security Game is ≤ negl(λ), for any valid

settings of M,P, P ∗, j.

Single-input Program Switching Security Game. This game is parameterized by a security

parameter λ, a n× `× 2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`),

an alternate program P ∗, and an index j ∈ [`] such that the jth column of M corresponds to a

point function fj evaluating to 1 on a single input x∗ (and evaluating to 0 on all other inputs), with

P ∗(x∗) = Pj(x
∗). All of these parameters are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P) to

produce T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗, and then runs

Create(λ,M ′, P ′) to produce T . It gives T to the attacker, who must then guess the value of the

bit b.

Definition 3.4. We say an input-activated obfuscation scheme has single-input program switching

security if for every polynomial attacker A, there exists a negligible function negl(λ) such that the

attacker’s advantage in the Single-input Program Switching Security Game is ≤ negl(λ), for any

valid settings of M,P, P ∗, j.

4 iaO =⇒ Positional Indistinguishability Obfuscation

We now describe how to build a positional indistinguishability obfuscation scheme from an input-

activated obfuscation scheme.

To encode the position t, we will use two input-activated matrices, M t−1
L and M t

R. The matrix

M t−1
L will “activate” on inputs x > t− 1, meaning that for an input x ≥ t, at least one column of

M t−1
L will evaluate to 1 on input x. For inputs x < t, all columns of M t−1

L will evaluate to 0. M t
R

will have the complementary property that it is activated for inputs x < t and not for inputs x ≥ t.
We will refer to M t−1

L as a “left encoding” of the position t and to M t
R as a “right” encoding of the

position t.

To form a right encoding M t
R, we can use the same encoding procedure used in [GLW14]: We

consider the position t as a binary string t = (t1, t2, . . . , tn) ∈ {0, 1}n. We define an n × n × 2

input-activated matrix M t
R by specifying how to fill in the jth column for each j ∈ [n]:

To Set Column j:

• For i < j,

(M t
R)i,j,0 = 1,

(M t
R)i,j,1 =

{
0, if ti = 0;

1, if ti = 1.

• For i = j,

(M t
R)i,j,0 =

{
0, if ti = 0;

1, if ti = 1.

(M t
R)i,j,1 = 0

14

• For i > j,

(M t
R)i,j,0 = 1 = (M t

R)i,j,1.

We note some relevant properties of M t
R. We observe that for every boolean string y < t, there

is some column index j such that the associated boolean function evaluates to 1 on y, i.e. fj(y) = 1.

For every y ≥ t, fj(y) = 0 for all j ∈ [n]. Here, we use “<” and “≥” to denote the order induced

by the usual ordering of integers, when we think of t, y as binary expansions with t1, y1 being the

most significant bits. These observations are captured by the following lemmas, that are also in

[GLW14], though we restate and prove them here for completeness.

Lemma 4.1. If y < t, then fj(y) = 1 for some j ∈ [n].

Proof. Since y < t, there must be some index j ∈ [n] such that ti = yi for all i < j and tj = 1 while

yj = 0. We consider the jth column of M t
R. We claim that for all i, (M t

R)i,j,yi = 1. To see this, we

can consult our description of the jth column of M t
R above, noting that for i < j, whenever yi = 1,

then ti = 1 as well (by definition of j). Thus, fj(y) = 1.

Lemma 4.2. If y ≥ t, then fj(y) = 0 for all j.

Proof. We let k ∈ [n] denote an index such that yi = ti for all i ≤ k, and yk+1 = 1, tk+1 = 0, if

k + 1 ≤ n. For a column j where j ≤ k, we observe that (M t
R)j,j,yj = 0, since yj = tj . For any

column j where j > k, we observe that (M t
R)k+1,j,yk+1

= 0. This is because tk+1 = 0 and yk+1 = 1.

Hence, fj(y) = 0 for all j.

This defines an effective right encoding of positions t from 0 to 2n − 1 (considering t as an

integer). It will also be useful to have a right encoding of 2n. For simplicity in our proof, we

define the right encoding matrix of 2n to be a small change from the right encoding of 2n − 1 that

will ensure that the corresponding f will also evaluate to 1 on the position 2n − 1. Note that for

t = 2n−1, only the diagonal entries of M t
R are not completely filled with 1 slots. So we define M2n

R

to be the same as M2n−1
R , except that the first diagonal entry has both slots equal to 1.

We now construct a left encoding matrix M t
L. This will also be a n × n × 2 input-activated

matrix, but will be active on inputs > t.

To Set Column j:

• For i < j,

(M t
L)i,j,0 =

{
1, if ti = 0;

0, if ti = 1.

(M t
L)i,j,1 = 1,

• For i = j,

(M t
L)i,j,0 = 0

(M t
L)i,j,1 =

{
1, if ti = 0;

0, if ti = 1.

15

• For i > j,

(M t
L)i,j,0 = 1 = (M t

L)i,j,1.

We now prove the relevant properties of M t
L:

Lemma 4.3. If y ≤ t, then fj(y) = 0 for all j ∈ [n].

Proof. For columns j such that tj = 1, it is clear that fj(y) = 0 for all y, since both diagonal slots

of column j are 0. For a column j such that tj = 0, if yj = 0 as well, we will have fj(y) = 0 due to

the diagonal slot. If yj = 1, then since y ≤ t, there must be some row index i < j such that ti = 1

and yi = 0. This leads to fj(y) = 0 due to the slot at row i.

Lemma 4.4. If y > t, then fj(y) = 1 for some j ∈ [n].

Proof. There must be some index j such that yj = 1 and tj = 0, while for all i < j, yi = 1 whenever

ti = 1. We then have fj(y) = 1 for the corresponding column j.

This defines an effective left encoding of positions t from 0 to 2n−1 (considering t as an integer).

It will also be useful to have a left encoding of −1. For simplicity in our proof, we define the left

encoding matrix of −1 to be a small change from the left encoding of 0 that will ensure that some

corresponding fj will evaluate to 1 for every y ≥ 0. Note that for t = 0, only the diagonal entries

of M t
L are not completely filled with 1 slots. So we define M−1L to be the same as M0

L, except that

the first diagonal entry has both slots equal to 1.

4.1 Construction

With these definitions in place, we are now prepared to present our construction.

ObfuscatePIO(1λ, C0, C1, t): This algorithm first forms a n × (2n + 1) × 2 input-activated ma-

trix by forming M t−1
L as above, a n × 2 “scratch column” S containing all 0 entries, and M t

R

as above. It concatenates these as M := M t−1
L |S|M t

R. It creates an ordered list of programs as

P = (P1, . . . , P2n+1) where Pi = C0 for all i ≤ n+ 1, and Pi = C1 for all i > n+ 1. (This means C0

will be associated with the columns of M t−1
L and S, while C1 will be associated with the columns

of M t
R.) It then calls Create(1λ,M, P) to form an input-activated obfuscation, and outputs the

resulting object T .

EvalPIO(T, x): This algorithm simply runs Eval(T, x), the evaluation algorithm for the input-

activated obfuscation.

Correctness. For any security parameter λ, any pair of programs C0, C1 ∈ {Cλ}, and for any

input x ∈ {0, 1}n we have that EvalPIO
(
ObfuscatePIO(1λ, C0, C1, t), x

)
= Eval(Create(1λ,M, P)).

If x ≥ t, then M t−1
L will have at least one column evaluating to 1 on x, but M t

R will not. Hence

Eval(Create(1λ,M, P)) = C0(x) follows from the correctness of the input-activated obfuscation

scheme. Similarly, it x < t, then M t
R will have at least one column evaluating to 1 on x and

M t−1
L will not. In this case, Eval(Create(1λ,M, P)) = C1(x) follows from the correctness of the

input-activated obfuscation scheme.

16

4.2 Security

We first prove position indistinguishability.

Theorem 4.5. Position Indistinguishability for our Positional Obfuscation Scheme in Section 4.1

follows from inter-column security, intra-column security, completely inactive program security, and

single-input program switching security of the underlying input-activated obfuscation scheme.

Our proof of theorem 4.5 will proceed as a hybrid argument, gradually changing the position

encoding matrices to accommodate an increment of t. At the highest level, we organize our hybrid

proof into five phases. We begin with the underlying input-activated matrix M = M t−1
L |S|M t

R

and program list P = (C0, . . . , C0, C1, . . . , C1), where the first n + 1 programs are C0 and the

remaining n programs are C1. Recall here that the scratch column contains all 0’s. We let Game0
denote this setting, in which the attacker is given a positional obfuscation scheme derived from the

input-activated obfuscation scheme for this matrix and programs.

We next define Game1. In this game, the attacker will be given an input-activated obfuscation

scheme for an adjusted input-activated matrix, though the list of associated programs remains the

same as in Game0. The new input-activated matrix will be M t
L|St|M t

R, where St is a column with

entries Si,ti = 1 and Si,1−ti = 0 for all i. Note that this new scratch column St will be activated

(i.e. have fn+1 evaluate to 1) if and only if the input is equal to t.

We next define Game2. In this game, the underlying input-activated matrix is the same as in

Game1, but the affiliated program Pn+1 for the scratch column is now C1 instead of C0. Crucially,

transitioning to Game2 will rely on the fact that C0(t) = C1(t). We then define Game3, in which

the list of programs is the same as Game2, but the underlying input-activated matrix is now

M t
L|S|M

t+1
R , where S is once again filled with all 0’s (though still affiliated with C1). We finally

define Game4, where the underlying input-activated matrix is as in Game3, but the associated list

of programs has reverted to Pi = C0 for all i ≤ n+1 and Pi = C1 for all i > n+1. (In other words,

the program associated to the scratch column is back to being C0.)

For each adjacent pair of games, we will prove that the security properties of the underlying

input-activated obfuscation scheme imply that no PPT attacker can distinguish between the two

games with non-negligible advantage. Since Game0 corresponds to a proper distribution for position

t and Game4 corresponds to a proper distribution for position t+1, we observe that these proofs in

combination imply Theorem 4.5. The proofs of Lemmas 4.6 and 4.8 below are very similar in spirit

(and often in detail) to the proofs in [GLW14], so we defer them to appendices B and C. Here we

present the proofs of Lemmas 4.7 and 4.9, which are of a new flavor.

Lemma 4.6. If the input-activated obfuscation scheme has inter-column and intra-column security,

then any PPT attacker can attain only a negligible advantage in distinguishing Game0 from Game1.

Lemma 4.7. If the input-activated obfuscation scheme has single-input program switching security,

then any PPT attacker can attain only a negligible advantage in distinguishing between Game1 and

Game2.

Proof. We suppose we have a PPT attacker A that can distinguish between Game1 and Game2 with

non-negligible advantage. We will use this to create a PPT attacker B that achieves non-negligible

advantage in the single-input program switching security game.

17

We employ the single-input program switching security game with input-activated matrix M =

M t
L|St|M t

R, where St is the column corresponding to the characteristic function of t. We have the

list of programs (P1, . . . , P2n+1) with Pi = C0 for i ≤ n + 1 and Pi = C1 for i > n + 1. The value

of j will be n + 1, and the alternate program P ∗ will be C1. Note that C0(t) = C1(t), so we have

fulfilled all the requirements to apply the single-input program switching game.

B is given an input-activated obfuscation scheme T , and it must guess whether the alternate

program was used. It passes T to A as the positional obfuscation scheme. If the original program

list was used, this is properly distributed for Game1. If the alternate program was used, this is

properly distributed for Game2. Hence B can leverage A’s ability to distinguish these games to

obtain a non-negligible advantage in the single-input program switching security game.

Lemma 4.8. If the input-activated obfuscation scheme has inter-column and intra-column security,

then any PPT attacker can attain only a negligible advantage in distinguishing Game2 from Game3.

Lemma 4.9. If the input-activated obfuscation scheme has completely inactive program security,

then any PPT attacker can attain only a negligible advantage in distinguishing Game3 from Game4.

Proof. We suppose we have a PPT attacker A that can distinguish between Game3 and Game4 with

non-negligible advantage. We will use this to create a PPT attacker B that achieves non-negligible

advantage in the completely inactive program security game.

We employ the completely inactive program security game with input-activated matrixM t
L|S|M

t+1
R ,

where S is a column of all 0s. We have the list of programs (P1, . . . , P2n+1) with Pi = C0 for i ≤ n
and Pi = C1 for i ≥ n+ 1. The value of j will be n+ 1, and the alternate program P ∗ will be C0.

B is given an input-activated obfuscation scheme T , and it must guess whether the alternate

program was used. It passes T to A as the positional obfuscation scheme. If the original program

list was used, this is properly distributed for Game3. If the alternate program was used, this is

properly distributed for Game4. Hence B can leverage A’s ability to distinguish these games to

obtain a non-negligible advantage in the completely inactive program security game.

We next prove Program Description Hiding A Security.

Theorem 4.10. Program Description Hiding A Security for our Positional Obfuscation Scheme

in section 4.1 follows from intra-column security and completely inactive program security of the

underlying input-activated obfuscation scheme.

We begin with the underlying input-activated matrix M = M−1L |S|M0
R and program list

P = (C0, . . . , C0, C1, . . . , C1), where the first n+ 1 programs are C0 and the remaining n programs

are C1. We let Game0 denote this setting, in which the attacker is given a positional obfuscation

scheme derived from the input-activated obfuscation scheme for this matrix and programs. For

each z from 1 to n, we define Gamez to be a game where the input-activated matrix is the same,

but the first n+ 1 + z programs are C0 and the remaining ones are C1. Note that when we reach

Gamen, C1 no longer appears.

Theorem 4.10 then follows from the following lemma:

Lemma 4.11. If intra-column and completely inactive program security hold for the underlying

input-activated obfuscation scheme, then any PPT attacker has only a negligible advantage in dis-

tinguishing Gamez from Gamez−1, for each z from 1 to n.

18

Proof. The transition from Gamez−1 to Gamez can be accomplished in three steps. First, we

observe that column z of M0
R has 0s in both of its slot on row z. Thus we can invoke the intra-

column security property to change this column to all 0s in all other rows as well. We can then

invoke completely inactive program security to change the affiliated program from C1 to C0. Finally

we can invoke intra-column security again to reset the other rows of this column to their proper

values in M0
R.

We last prove Program Description Hiding B Security with a similar argument.

Theorem 4.12. Program Description Hiding B Security for our Positional Obfuscation Scheme

in section 4.1 follows from intra-column security and completely inactive program security of the

underlying input-activated obfuscation scheme.

We begin with the underlying input-activated matrix M = M2n−1
L |S|M2n

R and program list

P = (C0, . . . , C0, C1, . . . , C1), where the first n+ 1 programs are C0 and the remaining n programs

are C1. We let Game0 denote this setting, in which the attacker is given a positional obfuscation

scheme derived from the input-activated obfuscation scheme for this matrix and programs. For each

z from 1 to n + 1, we define Gamez to be a game where the input-activated matrix is the same,

but the first z programs are also C1. Note that when we reach Gamen+1, C0 no longer appears.

Theorem 4.12 then follows from the following lemma:

Lemma 4.13. If intra-column and completely inactive program security hold for the underlying

input-activated obfuscation scheme, then any PPT attacker has only a negligible advantage in dis-

tinguishing Gamez from Gamez−1, for each z from 1 to n+ 1.

Proof. The transition from Gamez−1 to Gamez can be accomplished in three steps. First, we

observe that for z ≤ n, column z of M2n−1
L has 0s in both of its slot on row z. Thus we can invoke

the intra-column security property to change this column to all 0s in all other rows as well. We can

then invoke completely inactive program security to change the affiliated program from C0 to C1.

Finally we can invoke intra-column security again to reset the other rows of this column to their

proper values in M2n−1
L . For z = n+ 1, we can just apply completely inactive program security to

change from C0 to C1, as the scratch column contains all 0s.

5 An Instantiation in a Model of Composite Order Multilinear

Groups

We now present an instantiation of input-activated obfuscation in a model of composite order

multilinear groups. Our construction will produce “program-carrying” group elements that reflect

the matrices of the associated branching programs in their exponents, as well as “enforcing” group

elements which will play a role in enforcing that the input bits used in the evaluation of the

branching program are consistent, and also for enforcing the input activation properties implied

by the input-activated matrix. For oblivious matrix branching programs of width 5 and length z,

there will be 5 ·5 ·2 ·z program-carrying group elements, naturally corresponding to the 2z matrices

of dimension 5 × 5 that form such a branching program. For inputs of the length n, there will be

2n enforcing elements (each indexed by an i ∈ [n] and a bit b). Our group will be (z + n)-linear.

19

An honest evaluation of the construction will first take the program-carrying elements corre-

sponding to the matrices that match the desired input and multiply them in the exponent of the

multilinear group. It will then extract a single entry that will be zero or nonzero depending on

the program output. It then further applies the multilinear map with the n enforcing elements

corresponding to the input (i.e. one for each i, with the bit value matching the ith bit of the input).

We will use many subgroups of distinct prime orders to serve separate purposes in our construc-

tion. There will be a prime qj for each column index j ∈ [`], and the evaluation of the program Pj
will happen in the exponent of this subspace. There will also be primes p1, . . . , pz+n that will add

randomness to the partial computations of the construction, preventing an attacker from learning

anything that it should not learn by putting together certain combinations of elements that would

never occur in an honest evaluation. More precisely, we can partition the group elements into z+n

classes - z classes of program-carrying elements, one for each step of the branching program, and n

classes of enforcing elements (one for each input bit). An honest evaluation always performs z + n

multilinear computations that respect this class structure. These additional primes p1, . . . , pz+n
will prevent a meaningful result with deviation from this structure occurs, for example when two

elements of the same class are used together in the multilinear map.

Finally, there are primes rs,b for each s ∈ [z] and b ∈ {0, 1}. Essentially, the prime rs,b will be

used to enforce that if an evaluation uses the bit value b at step s of the branching program, then

it must use the same bit value b for the corresponding input-enforcing element, otherwise there

will be a random contribution from the subgroup of order rs,b that is never canceled out, hence

obscuring the final evaluation result.

Before proceeding to the details of our construction, we give a quick review of the formal model

for composite order multilinear groups.

5.1 An Abstract Model of Composite Order Multilinear Groups

In this section, we will work with an abstract model of symmetric, composite order multilinear

groups. We let G denote a cyclic group of composite order N = p1p2 · · · pr (where p1, . . . , pr
are distinct primes). We suppose that G comes equipped with an efficiently computable, non-

degenerate k-linear map E : Gk → GT , that is actually implemented in a graded manner. We let

1G, 1GT denote the respective identity elements in G and GT . For each prime pi, we let gpi denote

a generator of the subgroup of order pi inside G. We note that whenever h ∈ G belongs to the

subgroup of order p1 · · · pi−1pi+1 · · · pr inside G and g2, . . . , gk−1 ∈ G are arbitrary, we have that

E(h, g2, . . . , gk−1, gpi) = 1GT .

More generally, the various prime order subgroups inside G are “orthogonal” under the multilinear

map, meaning that a particular prime order subgroup only contributes to the result of E if there

are non-trivial components in this subgroup on every input to E. This is a simple consequence of

the definition of multilinearity.

We let G(λ, r, k) denote a group generation algorithm that takes in a security parameter λ,

a number of prime factors r, and a level of multilinearity k and outputs a description of such a

group G. We assume the description includes the group order N , the individual primes p1, . . . , pr,

a generator g of G, and efficient algorithms for the group operations in G and GT as well as E.

20

We note that with g and the individual primes, one can produce a generator for any particular

subgroup of G.

5.2 Construction

We now construct an input-activated obfuscation scheme in this setting. Our construction will

proceed in two phases. First we construct a preliminary scheme that we prove satisfies inter-column

security, single-input program switching security, and completely inactive program security. Next

we apply a simple transformation (analogous to the one described in [GLW14]) to obtain a variant

that also satisfies intra-column security. Our preliminary scheme is:

Createlite(λ,M,P): This algorithm takes in a security parameter λ, an n× `× 2 input-activated

matrix M , and an ordered set P = (P1, . . . , P`) of programs from Pλ. We require that all Pj are

oblivious matrix branching programs of length z for inputs of length n, represented as z pairs of 5×5

matrices Aj,t,b (where t ∈ [z] and b ∈ {0, 1}). The only differences between the Pj ’s are expressed in

the matrix contents, not the length or the mapping of input bits to steps of the branching program

(this is guaranteed by the obliviousness property). For each t in [z], we let α(t) ∈ [n] denote the

index of the input bit being referenced at that step.

It first generates a (z + n)-linear group G of composite order

N = q1 · · · q` · p1 · · · pz+n
z∏
s=1

rs,0 · rs,1.

These are all distinct primes, and we let gqj , for example, denote a random generator of the

subgroup of order qj . We choose uniformly random matrices R1, . . . , Rz−1 in Z5×5
N . We note

that these are distributed uniformly and independently modulo each prime factor of N by the

Chinese Remainder Theorem. We also note that these are invertible modulo each prime with all

but negligible probability. For each j ∈ [`], t ∈ [z], and b ∈ {0, 1}, we define Bj,t,b = R−1t−1Aj,t,bRt,

where R0, Rz are defined to be the identity matrix. We note, for use later, that for any setting

of j, k ∈ [`], with any t ∈ [z] and b ∈ {0, 1}, that if Aj,t,b = Ak,t,b, then Bj,t,b = Bk,t,b. This is

true since the Ri matrices are defined globally over ZN , even though this choice induces a set of

independent random matrices over each prime factor of N .

We will produce an input-activated obfuscation T containing 5 · 5 · 2z + 2n elements of G,

each corresponding to an entry of a matrix in the branching program or to an index (y, b) where

y ∈ [n], b ∈ {0, 1}. We will refer to the group elements corresponding to matrix entries as “program-

carrying elements” and those corresponding to indices (y, b) as “enforcing elements.”

To generate a program-carrying group element gw,v,t,b for the (w, v) entry of the matrix at a step

t ∈ [z] in the branching program, corresponding to bit value b ∈ {0, 1}, and input index i = α(t) ∈
[n], we proceed as follows. For each j from 1 to `, we compute a group element uj = g

Bj,t,b(w,v)
qj . We

also sample random elements γ1, . . . , γt−1, γt+1, . . . , γz+n, where for all i ∈ [z + n] \ {t}, we sample

γi from the subgroup of order pi.

Finally, for each s ∈ [z], b′ ∈ {0, 1}, we sample a group element ds,b′ randomly in the subgroup

of order rs,b′ , except when s = t and b′ = 1− b. In this case, we set dt,1−b = 1.

21

We then define

gw,v,t,b = γ1 · · · γt−1γt+1 · · · γz+n
∏̀
j=1

uj
∏
s,b′

ds,b′ .

To generate an enforcing group element gy,b for y ∈ [n] and b ∈ {0, 1}, we first sample random

elements γ1, . . . , γz+y−1, γz+y+1, . . . , γz+n, where for all i ∈ [z+ n] \ {z+ y}, we sample γi from the

subgroup of order pi.

For each j from 1 to `, we sample a group element uj as follows. If My,j,b = 1, we sample uj
uniformly at random from the subgroup of order qj . If My,j,b = 0, we set uj = 1. For each s, b′, we

sample ds,b′ as follows. If α(s) 6= y or b′ 6= b, then ds,b′ is sampled uniformly at random from the

subgroup of order rs,b′ . Otherwise, when α(s) = y, b′ = b, we set ds,b := 1.

We then define

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏̀
j=1

uj
∏
s,b′

ds,b′ .

We output the collections of elements gw,v,t,b and gy,b as the input-activated obfuscation T .

Evallite(T, x): For an input x ∈ {0, 1}n and an input-activated obfuscation T = {gw,v,t,b, gy,b}, we

evaluate as follows. For each t, b, we let kt,b denote the 5×5 collection of elements {gw,v,t,b}, as w, v

range over [5]. We view kt,b as a 5× 5 matrix of group elements. We extend the multilinear map to

matrices of group elements in the natural way, by computing the matrix product in the exponent.

We can then compute:

e(k1,xα(1) , k2,xα(2) , . . . , kz,xα(z)), (1)

which will be a 5× 5 collection of group elements in Gz.

We will then choose a single non-diagonal entry. We choose this entry so that it is non-zero as

an entry of the product Aj,1,xα(1)Aj,2,xα(2) · · ·Aj,z,xα(z) whenever the branching program outputs 0

(i.e. whenever this matrix product is not the identity matrix). We call this single group element

k. We then compute:

e(k, g1,x1 , . . . , gn,xn) ∈ GT . (2)

We apply the zero test to the result of (2). If the zero test detects a zero, we output 1. Otherwise,

we output 0.

Correctness. We first observe that the subgroups of order p1, . . . , pz do not contribute to the

result of (1), since each subgroup of order pt is absent from the matrix elements in kt,xα(t) . Similarly,

the subgroups of order pz+1, . . . , pz+n do not contribute to the result of (2). For each (s, b), if

b 6= xα(s), then the subgroup of order rs,b does not contribute because it is absent from the matrix

elements in ks,xα(s) . If b = xα(s), then the subgroup of order rs,b does not contribute because it is

absent from the element gα(s),xα(s) .

Thus the only potential contributions to the value of (1) come from the subgroups of order

q1, . . . , q`. For each qj , we observe that we will get precisely the matrix product

Aj,1,xα(1)Aj,2,xα(2) · · ·Aj,z,xα(z) modulo qj in the exponent of (1). If the input-activated matrix has

a 0 in the slot corresponding to xi on some row i in column j, then one of the included enforcing

elements will cause the qj subgroup to be absent, and hence we will ultimately not get a contribution.

22

If instead the jth column is activated by the input x, this contribution in (1) will be multiplied by

non-zero terms in (2), and this will be 0 in the tested entry if and only if the branching program

Pj outputs 0 on the input x.

We will prove in the following subsection that the scheme Createlite, Evallite satisfies inter-

column, completely inactive program switching, and single-input program switching security. To

obtain a scheme that also satisfies intra-column security, we define algorithms:

Create(λ,M,P): This algorithm takes in a security parameter λ, an n × ` × 2 input-activated

matrix M , and an ordered set P = (P1, . . . , P`) of programs from Pλ. It forms an input-activated

matrix M ′ that is n× (`+ n`)× 2 by appending n` new columns to M . For each j ∈ [`], there will

be n new columns appended (all with associated program Pj), with the ith one having 0’s in both

slots of row i and 1’s everywhere else. We let P ′ denote the resulting (expanded) ordered program

list. Then Createlite(λ,M
′, P ′) is called to produce the output T .

Eval(T, x): For an input x ∈ {0, 1}n and an input-activated obfuscation T = {gw,v,t,b, gy,b}, we

simply run Evallite(T, x).

We note that correctness for Create and Eval follows immediately from correctness for Createlite
and Evallite, as the additional columns are not activated on any inputs.

5.3 The Multilinear Subgroup Elimination Assumption

We now describe our computational assumption, which was previously used in [GLW14].

The (µ, ν)-multilinear subgroup elimination assumption This assumption is parameterized

by positive integers µ, and ν. It concerns a µ-linear group of order N = a1 . . . aµb1 . . . bνc, where

a1, . . . , aµ, b1, . . . , bν , c are µ+ν+1 distinct primes. We give out generators ga1 , . . . , gaµ , gb1 , . . . , gbν
for each prime order subgroup except for the subgroup of order c. For each i ∈ [µ], we also give out

a group element hi sampled uniformly at random from the subgroup of order ca1 · · · ai−1ai+1 · · · aµ.

The challenge term is a group element T ∈ G that is either sampled uniformly at random from the

subgroup or order ca1 · · · aµ or uniformly at random from the subgroup of order a1 · · · aµ. The task

is to distinguish between these two distributions of T .

5.4 Security Properties

Lemma 5.1. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination

assumption implies inter-column security for our algorithms Createlite, Evallite in Section 5.2.

Proof. We suppose there exists a PPT attacker A who achieves a non-negligible advantage in

the inter-column game for some valid setting of M,P, j, k, i, β. We will create a PPT attacker B
that achieves a non-negligible advantage in breaking the (µ, ν)-multilinear subgroup elimination

assumption. B is given ga1 , . . . , gaµ , gb1 , . . . , gbν , h1, . . . , hµ, and a challenge term T . Its task is

to guess whether T was sampled from the subgroup of order ca1 · · · aµ or the subgroup of order

a1 · · · aµ.

23

B implicitly sets qk = c, and pt = at for every t 6= z+ i. It sets qj = az+i. It bijectively maps the

remaining pz+i, qj′ ’s and rs,b’s to the primes b1, . . . , bν . Then B samples the randomized matrices

Bj,t,b for all j ∈ [`], t ∈ [z], and b ∈ {0, 1}.
To make a group element gw,v,t,b, B proceeds as follows. It can use the subgroup generators at

its disposal to sample γ1, . . ., γt−1, γt+1, . . ., γz+n, uj′ for all j′ 6= j, k, and all of the ds,b′ elements

appropriately. It computes:

gw,v,t,b := h
Bj,t,b(w,v)
t γ1 · · · γt−1γt+1 · · · γz+n

∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ ,

where the matrix Bj,t,b = Bk,t,b (modulo N) because Aj,t,b = Ak,t,b. Note that ht is nontrivial in

both the subgroup of order c = qk and the subgroup of order az+i = qj , and thus this term is

distributed as it should be.

To make a group element gy,b, B proceeds as follows. It can directly sample γ1, . . ., γz+y−1,

γz+y+1, . . ., γz+n and ds,b′ elements appropriately by using the given subgroup generators. It can

similarly sample elements uj′ for j′ 6= j, k. When y 6= i, one of two cases must occur. In the first

case, My,k,b = 0, and thus we can set uk = 1. We sample uj appropriately, using the given generator

gaz+i if My,j,b = 1. Then, B can compute:

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏̀
j′=1

uj′
∏
s,b′

ds,b′ .

In the second case, My,k,b = 1, which implies that My,j,b = 1 by the conditions underlying the

inter-column game. In this case, B selects a random exponent α ∈ ZN and computes:

gy,b = hαz+yγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ .

Recall that hz+y is nontrivial in both the subgroup of order c = qk and the subgroup of order

az+i = qj , since y 6= i. Thus, since the random choice of α ∈ ZN induces independent random

values (α mod c) and (α mod az+i), these terms are distributed correctly.

When y = i and b = 1− β, there are two cases to consider. If Mi,k,b = 0, then we first sample

uj appropriately, using the given generator gaz+i if My,j,b = 1. Then, B computes:

gi,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=k

uj′
∏
s,b′

ds,b′ .

On the other hand, if Mi,k,b = 1, then B selects a random exponent α ∈ ZN and samples uj
appropriately according to Mi,j,b. It then computes:

gi,b = hαz+iγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=k

uj′
∏
s,b′

ds,b′ .

Recall that hz+i is trivial in the subgroup of order az+i = qj , and thus the hαz+i term does not

disturb the correctly sampled uj term.

24

Finally, when y = i and b = β, we must have Mi,j,β = 1, and B computes:

gi,β = Tγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ .

If T was sampled from the subgroup of order ca1 · · · aµ, this will be distributed as if Mi,k,β = 1.

Otherwise, it will be distributed as if Mi,k,β = 0. Thus, B can leverage A’s non-negligible advantage

in the inter-column game to achieve a non-negligible advantage against the multilinear subgroup

elimination assumption.

In our proof of single-input program switching security, we will use an information-theoretic

lemma due to Kilian [Kil88]:

Lemma 5.2. [Kil88] Let x denote a single input to a matrix branching program {At,b}. Then if

matrices R1, . . . , Rz−1 are chosen to be random invertible matrices, the distribution of the matrices

{R−1t−1At,xα(t)Rt} depends only on the output of the branching program evaluated on x.

Essentially, this means that when what the attacker sees only involves one matrix from each

position in the branching program, only the final output is information-theoretically revealed.

Lemma 5.3. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination

assumption implies single-input program switching security for our algorithms Createlite, Evallite in

Section 5.2.

Proof. We will prove this via a hybrid argument that incrementally “erases” the branching program

matrices not corresponding to the single relevant input (we will call it x∗) in the relevant subgroup

using the subgroup elimination assumption. Once we have done this, we can argue information-

theoretically to switch the programs and then reverse the hybrid to insert the new matrices. To

execute this strategy, we begin by defining the following hybrid experiments. Exp0 will denote

the original game with the challenge bit set to 0 (here the original program Pj is used for the

jth column). For f from 1 to z, we define Expf to be like Exp0, except for the first f positions

of the branching program, the corresponding program-carrying group elements for the bit values

disagreeing with x∗ will have no components in the qj subgroup. (Note that in Expz, only one

matrix will appear in the qj subgroup per slot.)

We first argue that for each such f , Expf is indistinguishable from Expf−1, under the multilinear

subgroup elimination assumption. We suppose there is some f ∈ [z] such that some PPT attacker

A has a non-negligible advantage in distinguishing Expf from Expf−1. We will use A to build a

PPT attacker B to break the multilinear subgroup elimination assumption.

B is given ga1 , . . . , gaµ , gb1 , . . . , gbν , h1, . . . , hµ, and a challenge term T . Its task is to guess

whether T was sampled from the subgroup of order ca1 · · · aµ or the subgroup of order a1 · · · aµ. It

implicitly sets qj = c, and pt = at for all t 6= f . It sets rf,b∗ = af , where b∗ is the bit indicating

the matrix to be erased (so b∗ is the complement of the activated input bit for the f th step of the

branching program). The remaining primes, namely pf , the qj′ for j′ 6= j, and the remaining rs,b′

are mapped bijectively to the primes b1, . . . , bν . Then, B samples the randomized matrices Bj,t,b
for all j ∈ [`], t ∈ [z], and b ∈ {0, 1}.

25

For any fixed w, v ∈ [5], t ∈ [z], and b ∈ {0, 1}, to make the group element gw,v,t,b, the

reduction B proceeds as follows. It can use the subgroup generators at its disposal to sample

γ1, . . . , γt−1, γt+1, . . . , γz+n, together with the uj′ for all j′ 6= j, and all of the ds,b′ elements appro-

priately.

If b = x∗α(t), or if b = 1− x∗α(t) but t > f , then B sets:

gw,v,t,b = h
Bj,t,b(w,v)
t γ1 · · · γt−1γt+1 · · · γz+n

∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

Recall that when setting gw,v,t,b, it should be that only dt,1−b = 1, while all other ds,b′ should be

random in the subgroup of order rs,b′ . Therefore, we observe that our setting of gw,v,t,b is properly

distributed when t 6= f because the component in subgroup rf,b∗ should be random here, since

f 6= t (so it’s acceptable that this component appears in ht). To see it is also properly distributed

when t = f , we note that when t = f then to be in this case it must be that b = 1 − b∗, and

therefore the component in subgroup rf,b∗ should be, and is, 1 here (as this component is missing

from hf).

The other case when t = f is when b = b∗. To make gw,v,f,b∗ , B computes:

gw,v,f,b∗ = TBj,f,b∗ (w,v)γ1 · · · γf−1γf+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

We note the random component in the subgroup of order rf,b∗ appearing in the challenge term T

is acceptable, as the df,b∗ is supposed to be random for this group element.

Finally, if b = 1− x∗α(t) and t < f , then B simply sets

gw,v,t,b = γ1 · · · γt−1γt+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

Recall that for t < f , previous hybrids have already eliminated the qj terms, and thus this is the

correct distribution.

To make a group element gy,b, the reduction B proceeds as follows. It can directly sample

γ1, . . . , γz+y−1, γz+y+1, . . . , γz+n and ds,b′ elements appropriately by using the given subgroup gen-

erators. It can similarly sample elements uj′ for j′ 6= j. If My,j,b = 0, then since uj should equal 1,

it can then set

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

If My,j,b = 1, it must be the case that either α(f) 6= y or b∗ 6= b. This is because column j,

row y of M can only have one entry equal to 1 (since exactly one input is activated), and the entry

Mα(f),j,1−b∗ = 1 by definition of b∗. This means that for these y, b, the reduction B can choose a

random exponent α ∈ ZN and set

gy,b = hαz+yγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

The presence of an random rf,b∗ component on hz+y is not problematic here, as α(f) 6= y or b∗ 6= b

holds. Recall that in the enforcing elements gy,b, the rs,b′ components are to be random if α(s) 6= y

or b′ 6= b.

26

Thus, if T has a random c = qj component, then B has properly simulated Expf−1. If not, it has

properly simulated Expf . This allows us to argue that under this multilinear subgroup elimination

assumption, Exp0 is computationally indistinguishable from Expz.

Next, we argue that the distribution of Expz is statistically close to the distribution of an Exp∗z
with Pj replaced by P ∗, where P ∗ is any other branching program of the same length and input

access pattern that agrees with Pj on the single activated input. We stress that this transition from

Expz to Exp∗z is information-theoretic (does not rely on any computational assumption).

First, we note that the uniform distribution of the randomizing matrices R1, . . . , Rz−1 (reduced

modulo qj) in Expz is only a negligible statistical distance from the distribution required for Lemma

5.2, where they are sampled to be invertible (this is because a random matrix modulo qj is invertible

with all but negligible probability). So up to this negligible statistical distance, we have that the

distribution of the randomized branching program matrices Bj,t,b depends only on Pj(x
∗) = P ∗(x∗).

This means that the distribution of Exp∗z is negligibly close to the distribution of Expz.

Once we are at Exp∗z, we can apply the same hybrid steps in reverse to restore the matrices

in the qj subgroup of the program-carrying group elements, this time with P ∗ instead of Pj . This

completes our proof of single-input program switching security.

Lemma 5.4. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination

assumption implies completely inactive program security for algorithms Createlite, Evallite in Section

5.2.

Proof. This follows from the same hybrid argument used in the proof of Lemma 5.3, except that

we “erase” the qj subgroup components on all of the program-carrying group elements. (We note

that the case in the above proof where My,j,b = 1 no longer arises.) Once we have erased all such

components, we can reverse the process and iteratively insert the new program P ∗. Here we do

not need the information-theoretic argument from Killian, as we are able to erase all the matrices,

leaving no distribution that needs to be matched.

Theorem 5.5. For µ := z + n and ν := ` + n` + 2z − 1, the (µ, ν)-multilinear subgroup elimina-

tion assumption implies intra-column security, inter-column security, completely inactive program

switching security, and single-input program switching security for our algorithms Create, Eval in

Section 5.2.

Proof. We note that inter-column security, completely inactive program switching security, and

single-input program switching security for Create, Eval follow immediately from Lemmas 5.1, 5.3,

and 5.4, as the columns of the matrix M ′ that is input to Createlite are a superset of the columns

of the original M input to Create.

For intra-column security of Create, Eval, we will derive this as a consequence of the inter-

column security of Createlite, Evallite. We consider an instance of the intra-column game where

column j of M has a row i∗ with both slots set to 0 and we seek to replace this column C (which

also has 0’s in row i∗). For this, we use the appended column of M ′ that has the same program Pj
and has 0’s in row i∗ and 1’s everywhere else. Note that the changes we need to make to reach C

are in slots where this appended column has 1’s, and moreover its 1’s cover all the 1’s of the current

27

jth column as well as C. Thus, by iteratively applying inter-column security, we can change the jth

column of M to C.

References

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-

tecting obfuscation against algebraic attacks. Cryptology ePrint Archive, Report

2013/631, 2013. http://eprint.iacr.org/.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.

In TCC, pages 325–341, 2005.

[BR13] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits

via generic graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013. http:

//eprint.iacr.org/.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing

with short ciphertexts and private keys. In EUROCRYPT, 2006.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke

system. In ACM Conference on Computer and Communications Security, pages 211–

220, 2006.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,

and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report

2013/642, 2013. http://eprint.iacr.org/.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.

Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive,

Report 2014/906, 2014.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear

maps over the integers. In CRYPTO (1), pages 476–493, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal

lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent

Waters. Candidate indistinguishability obfuscation and functional encryption for all

circuits. In FOCS, pages 40–49, 2013.

[GGH14] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps

from lattices. IACR Cryptology ePrint Archive, 2014:645, 2014.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round se-

cure mpc from indistinguishability obfuscation. Cryptology ePrint Archive, Report

2013/601, 2013. http://eprint.iacr.org/.

28

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and

its applications. In STOC, pages 467–476, 2013.

[GLW14] Craig Gentry, Allison Bishop Lewko, and Brent Waters. Witness encryption from

instance independent assumptions. Cryptology ePrint Archive, Report 2014/273, 2014.

http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Jour. of Computer and System

Science, 28(2):270–299, 1984.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[PST13] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation

from semantically-secure multilinear encodings. Cryptology ePrint Archive, Report

2013/781, 2013. http://eprint.iacr.org/.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable

encryption, and more. Cryptology ePrint Archive, Report 2013/454, 2013. http:

//eprint.iacr.org/.

29

A Definition of Indistinguishability Obfuscation

Definition A.1 (Indistinguishability Obfuscator (iO)). A pair of uniform PPT machines (iO,Eval)

is called an indistinguishability obfuscator for a circuit class {Cλ} with inputs of size n(λ) if the

following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x ∈ {0, 1}n(λ), we have that

Pr
[
Eval

(
iO(λ,C), x

)
= C(x)

]
= 1

• There exists a negligible function α such that the following holds: For any (not necessarily

uniform) PPT adversaries Samp, D, where Samp(1λ) outputs a tuple (C0, C1, σ), where

C0, C1 ∈ Cλ, we have that:

If for all λ, it is true that Pr[∀x ∈ {0, 1}n(λ), C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] >

1− α(λ), then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

B Proof of Lemma 4.6

For this game transition, the list of programs is fixed, and we are going from an underlying input-

activated matrix of M t−1
L |S|M t

R to a matrix of M t
L|St|M t

R. We will preform this transition gradually

over several steps. These steps are all very similar to the hybrid proof for positional witness

encryption in [GLW14].

We let M0 := M t−1
L |S|M t

R denote our starting input-activated matrix, and we recall Game0 is

the security game corresponding to this. We first consider t > 0. We then have that 0 ≤ t − 1 <

2n − 1, so if we consider the bits of t− 1 in order from most significant to least significant, there is

some bit index r such that the rth bit is 0 and the remaining bits are all equal to 1. The bits of t

will then have a 1 in the rth position and 0s following. We observe by our definition of M t
L that is

is only the bottom right submatrix of M t−1
L corresponding to columns and rows ≥ r that changes

as we move from M t−1
L to M t

L.

As a first step, we will transition to M1 := M t−1
L |S̃t|M t

R, where S̃t is a column that matches the

rth column of M t−1
L (note that this column activates on t). We let Game0.1 denote a variant of the

security game using M1 in place of M0.

Lemma B.1. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game0 from Game0.1.

Proof. We can invoke the inter-column security game repeatedly, once for each entry of the scratch

column that we to change from a 0 to a 1 in order to make it match the rth column of M t−1
L .

Throughout this process, that rth column “dominates” the scratch column, in that it contains

a 1 in every slot where the scratch column contains a 1, thus all of our invocations satisfy the

constraints of the inter-column security game.

30

We next define M2,z for each z from 0 to n − r as follows. The scratch column and rightmost

matrix M t
R will the same for each M2,z as in M1. In M2,0, the left matrix will differ from M t−1

L only

in columns and rows ≥ r. In these entries, all non-diagonal entries will match their specification in

M t
L, while all diagonal entries will continue to match their specifications in M t−1

L . For z = 1 through

n− r, the diagonal entries of M2,z for indices r + 1 to r + z will also match their specifications in

M t
L. This means that once we arrive at M2,n−r, all but the rth column of the left matrix will match

M t
L. We let Game0.2,z denote the variant of the security game corresponding to the input-activated

matrix M2,z.

Lemma B.2. If the input-activated obfuscation scheme has intra-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game0.1 from Game0.2,0.

Proof. We observe that for each column r + 1 to n in M t−1
L , the diagonal row has 0s in both

slots. This allows us to apply the intra-column security property n− r times in order to adjust the

remaining rows of these columns to match their specifications in M t
L.

Lemma B.3. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game0.2,z from Game0.2,z−1, for each z

from 1 to n− r.

Proof. We apply the inter-column security game with k = r + z, j = r, i∗ = r + z, and β = 1. To

see that the required constraints are satisfied, observe that the rth column always has a 1 in row i∗

and slot β, because this is a below diagonal entry for column r. Also observe that column r and

column r + z match in all of their entries at or above row r, and below row r column r has all

1s.

We next define M3, which will differ from M2,n−r in that the rth column will now match its

specification in M t
L (note that this only requires a change to the diagonal entry in slot 1). We let

Game0.3 denote the variant of the security game with M3 used as the underlying input-activated

matrix.

Lemma B.4. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game0.2,n−r from Game0.3.

Proof. Here we apply the inter-column security game with k = r, j = n + 1, i∗ = r, β = 1. We

note that coming into this transition, column r and the scratch column (column j), have all the

same values. Additionally, they have a 1 in this slot β, row i∗. Thus, this is a valid invocation of

the inter-column game that changes this 1 to 0 in column r. As a result, column r will now match

its specification in M t
L.

What now remains is to make the scratch column match St. For each z from 0 to n, we let

M3,z denote a matrix that is like M3, except that the first z rows of the scratch column (column

n + 1) match St. Note that M3,0 = M3. We let Game0.3,z denote a variant of the security game

with M3,z used as the underlying input-activated matrix.

Lemma B.5. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game0.3,z from Game0.3,z−1 for each z

from 1 to n.

31

Proof. We first note that in any row z where tz = 1 (i.e. the zth bit of t is 1, and this can only

occur for z ≤ r), the scratch column already contained the correct slot values (a 0 in the 0 slot,

and a 1 in the 1 slot). So for these values of z, the two games are in fact identical, and there is

nothing to prove.

It thus suffices to consider values of z such that tz = 0. For such a z, note that in Game3,z−1 the

scratch column contains 1s in both slots of row z. We will apply the inter-column security game to

change the value in slot 1 to a 0. This can be done by setting k = n+ 1, j = z, i∗ = z, and β = 1.

To see that this is a valid invocation, note that the jth column of M t
L has a 1 for its value in slot

1 on its diagonal entry (row z). It has a 0 in its slot 0 at this position, but note that position is

exempted from the requirements for the inter-column security game. For rows below the diagonal,

row z has all 1 entries, so it certainly dominates the 1 entries in the scratch below this point. For

any row i above z, if ti = 1 then both column z and the scratch will have 0 in their 0 slots and 1

in their 1 slots for row i. If ti = 0, then column z will have both 1s at this row. This means that

all the requirements for the inter-column game are satisfied, allowing us to transition from M3,z−1
to M3,z.

We now observe that M3,n is equal to the matrix M t
L|St|M t

R that we were working towards, and

hence we have completed this transition for all t > 0. To complete the proof of Lemma 4.6, it only

remains to deal with the corner case of t = 0. For this, we must get from M−1L |S|M0
R to M0

L|S0|M0
R.

We will accomplish this in three steps. We let M0 := M−1L |S|M0
R denote our starting matrix, with

Game′0 denoting the corresponding security game. We define M1 := M−1L |S̃|M0
R, where S̃ is a

column of all 1s. We let Game′0.1 denote a variant of the security game where the underlying

input-activated matrix is M1. We next define M2 := M0
L|S̃|M0

R. We let Game′0.2 denote a variant

of the security game where the underlying input-activated matrix is M2. We let M3 := M0
L|S0|M0

R

denote our target matrix, with Game′0.3 being the corresponding security game.

Lemma B.6. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing between Game′0 and Game′0.1.

Proof. We invoke the inter-column security game 2n times to change each entry of the scratch

column from a 0 to 1. Throughout this process, we can set j = 1 and k = n + 1 and iterate over

all of the values of i∗ from 1 to n and β = 0, 1. Each of these invocations is justified by the fact

that column 1 in M−1L contains all 1 entries.

Lemma B.7. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing between Game′0.1 and Game′0.2.

Proof. Here we invoke the inter-column security game once with j = n + 1, k = 1, i∗ = 1 and

β = 0. This invocation is justified by the fact that the scratch column now contains all 1 entries,

and so can be used to flip the 0-slot entry of the first column to 0.

Lemma B.8. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing between Game′0.2 and Game′0.3.

Proof. This transition can be accomplished by n invocations of the inter-column security game.

For each z from 1 to n, we apply the inter-column security game with j = z, k = n + 1, i∗ = z,

32

and β = 1. We note that column j = z has 1’s in all entries except for a 0 in the 0-slot of row z.

So when we apply the inter-column game with i∗ = z, this slot is exempted from the requirement

that every 1 in column k must be matched by a 1 in column j, thus allowing us to flip the 1-slot

of the scratch column in this row from a 1 to 0. Once we have done this for every z from 1 to n,

the scratch column contains S0.

This concludes our proof of Lemma 4.6.

C Proof of Lemma 4.8

For this game transition, the list of programs is fixed, and we are going from an underlying input-

activated matrix of M t
L|St|M t

R to a matrix of M t
L|S|M

t+1
R . We will perform this transition gradually

over several steps. These steps will only change the values in the St and M t
R portions of the

concatenated matrix - the preceding M t
L portion will just be carried along unchanged throughout.

For notational convenience, we let M1 := M t
L|St|M t

R. We let r be index of the last 0 in t,

assuming for now that t 6= (1, 1, . . . , 1). In other words, r = n if tn = 0, r = n−1 if tn 6= 0, tn−1 = 0,

and so on. For every z from 0 to n− r, we define M1,z to be the same as M1, except the last z rows

of the scratch column have all slots = 1, instead of being St. For each such z, we define Game2.1,z
to be a variant of the security game where the attacker is given an input-activated obfuscation

scheme created from M1,z (where we interpret M1,0 as M1).

Lemma C.1. For each z from 1 to n−r, if the input-activated obfuscation scheme has inter-column

security, then any PPT attacker has only a negligible advantage in distinguishing Game2.1,z from

Game2.1,z−1.

Proof. We will invoke the inter-column security game with k = n + 1, i∗ = n − (z − 1), β =

1− tn−(z−1) = 0, and j = n+1+n− (z−1). To see that this is a valid use of inter-column security,

first note that Mi∗,j,0 = 1 for either M = M1,z or M = M1,z−1, since this is a diagonal position

inside M t
R and tn−(z−1) = 1. Next note that for i > n − (z − 1), Mi,j,0 = Mi,j,1 = 1, since these

entries are below the diagonal in M t
R. For all i < n − (z − 1), Mi,j,ti = 1 holds, by definition of

M t
R. Note that these are the only 1 entries in St that appear for these rows. Lastly, note that the

single slot Mn−(z−1),j,1 is exempted from the condition that column j have a 1 wherever column k

does in the definition of our inter-column security game.

This brings us to the matrix M2 := M1,n−r. Now for z from 0 to r − 1, we define M2,r−1−z to

be the same as M2, except the first (r − 1) − z rows of the scratch column match St, while the

next z rows match column r inside M t
R. For each z from 0 to r− 1, we define Game2.2,r−1−z to be

a variant of the security game where the attacker is given an input-activated obfuscation scheme

created from M2,r−1−z. Note that in this part of the proof we are progressing forward by starting

with M2,r−1 and “counting down” to M2,0.

Lemma C.2. For each z from 0 to r − 2, if the input-activated obfuscation scheme has inter-

column security, then any PPT attacker has only a negligible advantage in distinguishing between

Game2.2,r−z−1 and Game2.2,r−z−2.

33

Proof. First we consider what the r− 1− z row of St and the rth column of M t
R have in their slots.

If tr−1−z = 0, then St and the rth column of M t
R both have a 1 value in the 0 slot and a 0 value in

the 1 slot on this row. Thus, there is no difference here, and the games are in fact identical.

It thus suffices to consider the case where tr−1−z = 1. In this case, St has a 0 in the 0 slot and

a 1 in the 1 slot, while the rth column of M t
R has 1’s in both slots on this row. So we will invoke

the inter-column security game with k = n+ 1, i∗ = r − 1− z, β = 0, and j = n+ 1 + r − 1− z.
To see that this applies, we first observe that Mr−1−z,j,0 = 1, since this is a diagonal position

inside M t
R and tr−1−z = 1. We next need to check that for every 1 that currently appears in the kth

column, we have a 1 in the same position in the jth column. We first consider the rows i > r−1−z.
For these rows, the jth column is full of 1’s in all slots, as these are below diagonal rows of a column

inside M t
R. For rows i < r − 1− z, the kth column currently matches St, and so only has 1 in the

slots corresponding to the ti values. Note that above diagonal entries of a column inside M t
R will

also have 1’s in these slots, so we can indeed apply inter-column security to change the indicated

slot in column k from a 0 to a 1.

We let Game2.3 := Game2.2,0. This brings us to the matrix M3 := M2,0, where the scratch

column of M is now exactly what we would like the rth column inside M t
R to become in order to

switch from M t
R to M t+1

R . We let M4 denote the matrix that is formed by adjusting M3 so that

the n+ 1 + r column matches the rth column in the definition of M t+1
R . We define Game2.4 to be

a variant of the security game where the attacker is given an input-activated obfuscation scheme

created from M4.

Lemma C.3. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing between Game2.3 and Game2.4.

Proof. In fact, the n + 1 + r column inside M3 only differs from this column inside M4 in one

position: namely a 0 that appears in the 0 slot in row r that we would like to change to a 1.

Clearly, since the scratch column has a 1 in this position, we can use the inter-column security

game with j = n+ 1, k = n+ 1 + r, i∗ = r, and β = 0 to make this transition.

We now have the n+ 1 + r column of M4 matching what it should be in M t+1
R . We now must

change columns n+ 1 + r+ z as z ranges from 1 to n− r. For each such z, we let M4,z denote the

matrix which is similar to M4, except that the columns n+ 1 + r up to n+ 1 + r+ z match M t+1
R .

Note that M4,0 = M4. For z from 0 to n − r, we define Game2.4,z to be a variant of the security

game where the attacker is given an input-activated obfuscation scheme created from M4,z.

Lemma C.4. For each z from 1 to n−r, if the input-activated obfuscation scheme has intra-column

and inter-column security, then any PPT attacker has only a negligible advantage in distinguishing

Game2.4,z from Game2.4,z−1.

Proof. To transition from M4,z−1 to M4,z, we consider the r + z column of M t
R. We consider its

diagonal slots, i.e. the slots on row r + z. We wish to change the value in the 0 slot here from

1 to 0. To do this, we invoke inter-column security with i∗ = r + z, β = 0, k = n + 1 + r + z,

and j = n + 1 + r. To see that this applies, note that column j of M4 is equal to the rth column

of M t+1
R , and this has a 1 in the relevant slot because it is a below diagonal entry. Furthermore,

these columns j and k agree in all of their entries above row i∗. Now, once we have we this row

34

i∗ with both slots having 0 values, we can invoke intra-column security to change the rest of the

n+ 1 + r + z column to the value it should take in M4,z.

We let M5 := M4,n−r. We note that this is almost the same as the desired M6 := M t+1
L |S|M t+1

R ,

except that the scratch column has not been reset to all 0 values. For this last transition, we define

Game2.6 as a variant of the security game where the attacker is given an input-activated obfuscation

scheme created from M6, and we let Game2.5 := Game2.4,n−r.

Lemma C.5. If the input-activated obfuscation scheme has intra-column and inter-column security,

then any PPT attacker has only a negligible advantage in distinguishing Game2.5 from Game2.6.

Proof. In M5, the scratch column is still an exact copy of column n + 1 + r, which is where we

left it after using it to perform our switch from M t
R to M t+1

R . Thus, by an easy application of

inter-column security with k = n + 1 and j = n + 1 + r, we can create a row of the final column

that has 0’s in both slots. Then, finally invoking intra-column security, we can set it back to all 0

values in all rows.

In the above argument, we assumed that t < 2n − 1. Finally we must argue that we can

transition from M t
L|St|M t

R to M t
L|S|M

t+1
R when t = 2n − 1 (and t + 1 = 2n). This will be similar

to the argument applied above and will take multiple steps. For notational convenience, we now

set t := 2n − 1 and (re-)define M1 := M t
L|St|M t

R as our starting point.

For every z from 0 to n, we define M1,z to be the same as M1, except the last z rows of the

scratch column have all slots = 1, instead of being St. For each such z, we define Game′2.1,z to be

a variant of the security game where the underlying input-activated matrix is M1,z.

Lemma C.6. For each z from 1 to n, if the input-activated obfuscation scheme has inter-column

security, then any PPT attacker has only a negligible advantage in distinguishing Game′2.1,z from

Game′2.1,z−1.

Proof. This follows identically to the proof of Lemma C.1.

This brings us to the matrix M2 := M1,n, which has a scratch column with all slots = 1. We

define M3 to be the same as M2, except that its n + 2 column also has all slots = 1. We define

Game′2.3 to be the variant of the security game where the underlying input-activated matrix is M3.

Lemma C.7. If the input-activated obfuscation scheme has inter-column security, then any PPT

attacker has only a negligible advantage in distinguishing Game′2.1,n from Game′2.3.

Proof. Here we invoke the inter-column security game with j = n+ 1, k = n+ 2, β = 1, and i∗ = 1.

It is easy to confirm that this applies, as the column j (the scratch column of M2) contains all 1

values.

We have now transitioned to M3, which is almost equal to the desired M4 := M t
L|S|M

t+1
R ,

except we want to reset the scratch column of M3 to be all 0 values instead of being all 1 values.

We will do this with a final application of the inter-column and then intra-column security games.

We let Game′2.4 be a variant of the security game where the underlying input-activated matrix is

M4.

35

Lemma C.8. If the input-activated obfuscation scheme has inter-column and intra-column security,

then any PPT attacker has only a negligible advantage in distinguishing Game′2.3 from Game′2.4.

Proof. We invoke the inter-column security game twice with j = n+ 2, k = n+ 1, i∗ = 1, for β = 0

and β = 1. We note that column j contains all 1’s, so these invocations allow us to change the first

row of the scratch column to have 0’s in both slots. Then, by a final application of the intra-column

security game, we can change the remaining rows of the scratch column to 0’s as well.

This concludes our proof of Lemma 4.8.

36

