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Abstract

Witness encryption was proposed by Garg, Gentry, Sahai, and Waters as a means to encrypt
to an instance, x, of an NP language and produce a ciphertext. In such a system, any decryptor
that knows of a witness w that x is in the language can decrypt the ciphertext and learn the
message. In addition to proposing the concept, their work provided a candidate for a witness
encryption scheme built using multilinear encodings. However, one significant limitation of the
work is that the candidate had no proof of security (other than essentially assuming the scheme
secure).

In this work we provide a proof framework for proving witness encryption schemes secure
under instance independent assumptions. At the highest level we introduce the abstraction of
positional witness encryption which allows a proof reduction of a witness encryption scheme via
a sequence of 2n hybrid experiments where n is the witness length of the NP-statement. Each
hybrid step proceeds by looking at a single witness candidate and using the fact that it does
not satisfy the NP-relation to move the proof forward. We show that this “isolation strategy”
enables one to create a witness encryption system that is provably secure from assumptions
that are (maximally) independent of any particular encryption instance. We demonstrate the
viability of our approach by implementing this strategy using level n-linear encodings where n is
the witness length. Our complexity assumption has ≈ n group elements, but does not otherwise
depend on the NP-instance x.



1 Introduction

Witness encryption, as introduced by Garg, Gentry, Sahai, and Waters [15], is a primitive that
allows one to encrypt to an instance of an NP language L. An encryptor will take in an instance
x along with a message m and run the encryption algorithm to produce a ciphertext CT. Later
a user will be able to decrypt the ciphertext and recover m if they know of a witness w showing
that x is in the language L according to some witness relation R(·, ·). The security of witness
encryption states that, for any ciphertext created for an instance x that is not in the language
L, it must be hard to distinguish whether the ciphertext encrypts m0 or m1. Concepts related
to witness encryption include: (in the computational setting) point-filter functions [17], and (in
the statistical setting for languages in SZK) non-interactive instance-dependent commitments [30],
including efficiently-extractable ones [16].

The primitive of encrypting to an instance is intriguing in its own right, and Garg et. al.
show that it has many compelling applications, including public key encryption with very fast
key generation, identity-based encryption [29, 3, 8], attribute-based encryption [27] (ABE) for
arbitrary circuits, and ABE for Turing Machines [18]. The work of [18] goes on to develop even
further applications, such as reusable garbling schemes for Turing machines.

These powerful applications motivate the quest for constructions of witness encryption with
strong provable security guarantees. In [15], they gave a witness encryption construction for the
NP-complete Exact Cover problem [20] using multilinear encodings (first suggested in [5] and first
constructed by Garg, Gentry, and Halevi [12], with an alternative construction later provided by
Coron, Lepoint and Tibouchi [9]).

While the GGSW construction candidate demonstrates the plausibility of realizing secure wit-
ness encryption, they were unable to reduce the security of their system to anything simpler than
directly assuming the security of their construction. Instead they applied what we will call an
instance dependent family of assumptions that they called the “Decision Graded Encoding No-
Exact-Cover Problem.” The assumption is that for each instance x not in the language, no PPT
attacker can distinguish between two particular distributions of multilinear encodings. The dis-
tributions directly embed the Exact Cover instance x are almost identical to the structure of the
ciphertexts from the construction.

The Importance and Difficulty of Using Instance-Independent Assumptions While a
generic group argument might give some confidence that it will be difficult to find an attack on
a scheme, a reduction to an assumption simpler than the scheme itself is much more desirable.
First, such a reduction will often provide critical insight and understanding into why the scheme
is secure. Second, the ideas behind proof reductions often transcend their original settings and
will be of use elsewhere. Having a single, concrete assumption also provides a clearer focus for
cryptanalysis efforts to stress-test a candidate scheme.

Prior to this work, no known schemes could be reduced to instance-independent assumptions.
This is also the case for all known indistinguishability obfuscation schemes. For example, [13]
explicitly reduces to a instance-dependent family of assumption, while [26] implicitly does this
through a meta-assumption.

Our goal is to create techniques for building witness encryption systems that are provably
secure under instance independent assumptions. To achieve this, we must first confront an intuitive
barrier that is formalized as an impossibility result in [15] (with some restrictions). The idea is that
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any black-box security reduction to an instance-independent assumption for a witness encryption
scheme must (in some sense) verify that a statement is false. Otherwise, we could use the reduction
to break the assumption by “fooling it” on a true statement for which we know a witness, and
hence can simulate an attack. Since the best known methods for solving NP-hard problems take
exponential time, this implies an instance independent reduction will have an exponential security
loss.

Our Strategy To address the barrier above, we devise a proof technique that employs a reduction
which gradually “learns” that the instance x is not in the language. Consider a instance x /∈ L
with witness candidates of n bits. Our strategy is to allow a reduction to build a hybrid argument
by isolating and examining each witness candidate, w, in sequence and utilizing the fact that
R(x,w) = 0 (i.e. the witness is not valid) to progress the hybrid to the next step. (Since there
are 2n witness candidates, the proof strategy will inherently use complexity leveraging, as will any
reduction strategy that falls within the confines of the [15] impossibility result.) In this way, we
obtain a “true reduction” that represents a new understanding of the security of witness encryption.

To implement this hybrid approach, we will need a technique that somehow allows a proof to
compactly “save” its work for all of the witnesses it has examined. Our starting point will be a
broadcast encryption (BE) [10] system proposed by Boneh and Waters [6] in 2006, which was the
first collusion resistant system to be proved adaptively secure. Instead of proving security all at
once, they employed a method of altering the challenge ciphertext over a sequence of N hybrid
experiments for a BE system of N users. At the center of their approach was a new abstraction
that they called augmented broadcast encryption. An augmented BE system has an encryption
algorithm EncryptAugBE(PK, S, t,m) that takes as input a public key PK, a set of user indices
S ⊆ [0, N−1] , an index t ∈ [0, N ], and a message m. This produces a ciphertext CT. The semantics
of the system are that a user with index u ∈ [0, N − 1] 1 can decrypt the ciphertext and learn the
message only if u ∈ S and u ≥ t. These are like the semantics of standard broadcast encryption,
but with the added constraint of the index t. Augmented broadcast encryption has two security
properties. The first is that no poly-time attack can distinguish between EncryptAugBE(PK, S, t,m)
and EncryptAugBE(PK, S, t + 1,m) if the attacker does not have the key for index t or if t /∈ S.
The second property is that the scheme is semantically secure if we encrypt to index t = N , thus
cutting off all the user keys whether or not they are in S.

It is straightforward to make a standard broadcast encryption using an augmented one, as we
can create a broadcast ciphertext to the set S by simply calling EncryptAugBE(PK, S, t = 0,m). By
setting t = 0, the range condition is never invoked. The advantage of using this condition comes
into the proof where we want to prove that no attack algorithm can distinguish an encryption to
an adaptively chosen set S∗ (meaning it is chosen after seeing the public key) if it is only given
keys for u /∈ S∗. The proof proceeds by a sequence of indistinguishable hybrid experiments where
at the i-th hybrid the challenge ciphertext is generated for index t = i. Finally, we move to t = N
and the second property then implies security of the scheme. Even though there were N indices,
the abstraction and hybrid sequence allowed for a proof to isolate one user at a time. The BW
construction melded a broadcast system with the Boneh-Sahai-Waters [4] traitor tracing [7] system
to enforce the range condition.

1The Boneh-Waters paper uses indices 1, . . . , N for the users. We shift this to 0, . . . , N − 1 to better match our
exposition.
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Positional Witness Encryption With these concepts in mind, we can turn back to the problem
of devising a proof strategy for witness encryption for an NP-complete language L. The first step
we take is the introduction of a primitive that we call positional witness encryption. A positional
witness encryption system has an encryption algorithm EncryptPWE(1λ, x, t,m) that takes as input
a security parameter 1λ, astring x, a position index t ∈ [0, 2n], and a message m and outputs a
ciphertext CT. Here we let n be the witness length of x and let N = 2n. One can decrypt a
ciphertext by producing a witness w such that R(x,w) = 1 and w ≥ t where w is interpreted as an
integer. Essentially, this has the same correctness semantics as standard witness encryption, but
with the range condition added. The security properties are as follows:

• Positional Indistinguishability: If R(x, t) = 0 then no poly-time attacker can distinguish
between EncryptPWE(1λ, x, t,m) and EncryptPWE(1λ, x, t+ 1,m).

• Message Indistinguishability: No poly-time attacker can distinguish between
EncryptPWE(1λ, x, t = 2n,m0) and EncryptPWE(1λ, x, t = 2n,m1) for all equal length mes-
sages m0,m1.

We point out that the security definition of positional witness encryption is not explicitly con-
strained to x /∈ L in any place. However, if some x /∈ L, then for all witnesses w ∈ [0, 2n − 1]
(interpreting the bitstring w as an integer) we have that R(x,w) = 0. This leads to a natural con-
struction and proof strategy for witness encryption. To witness encrypt a message m to an instance
x, we call EncryptPWE(1λ, x, t = 0,m). To prove security, we design a sequence of indistinguishable
hybrids where we increase the value of t at each step until we get to t = N = 2n where we can
invoke message indistinguishability. Each step can be made since x /∈ L implies R(x,w) = 0. The
hybrids cause a 2n loss of security relative to the security of the positional witness encryption and
this should be compensated for in setting the security parameter. 2

The potential advantage of positional witness encryption is that it offers a hybrid strategy where
the core security property is focused on whether a single witness satisfies a relation. However, there
is still a very large gap between imagining this primitive and realizing it. First, we need a data
structure that can both securely hide t and compactly store it (e.g. ciphertexts cannot grow
proportional to the number of witnesses N = 2n). Next, we need to be able to somehow embed an
instance x of an NP-complete problem. This must be done in such a way that the security proof
can isolate a property that depends on whether R(x,w) = 0 for each witness candidate w and use
this to increment the positional data in a manner oblivious to an attacker.

Tribes Schemes and Their Uses We begin our realization by introducing a data structure
that we call a tribes matrix, which will be flexible enough to encode both a position and a CNF
formula. A tribes matrix will induce a boolean function from n-bit inputs to a single output bit.
We then introduce a cryptographic primitive called a tribes scheme that will hide some properties
of the matrix while still enabling evaluation of the corresponding boolean function. The benefit
of this middle layer of abstraction is that it portions the work into a manageable hybrid security
proof at the abstract level and creates a rather slim and concise target for lower level instantiations.
This naturally increases the potential for instantiating our framework with a variety of different
assumptions.

2We note that complexity leveraging is used elsewhere in “computing on encrypted data”. For example, current
solutions of Attribute-Based Encryption for circuits [14, 19] are naturally selectively secure and require complexity
leveraging to achieve adaptive security.
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The name “tribes” was chosen because of the structural similarities between the induced boolean
function and the tribes function commonly considered in boolean function analysis (e.g. [2]). In
the tribes function, n inputs are thought of as people that are partitioned into ` tribes, and the
function outputs 1 if and only if at least one tribe takes value 1 unanimously. In our case, we define
3-dimensional n × ` × 2 matrix, where we think of it as having n rows, ` columns, and 2 “slots”
for each row and column pair. The slots take values from a 2-symbol alphabet, notated as {U,B}
and are {0, 1}-indexed. The B stands for “blocked” and the U stands for “unblocked.” To evaluate
the boolean function on a n bit input x1, . . . , xn, we consider each of the ` columns as a tribe, but
in each row i we take the value in the slot indexed by xi (this means that the input bits specify
the composition of the tribe from a pre-existing set of values, rather than providing the values
themselves). If some tribe is unanimously “blocked,” the function outputs 1, otherwise it outputs
0. For a tribes matrix denoted by M , we will denote the associated boolean function by fM .

When we embed a tribes matrix into a tribes scheme, we seek to allow access to evaluating the
function without revealing full information about the matrix entries. Of course, some properties
of the matrix entries can be inferred from black-box access to the function, and this is fine; we
only seek to hide a very specific kind of structure that does not affect the function evaluation on
any input. For this, we define the notions of “inter-column” and “intra-column” security, and the
combination essentially requires that the tribes schemes for two matrices that differ in a single slot
value are indistinguishable if there a simple reason why this slot value does not affect the boolean
function.

More precisely, suppose we wish to hide the value of a slot in row i∗, column k. If there is
a column j such that the corresponding slot has value B, and furthermore in all rows i 6= i∗,
occurrences of B in column k are always matched by occurrences of B in column j, then we can
change the value of this slot in row i∗ without affecting the boolean function. To see this, observe
that regardless of the value at this slot in column k, for any input where tribe k is unanimously
blocked, tribe j is also unanimously blocked. Inter-column security requires that we can furthermore
hide this change in the sense of computational indistinguishability. The second property of intra-
column security ensures that if both slots of a particular row in a single column have the value U ,
then any other slot in the column can be changed without an attacker noticing.

We next consider how one might encode positions and CNF formulas into a tribes matrix. Our
approach is to encode these two objects separately, and then simply concatenate the matrices. To
encode a position t, we wish to produce a tribes matrix M where the boolean function fM will
output 1 for every witness y < t, and will output 0 otherwise. The key observation is that every
potential witness y < t will have some bit j where it first departs from t (starting from the most
significant bit), and in this bit y will be 0 and t will be 1. We leverage this by designing the jth

column of M to be blocked precisely for such y.
To encode a CNF formula in a tribes matrix, we build a column corresponding to each clause,

where the rows are indexed by the variables, x1, . . . , xn. To fill in the slots of row i in column j,
we see if the literal xi or its negation xi appear in the jth clause. If xi appears, we put a U in
the 1-indexed slot. If xi appears, we put a U in the 0-indexed slot. For any remaining slots, we
put B. This yields a column that is blocked precisely for inputs that do not satisfy the clause. We
therefore get a matrix whose associated boolean function outputs 1 if and only if the CNF formula
is unsatisfied.

From this, we can construct a positional witness encryption scheme. To encrypt a message bit
to a particular position and formula, the encryptor forms tribes matrices as above, concatenates
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them, and concatenates one extra column to encode the message (it will contain all U ’s if the bit
is 0 and all B’s if the bit is one). It finally embeds this matrix in a tribes scheme, which serves
as the ciphertext. A decryptor can then evaluate the boolean function to recover the message. (If
R(x,w) = 1 and w ≥ t, then the output of the tribes evaluation will reflect the message; otherwise,
it outputs 1 regardless of the message.)

To prove positional indistinguishability, we proceed through a hybrid argument that relies upon
the inter-column security of the cryptographic tribes scheme to incrementally change the matrix
entries to an encoding of the next position. During this process, we will need to leverage the fact
that the current position represents a witness that does not satisfy the CNF formula. The key
observation here is that there will be at least one clause that is not satisfied, and the column for
that clause can be used to make changes to entries in another column through the inter-column
security game.

Instantiating a Tribes Scheme Finally, what is left is to instantiate a tribes scheme and reduce
the inter-column and intra-column security requirements to a computational assumption. We give
three related constructions each from multilinear algebraic groups with an n linear map, which
required for a tribes instance of n rows.

Our first instantiation (in Section 5) uses composite order symmetric multilinear groups. The
group’s order is a product n + ` primes for an n by ` tribes matrix. Our next instantiation
(in Section 6) utilizes asymmetric groups to reduce the order of the group to the product of `
primes. In Section 7, we modify the instantiation to be in prime order using a translation based on
eigenvectors. Each instance is based on a pair of multilinear map assumptions that depend on n
(or n and `), but are independent of the contents of the tribes matrix. The assumptions we use in
the composite order symmetric context for example, are given in Section 5, and we call them the
multilinear subgroup decision and multilinear subgroup elimination assumptions, as they are rather
natural variants of subgroup decision assumptions typically used in bilinear groups. In Appendix
C, we justify the prime order variants of our assumptions in the multilinear generic group model.
In Appendix B, we show how to translate from algebraic groups into the multilinear encodings of
Coron, Lepoint and Tibouchi (CLT) [9].

2 Positional Witness Encryption

We will first give our definition of a positional witness encryption system and then show how it
implies standard witness encryption by a hybrid argument.

We define a positional witness encryption scheme for an NP language L. Let R(·, ·) be the
corresponding witness relation and let n = n(|x|) be the witness length for a particular witness x.
The system consists of two algorithms:

Encryption. The algorithm EncryptPWE(1λ, x, t,m) takes as input a security parameter 1λ,
an unbounded-length string x, a position index t ∈ [0, 2n] (we let n = n(x)) and a message
m ∈M for some (fixed and finite) message space M, and outputs a ciphertext CT.

Decryption. The algorithm DecryptPWE(CT, w) takes as input a ciphertext CT and a length
n string w, and outputs a message m or the symbol ⊥. (We assume the ciphertext specifies
the instance x and therefore n = n(|x|) is known.)
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Given a string w ∈ {0, 1}n we will sometimes slightly abuse notation and also refer to w as an
integer in [0, 2n − 1] where the most significant bit is the leftmost bit. In other words, we consider
the integer Σi=1,··· ,nwi · 2n−i, where wi is the i-th bit of the string w.

Definition 2.1 ( (Perfect) Correctness of Positional Witness Encryption). For any security pa-
rameter λ, for any m ∈ M, and for any x ∈ L such that R(x,w) holds for w ≥ t, we have
that

DecryptPWE

(
EncryptPWE(1λ, x, t,m), w

)
= m.

2.1 Security of Positional Witness Encryption

Message Indistinguishability The security of a positional witness encryption for language L
is given as two security properties. The first is message indistinguishability, which is parameterized
by an instance x and two equal length messages m0,m1. Intuitively, the security property states
that if one encrypts to the “final” position t = 2n (where n is the witness length of x) then no
attacker can distinguish whether a ciphertext is an encryption of m0 or m1. We emphasize that
this security property is entirely independent of whether x ∈ L. We define the (parameterized)
advantage of an attacker as

MsgPWEAdvA,x,m0,m1
(λ) =∣∣∣Pr[A(EncryptPWE(1λ, x, t = 2n,m1)) = 1]− Pr[A(EncryptPWE(1λ, x, t = 2n,m0)) = 1]

∣∣∣ .
Definition 2.2 (Message Indistinguishability Security of Positional Witness Encryption). We say
that a positional witness encryption scheme for a language L with witness relation R(·, ·) is Mes-
sage Indistinguishability secure if for any probabilistic poly-time attack algorithm A there exists a
negligible function in the security parameter negl(·) such that for all instances x and equal length
messages m0,m1 we have MsgPWEAdvA,x,m0,m1

(λ) ≤ negl(λ).

We let MsgPWEAdvA,x(λ) be the maximum value of MsgPWEAdvA,x,m0,m1
(λ) over the pairs

m0,m1 ∈M for each λ.

Position Indistinguishability The second security game is positional indistinguishability. In-
formally, this security game states that it is hard to distinguish between an encryption to position
t from an encryption to t+ 1 when t is not a valid witness – that is, R(x, t) = 0. (Here we slightly
abuse notation in the other direction by interpreting the integer t as a bit string.) Positional indis-
tinguishability security is parameterized by an instance x, a message m, and a position t ∈ [0, 2n−1]
where n is the witness length of x. We define the (parameterized) advantage of an attacker as

PosPWEAdvA,x,m,t(λ) =
∣∣∣Pr[A(EncryptPWE(1λ, x, t+ 1,m)) = 1]− Pr[A(EncryptPWE(1λ, x, t,m)) = 1]

∣∣∣ .
Definition 2.3 (Position Indistinguishability Security of Positional Witness Encryption). We say
that a positional witness encryption scheme for a language L with witness relation R(·, ·) is Posi-
tion Indistinguishability secure if for any probabilistic poly-time attack algorithm A there exists a
negligible function in the security parameter negl(·) such that for all instances x, all message m,
and any t ∈ [0, 2n − 1] where R(x, t) = 0 we have PosPWEAdvA,x,m,t(λ) ≤ negl(λ).

We let PosPWEAdvA,x(λ) be the maximum value of PosPWEAdvA,x,m,t(λ) over m ∈ M and
t ∈ [0, 2n] where R(x, t) = 0 for each λ.

We further require that both the message length and the problem statement length must be
bounded by some polynomial of the security parameter.
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A quick note on the witness encryption definition. We provide the definition of witness
encryption in Appendix A. The definition of our appendix follows the original of Garg, Gentry,
Sahai, and Waters [15], but with two modifications. First, we restrict ourselves to perfect correctness
for simplicity. Second, in defining soundness security we use a notation that the scheme is secure
if for all PPT attackers there exists a negligible function negl(·) such that for any x /∈ L the
attacker must only be able to distinguish encryption with probability at most negl(λ). The GGSW
definition had a different ordering of quantifiers which allowed the bounding negligible function
for a particular attacker to depend on the instance x. Bellare and Tung Hoang [1] showed that
this formulation was problematic for multiple applications of witness encryption. Our positional
witness encryption definition follows a similar corrected ordering of quantifiers.

2.2 Building Witness Encryption from Positional Witness Encryption

We now show how to build a witness encryption scheme from a positional witness encryption
scheme. To witness encrypt to an instance x, simply do a positional encryption to position t = 0,
which allows for decryption using any valid witness.

The benefit of building WE from positional witness encryption comes from a hybrid security
argument. Suppose x /∈ L, then it will be the case that for all t ∈ [0, 2n−1], R(x, t) = 0 and thus no
attacker can distinguish an encryption to position t to one of t+ 1. This argument can be applied
repeatedly to “move” the encryption position from 0 to 2n. The cost of performing this hybrid
is a security loss factor of 2n and thus it innately requires complexity leveraging. The benefit is
that while the security game of witness encryption needs to simultaneously consider all possible
witnesses, the positional security game is only concerned about one particular witness and thus is
potentially much more amenable to a reduction under a simple assumption.

We now formally describe the construction of witness encryption from positional witness en-
cryption followed by a security proof.

EncryptWE(1λ, x,m) calls EncryptPWE(1λ, x, t = 0,m).

DecryptWE(CT, w) calls DecryptPWE(CT, w).

The correctness conditions of positional witness encryption are equivalent to those of standard
witness encryption when t = 0 since 0 ≤ w for all w ∈ [0, 2n − 1]. Therefore, the correctness of the
witness encryption follows immediately.

We now state and prove our security theorem.

Theorem 2.4. Consider the constructed witness encryption scheme for a language L with witness
relation R(·, ·) and the security soundness property for any x /∈ L, and two equal length messages
m0,m1. We have that for any polynomial time attacker A

WEAdvA,x,m0,m1(λ) ≤ 2n · PosPWEAdvA,x(λ) + MsgPWEAdvA,x(λ).

Proof. For j ∈ [0, 2n] let Hybj be a hybrid experiment that is identical to the original except that
the challenge ciphertext is generated as a call to EncryptPWE(1λ, x, t = j,mb). Note that Hyb0
corresponds to the actual witness encryption security game. Let AdvHybj denote the advantage of
the attacker A in experiment Hybj.

By a direct reduction to the security of the position indistinguishability property, it holds that
the advantage of any attacker in AdvHybj+1 ≤ AdvHybj + PosPWEAdvA,x(λ).
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Applying induction implies that AdvHyb0 ≤ 2n · PosPWEAdvA,x(λ) + AdvHyb2n . Now by defi-
nition AdvHyb2n = MsgPWEAdvA,x(λ). Plugging this in results in our theorem.

Required Security and Complexity Leveraging If all of the terms in our reduction were
polynominal in n (and thus λ) then the only requirement we would have is that any poly-time
algorithm have negligible advantage in each of our security games. However, there is an exponential
term of 2n attached to the positional game. Therefore we will need to use complexity leveraging
and for all poly-time algorithms A demand that:

PosPWEAdvA,x(λ) = negl(λ) · 2−n

where negl(λ) is some negligible function. This requirement will be passed down to our next level
of abstraction and eventually to our multi-linear encoding instantiation. At the instantiation level
the security parameter will be increased to match this condition.

3 Tribes Schemes

To build positional witness encryption schemes, we will employ an intermediary object which we
call a tribes scheme. Before we can define this object and demonstrate its usefulness, we must first
define tribes matrices.

3.1 Tribes Matrices

A tribes matrix M is an n× `× 2 3-dimensional matrix, with entries belonging to the two symbol
alphabet {B,U}, which stand for “blocked” and “unblocked”. We consider [n] = {1, 2, . . . , n} as
indexing the rows, [`] as indexing the columns, and {0, 1} as indexing the “slots” (i.e. we think of
M as an n× ` matrix whose entries are pairs of slots, each containing a symbol from {B,U}).

Such a matrix M defines a boolean function fM from {0, 1}n to {0, 1} as follows. Given an
input x = (x1, x2, . . . , xn) ∈ {0, 1}n, we examine each column of M . Suppose, for example, that
we are considering column j. We cycle through the n rows of this column, and while considering
row i, we take the value of the slot whose index matches xi. If the column contains at least one
value U in these slots, then we define the value of the column to be 0. Otherwise, we define it to
be 1. Finally, if there exists a column with value 1, we define the output of the function to be 1,
otherwise it is 0.

More formally, we define fM as:

fM (x) :=

{
1, ∃j s.t. Mi,j,xi = B ∀i ∈ [n];
0, otherwise.

The name for these matrices is inspired by the tribes function, an interesting object in boolean
function analysis. In that domain, one considers the input boolean vector as specifying the “votes”
of a population that is organized into tribes, and the output is 1 if and only if there exists a tribe
that unanimously voted 1. This is not a perfect analogy to our setting, since we view the input
not as specifying these votes directly but rather as selecting each vote from a predetermined set
of two possible values. Nonetheless, we adopt the “tribes” terminology as a helpful device for
reinforcing the key feature here that the output of our function is 1 if and only some column takes
on unanimous values of B when the input is used for indexing the slots.
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3.2 Tribes Schemes

We next use the notion of tribes matrices to define a cryptographic primitive that we will call a
tribes scheme. A tribes scheme will have two algorithms. The first algorithm, Create, will take
in tribes matrices and generate objects that we will call cryptographic tribes. This algorithm is
randomized. The second algorithm, Eval, will take in a cryptographic tribe and an input and
compute the boolean function described above for the tribes matrix that is incorporated in the
cryptographic tribe. This algorithm is deterministic.

Create(λ,M) → T The creation algorithm takes in a security parameter λ and a tribes matrix
M and outputs a cryptographic tribe T .

Eval(T, x ∈ {0, 1}n) → {0, 1} The evaluation algorithm takes in a cryptographic tribe T and a
boolean vector x and outputs a value {0, 1}.

Correctness We require perfect correctness, meaning that for every tribes matrixM ∈ {B,U}n×`×2,
for any security parameter λ, and for any input vector x ∈ {0, 1}n, we have that

Eval(Create(λ,M), x) = fM (x).

3.3 Tribes Security Properties

We will define two security properties for a tribes scheme. Both will be defined as typical distin-
guishing games between a challenger and an attacker. We call the first of these the intra-column
game, as it only relies on a condition within a single column of the underlying tribes matrix. We
call the other the inter-column game, as it involves a relationship between two columns that allows
us to change a “U” symbol to a “B”.

Intra-column Game This game is parameterized by a security parameter λ, a tribes matrix M ,
an index j of a column in M such that there is some row i∗ where both slots take the value U3,
and an alternate column C ∈ {B,U}n×2 such that the row i∗ also has both slots equal to U . All
of these parameters are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M) to
produce a cryptographic tribe T . If b = 1, it forms M ′ by replacing the jth column of M with C,
and then runs Create(λ,M ′) to produce T . It gives T to the attacker, who must then guess the
value of the bit b.

Definition 3.1. We say a tribes scheme has intra-column security if for every polynomial time
attacker A, there exists a negligible function negl(λ) such that the attacker’s advantage in the
Intra-column Game is ≤ negl(λ), for any valid settings of M, j,C. Note that the negligible function
depends only on A and λ, and is independent of the dimensions of M , for example.

3Of course, for an arbitrary tribes matrix, such a column may not exist. This is an extra condition we are imposing
on M , and this property is only defined for such M .
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Inter-column Game This game is parameterized by a security parameter λ, a tribes matrix M ,
two indices j and k of columns of M , an index i∗ of a row of M , and a slot index β such that
Mi∗,j,β = B. We require the following condition on the jth and kth columns of M . For every row i
and slot γ except for i = i∗ and γ = 1−β, if Mi,k,γ = B, then Mi,j,γ = B as well (i.e. when there is
only one U among these values, it is always in column k)4. All of these parameters are given both
to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M) to
produce a cryptographic tribe T . If b = 1, it forms M ′ by copying M except for flipping just one
entry: M ′i∗,k,β = B if Mi∗,k,β = U , and M ′i∗,k,β = U if Mi∗,k,β = B. It then runs Create(λ,M ′) to
produce T . The challenger gives T to the attacker, who finally must guess the value of the bit b.

Definition 3.2. We say a tribes scheme has inter-column security if for every polynomial attacker
A, there exists a negligible function negl(λ) such that the attacker’s advantage in the Inter-Column
Game is ≤ negl(λ), for any valid settings of M, j, k, i, β. Note that the negligible function depends
only on A and λ, and is independent of the dimensions of M , for example.

Required Security To be useful for ultimately building witness encryption, the required security
of all of our security games is that they must be negl(λ) · 2−n where negl(λ) is some negligible
function. The demand for the 2−n term is passed down from the positional hybrid of the previous
Section 2. In the next section we show how to build positional WE from a Tribes scheme. Since
that reduction involves only a polynomial number of hybrids in n (and thus λ) these are absorbed
in the negligible function.

3.4 Tribes-lite

We introduce a variant of the tribes primitive that we call tribes-lite. A tribes-lite scheme is the
same as a tribes scheme except that we do not require it to have intra-column security. We then
show that it is possible to construct a (full) tribes scheme by a simple transformation from a
tribes-lite scheme.

Suppose that we want to construct a tribes scheme for a matrix M of dimension n× `× 2. We
achieve this by creating a tribes-lite scheme with matrix M ′ of dimension n × (` + n) × 2. The
matrix M ′ will contain M plus append n “helper columns”, d1, . . . , dn. The column di has the
property that in row i it contains a pair of unblocked entries (U,U) and in every other row k 6= i
it has a pair of blocked entries (B,B). Since each of these additional columns has a row with two
unblocked entries, these will have no impact on the evaluation semantics and correctness follows.
Inter-column security of the construction is immediately implied by the inter-column security of
the underlying tribes scheme. Intra-column security can be derived (via a hybrid argument) from
inter-column security of the underlying tribes-lite scheme. The proof of security (given below) relies
on the presence of column di∗ when invoking the intra-column security rule for row i∗.

The impact of this transformation is that it is possible to build a tribes scheme by just con-
structing a tribes-lite scheme and then applying our transformation. In creating our instantiations
in Sections 5, 6, and 7, we choose to construct a full tribes schemes directly. To do so, we apply two
multilinear map assumptions (in each instance): one to prove inter-column security and a second
for intra-column security. However, we observe that if we instead construct a tribes-lite scheme

4Again, these are extra conditions we are imposing on M, j, k, β in order for this game to be applicable.
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and then apply the transformation described, it is then sufficient to only use one assumption for
each instantiation.

We give our formal definition and theorem below.

Definition 3.3. A tribes-lite scheme has all the properties of a tribes scheme, except that it is not
required to have intra-column security.

Theorem 3.4. Given a tribes-lite scheme with algorithms Createlite, Evallite, we can construct a
tribes scheme with algorithms Create, Eval such that running Create on a n × ` × 2 tribes matrix
requires running Createlite on an n× (n+ `)× 2 tribes matrix.

Proof. We define Create, Eval as follows:

Create(λ,M) → T The creation algorithm takes in a security parameter λ and a tribes matrix
M of dimensions n × `× 2. It forms a n× (n + `)× 2 matrix M ′ by appending n columns to M .
The ith appended column (which has column index `+ i in M ′) has U,U in the slots of row i and
B,B in the slots of all other rows. The output of Createlite(λ,M

′) is then given as the output of
Create(λ,M).

Eval(T, x ∈ {0, 1}n) → {0, 1} The evaluation algorithm takes in a cryptographic tribe T and a
boolean vector x and outputs the result of Evallite(T, x).

Correctness Assuming perfect correctness of the tribes-lite scheme, we see that for every tribes
matrix M ∈ {B,U}n×`×2, for any security parameter λ, and for any input vector x ∈ {0, 1}n, we
have that

Eval(Create(λ,M), x) = Evallite(Createlite(λ,M
′), x) = fM ′(x) = fM (x),

by definition of fM , fM ′ , since the appended columns do not effect the computation of f .

Security Since the columns of M are a subset of columns of M ′, inter-column security for the
tribes-lite scheme immediately implies inter-column security for our tribes scheme. Hence it remains
to show intra-column security. We will establish this via a hybrid argument, where each step in
the hybrid will be an application of the inter-column security property for the tribes-lite scheme.

We consider an instance of the intra-column game parameterized by a row index i∗ and a column
index j such that both slots of row i∗ in column j of M are equal to U , as well as an alternate
column C. We can gradually replace column j of M with C by invoking the inter-column security
game on M ′ once for each entry of this column in M that differs from C. In every case, we can
use the i∗ added column, which has all B’s except for row i∗. Note that this column will always
satisfy our condition for the inter-column game, as its B entries are a superset of the B entries in
the jth column of M and C. Hence intra-column security for our tribes schemes follows from the
inter-column security of the tribes-lite scheme.

4 Constructing a Positional Witness Encryption Scheme from a
Tribes Scheme

We will now show how to build a positional witness encryption scheme from a tribes scheme.
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4.1 Encoding a CNF in a Tribal Matrix

Suppose we have a CNF formula φ with n variables and ` clauses. In other words, we can write
φ = φ1 ∧ φ2 ∧ . . . ∧ φ`, where each φi is a clause over the variables X1, . . . , Xn and their negations,
denoted X1, . . . , Xn. We will define an n× `× 2 tribes matrix Mφ.

In order to set the entries of the jth column of Mφ, we consider the jth clause φj . For each row
i, we do the following:

• If Xi appears in φj , we set Mφ
i,j,1 = U .

• If Xi appears in φj , we set Mφ
i,j,0 = U .

• For any entries Mφ
i,j,β not yet defined, set Mφ

i,j,β = B.

We note the following property of Mφ:

Lemma 4.1. If we consider a boolean string x ∈ {0, 1}n as an assignment of truth values to the
variables X1, . . . , Xn of φ, then if clause φj is unsatisfied by x, column j of Mφ will evaluate to
value 1, and hence fMφ(x) = 1. If x satisfies φ, then fMφ(x) = 0.

Proof. Suppose clause φj is unsatisfied by the assignment x. For each i ∈ [n], we consider Mφ
i,j,xi

.

If xi = 0, then φj unsatisfied implies that Xi does not appear in φj , and so Mφ
i,j,0 = B. Similarly,

if xi = 1, then φj unsatisfied implies Xi does not appear in φj , so Mφ
i,j,1 = B. Thus, fMφ(x) = 1.

Conversely, if x satisfies φ, then for each column j, there exists some row i such that either
xi = 0 and Xi appears in φj or xi = 1 and Xi appears in φj . Either way, Mφ

i,j,xi
= U . Hence,

fMφ(x) = 0.

4.2 Encoding a Position in a Tribal Matrix

Suppose we have a position t considered as a binary string t = (t1, t2, . . . , tn) ∈ {0, 1}n. We will
define an n× n× 2 tribes matrix M t. We describe M t by specifying how to fill in the jth column
of M t:

To Set Column j:

• For i < j,
M t
i,j,0 = B,

M t
i,j,1 =

{
U, if ti = 0;
B, if ti = 1.

• For i = j,

M t
i,j,0 =

{
U, if ti = 0;
B, if ti = 1.

M t
i,j,1 = U

• For i > j,
M t
i,j,0 = B = M t

i,j,1.
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We now establish some relevant properties of M t. First, we observe that the associated boolean
function fMt evaluates to 1 for every boolean string y < t and evaluates to 0 for every y ≥ t. Here,
we use “<” and “≥” to denote the order induced by the usual ordering of integers, when we think
of t, y as binary expansions with t1, y1 being the most significant bits.

Lemma 4.2. If y < t, then fMt(y) = 1.

Proof. Since y < t, there must be some index k ∈ [n] such that ti = yi for all i < k and tk = 1 while
yk = 0. We consider the kth column of M t. We claim that for all i, M t

i,k,yi
= B. To see this, we

can consult our description of the kth column of M t above, noting that for i < k, whenever yi = 1,
then ti = 1 as well (by definition of k). Thus, fMt(y) = 1.

Lemma 4.3. If y ≥ t, then fMt(y) = 0.

Proof. We let k ∈ [n] denote an index such that yi = ti for all i ≤ k, and yk+1 = 1, tk+1 = 0, if
k+ 1 ≤ n. For a column j where j ≤ k, we observe that Mj,j,yj = U , since yj = tj . For any column
j where j > k, we observe that Mk+1,j,yk+1

= U . This is because tk+1 = 0 and yk+1 = 1. Hence,
fMt(y) = 0.

This defines an effective encoding of positions t from 0 to 2n − 1 (considering t as an integer).
It will also be useful to have an encoding of 2n. This will be used in the last step of our hybrid
proof of position-hiding security for our positional witness encryption scheme. For simplicity of
that step, we define the encoding of 2n to be a small change from the encoding of 2n − 1 that will
ensure the corresponding f will also evaluate to 1 on the position 2n − 1. Note that for t = 2n − 1,
only the diagonal entries of M t are not completely filled with B slots. So we define M2n to be the
same as M2n−1, except that the first diagonal entry has both slots equal to B. We observe that
fM2n (y) = 1 for all n-bit values y, since the first column is all filled with B values.

4.3 Our Positional Witness Encryption Scheme

We let our message space be {0, 1}.

EncryptPWE(1λ, φ, t,m) The encryptor constructs Mφ and M t as above. For m ∈ {0, 1}, it
constructs an additional column Cm (which is n × 2) as follows. If m = 1, Cmi,0 = Cmi,1 = B for all
i, and if m = 0, Cmi,0 = Cmi,1 = U for all i. It also constructs a completely unblocked column S,
meaning that Si,0 = Si,1 = U for all i. Note that appending such a column to a tribes matrix will
not affect the evaluation function. (This “scratch column” S will be useful in the proof of security.)

It then forms an n × (` + n + 2) × 2 tribes matrix M as M := Mφ||M t||Cm||S, meaning that
the first ` columns are taken to be Mφ, the next n columns are taken to be M t, and the final two
columns are taken to be Cm and S. The encryptor then calls Create(λ,M) to produce a tribes
scheme T , and sets CT := T .

DecryptPWE(CT, w) The decryptor runs Eval(CT, w) and outputs the result.
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4.4 Security of our Positional Witness Encryption Scheme

We now prove security of the positional witness encryption based on the two tribes properties on
inter-column and intra-column security. The most complex part is the proof of position hiding,
which is given over a sequence of hybrid steps. At a very high level the proof (for indistinguishability
of position t from t+1) proceeds in two stages. In the first stage the reduction algorithm identifies a
clause, j, in the CNF formula that the witness candidate w = t does not satisfy. Such a clause must
exist for this to be a valid instance of the positional game. The proof then uses the j-th column
in the CNF portion of the matrix to (undetectably) change the scratch column S from having U ’s
in each of its 2 · n slots to having a B in row i slot ti for each i. (The other n slots remain U .)
The security properties are used to argue that such a change is indistinguishable to an attacker.
This copy action into the scratch column will cause the column to evaluate as “blocked” on input
t and remain evaluating to unblocked on all other inputs. Intuitively, this will have no impact
on the overall evaluation since the j-th column caused a block on input t anyway — providing a
conceptual sanity check for our claim. Intuitively, this stage reflects the fact that t is not a valid
witness and represents this fact in the scratch column.

The next stage of our proof solely involves the scratch column and position matrix. A series of
hybrid steps will use the scratch column to update the positional part of the matrix from position t
to position t+ 1 by “assimilating” the scratch column from the previous stage. At the end of these
steps that scratch column will again become unblocked in all slots and thus matching the end goal
of our argument.

We now prove:

Theorem 4.4. The positional witness encryption scheme EncryptPWE, DecryptPWE defined in
Section 4.3 is message hiding secure and position hiding secure if the underlying tribes scheme has
intra-column and inter-column security.

We first prove position hiding security.

Theorem 4.5. The positional witness encryption scheme EncryptPWE, DecryptPWE defined in
Section 4.3 is position hiding secure if the underlying tribes scheme has intra-column and inter-
column security.

To prove this lemma, we will use a hybrid argument over a sequence of games. These games
will involve changes to the portions of the tribes matrix M that correspond to M t (which encodes
the position) and S (which will be used as “scratch space” for the proof). Note that we will use
Mφ in the proof but will not need to modify it. Cm is rather irrelevant for this lemma, as there is
just a single message.

For an arbitrary position t, we observe that the corresponding encoding matrices M t and M t+1

may differ in several entries. Our hybrid argument will transform M t into M t+1 gradually, changing
only a single entry at a time with applications of the inter-column security game and changing a
single column at a time with applications of the intra-column security game.

We assume throughout our hybrid argument that we have a fixed t which does not satisfy the
encoded CNF formula φ. To define the sequence of game transitions, we also consider the position
t as a binary vector, t = (t1, . . . , tn), with t1 being the most significant bit. For such an t, we
define a column At ∈ {U,B}n×2 as follows. For each i from 1 to n, we set Ati,ti = B, Ati,1−ti = U .
Note that this is a column that evaluates to 1 exactly on t and otherwise evaluates to 0. The
first portion of our hybrid argument will be devoted to transitioning from a completely unblocked
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scratch column S to having At in that column. We define Game0 to be a variant of the original
game for position hiding security where the attacker is given either a tribes scheme created from
M0 := Mφ||M t||Cm||S or a tribes scheme created from M1 := Mφ||M t||Cm||At.

Lemma 4.6. If the underlying tribes scheme has intra-column and inter-column security, then any
PPT attacker has only a negligible advantage in Game0.

Proof. First, by intra-column security, we can transition from M := Mφ||M t||Cm||S to M :=
Mφ||M t||Cm||Ãt, where Ãt is identical to At except that it has U in both slots in row 1. We let j

denote the index of a clause φj that is unsatisfied by t. We consider column j of Mφ, denoted Mφ
j .

We will use this column to justify our switch of Ãt1,ti from a U to a B (this will result in At) by
invoking the inter-column security game with k equal to `+ n+ 2 (the index of the last column),

and i∗ = 1, β = t1. To see that this applies, note that for every i, Mφ
i,j,ti

= B, as this is implied by
the fact that the assignment t does not satisfy clause φj (see Lemma 4.1).

Remark 1. An alternative way to prove the above lemma is to only apply the inter-column security
game. One would apply this n times from the identified column j to the last “scratch” column (using
one invocation for each blocked entry of At. Using either method the result is that At is “copied”
into the scratch column and this is possible by the fact that t is not satisfied by at least one clause
j.

We let r be index of the last 0 in t, assuming for now that t 6= (1, 1, . . . , 1). In other words,
r = n if tn = 0, r = n − 1 if tn 6= 0, tn−1 = 0, and so on. For every z from 1 to n − r, we define
M1,z to be the same as M1, except the last z rows of the final column have all slots = B, instead
of being At. For each such z, we define Game1,z to be a variant of the security game where the
attacker is given a tribes scheme created either from M1,z−1 or M1,z (where we interpret M1,0 as
M1).

Lemma 4.7. For each z, if the underlying tribes scheme has inter-column security, then any PPT
attacker has only a negligible advantage in Game1,z.

Proof. We will invoke the inter-column security game with k = ` + n + 2, i∗ = n − (z − 1),
β = 1 − tn−(z−1) = 0, and j = ` + n − (z − 1). To see that this is a valid use of inter-column
security, first note that Mi∗,j,0 = B, since this is a diagonal position inside M t and tn−(z−1) = 1.
(Referring to our positional encoding rules of Section 4.2.) Next note that for i > n − (z − 1),
Mi,j,0 = Mi,j,1 = B, since these entries are below the diagonal in M t. For all i < n − (z − 1),
Mi,j,ti = B holds, by definition of M t. Note that these are the only B entries in At that appear
for these rows. Lastly, note that the single slot Mn−(z−1),j,1 is exempted from the condition that
column j have a B wherever column k does in the definition of our inter-column security game.

This brings us to the matrix M2 := M1,n−r. Now for z from 0 to r − 1, we define M2,r−1−z to
be the same as M2, except the first (r− 1)− z rows of the final column match At, while the next z
rows match column r inside M t. For each z from 0 to r− 1, we define Game2,r−1−z to be a variant
of the security game where the attacker is given a tribes scheme created either from M2,r−2−z or
from M2,r−1−z. Note that in this part of the proof we are progressing forward by starting with
M2,r−1 and “counting down” to M2,0.

Lemma 4.8. For each z from 0 to r−2, if the underlying tribes scheme has inter-column security,
then any PPT attacker has only a negligible advantage in Game2,r−1−z.
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Proof. First we consider what the r− 1− z row of At and the rth column of M t have in their slots.
If tr−1−z = 0, then At and the rth column of M t both have a B value in the 0 slot and a U value
in the 1 slot on this row. Thus, there is no difference here, and the games are in fact identical.

It thus suffices to consider the case where tr−1−z = 1. In this case, At has a U in the 0 slot and
a B in the 1 slot, while the rth column of M t has B’s in both slots on this row. So we will invoke
the inter-column security game with k = `+ n+ 2, i∗ = r − 1− z, β = 0, and j = `+ r − 1− z.

To see that this applies, we first observe that Mr−1−z,j,0 = B, since this is a diagonal position
inside M t and tr−1−z = 1. We next need to check that for every B that currently appears in
the kth column, we have a B in the same position in the jth column. We first consider the rows
i > r − 1− z. For these rows, the jth column is full of B’s in all slots, as these are below diagonal
rows of a column inside M t. For rows i < r − 1− z, the kth column currently matches At, and so
only has B in the slots corresponding to the ti values. Note that above diagonal entries of a column
inside M t will also have B’s in these slots, so we can indeed apply inter-column security to change
the indicated slot in column k from a U to a B.

This brings us to the matrix M3 := M2,0, where the final column of M (the scratch column) is
now exactly what we would like the `+ r column inside M to become in order to switch from M t

to M t+1. We let M4 denote the matrix that is formed by adjusting M3 so that the ` + r column
matches the rth column in the definition of M t+1. We define Game3 to be a variant of the security
game where the attacker is given a tribes scheme created either from M3 or from M4.

Lemma 4.9. If the underlying tribes scheme has inter-column security, then any PPT attacker
has only a negligible advantage in Game3.

Proof. In fact, the `+ r column inside M3 only differs from this column inside M4 in one position:
namely a U that appears in the 0 slot in row r that we would like to change to a B. Clearly,
since the scratch column has a B in this position, we can use the inter-column security game with
j = `+ n+ 2, k = `+ r, i∗ = r, and β = 0 to make this transition.

We now have the `+r column of M4 matching what it should be in M t+1. We now must change
columns `+ r+ z as z ranges from 1 to n− r. For each such z, we let M4,z denote the matrix which
is similar to M4, except that the columns `+ r up to `+ r+ z match M t+1. Note that M4,0 = M4.
For z from 1 to n − r, we define Game4,z to be a variant of the security game where the attacker
is given a tribes scheme created either from M4,z−1 or from M4,z.

Lemma 4.10. For each z, if the underlying tribes scheme has intra-column and inter-column
security, then any PPT attacker has only a negligible advantage in Game4,z.

Proof. To transition from M4,z−1 to M4,z, we consider the r + z column of M t. We consider its
diagonal slots, i.e. the slots on row r+ z. We wish to change the value in the 0 slot here from B to
U . To do this, we invoke inter-column security with i∗ = r+ z, β = 0, k = `+ r+ z, and j = `+ r.
To see that this applies, note that column j of M4 is equal to the rth column of M t+1, and this has
a B in the relevant slot because it is a below diagonal entry. Furthermore, these columns j and k
agree in all of their entries above row i∗. Now, once we have we this row i∗ with both slots having
U values, we can invoke intra-column security to change the rest of the ` + r + z column to the
value it should take in M4,z.
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We letM5 := M4,n−r. We note that this is almost the same as the desiredM6 := Mφ||M t+1||Cm||S,
except that the last column, S, has not been reset to all U values. For this last transition, we define
Game5 as a variant of the security game where the attacker is given a tribes scheme created either
from M5 or M6.

Lemma 4.11. If the underlying tribes scheme has intra-column and inter-column security, then
any PPT attacker has only a negligible advantage in Game5.

Proof. In M5, the final column is still an exact copy of column `+ r, which is where we left it after
using it to perform our switch from M t to M t+1. Thus, by an easy application of inter-column
security with k = `+ n+ 2 and j + `+ r, we can create a row of the final column that has U ’s in
both slots. Then, finally invoking intra-column security, we can set it back to all U values in all
rows.

4.4.1 The Last Position

In the above argument, we assumed that t < 2n − 1. Finally we must argue that we can transition
from Mφ||M2n−1||Cm||S to Mφ||M2n ||Cm||S. This will be similar to the argument applied above
and will take multiple steps. The first steps will be identical to the argument above, as the
assumption that t < 2n − 1 only became relevant midway through the argument. For notational
convenience, we now set t := 2n−1 and (re-)define M0 := Mφ||M2n−1||Cm||S as our starting point
and M1 := Mφ||M2n−1||Cm||At as our first transition target. Here, At is a column that has a B in
all 1 slots and a U in all 0 slots. We define Game′0 to be a variant of the security game where the
attacker is given a tribes scheme created either from M0 or M1.

Lemma 4.12. If the underlying tribes scheme has intra-column and inter-column security, then
any PPT attacker has only a negligible advantage in Game′0.

Proof. This follows identically to the proof of Lemma 4.6.

For every z from 1 to n, we define M1,z to be the same as M1, except the last z rows of the
final column, S, have all slots = B, instead of being At. For each such z, we define Game′1,z to be a
variant of the security game where the attacker is given a tribes scheme created either from M1,z−1
or M1,z (where we interpret M1,0 as M1).

Lemma 4.13. For each z, if the underlying tribes scheme has inter-column security, then any PPT
attacker has only a negligible advantage in Game′1,z.

Proof. This follows identically to the proof of Lemma 4.7.

This brings us to the matrix M2 := M1,n, which has a final column, S, of all slots = B. We
define M3 to be the same as M2, except that its ` + 1 column also has all slots = B. We define
Game′2 to be a variant of the security game where the attacker is given a tribes scheme created
either from M2 or from M3.

Lemma 4.14. If the underlying tribes scheme has inter-column security, then any PPT attacker
has only a negligible advantage in Game′2.

Proof. Here we invoke the inter-column security game with j = ` + n + 2, k = ` + 1, β = 1, and
i∗ = 1. It is easy to confirm that this applies, as the column j (the final column of M2) contains
all B values.
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We have now transitioned to M3, which is almost equal to the desired M4 := Mφ||M2n ||Cm||S,
except we want to reset the last column of M3 to be all U values instead of being all B values. We
will do this with a final application of the inter-column and then intra-column security games. We
let Game′3 be a variant of the security game where the attacker is given a tribes scheme created
either from M3 or from M4.

Lemma 4.15. If the underlying tribes scheme has inter-column and intra-column security, then
any PPT attacker has only a negligible advantage in Game′3.

Proof. We invoke the inter-column security game twice with j = ` + 1, k = ` + n + 2, i∗ = 1,
for β = 0 and β = 1. We note that column j contains all B’s, so these invocations allow us to
change the first row of the final column to have U ’s in both slots. Then, by a final application of
the intra-column security game, we can change the remaining rows of the final column to U ’s as
well.

This completes our proof of Theorem 4.5.

4.4.2 Message Hiding Security

We next prove message hiding security:

Theorem 4.16. The positional witness encryption scheme EncryptPWE, DecryptPWE defined in
Section 4.3 is message hiding secure if the underlying tribes scheme has intra-column and inter-
column security.

We let Expt0 denote the real security game for message hiding security with mb = 0. We let
Expt1 denote the real security game for message hiding security with mb = 1. We additionally
define an intermediary experiment, Expt0.5, where the message column Cm is equal to C1 except
for U values in both slots in the first row. We note that if no PPT attacker can distinguish between
Expt0 and Expt1, then message hiding security holds.

Lemma 4.17. If the underlying tribes scheme has intra-column security, then any PPT attacker
has only a negligible advantage in distinguishing between Expt0 and Expt0.5.

Proof. To transition between Expt0 and Expt0.5, we observe that this is a direct application of intra-
column security for the column C0, since this already has U ’s in both slots in the first row.

Lemma 4.18. If the underlying tribes scheme has inter-column security, then any PPT attacker
has only a negligible advantage in distinguishing between Expt0.5 and Expt1.

Proof. To transition from Expt0.5 to Expt1, we use two applications of the inter-column security
with j = `+ 1, k = `+n+ 1 (the message column), i∗ = 1, for β = 0 and β = 1. Note that column
j is filled with all B values, so the requirements of the inter-column game are satisfied.

Taken together, Lemmas 4.17 and 4.18 imply Theorem 4.16. Finally, Theorems 4.16 and The-
orem 4.5 imply Theorem 4.4.
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5 An Instantiation in a Symmetric Model of Composite Order
Multilinear Groups

We move to presenting three related constructions each from multilinear algebraic groups with an n
linear map required for a tribes instance of n rows. Our first instantiation (presented in this section)
uses composite order symmetric multilinear groups. The group’s order is a product n+ ` primes for
an n by ` tribes matrix. Our next instantiation (in Section 6) utilizes asymmetric groups to reduce
the order of the group to the product of ` primes. Finally, in Section 7 we modify the instantiation
to be in prime order groups using a translation based on eigenvectors. Each instance is based on
a pair of multilinear map assumptions that depend on n (or n and `), but are independent of the
contents of the tribes matrix. In Appendix B, we show how to translate from algebraic groups into
the multilinear encodings of Coron, Lepoint and Tibouchi (CLT) [9].

We now present our first instance of a tribes schemes by instantiating it in symmetric composite
order multilinear groups.

5.1 An Abstract Model of Composite Order Multilinear Groups

We let G denote a (cyclic) group of order N = p1p2 · · · pr, where p1, . . ., pr are distinct primes. We
let GT also denote a cyclic group of order N . We suppose that we have a k-linear map E : Gk → GT .
We assume this is non-degenerate, meaning that if g generates G, then E(g, g, . . . , g) generates GT .
We write the group operations multiplicatively, and we let 1G, 1GT denote the identity elements in
G and GT respectively.

For each prime pi dividing the group order of N , we have a subgroup Gpi of order pi inside G.
We let gpi denote a generator for Gpi . We let Gp1p2 , for example, denote the subgroup of order
p1p2 that is generated by gp1gp2 .

These subgroups are “orthogonal” under G, meaning (for example) that if h ∈ Gp1p2···pi−1pi+1pr ,
then for any g2, . . . , gk−1 ∈ G,

E(h, g2, . . . , gk−1, gpi) = 1GT .

More generally, each element of G can be expressed as gα1
p1 g

α2
p2 · · · g

αr
pr . Thus if we have k elements

of G that are input to E, we can write them as g
α1,1
p1 g

α2,1
p2 · · · g

αr,1
pr , . . ., g

α1,k
p1 g

α2,k
p2 · · · g

αr,k
pr , and by

multi-linearity of E and orthogonality we then have:

E(g
α1,1
p1 g

α2,1
p2 · · · g

αr,1
pr , . . . , g

α1,k
p1 g

α2,k
p2 · · · g

αr,k
pr ) = E(g

α1,1
p1 , . . . , g

α1,k
p1 ) · · ·E(g

αr,1
pr , . . . , g

αr,k
pr ). (1)

We let G(λ, r, k) denote a group generation algorithm that takes in a security parameter λ, a
desired number of prime factors r, and a desired level of multilinearity k and outputs a description
of a group G as above. We assume the description includes a generator g ∈ G, the group order
N , the primes p1, . . . , pr comprising N , and efficient algorithms for the group operation in G, the
group operation in GT , and the multilinear map E. Note that with a generator g for the full group
plus knowledge of the prime factors, one can efficiently produce a generator for any subgroup of
order dividing N .

Computational Assumption 1S Our first computational assumption in the symmetric set-
ting will be parameterized by positive integers n and ν. It will concern a group of order N =
a1 . . . anb1 . . . bνc, where a1, . . . , an, b1, . . . , bν , c are n + ν + 1 distinct primes. We give out genera-
tors ga1 , . . . , gan , gb1 , . . . , gbν for each prime order subgroup except for the subgroup of order c. For
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each i ∈ [n], we also give out a group element hi sampled uniformly at random from the subgroup
of order ca1 · · · ai−1ai+1 · · · an. The challenge term is a group element T ∈ G that is either sam-
pled uniformly at random from the subgroup or order ca1 · · · an or uniformly at random from the
subgroup of order a1 · · · an. The task is to distinguish between these two distributions of T .

We name this assumption the (n, ν)-multilinear subgroup elimination assumption. Though we
continue to refer to it as assumption 1S for conciseness below.

Computational Assumption 2S Our second computational assumption will be parameterized
by positive integers n and ν. It will again concern a group of order N = a1 . . . anb1 . . . bνc, where
a1, . . . , an, b1, . . . , bν , c are n + ν + 1 distinct primes. As in Assumption 1, we give out generators
ga1 , . . . , gan , gb1 , . . . , gbν for each prime order subgroup except for the subgroup of order c. The
challenge term is a group element T that is either sampled uniformly at random the subgroup of
order can or the subgroup of order an. The task is to distinguish between these two distributions
of T .

We name this assumption the (n, ν)-multilinear subgroup decision assumption. Though we
continue to refer to it assumption 2S for conciseness below.

Intuition for generic security of these assumptions To see why the assumption 1S holds
in the multi-linear (symmetric) generic group model, note that one can argue similarly to the
bilinear case (see [21]) that if we assume that finding a nontrivial factor of the group order is hard,
the only way to break this assumption in the generic group model would be to find an algebraic
relationship that holds for one distribution on the challenge and fails for the other. Since the
challenge distribution only differs in the presence or absence of the subgroup of order c, one would
need to use the challenge as an input to the multilinear map along with other terms that have
non-zero subgroup c components. The only choices are the hi’s, but each one of these can only
cancel one of the masking ai subgroups, so when you can only combine the challenge with n− 1 of
these, you simply cannot get rid of some ai space this way, and hence will get something random
in this subgroup.

The intuition for generic security of assumption 2S is that combining the challenge with any of
the given terms in the multilinear map will zero the contribution from the c component (if present),
hence preventing the adversary from detecting its presence. We note that formal proofs of generic
security for the more complex analogs of these assumptions that we employ in the asymmetric,
non-composite-order setting can be found in Section C.

5.2 Instantiating a Tribes Scheme

Suppose we wish to build a tribes scheme for n × ` × 2 tribes matrices, and we have a generation
algorithm G for producing composite order multilinear groups. We construct a tribes scheme as
follows:

Create(λ,M): The creation algorithm takes in a security parameter λ and an n × ` × 2 tribes
matrix M (entries in {U,B}). It then calls G(λ, r = n + `, n) to produce a group G of order
N = p1 · · · pnq1 · · · q` equipped with an n-linear map E. It will produce 2n group elements, each
indexed by a row i ∈ [n] and a slot β ∈ {0, 1}. We let gi,β be sampled as follows. First, for each
i′ 6= i, a uniformly random element si′ of the subgroup of order pi′ is sampled. Next, for each
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column index j ∈ [`], if Mi,j,β = B, then zj is sampled as a uniformly random element of the
subgroup of order qj . If Mi,j,β = U , then zj := 1G. (All of these values are freshly resampled for
each i, β.) We set:

gi,β :=
∏
i′ 6=i

si′
∏̀
j=1

zj .

The tribes scheme T consists of these 2n elements {gi,β} (we assume this implicitly includes a
description of G that enables efficient computation of the group operation and E, and the full
group order N , but not the individual primes comprising N).

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean vector x =
(x1, . . . , xn) ∈ {0, 1}n. It computes E(g1,x1 , g2,x2 , . . . , gn,xn) and checks whether this is equal to
1GT or not. If is it the identity, it outputs 0. Otherwise, it outputs 1.

Correctness We first establish that Eval(Create(λ,M), x) = fM (x). We first observe that (by
orthogonality of distinct prime order subgroups) E(g1,x1 , g2,x2 , . . . , gn,xn) can be considered as a
product of contributions within each prime order subgroup. Consider a prime pi. No component in
the subgroup of order pi appears in gi,xi (regardless of the value of xi), so this contribution is trivial
(just the identity element). For analyzing the contribution of the qj primes, we consider two cases.
Suppose ∃ a column j such that Mi,j,xi = B for all i ∈ [n]. This is equivalent to supposing that
fM (x) = 1. In this case, there is a random component in the subgroup of order qj incorporated
in every gi,xi , so the contribution will be (with high probably) a non-identity element in the qj
order subgroup of GT . This cannot be “canceled out” by a contribution in any other prime order
subgroup, so the result will be 6= 1GT in this case, resulting in an output that matches fM . In the
other case, no such column j exists. This means that for every column j, there is some gi,xi which
lacks a component in the order qj subgroup, hence causing a result of 1GT , and the output again
matches fM .

We now show that inter-column security for this tribes scheme is implied by our first computa-
tional assumption described above.

Remark 2. For security parameter λ, we ultimately want polynomial time attackers to have advan-
tage at most 2−λ against our witness encryption scheme. However, there is a 2n security loss factor
from PWE to WE, and there are further poly(n, `) losses from our computational assumption to
PWE. Thus, in our assumptions, the “real” security parameter is λ′ = λ+ Õ(n+ `). Furthermore,
when our computational assumptions are instantiated with CLT encodings, the size of the encodings
will need to be polynomial (certainly super-linear) in λ′ to achieve 2−λ

′
security. This will be true

for all of our instantiations.

Lemma 5.1. Assumption 1S on G implies inter-column security for this tribes scheme.

Proof. For notational convenience, we consider the game with i∗ = n, β = 0, j = 2, k = 1
and any n × ` × 2 tribes matrix M satisfying the game requirements for these indices. We will
define ν := `− 1. We suppose we are given ga1 , . . . , gan , gb1 , . . . , gbν that generate each prime order
subgroup except for the subgroup of order c. For each i ∈ [n], we are also given a group element
hi sampled uniformly at random from the subgroup of order ca1 · · · ai−1ai+1 · · · an. We are lastly
given the challenge T , and our task is to guess the distribution T was sampled from.
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We will set pi := ai for i from 1 to n − 1, pn := bν , q1 := c, q2 := an, qi := bi−2 for i = 3 to `.
We form the 2n group elements to give to A as follows. First, for each row i 6= i∗ and slot σ, we
check the values of Mi,j′,σ in each column j′ 6= 1, 2. For indices j′ where these are B, we sample zj′

to be a random element of the subgroup of order qj′ (note that we can do this by raising gbj′−2
to

a random exponent modulo N). For values where these are U , we set zj′ := 1G. There are a few
cases for the values of Mi,1,σ and Mi,2,σ. In all cases, we choose a random exponent α modulo N .
If both are B, we set z1z2

∏
i′ 6=i si′ := hαi g

α
bν

. If both are U , we set

z1z2
∏
i′ 6=i

si′ = gαbν

∏
i′ 6=i,i′<n

gαai′

when i 6= n, and when i = n we do the same except we leave off the gαbν term. In other words, for
i′ 6= n, we have si′ := gαai′ , and for i′ = n we have sn := gαbν . If Mi,2,b = B and Mi,1,b = U , we set
z1z2

∏
i′ 6=i si′ := gαan

∏
i′ 6=i si′ , where si′ := gαai′ for i′ 6= n and sn := gαbν . We note that the case of

Mi,1,b = B and Mi,2,b = U is disallowed by the game requirements. This allows us to compute:

gi,σ := z1z2z3 · · · z`
∏
i′ 6=i

si′ ,

which is properly distributed.
Now, to form gn,1, we can sample (fresh) values z3, . . . , z` as above. We note that any combina-

tion of the values of Mn,1,1 and Mn,2,1 are possible. If both are B’s, we set z1z2
∏
i′<n si′ := hngan .

If both are U , we set z1z2
∏
i′<n si′ :=

∏
i′<n gai′ . If Mn,2,1 = B and Mn,1,1 = U , we set

z1z2
∏
i′<n si′ :=

∏
i′≤n gai′ . If Mn,2,1 = U and Mn,1,1 = B, we set z1z2

∏
i′<n si′ := hn. We

can then compute:

gn,1 := z1 · · · z`
∏
i′<n

si′ ,

which is properly distributed.
Finally, we must form gn,0, whose distribution will depend on the nature of the challenge term

T . We can still sample z3, . . . , z` as above. We then set:

gn,0 := Tz3 . . . z`.

If T was sampled as a random element of the subgroup of order ca1 · · · an, this is properly distributed
for the case Mn,1,0 = Mn,2,0 = B. If T was sampled as a random element of the subgroup of order
a1 · · · an, this is properly distributed for the case Mn,1,0 = U and Mn,2,0 = B. Thus, we can
leverage A’s non-negligible advantage in the inter-column security game to obtain a non-negligible
advantage against our Assumption 1S .

We last show that intra-column security for this tribes scheme is implied by our second compu-
tational assumption.

Lemma 5.2. Assumption 2S on G implies intra-column security for this tribes scheme.

Proof. For notational convenience, we consider the game with i∗ = n, j = 1, and any n × ` × 2
tribes matrix M and alternate column C satisfying the game requirements for these indices. We
will define ν := `− 1. We will break the game into two stages: in the first stage, we will transition
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to the first column of M being all U entries. In the second stage, we will transition to this column
being equal to C.

We describe the reduction to Assumption 2S for the first stage only, as the second stage is anal-
ogous. We suppose we are given ga1 , . . . , gan , gb1 , . . . , gbν that generate each prime order subgroup
except for the subgroup of order c. We are lastly given the challenge T , and our task is to guess
the distribution T was sampled from.

We will set pi := ai for i from 1 to n, q1 := c, qi := bi−1 for i = 2 to `. We form the 2n
group elements to give to an attacker A as follows. For each row i < n and slot σ, we check the
values of Mi,j′,σ in each column j′ 6= 1. For indices j′ where these are B, we sample zj′ to be a
random element of the subgroup of order qj′ (note that we can do this by raising gbj′−1

to a random

exponent modulo N). For values where these are U , we set zj′ := 1G. For each i′ 6= i, n, we sample
si′ uniformly from the subgroup of order pi′ by raising gai′ to a uniformly random exponent modulo
N . If Mi,1,σ = B, we choose another random exponent α mod N and set

z1sn := Tα.

If Mi,1,σ = U , we set z1sn := gαan . This allows us to compute

gi,σ := z1 · · · z`
∏
i′ 6=i

si′ ,

which is properly distributed for the original matrix M if T is uniform in the group of order can,
and otherwise is properly distributed for a matrix that is equal to M except for the first column
being overwritten by U entries.

For row n and slot σ, we choose a random exponent α mod N and set si′ := gαai′ for i′ < n.
We sample z2, . . . , z` as above and compute

gn,σ := z2 · · · z`
∏
i′<n

si′ ,

which is properly distributed for either case, as the last row of M has all U values regardless. Thus,
we can leverage an attacker’s non-negligible advantage in the intra-column security game to obtain
a non-negligible advantage against our Assumption 2S .

6 An Instantiation in an Asymmetric Model of Composite Order
Multilinear Groups

In this section, we give a construction of tribes schemes in for asymmetric composite order multi-
linear groups.

6.1 An Abstract Model of Asymmetric Composite Order Multilinear Groups

We let G1, G2, . . ., Gk denote cyclic groups of order N = p1p2 · · · pr, where p1, . . ., pr are distinct
primes. We let GT also denote a cyclic group of order N . We suppose that we have a k-linear map
E : G1 × G2 × · · · × Gk → GT . We assume this is non-degenerate, meaning that if gi generates
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Gi for each i, then E(g1, g2, . . . , gk) generates GT . We write the group operations multiplicatively,
and we let 1Gi , 1GT denote the identity elements in each Gi and GT respectively.

For each prime pj dividing the group order of N , we have a subgroup Gi,pj of order pj inside
each Gi. We let gi,pj denote a generator for Gi,pj . We let Gi,p1p2 , for example, denote the subgroup
of order p1p2 inside Gi that is generated by gi,p1gi,p2 .

These subgroups are “orthogonal” under E, meaning (for example) that if h1 ∈ G1,p1p2···pi−1pi+1pr ,
then for any h2 ∈ G2, . . . , hk−1 ∈ Gk−1,

E(h1, h2, . . . , hk−1, gk,pi) = 1GT .

Each element of Gi can be expressed as gα1
1,p1

gα2
1,p2
· · · gαr1,pr . Thus if we have elements of G1, . . . , Gk

that are input to E, we can write them as g
α1,1

1,p1
g
α2,1

1,p2
· · · gαr,11,pr

, . . ., g
α1,k

k,p1
g
α2,k

k,p2
· · · gαr,kk,pr

, and by multi-
linearity of E and orthogonality we then have:

E(g
α1,1

1,p1
g
α2,1

1,p2
· · · gαr,11,pr

, . . . , g
α1,k

k,p1
g
α2,k

k,p2
· · · gαr,kk,pr

) = E(g
α1,1

1,p1
, . . . , g

α1,k

k,p1
) · · ·E(g

αr,1
1,pr

, . . . , g
αr,k
k,pr

). (2)

We let G(λ, r, k) denote a group generation algorithm that takes in a security parameter λ, a
desired number of prime factors r, and a desired level of multilinearity k and outputs a description
of groups G1, . . . , Gk, GT as above. We assume the description includes a generator gi ∈ Gi for each
i, the group order N , the primes p1, . . . , pr comprising N , and efficient algorithms for the group
operations in each Gi, the group operation in GT , and the multilinear map E. Note that with
generator gi for each full group plus knowledge of the prime factors, one can efficiently produce a
generator for any subgroup of order dividing N inside any Gi.

Computational Assumption 1AC Our first computational assumption in the asymmetric,
composite-order setting is parameterized by the linearity, k, as well as r, the number of prime
factors for each group order. Thus our groups G1, . . . , Gk will each have order N = p1 · · · pr, where
p1, . . . , pr are distinct primes. For each i > 1, we will give out random generators gi,pj for each
j > 1, as well as a random generator gi,p1p2 for the subgroup of order p1p2. For i = 1, we will
give out random generators g1,p1 , . . . , g1,pr for all prime order subgroups. The challenge term is a
group element T ∈ G1 that is either sampled uniformly at random from the order p2 subgroup, or
uniformly at random from the order p1p2 subgroup.

Computational Assumption 2AC Our second computational assumption is parameterized by
the linearity, k, as well as r, the number of prime factors for each group order. Thus our groups
G1, . . . , Gk will each have order N = p1 · · · pr, where p1, . . . , pr are distinct primes. For each i > 1,
we give out random generators gi,pj for each j. For G1, we only give out generators g1,p2 , . . . , g1,p` .
The challenge term is a group element T ∈ G2 that is either sampled uniformly at random from
the order p1 subgroup of G2 or is (an encoding) of 1G2 .

Remark 3. Since the groups G1, . . . , Gk are distinct, we technically use families of these assump-
tions, where the special roles of groups 1 and 2 in our assumption statements are rotated around to
all other pairs of groups.

Intuition for generic security To see why assumption 1AC holds in the asymmetric composite-
order generic group model if it is hard to find a non-trivial factor of the group order, note that
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any attack in this setting must produce an algebraic relation that holds for one distribution of the
challenge and fails for the other. To do this, one naturally needs to feed the challenge term as input
in the multi-linear map, along with some other term that has a p1 component but not a p2 one.
However, the only such term given is g1,p1 , which cannot be combined with the challenge due to
the asymmetry. Similarly, a violation of assumption 2AC would require feeding the challenge into
the multilinear map along with terms that all have p1 components. But no such term is given in
G1.

6.2 Instantiating a Tribes Scheme

Suppose we wish to build a tribes scheme for n × ` × 2 tribes matrices, and we have a generation
algorithm G for producing asymmetric composite order multilinear groups. We construct a tribes
scheme as follows:

Create(λ,M): The creation algorithm takes in a security parameter λ and an n × ` × 2 tribes
matrix M (entries in {U,B}). It then calls G(λ, r = `, n) to produce a sequence of groups G1, . . .,
Gn of order N = p1 · · · p` equipped with an n-linear map E. It will produce 2n group elements,
each indexed by a row i ∈ [n] and a slot β ∈ {0, 1}. We let hi,β be sampled as follows. For each
column index j ∈ [`], if Mi,j,β = B, then an element zj is sampled uniformly at random from the
subgroup of order pj inside Gi. If Mi,j,β = U , then zj := 1Gi . (All of these values are freshly
resampled for each i, β.) We set:

hi,β :=
∏̀
j=1

zj .

The tribes scheme T consists of these 2n elements {hi,β} (we assume this implicitly includes a
description of G that enables efficient computation of the group operation and E, and the full
group order N , but not the individual primes comprising N).

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean vector x =
(x1, . . . , xn) ∈ {0, 1}n. It computes E(h1,x1 , h2,x2 , . . . , hn,xn) and checks whether this is equal to
1GT or not. If is it the identity, it outputs 0. Otherwise, it outputs 1.

Correctness We first establish that Eval(Create(λ,M), x) = fM (x). We first observe that (by
orthogonality of distinct prime order subgroups) E(h1,x1 , h2,x2 , . . . , hn,xn) can be considered as a
product of the contributions within each prime order subgroup. For analyzing the contribution of
a prime pj , we consider two cases. Suppose that column j satisfied Mi,j,xi = B for all i ∈ [n]. This
implies that fM (x) = 1. In this case, there is a random component in the subgroup of order pj
incorporated in every hi,xi , so the contribution in GT will be (with high probability) a non-identity
element in the pj order subgroup. This cannot be “canceled out” by a contribution in other prime
order subgroup, so the final result will be 6= 1GT in this case, matching fM . In the other case,
there is some i such that hi,xi does not have a component in the subgroup of order pj inside Gi,
and hence the contribution of this prime will be trivial in GT . If this occurs for every j, the final
output will be 1GT , matching fM . Thus we have established correctness.

We now show that inter-column security for this tribes scheme is implied by our first computa-
tional assumption described above.
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Lemma 6.1. Assumption 1AC implies inter-column security for this tribes scheme.

Proof. For notational convenience, we consider the game with i∗ = 1, β = 0, j = 2, k = 1 and any
n×`×2 tribes matrix M satisfying the game requirements for these indices. We assume we have an
attacker A who obtains a non-negligible advantage in this game. We will employ the assumption
with linearity n and r = ` prime factors. We suppose we are given gi,pj for each i, j > 1. We are
also given gi,p1p2 for each i > 1 and g1,p1 , . . . , g1,p` . Our challenge term is T , and we must guess if
it is sampled from G1,p2 or from G1,p1p2 .

We form the 2n group elements to give to A as follows. For each row i 6= i∗ and slot σ, we
check the values of Mi,j′,σ in each column j′ 6= 1, 2. For indices j′ where these are B, we sample
zj′ to be a random element of the subgroup of order pj′ inside Gi (note that we can do this by
raising the appropriate generator to a random exponent modulo N). For values where these are
U , we set zj′ := 1Gi . There are a few cases for the values of Mi,1,σ and Mi,2,σ. In all cases, we
choose a random exponent α modulo N . If both are B, we set z1z2 := gαi,p1p2 . If both are U , we
set z1z2 := 1Gi . If If Mi,2,b = B and Mi,1,b = U , we set z1z2 := gαi,p2 . We note that the case of
Mi,1,b = B and Mi,2,b = U is disallowed by the game requirements. This allows us to compute:

hi,σ := z1z2z3 · · · z`,

which is properly distributed.
To form g1,1, we can sample each zj as a random element of G1,pj′ if M1,j′,1 = B, and as

1G1 otherwise. We can then compute: h1,1 := z1z2 · · · z`, which is properly distributed. To form
g1,0, we sample each z3, . . . , z` as before, as then set h1,0 := Tz3 · · · z`. If T was sampled as a
random element of the subgroup of order p1p2 inside G1, this is properly distributed for the case
Mn,1,0 = Mn,2,0 = B. If T was sampled as a random element of the subgroup of order p2, this
is properly distributed for the case Mn,1,0 = U and Mn,2,0 = B. Thus, we can leverage A’s non-
negligible advantage in the inter-column security game to obtain a non-negligible advantage against
our Assumption 1AC .

We last show that intra-column security for this tribes scheme is implied by our second compu-
tational assumption.

Lemma 6.2. Assumption 2AC on G implies intra-column security for this tribes scheme.

Proof. We will prove this for a version of the intra-column security game where we have an n×`×2
tribes matrix M and we are considering the first column, with both slots in the first row taking
the value U . It will be our goal to change the value of a single slot in the second row (say slot 0).
Observe that this implies the seemingly more general notion of intra-column security via a standard
hybrid argument.

We will employ our Assumption 2AC with linearity n and r = ` prime factors. We suppose we
are given random generators gi,pj for each j for each i > 1. For G1, we are also given generators
g1,p2 , . . . , g1,p` . The challenge term T ∈ G2 is either sampled uniformly at random from the order
p1 subgroup of G2 or is (an encoding) of 1G2 , and it our task to guess which.

We form the 2n group elements to give to A as follows. For each row i > 3 and slot σ,
we check the values of Mi,j′,σ in each column j′. For indices j′ where these are B, we sample
zj′ to be a random element of the subgroup of order pj′ inside Gi (note that we can do this by
raising the appropriate generator to a random exponent modulo N). This allows us to compute
hi,σ = z1z2 · · · z`. For i = 1 and slot σ, we similarly check the values of Mi,j′,σ for each column
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j′ > 1, and whenever we have a B value, we sample zj′ to a random element of the subgroup of
order pj′ in G1, and define zj′ = 1G1 otherwise. We then set h1,σ = z2 · · · z`.

Now we consider the group elements for row 2. For the slot 1 element, we sample z1, . . . , z`
according to the entries of M as above, and we form h2,1 = z1z2 . . . z`. For the changing slot
0, we sample z1, z3, . . . , z` as before, but define z2 := T and form h2,0 = z1z2z3 . . . z`. If T was
sampled from the order p1 subgroup, this will be distributed as if M2,1,0 = B. Otherwise, it will be
distributed as if M2,1,0 = U .

7 Instantiating Our Scheme in Asymmetric Prime-Order Multi-
linear Groups: An Eigenvector-Based Approach

In the setting of bilinear maps, it is often the case that schemes initially described over composite-
order bilinear groups can be “converted” to prime-order groups (e.g. [11, 23, 25, 22, 24, 28] and
many more). This conversion typically increases the conceptual and algorithmic complexity of
the scheme, but allows the use of more “natural” prime-order groups, and often simplifies the
underlying computational assumptions.

Here, we show how to convert the asymmetric composite-order construction from Section 6 to
prime-order asymmetric multilinear groups (or, more generally, groups of arbitrary order). We base
its security on assumptions that (unlike the assumptions for the composite-order schemes) remain
plausible even if factoring is easy. Moreover, the assumptions depend on n (the number of variables
in the 3CNF), but not the number of clauses `, which often will be a big improvement.

At the moment, this conversion is mainly of theoretical interest, since our assumption here
is false for GGH encodings – indeed all decisional “source-group assumptions” are false for GGH
encodings due to their susceptibility to “weak discrete log attacks” – leaving CLT encodings as
currently the only construction of multilinear maps that we can use here, and CLT encodings already
inherently provide a composite-order encoding space, and their security relies on the hardness of
factoring. However, we believe it is quite likely that, in the future, alternative multilinear maps will
be constructed that support source-group assumptions and do not rely on the hardness of factoring;
in that event, our construction here may become useful.

Eigensystems over Asymmetric Prime Order Multilinear Groups We let G1, . . . , Gk
and GT denote (cyclic) groups of prime order p. We suppose that we have a k-linear map E :
G1 × . . .×Gk → GT . We assume this is non-degenerate, meaning that if gi generates Gi for each
i, then gT ← E(g1, g,2 . . . , gk) generates GT . We write the group operations multiplicatively, and
we let 1Gi , 1GT denote the identity elements in each Gi and GT respectively.

In the prime-order setting, group elements will be replaced with matrices of group elements.
For a matrix M , we use gMi to denote encodings of the individual entries of M in a group Gi,
and we apply the multilinear map to matrices of encodings in the natural way, when we take one
encoding from each Gi. (The multilinear map then computes the product of the matrices “in the
exponent”).

In the composite-order setting, a particular prime order subgroup of some Gi was either
“blocked” or “unblocked”, meaning that the component in that subgroup was either randomly
distributed or set to the identity. The notion of these subgroups is replaced by subspaces that are
either blocked or unblocked, meaning that the rank of our matrices will change as we apply our
computational assumptions. As we used ` subgroups inside each Gi in the composite-order setting,
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we will now have ` subspaces that can be present or absent in the matrices corresponding to each
Gi. When each subspace is blocked in at least one of Gi, the product of the resulting matrices will
be all 0s, otherwise not. We will use more than ` dimensions in order to create space for extra
randomization.

The multilinear map can be used to “zeroize” subspaces in a way that is analogous to the
composite-order setting. For example, consider d× d matrices over Zp (for some positive integer d)
of the following form. Let D1, D2, . . . , Dk be diagonal matrices sampled from some joint distribution
that guarantees that for each j ∈ [d], at least one of Di will have a 0 in its jth diagonal entry. Let
R0, R1, . . . , Rk be uniformly random d× d matrices over Zp. Then:

E(g
R0D1R

−1
1

1 , g
R1D2R

−1
2

2 , . . . , g
R−1
k−1DkRk

k ) = g0
d×d
T . (3)

This follows from the fact that

R0D1R
−1
1 R1D2R

−1
2 R−1k−1DkRk = R0D1D2 · · ·DkRk = R0(0

d×d)Rk.

We let G(λ, k) denote a group generation algorithm that takes in a security parameter λ and
a desired level of multilinearity k and outputs a description of groups G1, . . . , Gk, GT as above.
We assume the description includes a generator gi ∈ Gi for each i, the common group order p,
and efficient algorithms for the group operation in each Gi, the group operation in GT , and the
multilinear map E.

7.1 Computational Assumptions

We describe computational assumptions that will serve as the analogs of our assumptions for
asymmetric composite-order groups. We discuss the plausibility of these assumptions in detail in
Section C.

Like the assumptions for composite-order groups, our assumptions here are parameterized by a
positive integer n indicating the level of multilinearity. They concern a multilinear group description
output by G(λ, n) for security parameter λ and multilinearity n. We let p be the order of the group.

Assumption 1AP : Set d = 4. Generate random matrices R0, . . . , Rn in Zd×dp . Sample diagonal
matrices C1

1 , D
1
1, C

2
1 , D

2
1 as follows. When all sub/super-scripts are matching, C’s and D’s will

always denote two independent samples from the same distribution (these will be used to supply
sufficient randomness to give out the group elements for both slots when we instantiate our tribes
scheme). For C1

1 , D
1
1, the first entries are random, while the remaining entries are 0. For C2

1 , D
2
1,

the second entries are random and the remaining entries are 0.
We additionally sample diagonal matrices C0

i , D
0
i , C

2
i , D

2
i , C

1,2
i , D1,2

i for each i ≥ 2 as follows.
The last two entries are always randomly distributed. The first two entries are both 0 when the
superscript is 0. When the superscript is 2, the second entry is random and the first entry remains
0. When the superscript is 1,2, both of these are random.

Two final matrices T 2, T 1,2 are also sampled, where the last two entries of each are 0 and the
second entry of each is random, but the first entry is 0 in T 2 and is random in T 1,2.

An instance of the assumption includes a description of the multilinear group and:
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i
i for i = 2, . . . , n
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R0C0
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1 , g
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1 , g
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1

1

Either g
R0T 2R−1

1
1 or g

R0T 1,2R−1
1

1
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The task is to distinguish which distribution the final encoded term comes from.

Assumption 2AP : Set d = 5. Generate random matrices R0, . . . , Rn in Zd×dp . Sample diagonal

matrices C1, D1, C
U
2 , D

U
2 , C

B
2 , D

B
2 , . . . , C

U
n , D

U
n , C

B
n , D

B
n in Zd×dp as follows. The C,D matrices with

the same subscripts and superscripts will always represent two independent samples from the same
distribution (these will be used to supply sufficient randomness to give out the group elements for
both slots when we instantiate our tribes scheme).

The first entries of C1, D1 will be set to 0. For the rest, the first entry of each CUi , D
U
i will

be distributed as 0 and the first entry of each CBi , D
B
i will be distributed randomly in Zp. The

remaining 4 entries are sampled as follows. For C1, D1, the 1st of these 4 is set randomly, while
the remaining three are fixed to 0. For each Ci, Di with i > 1, the first of these four entries will be
fixed to 0, while the remaining 3 will be set randomly. (note it is the same for all of CUi , D

U
i and

CBi , DB
i ). Two more matrices TU2 , T

B
2 are also sampled, distributed the same as DU

2 , D
B
2 (though

sampled independently).
An instance of the assumption includes a description of the multilinear group and:
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U
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i for i = 2, . . . , n

g
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1

Either g
R1TU2 R
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2

2 or g
R1TB2 R

−1
2

2

The task is to distinguish which distribution the final encoded term comes from.

Remark 4. As was the case in Section 6, since the groups G1, . . . , Gk are distinct, we technically
use families of these assumptions, where the special roles of groups 1 and 2 in our assumption
statements are rotated around to all other pairs of groups.

We now define expanded versions of these assumptions with additional dimensions that allow us
to directly embed these into the security proof for our scheme. We will then show a simple reduction
that establishes the equivalence of the expanded assumptions. Intuitively, carrying around extra
dimensions whose distributions are not changing is easy to do, as you can pick a random embedding
of the 4 or 5 challenge dimensions into the larger space and use this knowledge to form proper
distributions in the dimensions not relevant to the challenge.

To simplify the description of our expanded assumptions, we define a distribution Diag(i) over
Z4n
p for each i ∈ n as follows. The 4n coordinates are divided into segments of length 4. For the ith

segment, the first entry is randomly distributed in Zp, and the rest are 0. For all other segments,
the first coordinate is set to 0, and the remaining three coordinates are distributed randomly in Zp.

These assumptions are additionally parametrized by a positive integer `.
Assumption 1′AP : Set d = `(1 + 4n). Generate random matrices R0, . . . , Rn in Zd×dp . Sample

diagonal matrices C0
1 , D

0
1, C

1
1 , D

1
1, C

2
1 , D

2
1 and C0

i , D
0
i , C

2
i , D

2
i , C

1,2
i , D1,2

i for each i ≥ 2 as follows.
Divide the d diagonal entries into ` blocks. In the first block, the first entry is distributed randomly
whenever 1 appears as a superscript. The remaining entries are distributed according to Diag(i).
In the second block, the first entry is distributed randomly whenever 2 appears as a superscript.
The remaining entries are distributed according to Diag(i). In the remaining blocks, all entries are
set to 0. Sample T 2 and T 1,2 analogously.
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For each j > 2, sample additional diagonal matricesWU
1,j , V

U
1,j ,W

B
1,j , V

B
1,j , . . . ,W

U
n,j , V

U
n,j ,W

B
n,j , V

B
n,j

in Zd×dp as follows. Each V will be independently sampled from the same distribution as the cor-

responding W . In the jth block, each WU
i,j has the first entry set to 0. Each WB

i,j has this entry
sampled uniformly at random from Zp. The remaining 4n entries are sampled from Diag(i). In
the other blocks (not equal to j), all diagonal entries are set to 0.

An instance of the assumption includes a description of the multilinear group and:
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The task is to distinguish which distribution the final encoded term comes from.

Assumption 2′AP : Set d = `(1 + 4n). Generate random matrices R0, . . . , Rn in Zd×dp . Sample

diagonal matrices C1, D1, C
U
2 , D

U
2 , C

B
2 , D

B
2 , . . . , C

U
n , D

U
n , C

B
n , D

B
n in Zd×dp as follows. We divide the

`(1 + 4n) diagonal coordinates into ` blocks each of length 1 + 4n. In the first block, the first five
entries will be distributed identically to Assumption 2. The remaining entries will be distributed
according to Diag(i). In the remaining blocks, all entries are fixed to 0. Matrices TU2 , T

B
2 are then

(independently) sampled from the same distributions used for CU2 , C
B
2 , respectively.

For each j > 1, sample additional diagonal matricesWU
1,j , V

U
1,j ,W

B
1,j , V

B
1,j , . . . ,W

U
n,j , V

U
n,j ,W

B
n,j , V

B
n,j

in Zd×dp as follows. Each V will be independently sampled distribution as the corresponding W . In

the jth block, each WU
i,j has the first entry set to 0. Each WB

i,j has this entry sampled uniformly
at random from Zp. The remaining 4n entries are sampled from Diag(i). In the other blocks (not
equal to j), all diagonal entries are set to 0.

An instance of the assumption includes a description of the multilinear group and:
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The task is to distinguish which space the final encoded term comes from.

Lemma 7.1. Assumption 1AP implies Assumption 1′AP and Assumption 2AP implies Assumption
2′AP .

Proof. We argue this for assumptions 2AP and 2′AP , as the notation is a bit cleaner in this case.
We show that an algorithm that can break the assumption 2′AP can be used to break the simpler
assumption 2AP . Let r = 5 and r′ = `(1 + 4n). Let R0, R1, . . . , Rn ∈ Zr×rp be as in the simpler

assumption. Let R∗i ∈ Zr′×r′p for each i be a matrix with Ri in the upper left, the identity matrix

Ir′−r ∈ Zr′−r×r′−rp in the lower-right, and zeros elsewhere. Let Zi ∈ Zr′×r′p be a random invertible
matrix for each i, and let R′i = ZiR

∗
i . Now from an instance of the simpler assumption, it is clear
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that we can use our knowledge of the Zi’s and encodings of 0 and 1 in each subgroup Gi to generate
a well-distributed instance of the expanded assumption. The distinguisher’s answer for the initial
assumption can be used directly as the answer for the second assumption.

The argument for assumptions 1AP and 1′AP is analogous, just with a slightly more complex
shifting of the diagonal coordinates. Note that the 4 challenge dimensions that we must embed into
the r′ = `(1 + 4n) dimensional space to simulate assumption 1′AP can be mapped as follows. The
first diagonal position of the challenge will play the role of the the first coordinate in r′, the second
will play the role of the first coordinate in the second block of length 1+4n, and the remaining two
challenge coordinates can be taken e.g. as the 2 and 3rd positions on the length r′ diagonals.

7.2 Instantiating a Tribes Scheme

Suppose we wish to build a tribes scheme for n× `× 2 tribes matrices (not to be confused with the
encoded matrices that we will use in the cryptosystem), and we have a generation algorithm G for
producing asymmetric multilinear groups. We construct a tribes scheme as follows:

Create(λ,M): The creation algorithm takes in a security parameter λ and an n × ` × 2 tribes
matrix M (entries in {U,B}). It then calls G(λ, n) to produce groups G1, . . . , Gn, GT of prime order
p, equipped with an n-linear map E. We let d = `(1 + 4n). It will produce 2n encoded matrices of
size d× d, each indexed by a row i ∈ [n] and a slot β ∈ {0, 1}.

It begins by sampling random matrices R0, . . . , Rn ∈ Zd×dp . (These will be used for both β

values.) For each slot β, it then samples diagonal matrices Dβ
1 , . . . , D

β
n as follows. The d diagonal

entries of each Dβ
i are considered as ` blocks of length 1+4n. The distribution of block j inside Dβ

i

will depend on the entry Mi,j,β. If Mi,j,β = B, then the first coordinate of the block is sampled as
a random element of Zp. Otherwise, it is set to 0. The remaining 4n coordinates are distributed as
Diag(i). (Recall this means they are further divided into segments of length 4. For the ith segment,
the first entry is randomly distributed in Zp, and the rest are 0. For all other segments, the first
coordinate is set to 0, and the remaining three coordinates are distributed randomly in Zp.) Note
that all these segments are distributed merely as a function of i, and only the first of the 1 + 4n
diagonal entries of block j inside Dβ

i actually depend on the relevant entry of M . These extra 4n
dimensions are useful randomization for proving that our computational assumptions hold in the
(asymmetric) generic group model.

We then define Ai,β = Ri−1D
β
i R
−1
i for each i, β, and the tribes scheme T consists of the 2n

encoded matrices {hi,β := g
Ai,β
i }. (We assume this implicitly includes a description of G1, . . . , Gn

that enables efficient computation of the group operation and E, and the group order p.)

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean vector x =

(x1, . . . , xn) ∈ {0, 1}n. It computes E(g
A1,x1
1 , g

A2,x2
2 , . . . , g

An,xn
n ) and checks whether this is equal to

g0
d×d
T or not. If so, it outputs 0. Otherwise, it outputs 1.

Remark 5. We emphasize that, in the construction, after the initial parameters are set, the parties
(encrypter and decrypter) do not need to generate encodings of particular values, but rather only
random values. Generating encodings of random values is possible with GGH and CLT encodings.
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Correctness We establish that Eval(Create(λ,M), x) = fM (x). We first observe that, by Equa-

tion 3, the value E(g
A1,x1
1 , g

A2,x2
2 , . . . , g

An,xn
n ) will be equal to g0

d×d
T if and (whp) only if for every

v ∈ [`], some Dxi
i is set to 0 in that entry. We consider the indices v in blocks of length 1 + 4n.

Note that in the jth block, this property is satisfied for the last 4n positions just by construction,
regardless of M,x. However, to get the first coordinate to be 0 in Di, we must have Mi,j,xi = U .
Therefore the output matches fM .

Security We now show that inter-column and intra-column security for this tribes scheme are
implied by our computational assumptions described above.

Lemma 7.2. Our computational assumption 1′AP on G implies inter-column security for this tribes
scheme.

Proof. For notational convenience, we consider the game with i∗ = 1, β = 0, j = 2, k = 1 and
any n × ` × 2 tribes matrix M satisfying the game requirements for these indices. We assume
we have an attacker A who obtains a non-negligible advantage in this game. We will employ the
assumption with linearity n. Observe that our design of the matrix distributions in our construction
is symmetric with respect to the shifting roles of groups and blocks, so our assumption as stated
can be equally applied to other parameterizations of the inter-column game by simply relabeling
these.

We suppose we are given g
Ri−1C

0
i R
−1
i

i , g
Ri−1D

0
iR
−1
i

i , g
Ri−1C

2
i R
−1
i

i , g
Ri−1D

2
iR
−1
i

i , g
Ri−1C

1,2
i R−1

i
i , g

Ri−1D
1,2
i R−1

i
i

for i = 2, . . . , n, g
R0C0

1R
−1
1

1 , g
R0D0

1R
−1
1

1 , g
R0C1

1R
−1
1

1 , g
R0D1

1R
−1
1

1 , g
R0C2

1R
−1
1

1 , g
R0D2

1R
−1
1

1 , g
Ri−1W

U
i,jR

−1
i

i ,

g
Ri−1V

U
i,jR

−1
i

i , g
Ri−1W

B
i,jR

−1
i

i , g
Ri−1V

B
i,jR

−1
i

i for i = 1, . . . , n, j = 3, . . . , `, and a challenge term g
R0TR

−1
1

1

where T is either distributed as T 2 or T 1,2, and it is our task to determine which.
We form the 2n group elements to give to A as follows. For each row i 6= 1 and slot σ = 0, we

check the values of Mi,j′,σ in each column j′ 6= 1, 2. For indices j′ where these are B, we set zj′

equal to g
Ri−1W

B
i,j′R
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i

i . For indices j′ where these are U , we set zj′ equal to g
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U
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i .
There are a few cases for the values of Mi,1,σ and Mi,2,σ. If these are both B, we set z1z2 =

g
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i . If these are both U , we set z1z2 = g
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i . If Mi,1,σ = U and Mi,2,σ = B, we set

z1z2 = g
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i . We note that the case of Mi,1,σ = B and Mi,2,σ = U is disallowed by the game
requirements. This allows us to compute:

hi,σ := z1z2z3 · · · z`,

which is properly distributed. For the σ = 1 slots, we perform the same procedure, just using V ’s
and D’s in placed of W ’s and C’s to obtain independent samples.

To form h1,1, we can sample each zj′ for j′ ≥ 3 as above. If M1,1,1 = B, we sample z1

as g
R0C1

1R
−1
1

1 . Otherwise, we sample it as g
R0C0
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1 . If M1,2,1 = B, we sample z2 as g
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1 ,

otherwise we sample it as g
R0D0

1R
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1 . We can then compute: h1,1 := z1z2 · · · z`, which is properly
distributed.

To form h1,0, we sample each z3, . . . , z` as before, and then set h1,0 := g
R0TR

−1
1

1 z3 · · · z`. If T was
sampled as T 1,2, this is properly distributed for the case M1,1,0 = M1,2,0 = B. If T was sampled as
T 2, this is properly distributed for the case M1,1,0 = U and M1,2,0 = B. Thus, we can leverage A’s
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non-negligible advantage in the inter-column security game to obtain a non-negligible advantage
against our Assumption 1′AP .

Lemma 7.3. Our computational assumption 2′AP on G implies intra-column security for this tribes
scheme.

Proof. We will prove this for a version of the intra-column security game where we have an n×`×2
tribes matrix M and we are considering the first column, with both slots in the first row taking
the value U . It will be our goal to change the value of a single slot in the second row (say slot 0).
Observe that this implies the seemingly more general notion of intra-column security via a standard
hybrid argument. Again observe that our design of the matrix distributions in our construction is
symmetric with respect to the shifting roles of groups and blocks, so our assumption as stated can
be equally applied to other parameterizations of the intra-column game by simply relabeling these.
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Ri−1W

B
i,jR

−1
i

i , g
Ri−1V

B
i,jR

−1
i

i for i = 1, . . . , n, j =

2, . . . , ` and a challenge term g
R1T2R

−1
2

2 , and our goal is to distinguish between T2 = TU2 and
T2 = TB2 .

We form the 2n group elements to give to A as follows. For each row i 6= 2 and slot σ = 0,
we check the values of Mi,j,σ in each column j. For indices j where these are B, we set zj to be

g
Ri−1W

B
i,jR

−1
i

i . For indices j where these are U , we set zj to be g
Ri−1W

U
i,jR

−1
i

i . This applies in all cases
except for when i = 1 and j = 1. In this case, note we must have M1,1,σ = U for either value of σ,

so we can set z1 = g
R0C1R

−1
1

1 . We can then compute

hi,β =
∏̀
j=1

zj .

For rows i 6= 2 and slots σ = 1, we do the same procedure, except using the analogous terms with
the D,V matrices instead of the C,W ’s. Then ensures that all of these are properly distributed
without unwanted correlations between the slots.

Now we consider the group elements for row 2. For the slot 1 element, we sample z1, . . . , z`
according to the entries of M as above, and we form h2,1 = z1z2 . . . z`. For the changing slot 0,

we sample z1, z3, . . . , z` as before, but define z2 = g
R1T2R

−1
2

2 and form h2,0 = z1z2z3 . . . z`. If T2 was
sampled as TB2 , this will be distributed as if M2,1,0 = B. Otherwise, it will be distributed as if
M2,1,0 = U .
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A Witness Encryption

We give the definition of witness encryption. paper. The definition here follows the original of
Garg, Gentry, Sahai, and Waters [15], but with two modifications. First, we restrict ourselves to
perfect correctness for simplicity. Second, in defining soundness security we use a notation that the
scheme is secure if for all PPT attackers there exists a negligible function negl(·) such that for any
x /∈ L the attacker must only be able to distinguish encryption with probability at most negl(λ).
The GGSW definition had a different ordering of quantifiers which allowed the bounding negligible
function for a particular attacker to depend on the instance x. Bellare and Tung Hoang [1] showed
that this formulation was problematic for multiple applications of witness encryption. We further
require that both the message length and the problem statement length must be bounded by some
polynomial of the security parameter.

A witness encryption scheme for an NP language L (with corresponding witness relation R)
consists of the following two polynomial-time algorithms:

Encryption. The algorithm EncryptWE(1λ, x,m) takes as input a security parameter 1λ, an
unbounded-length string x, and a message m ∈ M for some message space M, and outputs
a ciphertext CT.

Decryption. The algorithm DecryptWE(CT, w) takes as input a ciphertext CT and an
unbounded-length string w, and outputs a message m or the symbol ⊥.

These algorithms must satisfy the following correctness condition:

Definition A.1 (Correctness of Witness Encryption). For any security parameter λ, for any m ∈
M, and for any x ∈ L such that R(x,w) holds, we have that

Pr
[
DecryptWE

(
EncryptWE(1λ, x,m), w

)
= m

]
= 1

Soundness Security We model soundness security for a witness encryption scheme for a lan-
guage L that is parameterized as for an instance x and two equal length messages m0,m1. We
define the (parameterized) advantage of an attacker as

WEAdvA,x,m0,m1(λ) = Pr[A(EncryptWE(1λ, x,m1)) = 1]− Pr[A(EncryptWE(1λ, x,m0)) = 1]

Definition A.2 (Soundness Security of Witness Encryption). We say that a witness encryption
scheme for a language L with witness relation R(·, ·) is secure if for any probabilistic poly-time
attack algorithm A there exists a negligible function in the security parameter negl(·) such that for
all x /∈ L and equal length messages m0,m1 we have WEAdvA,x,m0,m1(λ) ≤ negl(λ).

B Implementing Our Schemes with Current Multilinear Maps

We have described witness encryption schemes that can be built from multilinear maps. Now, we
describe how to adapt the schemes to graded encoding systems – in particular, the graded encoding
system of Coron, Lepoint and Tibouchi (CLT) [9]. We describe how to handle the “noise” issues
that arise, and also discuss how our use of subrings of the encoding space impacts security and
requires (minor) modifications to CLT.

We begin abstractly, describing generic graded encoding procedures.
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B.1 Graded Encoding Procedures

We recall the definition of a graded encoding system and describe some procedures for graded
encodings, mostly following [12, 9]. The definition of “graded encoded system” and some of the
procedures have been simplified or removed for our setting. We also add some procedures.

Definition B.1 (Graded Encoding System). A κ-graded encoding system for a ring R is a system

of sets E = {E(m)
i ∈ {0, 1}∗ : i ∈ {0, 1, . . . , κ, T},m ∈ R} with the following properties:

1. For every i, the sets {Emi : m ∈ R} are disjoint.
2. There are binary operations + and − (on {0, 1}∗) such that for every m1,m2 ∈ R, every i,

and every u1 ∈ E(m1)
i and u2 ∈ E(m2)

i , it holds that u1+u2 ∈ E(m1+m2)
i and u1−u2 ∈ E(m1−m2)

i

where m1 +m2 and m1 −m2 are addition and subtraction in R.
3. There is a κ-ary operation × (on {0, 1}∗) such that for every m1, . . . ,mκ ∈ R and every

u1 ∈ E(m1)
1 , . . . , uκ ∈ E(mκ)κ , it holds that u1 × · · · × uκ ∈ E(m1···mκ)

T where m1 · · ·mκ is
multiplication in R.

4. There is a binary operation ? (on {0, 1}∗) such that for every m0,mi ∈ R and every u0 ∈ E(m0)
0

and ui ∈ E(mi)i , it holds that u0 ? ui ∈ E(m0·mi)
i where m0 ·mi is multiplication in R.

CLT (and GGH) encodings do not quite meet the definition of graded encoding systems above,
since the homomorphisms required in the definition eventually fail when the “noise” in the encodings
becomes too large, analogously to how the homomorphisms may eventually fail in lattice-based
homomorphic encryption. However, these noise issues are relatively straightforward (if tedious) to
deal with.

The set E(m)
i of encodings of m in Ei is analogous to the single element gmi ∈ Gi in the algebraic

group setting, which encodes m in group Gi. We sometimes call encodings in E0 “level-0 encodings”.
For symmetric graded encodings, we set E1 = · · · = Eκ. For asymmetric graded encodings, we keep
these sets distinct.

Now, we define some procedures for graded encoding schemes.

Instance Generation InstGen(λ, κ, r) takes as input a security parameter λ, the multilinearity
parameter κ, a ring dimension parameter r, and outputs (params, pzt), where params is a “descrip-
tion” of a κ-graded encoding system for a ring R = R1 × · · · ×Rr, and pzt is a zero-test parameter
for ET . We assume R is chosen such that the density of zero divisors in each Ri is negligible. We let
esk denote a master secret key associated to the graded encoding system (which is not revealed).

Remark 6. Setting r = 1 corresponds to the prime order setting, while r > 1 corresponds to the
composite-order setting.

Ring Sampler Samp(params) is a randomized algorithm that outputs a level-0 encoding of a
statistically uniform element m ∈ R, though the encoding itself need not be uniform.

Re-Randomization ReRand(params, i, u) is a randomized algorithm that takes as input an en-

coding u ∈ E(m)
i for some m, and outputs a new encoding u′ ∈ E(m)

i . The distributional re-

quirement is that, for any encodings u1, u2 ∈ E(m)
i , the distributions of ReRand(params, i, u1) and

ReRand(params, i, u2) are statistically indistinguishable.
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Remark 7. Again, due to the noisiness of GGH and CLT encodings, iterative applications of
ReRand will eventually cause the noise to exceed a threshold, after which encodings become garbage.
In that context, it will be understood that ReRand must be be correct only “up to noise”.

Addition, Subtraction, and Multiplication These are the +, −, and × procedures of the
graded encoding system.

Zero-test The procedure IsZero(params, pzt, u) takes an encoding u and outputs “true” if u ∈ E(0)T

and “false” otherwise.

Now, we define a couple of procedures not provided in [12, 9]. These procedures are directed
to graded encoding systems with an encoding space R that can be decomposed nontrivially as a
direct product R1 × · · · ×Rr.

Subring Generation SubRGen(esk, i, S) is a private randomized algorithm that takes as input
the graded encoding secret key and a subset S ⊂ [r]. It generates m ∈ R such that m is random in

Rj for j ∈ S but m is 0 in Rj for j ∈ [r] \ S. It then outputs a random encoding in E(m)
i .

Subring Sampling SubRSamp(params, i, S,GS,i} takes as input the parameters, i ∈ [κ], S ⊂ [r],
and a “generating set” of encodings GS,i ⊂ ES,i, where ES,i ⊂ Ei denotes the subset of encodings
that encode some m such that m is 0 in Rj for j ∈ [r] \ S.

Remark 8. The form of the “generating set” will depend on the type of encodings. For example, for
encodings over an asymmetric algebraic group system of order N = p1 · · · pr, GS,i can be represented

by a single element g
∏
j /∈S pj

i , which generates the group of order
∏
j∈S pj. For “noisy” encodings,

where multiplying/exponentiating by big numbers would blow up the noise, generating sets instead
consist of many random encodings, and we sample by taking a random subset sum of the encodings,
and applying the leftover hash lemma to argue that the result is well-distributed.

B.2 The Composite-Order Symmetric-Map Scheme Revisited

We describe the translation of our composite-order symmetric map scheme to CLT encodings in
full detail, first describing the scheme in terms of the generic graded encoding procedures, and
then describing how to implement these procedures in CLT, as well as certain security issues that
arise. Translating the prime-order scheme is strictly easier (we nonetheless discuss the translation
of prime-order maps into CLT later on), and the asymmetric case does not raise any additional
interesting issues.

Recall that our witness encryption scheme, and its security proof, are very modular. To update
our WE construction for graded encodings, we only need to update the our implementation of the
tribes scheme for PWE. To update the security proof, we only need to translate our assumptions
to the graded encoding setting, and prove that the updated assumptions still imply intra-column
and inter-column security for the tribes scheme. We begin with the construction.
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Create(λ,M): The creation algorithm takes in a security parameter λ and an n × ` × 2 tribes
matrix M (entries in {U,B}). It then calls (params, pzt) ← InstGen(λ, n, n + `) to produce a n-
graded encoding system for ring R = R1×· · ·×Rn+`. The algorithm produces 2n encodings {ui,β}
from E1, each indexed by a row i ∈ [n] and a slot β ∈ {0, 1}. We let ui,β ∈ E1 be sampled as follows.
Let Si,β ⊂ [n+ `] consist of indices i′ ∈ [n] \ {i} as well as all n+ j such that Mi,j,β = B. Set

ui,β ← SubRGen(esk, 1, Si,β).

The tribes scheme T consists of these 2n elements {ui,β}, as well as the parameters params, pzt of
the graded encoding system.

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean vector x =
(x1, . . . , xn) ∈ {0, 1}n. It sets uT ← u1,x1 × · · · × un,xn and runs IsZero(params, pzt, uT ) to dis-

tinguish whether uT ∈ E(0)T or not. If so, it outputs 0. Otherwise, it outputs 1.

Correctness Clearly uT ∈ ET , up to noise issues. Let us consider now what uT encodes, so that
we can establish that Eval(Create(λ,M), x) = fM (x). By CRT, we can separately consider what
is encoded in each subring Ri. We can see that ∩i∈[n]Si,xi includes no index in [n], and therefore
the encoded term is 0 in Ri for all i ∈ [n].

For i ∈ [n + 1, . . . , n + `], we consider two cases. Suppose ∃ a column j such that Mi,j,xi = B
for all i ∈ [n]. This is equivalent to supposing that fM (x) = 1. In this case, every Si,xi includes
n + j, and thus every ui,xi encodes a random (likely nonzero) residue in Rn+j , and thus uT likely
encodes a nonzero residue in Rn+j (due to the negligible density of zero divisors), which implies

uT /∈ E(0)T , resulting in an output that matches fM . In the other case, no such column j exists.
This means that for every column j, there is some Si,xi which is missing n+ j, which implies this
ui,xi and hence uT encodes 0 in Rn+j , which implies that uT encodes 0 in all Ri, and the output
again matches fM .

We now state an assumption in terms of graded encodings, and show that it implies the inter-
column security for the tribes scheme above.

Computational Assumption 1S for Graded Encodings The challenger runs (params, pzt)←
InstGen(λ, n, n+ `) to obtain a graded encoding system associated to R = R1 × · · · ×Rn+`. For S
equal to {1}, . . . , {n + ` − 1} and {n + `} ∪ [n] \ {1}, . . . , {n + `} ∪ [n] \ {n}, it populates a set of
encodings GS by running the procedure SubRGen(esk, 1, S) enough times to obtain a “generating
set” (that could later be used in SubRSamp). The challenge term u∗ is an encoding that is the
output of SubRGen(esk, 1, S∗), where S∗ equals either {n + `} ∪ [n] or [n]. The task is, given the
GS ’s and u∗, to distinguish which distribution u∗ comes from.

The assumption above is directly analogous to Assumption 1S for algebraic multilinear groups.
One difference is that, in the context of groups, the generating set is a single group element, whereas
we cannot assume that this works in general for graded encoding systems.

Lemma B.2. Assumption 1S for graded encodings implies inter-column security for the tribes
scheme.

Proof. Without loss of generality, we consider the game with i∗ = n, β∗ = 0, j∗ = 2, k∗ = 1
and any n× `× 2 tribes matrix M satisfying the game requirements for these indices. We relabel
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the indices in [n + `] in a way suitable for this game. In particular, after the relabeling, the
assumption instance includes GS for S equal to {1}, . . . , {n}, {n + 2}, . . . {n + `} (all but {n + 1})
and {n + 1, n + 2} ∪ [n − 1] \ {1}, . . . , {n + 1, n + 2} ∪ [n − 1] \ {n − 1},{n + 1} ∪ [n − 1], as well
as the challenge term u∗, which is sampled from the subring associated to S∗, where S∗ is either
{n+1, n+2}∪ [n−1] or {n+2}∪ [n−1]. Our task is to guess the distribution that u∗ was sampled
from.

We now need to generate 2n elements to give to A to represent the tribes scheme. Recall that
in the tribes construction, we did the following. For i ∈ [n], β ∈ {0, 1}, we set Si,β ⊂ [n + `] to
consist of all i′ ∈ [n] \ {i}, as well as all n+ j such that Mi,j,β = B. Then, we set

ui,β ← SubRGen(esk, 1, Si,β).

We need to simulate this distribution without esk, using the assumption instance.
For every (i, β) with i 6= i∗, we observe that Si,β \ {n + 1} is the union of sets that have

generators sets in the assumption – namely, it can be constructed as a union of some of the sets
{1}, . . . , {n}, {n+ 2}, . . . {n+ `}. Since i 6= i∗, it holds in the inter-column game that Si,β contains
{n+ 1} (corresponding to k∗) only if it contains {n+ 2} (corresponding to j∗). Also, Si,β contains
{i′} for all i′ ∈ [n] \ {i}. Therefore, in this case, Si,β either equals Si,β \ {n + 1}, or equals the
union of that set and the set {n+ 1, n+ 2}∪ [n− 1] \ {i}, which has a generator in the assumption.
Therefore, Si,β can be expressed as the union of sets with generators in the assumption when i 6= i∗.

But since Si,β is expressible in this way, we can use the generators in the assumption to generate
a well-distributed ui,β. Let Si,β be the collection of sets from the assumption such that Si,β =
∪S∈Si,βS. For each S ∈ Si,β, we run SubRSamp(params, 1, S,GS) to generate a random element
uS ∈ E1. Then, we set u′i,β ←

∑
S∈Si,β uS , which encodes value m that is random except that it is

0 in Rj with j /∈ Si,β, but where the encoding itself its not necessarily well-distributed. Finally, we
run ui,β ← ReRand(params, 1, u′i,β) to canonicalize the distribution of the encoding.

For (i, β) with i = i∗ and β = 1 − β∗, constructing Si,β as a union of sets from the instance
is easier. Depending on whether or not {n + 1} is included, we deal with the part from [n + 1]
by using either {n + 1} ∪ [n − 1] or {1} ∪ · · · ∪ {n − 1}. Then we union in the appropriate sets
from {n + 2}, . . . , {n + `}. By taking sums and running SubRSamp and ReRand as above, we can
therefore generate well-distributed ui,β.

Finally, consider the case (i, β) = (i∗, β∗). Set Ti,β to be the union of S∗ and Si,β ∩ [n+3, n+ `].
We can construct Ti,β from S∗ and other sets from the assumption instance. Note that if S∗ =
{n+ 1, n+ 2}∪ [n− 1], then Ti,β equals Si,β for the case Mi∗,k∗,β∗ = Mi∗,j∗,β∗ = B. On other hand,
if S∗ = {n+ 2}∪ [n− 1], then Ti,β equals Si,β for the case Mi∗,k∗,β∗ = U and Mi∗,j∗,β∗ = B. (These
are the only two cases in the inter-column security game.) Overall, by taking unions of sets from
the assumption instance, we can construct sets that correspond to a correct tribes matrix for one of
the two cases of the inter-column security game (depending on S∗). Again, we take sums and use
SubRSamp and ReRand as above to obtain well-distributed encodings that correspond to these two
cases. If an attacker could distinguish these cases with non-negligible advantage – i.e., distinguish
whether the Ti,β corresponds to Mi∗,k∗,β∗ equals U or B – then we could leverage the attacker to
break Assumption 1 with non-negligible advantage.

We last show that intra-column security for this tribes scheme is implied by our second compu-
tational assumption.
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Computational Assumption 2S for Graded Encodings The challenger runs (params, pzt)←
InstGen(λ, n, n+`) to obtain a graded encoding system associated to R = R1×· · ·Rn+`. For S equal
to {1}, . . . , {n+`−1}, it populates a set of encodings GS by running the procedure SubRGen(esk, 1, S)
enough times to obtain a “generating set” (that could later be used in SubRSamp). The challenge
term u∗ is an encoding that is the output of SubRGen(esk, 1, S∗), where S∗ equals either {n+ `, n}
or {n}. The task is, given the GS ’s and u∗, to distinguish which distribution u∗ comes from.

Lemma B.3. Assumption 2S for graded encodings implies intra-column security for the tribes
scheme.

Proof. Without loss of generality, we consider the game with i∗ = n, j∗ = 1, and any n × ` × 2
tribes matrix M and alternate column C satisfying the game requirements for these indices. We
will break the game into two stages: in the first stage, we will transition to the first column of M
being all U entries. In the second stage, we will transition to this column being equal to C.

We describe the reduction to Assumption 2S for the first stage only, as the second stage is analo-
gous. Relabeling the indices, the assumption instance consists of GS for S equals {1}, . . . , {n}, {n+
2}, . . . {n+ `} (all but {n+ 1}) and challenge term u∗ associated to S∗ that equals either {n, n+ 1}
or {n}. Our task is to guess the distribution u∗ was sampled from.

We form the 2n group elements to give to an attacker A as follows. Recall that in the tribes
construction, the element ui,β is associated to the set Si,β ⊂ [n+`], which consists of all i′ ∈ [n]\{i},
as well as all n+ j such that Mi,j,β = B.

For i < i∗ = n, observe that Si,β includes n. Therefore, Si,β ∩{n, n+ 1} equals either {n, n+ 1}
or {n}, both of which are sets present in the assumption instance. Si,β can therefore be constructed
as a union of sets from the assumption. However, instead of using the set {n, n + 1}, we use the
challenge set S∗, which is either {n, n + 1} or {n}. Consequently, depending on the value of S∗,
we generate as a union either the original Si,β’s, or modified Si,β’s where all the n+ 1’s have been
removed.

For i = i∗ = n, recall Mi∗,j∗,0 = Mi∗,j∗,1 = U in both of the cases of the intra-column security
game and therefore neither Si∗,0 nor Si∗,1 contains {n + 1}. It is therefore straightforward to
generate Si∗,β as a union of sets from the assumption.

Overall, by taking unions of sets from the assumption instance, we can construct sets that
correspond to a correct tribes matrix for one of the two cases of the inter-column security game
(depending on S∗). As described in the previous proof, we use SubRSamp and ReRand as above to
obtain well-distributed encodings that correspond to these cases. If an attacker could distinguish
these cases with non-negligible advantage, then we could leverage the attacker to break Assumption
2 with non-negligible advantage.

B.3 Overview of CLT Encodings

CLT encodings have a couple of properties that make them more attractive in our setting than
the original multilinear maps of Garg, Gentry and Halevi (GGH) [12]. First, as Garg et al. noted
in their paper, GGH encodings are subject to a “weak discrete log” attack. This attack can be
avoided by working with “multilinear jigsaw puzzle” pieces [13] consisting of matrices of encodings
(rather than individual encodings). However, we find it simpler to work with CLT encodings, which
(as far as we know) do not seem to be vulnerable to this attack in the first place. Second, GGH
encodings are built for a prime-order encoding space. While it is probably relatively straightforward
to modify GGH encodings to support a composite-order encoding space, we prefer to work with CLT

41



encodings, which inherently support a composite integer encoding space already. Unfortunately,
the translation from composite order groups to CLT’s composite order encoding space is not quite
as direct as one would like – the most “direct” translation is subject to attacks, as we discuss in
section B.6 – but it is still relatively straightforward.

A κ-linear symmetric CLT encoding system uses a “small” inner modulus N = p1 · · · ps that is
the product of s = s(λ, κ) “small” primes, and a “large” outer modulus Q = P1 · · ·Ps that is the

product of s “large” primes. It uses a random z ← Z∗Q. An encoding c ∈ E(m)
1 is an element of ZQ

such that

c ≡ [m]pi + xi · pi
z

mod Pi for i ∈ [s], (4)

where [m]pi is m reduced modulo pi into a small range such as (−pi/2, pi/2), and the xi’s are
random small integers. An encoding in ET has a similar form, but with zκ in the denominator.

For random small integers h1, . . . , hs, the system includes a zero-testing parameter pzt for level
κ of the form:

pzt =

s∑
i=1

hi · (zκ · p−1i mod Pi) ·
∏
j 6=i

Pj mod Q. (5)

If c is a level-κ encoding of 0 ∈ ZN – i.e., each [m]pi = 0 – we have:

c · pzt =

s∑
i=1

(xi · pi/zκ) · hi · (zκ · p−1i mod Pi) ·
∏
j 6=i

Pj mod Q

=
s∑
i=1

xi · hi ·
∏
j 6=i

Pj mod Q

which is a number substantially smaller than Q assuming the xi’s and hi’s satisfy certain smallness
constraints – in particular, that each xi ·hi � Pi. On the other hand, if c encodes something other
than 0, c · pzt likely will not be a small number, due to uncanceled p−1i ’s in the expression above.
Thus, pzt enables zero-testing. (Actually, CLT uses a polynomial number of such zero-testing
parameters, and they prove that c encodes 0 if it passes the tests with respect to all of them, and
does not encode 0 otherwise.)

By CRT, we can add and multiply CLT encodings while preserving their form (per Equation
4) as long as the numerators in Equation 4 do not grow too large – i.e., they do not “wrap”
modulo Pi for any i. The Pi’s must be chosen large enough to ensure that such wrapping never
occurs for the functions we will compute over the encodings. These additions and multiplications
induce additions and multiplications on the underlying “messages” that are encoded, much like
homomorphic encryption.

Like GGH, CLT generalizes easily to allow asymmetric graded encodings. The simplest way to
build asymmetric multilinear CLT encodings is simply to generate a random zi ← Z∗Q corresponding

to source group Gi, rather than a single z. For i ∈ [κ], An encoding in E(m)
i now has the form

c ≡ [m]pi + xi · pi
zi

mod Pi for i ∈ [s]. (6)
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The form of the zero-test parameter changes to:

pzt =
s∑
i=1

hi · (Z · p−1i mod Pi) ·
∏
j 6=i

Pj mod Q. (7)

where Z =
∏
i∈[κ] zi. Similar to the symmetric case, multiplying pzt with an encoding in E(0)T (which

has Z in the denominator) results in a mod-Q number that is small relative to Q.
Intuitively, the asymmetric form of the encodings limits how a user can meaningfully multiply

together encodings, so that each monomial it computes corresponds to multiplying together exactly
one encoding from each source group, so that it obtains an encoding with Z in the denominator. For
example, the multilinear map cannot be used directly to solve decision Diffie-Hellman over elements
of G1, since this would involve multiplying together encodings from G1, which would induce an
uncancellable z21 in the denominator. In the asymmetric setting, it is even plausible that it is hard
for an attacker to distinguish whether an encoding from a source group encodes 0, even though
zero-testing for ET is efficient, as long as we do not give the attacker elements from other source
groups that would allow it to distinguish trivially. However, in the sequel, we focus on symmetric
CLT encodings for simplicity.

Translating our schemes from algebraic multilinear groups to CLT encodings requires some care.
In contrast to encodings over groups, CLT encodings are probabilistic and noisy, and come from a
distribution. We have to define these distributions, and show that they are correct in our scheme
and in the hybrids of our security proof.

Another issue is representing subrings of ZN with CLT encodings. There are two big issues
here: 1) how to give a useful noise-resilient description of subrings, and 2) whether it is secure in
the CLT setting to give descriptions of subrings. The natural way to represent a subring in the
no-noise setting is to give a generator of that subring, which typically can be a single element.
Then, to generate a random element in that subring, one simply multiplies the generator by a
random number. This strategy does not work in the noisy setting, since multiplying an encoding
by a big number also blows up the noise. Instead, our approach is to represent a subring by
a large “generating set” – a bunch of encodings that encode elements of the subring – and to
generate random elements in the subring by taking random subset sums over the generating set
and using the leftover hash lemma. Thus, our CLT-based assumptions end up looking somewhat
more complicated than the analogous assumptions in the group setting, since each subring generator
is expanded into a larger generating set. Regarding security, we have to ask: Is it safe, for example,
to give an encoding of some m that is in the index-pi subring of ZN? Unfortunately, it is not!
As we discuss in more detail in Section B.6, unless one is extremely careful with the parameter
settings, one can use such a CLT encoding to efficiently recover pi! The original CLT proposal [9]
was careful to never give out encodings in which any divisor of N was “isolated” in this way; for
the encodings in the parameters, the encoded values are 0 modulo all of the pi’s or none of them.
To translate our composite-order constructions, we need to use subrings, and therefore we cannot
use CLT’s safe “all-or-nothing” approach. However, we still avoid letting any pi be “isolated” by
giving it many – i.e., poly(λ) – “buddies”: any encoding that an attacker sees is 0 modulo pi and
all of its prime buddies {pj}, or is (whp) nonzero for all of them. As we discuss in Section B.6, this
approach seems resilient to attacks.

Alternatively, one can avoid using these subrings by translating our prime-order construction
to the CLT setting. For this translation, only “conventional” CLT encodings are needed.

43



Below, we flesh out the overview above. We provide more details on CLT encodings, and on
translating our schemes, assumptions and proofs from the general graded encoding setting to CLT.

B.4 Graded Encoding Procedures for CLT

Here, we describe how the graded encoding procedures from Section B.1 are instantiated in CLT.

Instance Generation InstGen(λ, κ, r) takes as input the security parameter λ, the multilinearity
parameter κ, and a ring dimension parameter r. It generates, for each i ∈ [r] and θ ∈ [Θ = Θ(λ, κ)],
a ρ = ρ(λ, κ)-bit small prime pi,θ and a η = η(λ, κ)-bit big prime Pi,θ, and sets N =

∏
i,θ pi,θ and

Q =
∏
i,θ Pi,θ. For i ∈ [r], we let Ri denote the ring Z∏

θ pi,θ
. The parameter Θ specifies how many

primes are associated to each Ri, and it needs to be set large (but polynomial) for security reasons.
We let R = R1 × · · · × Rr = ZN . To eventually obtain correctness and security against known
attacks, one can take ρ = O(λ), η = O(λ · (λ + κ)), and Θ = (ρ · η)1+ε, ε > 0. Depending on
whether the encoding is symmetric or asymmetric, it generates a single value z ∈ ZQ or κ values
z1, . . . , zκ ∈ ZQ. (Below, we will focus on the symmetric case for simplicity unless stated otherwise.)

For parameter t = t(λ, κ), InstGen generates t = t(λ, κ) random numbers mj ∈ ZN , and
generates level-0 encodings of them:

cj ≡ [mj ]pi,θ + xjiθ · pi,θ mod Pi,θ.

where the xjiθ’s are random numbers in (−2ρ, 2ρ). It also generates t+ s level-1 encodings of 0:

c′j ≡
x′jiθ · pi,θ

z
mod Pi,θ.

The main requirement on t is that it is large enough to allow application of the leftover hash lemma
when we take a subset sum of the cj ’s or c′j ’s.

It generates a vector pzt of zero-test parameters, where each pzt in the vector equals
∑

i,θ hi,θ ·
(zκ · p−1i,θ mod Pi,θ) ·

∏
(i′,θ′) 6=(i,θ) Pi′,θ′ mod Q, where the random hi,θ’s are chosen to have (for ex-

ample) 3η/4 bits (so that hi,θ is much smaller than Pi,θ, but h2i,θ is much bigger).
It outputs (params,pzt) where params includes the basic parameters λ, κ, ρ, η, s, t, Q. Certain

values, such as z and the prime divisors of N and Q, remain secret as part of esk.

Remark 9. The setting of prime-order multilinear maps corresponds to setting r = 1. Regardless
of whether we are translating a prime-order or composite-order scheme, the CLT encoding space is
composite (having a factor of Θ more primes that the original encoding space).

Ring Sampler Samp(params) generates a random binary vector b1 · · · bt ∈ {0, 1}t and outputs
u ←

∑t
j=1 bj · cj mod Q. The statistical uniformity of the encoded value follows by application of

the leftover hash lemma to R = ZN .

Re-Randomization ReRand(params, u) works by adding a random encoding in E(0)1 to u ∈ E(m)
1

to generate a new encoding u′ ∈ E(m)
1 . The random encoding of 0 is generated according to a

large-enough distribution to “drown” the distribution of u. In particular, one sets u′ ← u +∑t+s
j=1 bj ·c′j mod Q, where b1, . . . , bt are sampled uniformly from {0, 1} and bt+1, . . . , bt+s are sampled

uniformly from [−2δ, 2δ] for suitable δ = δ(λ, κ), which can be Õ(λ).
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Remark 10. Though we omit details, intuitively the subset sum using the first t encodings of
0 randomizes things “locally” – in particular, it is uniform over the certain cosets of a lattice
defined by the last s encodings of 0. The random linear combination over the last s encodings of 0
then randomizes things “globally” by adding a random lattice point drawn uniformly from a huge
parallelepiped. CLT [9] proves a “leftover hash lemma over lattices” to establish that this process
statically induces the desired canonical distribution.

Remark 11. In ReRand, if u itself was the (perhaps indirect) output of such a randomization
procedure, then we would need to make the bi’s even larger to drown the distribution of u.

Addition, Subtraction, and Multiplication These operations are performed in the natural
way via addition, subtraction, or multiplication modulo Q.

Zero-test The procedure IsZero(params,pzt, u) takes an encoding u and applies the zero-test

parameter to distinguish whether u ∈ E(0)T . This procedures works simply by multiplying by each
individual pzt and seeing whether the result is small, as described above.

The following procedures are not included in CLT, except for the case of r = 1.

Subring Generation SubRGen(esk, S) is a private randomized algorithm that takes as input a
subset S ⊂ [r] and the graded encoding secret key, which includes z and the factorizations of N
and Q. It generates m ∈ R = ZN such that m is random in Rj for j ∈ S but m is 0 in Rj for
j ∈ [r] \ S. It sets u0 ∈ ZQ to be [m]pi,θ/z mod Pi,θ. It then sets u1 ← ReRand(params, u0).

Observe that when r = 1, SubRGen(esk, {1}) outputs an encoding of a random element, while
SubRGen(esk, ∅) outputs an encoding of 0. Both of these functionalities can be performed just using
params (no secret information) in the original version of CLT encodings.

Subring Sampling SubRSamp(params, S,GS} takes as input the parameters, a subset S ⊂ [r],
and a purported set {vi} of encodings in ES , where ES is the set of encodings that encode that some
m such that m is 0 in Rj for j ∈ [r]\S. It runs {wi ← Samp(params)}, and outputs u0 ←

∑
wi ?vi.

It then sets u1 ← ReRand(params, u0), which should be a statistically random encoding from ES .

B.5 Comments on Noise Distributions

The bound on the size of the numerator in CLT encodings grows exponentially with κ, but this
can be accommodated by setting the parameters large enough (but still polynomial).

When adapting the security proofs for our constructions to CLT, we need to ensure that the
distributions (in particular, the noise distributions) generated in the security proof are identical to
those generated by the encryption algorithm. However, this is easy to ensure. It is clear that the
distributions of the encoded terms (in R) are statistically indistinguishable. To ensure that the
encodings themselves are statistically indistinguishable, we can modify the encryption procedure
to apply the same ReRand algorithm that is used in the proof, with parameters sufficient to “drown
out” the distribution of the initial encoding output by encryption.
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B.6 Discussion of the Assumptions

As mentioned above, the most “natural” way to translate a scheme over groups of composite
order N = p1 · · · pr to CLT encodings would be to use ZN directly as the CLT encoding space.
Unfortunately, this approach fails for security reasons (or at least the security seems much more
tenuous than for conventional CLT encodings).

Suppose we use the approach above, and we obtain an encoding c in ET of some m ∈ ZN such
that [m]pj 6= 0 but [m]pi = 0 for all i 6= j. (We stress that the original CLT proposal [9] does not
give out encodings of this form, and thus is not subject to this attack.) That is,

c =
[m]pj + xj · pj

zκ
mod Pj , c =

xi · pi
zκ

mod Pi for i 6= j

for fairly small xj and {xi}. Set a← c · pzt mod Q. We have that

a = ([m]pj · hj · p−1j mod Pj) ·
∏
k 6=j

Pk +
∑
i∈[s]

xi · hi ·
∏
k 6=i

Pk mod Q.

We do not have pj a priori, but we do know that

b := a · pj = [m]pj · hj ·
∏
k 6=j

Pk +
∑
i∈[s]

pj · xi · hi ·
∏
k 6=i

Pk mod Q.

Furthermore, if the parameters are such that the values [m]pj · hj and {pj · xi · hi} are all small
in relation to the Pi’s, then the value b is small in relation to Q. (Recall that the values {xi · hi}
should be small to allow correct zero testing.) If this value is small enough, we can recover pj via
lattice reduction.

Specifically, let B be an approximation of the value b/pj , based on the distributions of variables.
(Note that B is dominated by the summation

∑
i∈[s] xi ·hi ·

∏
k 6=i Pk mod Q, and thus is comparable

in size to the small mod-Q value that one would obtain by zero-testing an encoding that actually
encodes 0.) Consider the two-dimensional lattice L generated by the vectors (B, a) and (0, Q). This
lattice contains the vector ~v := (B·pj , b), of length approximatelyB·pj ·

√
2. (Let us assume its length

is upper-bounded by 2Bpj .) On the other hand, the determinant of the lattice is B · Q, implying
that all vectors in L that are not parallel to ~v must have length at least B ·Q/(2Bpj) = Q/2pj . If
B < Q/4p2j , then 2Bpj < Q/2pj , and ~v is the unique shortest vector in L, which can be recovered
easily via lattice reduction. Recovery of ~v means recovery of pj , a devastating attack on the
encodings. While in principle the parameters could conceivably be set carefully to ensure that B
is comfortably larger than Q/4p2j (to avoid this attack) and comfortably smaller than Q (to allow
zero-testing), we note that nothing approaching this amount of care was needed when setting the
parameters of the original CLT scheme.

The attack can be extended, to some extent, to encodings of m ∈ ZN such that m is nonzero
modulo more than one prime divisor of N . For example, suppose that we have an encoding of
m where m has nonzero residues modulo just pj and pk. Then, one can define a as above, b as
[a · pj · pk]Q, B as an approximation of b/pjpk, and reduce the lattice formed by (B, a) and (0, Q).
However, the target vector (B · pj · pk, b) in this lattice will not be as short (it will be about pk
times longer), and thus B needs to be correspondingly smaller for lattice reduction to be effective.
In general, it seems, the greater the nonzero support of m, the harder it is to use an encoding of
m to recover factors of N .

46



Indeed, this is consistent with the security concept for CLT encodings. Consider a CLT encoding
scheme like [9], but where N and Q are each divisible by only two primes. Such an encoding scheme
would be subject to essentially the same attack as above. CLT eliminates such attacks by using
many primes, only revealing encodings that are zero with respect to all of the primes or none
of them, and gluing together zero-testers for individual primes into an aggregate zero tester. To
extend CLT encodings so that we can reveal encodings of elements that are in subrings, we use a
similar concept: we associate many primes to each subring Ri, and apply CLT’s “all-or-nothing”
approach within each subring: encodings are zero with respect to all of the primes associated to Ri
or none of them.

We mention again that these issues do not arise when we translate our prime order scheme to
the CLT setting, since there we can use conventional CRT encodings.

C A Generic Group Proof of Our Assumptions for Asymmetric
Multilinear Maps

Here we prove that the assumptions we used in Section 7 hold in the generic group model for
asymmetric, multilinear groups. In this model, access to the group operations ofG1, G2, . . . , Gn, GT ,
the multilinear map E, and the zero test in GT are mediated by an oracle who outputs large random
handles as references to group elements. These are hard to guess, so a user can only learn new
handles by applying the legitimate operations to the handles he already knows.

In our case, if an attacker could break one of our assumptions in the generic group model, this
would be mean that it produced a fixed linear combination of multilinear terms over the variables
of our sampled matrix distributions that is identically 0 modulo p for one case of the challenge and
not for the other.

We recall our assumptions:
Assumption 1AP : Set d = 4. Generate random matrices R0, . . . , Rn in Zd×dp . Sample diagonal
matrices C1

1 , D
1
1, C

2
1 , D

2
1 as follows. When all sub/super-scripts are matching, C’s and D’s will

always denote two independent samples from the same distribution (these will be used to supply
sufficient randomness to give out the group elements for both slots when we instantiate our tribes
scheme). For C1

1 , D
1
1, the first entries are random, while the remaining entries are 0. For C2

1 , D
2
1,

the second entries are random and the remaining entries are 0.
We additionally sample diagonal matrices C0

i , D
0
i , C

2
i , D

2
i , C

1,2
i , D1,2

i for each i ≥ 2 as follows.
The last two entries are always randomly distributed. The first two entries are both 0 when the
superscript is 0. When the superscript is 2, the second entry is random and the first entry remains
0. When the superscript is 1,2, both of these are random.

Two final matrices T 2, T 1,2 are also sampled, where the last two entries of each are 0 and the
second entry of each is random, but the first entry is 0 in T 2 and is random in T 1,2.

An instance of the assumption includes a description of the multilinear group and:

g
Ri−1C

0
i R
−1
i

i , g
Ri−1D

0
iR
−1
i

i , g
Ri−1C

2
i R
−1
i

i , g
Ri−1D

2
iR
−1
i

i g
Ri−1C

1,2
i R−1

i
i , g

Ri−1D
1,2
i R−1

i
i for i = 2, . . . , n

g
R0C0

1R
−1
1

1 , g
R0D0

1R
−1
1

1 , g
R0C1

1R
−1
1

1 , g
R0D1

1R
−1
1

1 , g
R0C2

1R
−1
1

1 , g
R0D2

1R
−1
1

1

Either g
R0T 2R−1

1
1 or g

R0T 1,2R−1
1

1

The task is to distinguish which distribution the final encoded term comes from.
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Assumption 2AP : Set d = 5. Generate random matrices R0, . . . , Rn in Zd×dp . Sample diagonal

matrices C1, D1, C
U
2 , D

U
2 , C

B
2 , D

B
2 , . . . , C

U
n , D

U
n , C

B
n , D

B
n in Zd×dp as follows. The C,D matrices with

the same subscripts and superscripts will also represent two independent samples from the same
distribution (these will be used to supply sufficient randomness to give out the group elements for
both slots when we instantiate our tribes scheme).

The first entries of C1, D1 will be set to 0. For the rest, the first entry of each CUi , D
U
i will

be distributed as 0 and the first entry of each CBi , D
B
i will be distributed randomly in Zp. The

remaining 4 entries are sampled as follows. For C1, D1, the 1st of these 4 is set randomly, while
the remaining three are fixed to 0. For each Ci, Di with i > 1, the first of these four entries will be
fixed to 0, while the remaining 3 will be set randomly. (Note it is the same for all of CUi , D

U
i and

CBi , DB
i ). Two more matrices TU2 , T

B
2 are also sampled, distributed the same as DU

2 , D
B
2 (though

sampled independently).
An instance of the assumption includes a description of the multilinear group and:

g
Ri−1C

U
i R
−1
i

i , g
Ri−1D

U
i R
−1
i

i , g
Ri−1C

B
i R
−1
i

i , g
Ri−1D

B
i R
−1
i

i for i = 2, . . . , n

g
R0C1R

−1
1

1 , g
R0D1R

−1
1

1

Either g
R1TU2 R

−1
2

2 or g
R1TB2 R

−1
2

2

The task is to distinguish which distribution the final encoded term comes from.
We prove generic security for Assumption 2AP first, as the argument for Assumption 1AP will

then proceed very similarly (which we then include for completeness).

Lemma C.1. Assumption 2AP holds in the generic multi-linear group model.

Proof. We suppose not. If we consider the entries of the diagonal matrices and the Ri’s sampled
in Assumption 2AP as variables, we must then have a function f over these variables that is a
multilinear polynomial over the diagonal entries and the entries of Ri, R

−1
i that is 0 with noticeably

different probability when the challenge matrix is TU2 versus when it is TB2 .
We let D1 denote the distribution of the matrices when the challenge is sampled as TU2 , and let

D2 denote the distribution when the challenge is sampled as TB2 . We first argue that f must be
identically zero on D1 and not on D2. To see this, observe that if we were to multiply each R−1i
by det(Ri) (which is nonzero with high probability), we would a polynomial of suitably bounded
degree in the variables of Ri, so the Schwartz-Zippel lemma can be applied to conclude that any f
is either identically 0 or is 0 only with negligibly small probability (as 1/p is negligible). Hence, we
must have f identically 0 on one of D1,D2 and not on the other. It is easy to see it must be D1,
as this is more restrictive.

For any specified set S of (diagonal) entries of the diagonal matrices, we can define a projection
D1,S to be the distribution induced by fixing all diagonal entries not in S to 0 and otherwise
sampling from D1. We can define the projected distribution D2,S analogously. Since all of the
nonzero diagonal entries are sampled uniformly and independent from Zp, it must be the case that
f evaluates to 0 on each projected distribution D1,S , for any set S of diagonal entries. To see this,
note that f can be organized as a linear combination of terms each divisible by a unique product
of n diagonal entries, one from each group, where the “coefficients” are expressions in terms of the
Ri, R

−1
i variables. Another application of the Schwartz-Zippel lemma then implies that each such

projection must be identically 0.
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We consider sets S that contain only one diagonal entry in each group Gi. This means there
will only be one potentially non-zero diagonal entry among all the matrices given out in each group
Gi. We observe there must be some such S where f evaluates to something not identically 0 on the
projected distribution D2,S . Otherwise, it would be identically 0 overall, as f can be considered as
linear combination of these projections.

So we can express S as a sequence in {1, 2, 3, 4, 5}n, where the ith entry of the sequence indicated
which diagonal entry in group i is left as randomly distributed. The sequence must start with 21,
otherwise the projection of f onto D2,S would be identically 0.

We will next argue that there must also exist a sequence in {1, 2, 3, 4}n indicating another set
S′ such that the projection of S onto D2,S′ is nonzero. We derive S from S′ as follows. Our new
sequence will have 1’s and 2’s in the same position as before, but any subsequence of elements in
{3, 4, 5} is replaced by a subsequence of {3, 4} with the property that if two adjacent elements were
the same before, they remain the same now, but if they were different, they remain different. For
example, 3455443453 could be replaced by 3433443434.

We now want to show that f must be nonzero on D2,S′ . We claim in fact that the distributions
D2,S and D2,S′ are identical. Consider a sample of the distribution D2,S , corresponding to matrices
R0, R1, . . . , Rn and diagonal matrices D1, . . . , Dn, where each Ri is uniformly random and each Di

has only one nonzero (and random) entry, in the position indicated by S.
We can thus consider the distribution of 5× 5 matrices R0D1R

−1
1 , R1D2R

−1
2 , . . ., Rn−1DnR

−1
n .

Consider the first time that a 5 appears in the sequence, say at Di+1. Let’s suppose it is preceded
by a 3 and so we want to change this 5 to a 4 to get from S to S′. We define the matrix P5,4

to be the 5 × 5 matrix corresponding to this permutation. We then define Ri = R′iP4,5, and so
R−1i = P4,5(R

′
i)
−1. We can similarly define Ri+1 = R′i+1P4,5. We can then rewrite the distribution

of Ri−1DiR
−1
i and RiDi+1R

−1
i+1 as:

Ri−1Di(R
′
i)
−1 = Ri−1DiP4,5R

−1
i , R′iDi+1(R

′)−1i+1 = RiP4,5Di+1P4,5R
−1
i+1.

Now observe that DiP4,5 = Di, since the only nonzero entry in Di is at the third diagonal position.
Also observe that P4,5Di+1P4,5 is distributed as a diagonal matrix with a single random entry now
in position 4.

More generally, for each position i in the sequence, let Pi denote the permutation matrix that
must be applied to get send the ith element of S to the ith element of S′. (This will be the identity
matrix when no change is required.) For each i ≥ 1, define R′i by the following relation:

Ri = R′iPi+1Pi, or equivalently, R′i = RiPiPi+1, when Pi, Pi+1 are different,

and Ri = R′iPi, or equivalently, R′i = RiPi, when Pi, Pi+1 are the same.

So when Pi+1 6= Pi for example, R−1i = PiPi+1(R
′
i)
−1 and (R′i)

−1 = Pi+1PiR
−1
i . We can then write

the distribution D2,S as:

R0D1(R
′
1)
−1, R′1D2(R

′
2)
−1, R′2D3(R

′
3)
−1, . . . , R′n−1Dn(R′n)−1.

For i’s such that Pi−1 6= Pi 6= Pi+1 for example, we have terms like:

Ri−1Pi−1PiDiPi+1PiR
−1
i .

We claim that in the case that Pi+1 6= Pi, the permutation Pi+1 cannot affect Di. This is clear if
Pi+1 is a swap between two things that are disjoint between the support of Di or is the identity.
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Suppose this is not the case. This means position i + 1 in the sequence is being changed, so if
positions i and i + 1 were previously equal, then position i has to be undergoing the same swap,
violating our supposition that Pi+1 6= Pi.

Thus we can assume positions i and i + 1 were originally distinct. One possibility is that
position i + 1 was originally a 5 and position i was not. Then Pi+1 is a swap between a 5 and
something unequal to the support of Di, hence Pi+1 does not change Di. So we may further assume
that position i + 1 was not originally a 5. Thus, the only reason for it to be swapped is that Pi
has swapped the support of Di onto the support of Di+1. Either Pi+1 will swap with something
other than the support of Di (hence leaving Di unaffected), or this a trade of supports, again
contradicting Pi 6= Pi+1. In all cases, we have that PiDiPi+1Pi = PiDiPi.

Similarly, we want to argue that the present Pi−1 terms can also be absorbed into the PiDiPi
terms (in the sense that they leave them unchanged). Such a term will only be present when
Pi 6= Pi−1 and Pi−1 is not the identity. Thus Pi−1 must be implementing a swap of two positions.
If Di and Di−1 previously had equal supports, they would be undergoing the same swap, so we
may assume these entries of the original sequence are unequal. If Pi−1 is being swapped onto the
support of Di, then Pi must swap the support of Di to somewhere disjoint from the action of Pi−1.
Otherwise, the support of Di−1 is being swapped somewhere outside the support of Di, so Pi is
the identity, and Pi−1 again fails to affect Di. We may thus conclude that the distribution D2,S is
identical to the distribution D2,S′ . By an analogous argument, we also get the same distribution
if we replace S′ by a sequence S′′ which is derived from S by sending all 1’s to 3’s and all 3’s to
5’s. (Note it is crucial throughout that we are always replacing something with {3, 4, 5}, entries
which are always non-zero in the matrices, so these replacements will not zeroize the projection.)
We then have that f must be nonzero on D2,S′′ , but this projection is insensitive to the challenge,
hence contradicting that f is zero on D1,S′′ .

Lemma C.2. Assumption 1AP holds in the generic multi-linear group model.

Proof. We again let D1 and D2 denote the two distributions induced by the two cases of the
challenge term. In D1, the first diagonal entry of the challenge matrix is 0, while in D2 it is
nonzero. If these can be distinguished in the generic group model, there must be an algebraic
relation f that is identically 0 on D1 but not on D2. Furthermore, there is a projection S onto a
single diagonal entry in each subgroup Gi such that f is zero on D1,S but nonzero on D2,S . This
S can be expressed as a sequence in {1, 2, 3, 4}n. This sequence must begin with 1 (since it differs
according to the challenge).

Employing the same techniques as above, we can compress this to a new sequence S′ where
subsequences in {2, 3, 4} have been replaced by subsequences in {3, 4}. Note that in all matrices in
groups G2, . . . , Gn, the diagonal entries 3, 4 are always random, so replacing a 2 by one of these in
a matrix where the second entry is random will not zeroize the projection. Thus we can obtain a
sequence S′ in {1, 3, 4} such that f is also nonzero on D2,S′ . But now we can obtain another such
sequence S′′ by replacing each 1 with a 2, and this will not zeroize the projection b/c the second
entries of our diagonal matrices are always random whenever the first entries are. So then f is
nonzero on D2,S′′ , but this is now equal to D1,S′′ , hence we have obtained a contradiction.
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