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Abstract. Fischlin’s transformation is an alternative to the standard Fiat-Shamir transform to
turn a certain class of public key identification schemes into digital signatures (in the random
oracle model).

We show that signatures obtained via Fischlin’s transformation are existentially unforgeable even
in case the adversary is allowed to get arbitrary (yet bounded) information on the entire state
of the signer (including the signing key and the random coins used to generate signatures). A
similar fact was already known for the Fiat-Shamir transform, however, Fischlin’s transformation
allows for a significantly higher leakage parameter than Fiat-Shamir.

Moreover, in contrast to signatures obtained via Fiat-Shamir, signatures obtained via Fischlin
enjoy a tight reduction to the underlying hard problem. We use this observation to show (via
simulations) that Fischlin’s transformation, usually considered less efficient, outperforms the
Fiat-Shamir transform in verification time for a reasonable choice of parameters. In terms of
signing Fiat-Shamir is faster for equal signature sizes. Nonetheless, our experiments show that
the signing time of Fischlin’s transformation becomes, e.g., 22% of the one via Fiat-Shamir if
one allows the signature size to be doubled.
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1 Introduction

Digital signatures are among the most fundamental primitives in cryptography. The security of a
signature scheme (as introduced by Goldwasser, Micali, and Rivest [29]) is usually defined via a
game featuring a computationally bounded adversary A, where the game models how the system
can be attacked in the real world. More specifically, A can see valid message/signature pairs
for messages of her choice, and must forge a signature on a “fresh” message, i.e., a message A
may choose, but for which she has not seen a valid signature already. Schemes resistant against
such attacks are called existentially unforgeable under adaptive chosen message attacks (in short:
ufcma).

To prove that a given signature scheme is unforgeable, one typically builds a “reduction” showing
that if an efficient A can win the above security game, then an adversary B can run A internally
to solve a computational problem believed to be hard. Such a game-based approach is sound if: (i)
the security game is a good model of reality; (ii) the constructed reduction is as “tight” as possible.
We discuss these issues in detail below.
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Abstraction of Reality. One assumption (implicit in the modeling above), is that A is assumed
to interact with the signing oracle in a black-box fashion; this means that all secrets stored “inside
the box” are fully hidden to the adversary. Unfortunately this assumption might be too strong
and often easy to bypass. In the real world, by exploiting several characteristics of an actual
implementation (e.g., timing [34], power consumption [35] and electromagnetic radiation [41]), an
attacker can learn some information about the secret key, and this information is often sufficient
to break otherwise “provably” secure schemes.

Modern-day cryptographic models (starting with [31, 37, 17, 13]) try to formalize side-channel
attacks abstractly, with the goal of showing that a scheme has some form of leakage resilience.

The standard way of defining leakage-resilient signatures, enhances the unforgeability game by
giving A access to a leakage oracle which outputs bounded (but arbitrary) information about the
secret key sk . A signature scheme is existentially unforgeable against λ-leakage attacks if forging
signatures on fresh messages is still hard given λ bits of sk -data. Throughout the paper we, in fact,
consider a more general setting, where A leaks information not just about sk , but also about the
full randomness used to generate signatures; a scheme secure in this sense is called fully leakage-
resilient. For a more detailed discussion on leakage models for digital signatures, we refer the reder
to Section 1.2.

The value λ is called the leakage parameter of the system. Note that the secret-key size s must
be strictly greater than the leakage parameter λ. The quantity λ/s can be thought as the relative
leakage of the system, with the obvious goal to make it as close to 1 as possible.

Tightness. Suppose that A takes time t to break the security of a primitive (e.g., a signature
scheme) with probability ε. If B in the reduction has runtime t′ ≈ t and solves the hard problem
with probability ε′ ≈ ε, the reduction is tight ; else it is loose. The ratio (t′ε)/(tε′) is called the
tightness gap of the reduction.

As discussed, e.g., in [33, 9], tight reductions are appealing both for theoretical purposes and
because they ensure that the primitive is at least as hard to break as the underlying hard problem. A
loose reduction, by contrast, only guarantees that a scheme is “plausibly” secure (see [28]). A loose
reduction also results in much larger parameters, and thus much slower performances (depending
on the tightness gap). In general, many researchers concerned with practice call into question the
practical value of non-tight reductionist security proofs.

1.1 Our Contributions

Σ-protocols are a well-studied class of interactive protocols, run between a prover P and a verifier
V, such that V accepts P as legitimate if it is convinced that P knows a witness w to a shared
input x. Each protocol run yields a transcript of the form (com, ch, resp), where com is sent by
the prover. The Fiat-Shamir transform [23] is a common way of constructing efficient signature
schemes (in the random oracle model [4]) from a Σ-protocol for some “hard relation”.

Recently, Katz and Vaikuntanathan [32] (building on Alwen et al. [3]) showed that the Fiat-
Shamir transform yields fully leakage-resilient signatures, provided that the underlying Σ-protocol
satisfies two additional properties: (i) each theorem has exponentially many witnesses; (ii) the
uncertainty of the witness conditioned on the theorem is high.

The obtained scheme has relative leakage asymptotically approaching 1/2 and a loose reduction
(with a tightness gap of about 1/ε), due to the fact that the reduction needs to rewind the adversary
in order to extract a valid witness and solve the underlying hard problem.
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Fischlin’s Transformation & Leakage. Fischlin’s transformation [24] is an alternative to get
secure signatures schemes from arbitrary Σ-protocols. Roughly, Fischlin’s transformation consists
of a tuple (of dimension r) of Fiat-Shamir signatures, i.e., (comi, chi, respi)1≤i≤r. However, instead
of computing the challenge via chi = H(comi,m), the prover tries all values in the domain of
challenges such that H(m,x, com, i, chi, respi) = 0b for all i ∈ [r] where com = (com1, . . . , comr).
If no such challenge can be found the challenge chi is chosen with the smallest output in value.
Verifying includes now the check the validity of the r Fiat-Shamir signatures and whether the sum
of all hash values are below a certain threshold S.

One important feature of signatures obtained via Fischlin, is that the resulting non-interactive
protocol has a straight-line extractor. Roughly this means that there exists a probabilistic polyno-
mial time algorithm (a.k.a. the extractor) that, upon input the theorem x, a message m, a valid
signature σ on m, and all hash queries and answers made to generate σ, outputs a valid witness
for x with overwhelming probability (and without further querying the signer).

Our first result is that Fischlin’s transformation yields a fully leakage-resilient signature, when-
ever the underlying Σ-protocol satisfies properties (i) and (ii) above.

Comparing Fischlin and Fiat-Shamir. Even though the above fact is perhaps not very sur-
prising, Fischlin’s transformation comes with two important advantages over leakage-resilient sig-
natures obtained via Fiat-Shamir. The first advantage is that for concrete schemes (e.g., the ones
based on Okamoto [39] and Guillou-Quisquater [30]), the relative leakage of the resulting signatures
asymptotically approaches 1. The second advantage is that the reduction to the security of the
underlying hard problem is tight.1

As a consequence of the above observations, one might expect that for a pre-fixed level of secu-
rity, signatures obtained via Fischlin can be instantiated using much smaller parameters, possibly
leading to better performances than signatures obtained via Fiat-Shamir. This is surprising, as
usually Fischlin’s transformation is considered to be less efficient than Fiat-Shamir.

Our second contribution is an accurate comparison (supported by simulations) of the perfor-
mances obtained via Fischlin and Fiat-Shamir, in terms of parameters generation, signing and
verification time. The comparison is carried out for the Okamoto scheme [39], whose security relies
on the hardness of computing discrete logarithms over a finite field. The main findings of our
analysis are sketched below:

• Key generation is always faster in Fischlin’s transformation, due to the fact that a tight
reduction allows to choose smaller parameters.

• In terms of verification time, signatures obtained via Fischlin are much faster than the ones
obtained via Fiat-Shamir. This feature makes Fischlin’s transformation particularly interest-
ing for scenarios where one demands fast signature verification (e.g., in car2car and car2X
communication [44] one might need to verify 4000-5000 signatures per second).

• In terms of signature generation time, for 80-bit security, signatures obtained via Fischlin
are two times slower than the ones obtained via Fiat-Shamir if one insists for the resulting
signatures having the same size. However, in case one allows signatures obtained via Fischlin
to have twice the size of of the ones obtained via Fiat-Shamir, then signature generation
becomes 4.5 times faster and verification reduces to 90% of that from Fiat-Shamir.

1We stress that the problem of finding a tight reduction for leakage-resilient signatures obtained via Fiat-Shamir
remains open.
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• When one takes leakage into account, and thus insists that the resulting scheme tolerates a
certain amount of leakage, Fischlin’s transformation outperforms the Fiat-Shamir transform
in terms of security, performance, and signature size.

We remark that, even though in some cases signatures obtained via Fiat-Shamir result in better
signing time, Fischlin’s transformation might still be preferable in certain scenarios. For instance,
an interesting feature of signatures obtained via Fischlin when used in some cryptographic protocol
(e.g., for key exchange), is that parties can start verifying the signature (except checking the
hash values) before the entire signature is sent. Consequently, the effort to generate and verify a
signature consists essentially of the signing time plus 1/r-th of the verification time. In contrast,
signatures obtained via Fiat-Shamir have to be received in full before the verification can start.
Taking this feature into account, signing and verifying for Fischlin are indeed faster than for Fiat-
Shamir (for 80-bit security).2 This property and the small key sizes let us find favor with Fischlin’s
transformation if the resulting signature scheme is deployed on a smartcard.

We conclude that Fischlin’s transformation is a reasonable alternative to the Fiat-Shamir trans-
form, and which transformation to use depends on the actual application.

1.2 Related Work

Tightness. Tight reductions are also discussed in e.g. [27] (for signature schemes based on the
family of Diffie-Hellman problems in the random oracle model), in [40, 26, 45] (for the Schnorr and
other related signature schemes in the random oracle model), and in [42] (for signature schemes in
the plain model).

Leakage. Several leakage models exist so far in the literature. In our work we consider the
so-called bounded leakage model, where the total amount of leakage is a-priory bounded to some
fraction of the secret key length. A more general model is the so-called continuous leakage model [14,
8], where the leakage is not a priori bounded and there is some efficient procedure to “refresh” the
secret key (leaving the corresponding public key unchanged).

Apart from [3, 32], other papers on leakage-resilient signatures can be found in [19, 15, 20, 7, 38].
These results are either complicated or inefficient, or do not permit optimal relative leakage, and
have loose reductions.

2 Preliminaries

2.1 Notation

For n ∈ N, let [n] := {1, 2, . . . , n}. We write log for base-2 logarithms and ln for natural logarithms.
We denote vectors by bold lower case letters.

For an algorithm A, y ← A(x) denotes that y is output by A on input x; sometimes we also
write y = A(x;ω) to make explicit the random coins that A may use. Also, AO denotes that A has
access to oracle O. Algorithm A is probabilistic polynomial time (PPT) if A is randomized and
for any input x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps.

2The same conclusion does not hold for 128-bit security, though.
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The min-entropy of a random variable X is H∞(X) = − log maxx P [X = x], and measures
how well X can be predicted by the best (unbounded) predictor. The conditional average min-
entropy [16] of X given a random variable Z (over some set Z) possibly dependent on X, is defined
as H̃∞(X|Z) := − logEz←Z [2−H∞(X|Z=z)]. Following [3], we sometimes rephrase the notion of
conditional min-entropy in terms of predictors A that are given some information Z, so H̃∞(X|Z) =
− log(maxA P [A(Z) = X]). We recall the following useful lemma, proven in [16], bounding the
conditional average min-entropy of a random variable X given λ bits of arbitrary information on
X itself.

Lemma 2.1 ([16]) For all random variables X,Z and Λ over sets X , Z and {0, 1}λ such that
H̃∞(X|Z) ≥ β, we have

H̃∞(X|Z,Λ) ≥ H̃∞(X|Z)− λ ≥ β − λ.

2.2 Signature Schemes

We recall here the general syntax for digital signatures.

Definition 2.2 (Signature scheme) A signature scheme is a triple of algorithms SS = (KGen,
Sign,Vrfy) defined as follows.

Key Generation. Algorithm KGen is a probabilistic algorithm which, on input a security param-
eter 1k, outputs a pair (pk , sk) where pk is the public key, and sk is the secret key.

Signature. Algorithm Sign is a probabilistic algorithm which, on input a secret key sk together
with message m, outputs a signature σ on m under sk.

Verification. Algorithm Vrfy is a deterministic algorithm which, on input a message m and a
signature σ together with the public key pk, outputs either 1 (= valid) or 0 (= invalid).

We say that SS has completeness error εcomp if P[Vrfy(pk , (m,Sign(sk ,m)) = 0] ≤ εcomp, where
(pk , sk)← KGen(1k) and the probability is over the coin tosses of Sign.

Leakage-Resilient Signatures. Consider an oracleOλ(x, ·) taking as input functions f : {0, 1}∗ →
{0, 1}∗ and returning f(x) for a total of at most λ bits. Roughly, a signature scheme SS =
(KGen,Sign,Vrfy) is (fully) leakage-resilient if it is hard to forge a signature even given access to
oracle Oλ(x, ·), where x contains the secret key, plus the entire history of all random coins tossed
by the signing algorithm.

More formally, consider the following experiment:

Experiment Explkg−ufcma
SS,A (k, λ)

(pk , sk)← KGen(1k)

(m?, σ?)← ASign(sk ,·),Oλ(state,·)(pk)
Output 1 iff

(a) Vrfy(pk ,m?, σ?) = 1
(b) m? 6∈ Q

Set state = {sk}, and Q = ∅
If A queries Sign(sk ,m):

- let Q := Q∪ {m}
- return σ ← Sign(sk ,m;ω)
- let state := state ∪ {ω}
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Definition 2.3 (Fully leakage-resilient signature) We say that SS = (KGen,Sign,Vrfy) is
(t, qs, ε)-unforgeable against chosen-message attacks (in short: -ufcma) and against λ-leakage at-
tacks if, for every algorithm A running in time t and asking qs signing queries, we have:

P
[
Explkg−ufcma

SS,A (k, λ) = 1
]
≤ ε.

We say a signature scheme SS is (t, qs, ε)-ufcma if the algorithm A has no access to oracle Oλ in
the experiment above.

We remark that in case the signature scheme SS is defined in the random oracle model (where
a public function H modeled as a random oracle is available), then both the adversary A and the
leakage functions have access to the random oracle.

2.3 Fischlin’s Transformation

Let L ⊆ NP be a language with a (polynomially computable) relation R ⊂ {0, 1}∗ × {0, 1}∗, i.e.,
x ∈ L if and only if ∃w such that (x,w) ∈ R and |w| = poly(|x|). The value w is called a witness
for x ∈ L (x is sometimes called a “theorem” or statement). Informally, R is called hard if, given
x ∈ L, it is hard to extract a valid witness for x.

Definition 2.4 (Hard relation) A relation R for a language L is (t, ε)-hard if the following
holds:

(i) There exists an efficient algorithm Gen that on input a security parameter k outputs (x,w)←
Gen(1k) such that (x,w) ∈ R and |w| = poly(|x|).

(ii) For any algorithm A running in time t we have:

P
[

(x,w′) ∈ R : w′ ← A(1k, x); (x,w)← Gen(1k)
]
≤ ε.

Σ-Protocols. This important class of protocols (run between a prover P and a verifier V), allows
P to convince V that it knows a witness w for a shared element x ∈ L, without giving V fur-
ther information. We briefly review Σ-protocols below. Informally, a Σ-protocol consists of three
messages (com, ch, resp) (with com sent by P) and satisfies the following properties:

• Completeness. Upon interacting with an honest prover holding (x,w), the verifier accepts
with overwhelming probability.

• Special Soundness. Given accepted proofs (com, ch, resp) and (com, ch′, resp′) for x ∈ L (with
ch′ 6= ch), there exists a PPT algorithm which outputs a valid witness w for x.

• Perfect Honest-Verifier Zero Knowledge (HVZK). There exists a PPT algorithm Z (the simu-
lator) which, on input x ∈ L and a random ch, outputs an accepting conversation of the form
(com, ch, resp), with the same probability distribution as conversations between the honest P,
V on input x.3

In the following we also assume that com has super-logarithmic min-entropy (in the security pa-
rameter k), and that resp is quasi-unique, i.e., it is hard to find (x, com, ch, resp, resp′) such that
both (com, ch, resp) and (com, ch, resp′) are accepting, with resp 6= resp′.

3This is also called special HVZK, but as argued in [24] can be assumed in general.
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Let R be a hard relation for language L and (P,V) be a Σ-protocol for R. For a hash function
H : {0, 1}∗ → {0, 1}b (modeled as a random oracle), let r be the number of repetitions, µ the
challenge size, and S the bound on the sum.

Key Generation. Upon input security parameter 1k compute (x,w)← Gen(1k). Output pk := x
as public key and sk := w as secret key.

Signature. Upon input a secret key sk = w and a message m ∈ {0, 1}∗, perform the following
steps:

1. For all i ∈ [r], obtain comi ← P(x).

2. For all i ∈ [r] and chi ∈ [2µ − 1] compute respi := resp(chi) ← P(comi, x, w, chi).
Denote chi which satisfies H(m,x, com, i, chi, respi) = 0b by ch∗i , where com =
(com1, . . . , comr). If no such chi exists, take the one with minimal hash output value.

3. Output σ = (comi, ch
∗
i , respi)i=1,...,r.

Verification. Upon input the public key pk = x and a signature σ = (comi, ch
∗
i , respi)i=1,...,r for

message m, run the verifier of the underlying Σ-protocol to check if V(x, (comi, ch
∗
i , respi)) = 1

for all i ∈ [r]. If not, output 0. Furthermore, if
∑r

i=1H(m,x, com, i, ch∗i , respi) ≤ S output
1; else output 0.

Figure 1: Fischlin’s transformation applied to a Σ-protocol (P,V) for relation R

The Transformation. Let (P,V) be a Σ-protocol for an NP-language L with hard relation R,
and consider a hash function H : {0, 1}∗ → {0, 1}b, modeled as a random oracle. As proved in [24],
Fischlin’s transformation (represented in Fig. 1) describes a non-interactive zero-knowledge proof
with a straight-line extractor, and yields an existentially unforgeable signature scheme.

Theorem 2.5 (Fischlin’s transformation) Consider the scheme in Fig. 1, where the challenge
space of (P,V) has length l = O(log k). Let b, r, S, µ be functions of k such that b · r = ω(log k),
2µ−b = ω(log k), b, r, µ = O(log k), S = O(r) and b ≤ µ ≤ l. The following holds:

(i) The transformation describes a non-interactive zero-knowledge proof system (PH ,VH) for
language Lmsg = {((x,m), w) : (x,w) ∈ R}, where P (resp. V) is the signer (resp. verifier) of
the signature scheme. In particular, there exists a PPT simulator Z which, on input (x,m)
outputs a proof σ = (comi, ch

∗
i , respi)i=1,...,r with the same distribution as a real proof generated

via PH (using x,m,w).

(ii) There exists a PPT straight-line extractor K and some value εext, such that, for any PPT A,
if (x, σ)← AH(1k), then

P
[

(x,w) 6∈ R ∧ VH(x, σ) = 1
]
≤ εext

for w ← K(x, σ,QH(A)); here QH(A) denotes A’s queries to (resp. answers from) the random
oracle H.

(iii) If the relation R is (t, ε)-hard, the resulting signature scheme is (t′, ε′)-ufcma where t′ ≈ t
and ε′ = ε+ εext.
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Note that the bound on the challenge space is without loss of generality, as for any l we can easily
turn a Σ-protocol with l′-bit challenges into a Σ-protocol with l-bit challenges [11, Lemma 2]. The
following corollary follows by inspection of the proof of [24, Theorem 2].

Corollary 2.6 (Concrete parameters of Fischlin’s transformation) The following holds for
the transformation of Fig. 1:

• The completeness error is upper-bounded by

εcomp ≤ er ln(e·(2S+1))−(S+1)2µ−b .

• The failure probability of the extractor is upper-bounded by

εext ≤ (qh + 1)(S + 1)2(log(e·(S+r)/(r−1))−b)·r,

where qh = |QH(A)|.

• The total number of hash function evaluations is upper-bounded by r · (2µ−1) (in worst case).

3 Leakage Resilience of Fischlin’s Transformation

Let (P,V) be a Σ-protocol for L ⊂ NP, with relation R. The main result of this section is that
Fischlin’s transformation applied to each such protocol yields a fully leakage-resilient signature (in
the random oracle model) provided that: (i) each theorem x ∈ L has exponentially many witnesses
w (and given a valid (x,w) pair is hard to find a valid, distinct (x,w′) pair); (ii) the conditional
min-entropy of the witness W conditioned on the public theorem X is high.

A similar result is already known for the Fiat-Shamir heuristic [3, 32]. The main difference
here is that we get a fully tight reduction to the underlying hard problem and relative leakage
asymptotically approaching 1—which is optimal. In comparison the best known analysis for Fiat-
Shamir has a tigthness gap of roughly 1/ε (where ε is the hardness of the underlying relation), and
relative leakage asymptotically approaching 1/2.

We start by formalizing condition (i) above, by introducing the representation problem for a
relation R ⊂ {0, 1}∗ × {0, 1}∗.

Definition 3.1 (Representation problem) We say that the representation problem is (t, ε)-
hard for a relation R if for all PPT adversaries A running in time t, we have:

P
[
w 6= w′ ∧ (x,w), (x,w′) ∈ R : (x,w,w′)← A(1k)

]
≤ ε.

In many significant cases, the hardness of the representation problem for R is equivalent to the
hardness of the underlying relation R. We comment on two such instantiations (one based on the
discrete-log assumption and one based on the factoring assumptions) in the paragraph “Concrete
Instantiations” at the end of this section.

Theorem 3.2 (Fischlin’s transformation is leakage-resilient) Let k ∈ N be a security pa-
rameter and let R ⊂ {0, 1}∗ × {0, 1}∗ be an NP-relation such that the representation problem is
(t, ε)-hard for R. Assume that conditioned on the distribution of the public input x ∈ X , the witness
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w ∈ W has high average min-entropy β, i.e., H̃∞(W |X) ≥ β. Then, the signature scheme of Fig. 1
is (t′, qs = poly(k), ε′)-ufcma against λ-leakage attacks, as long as

t′ ≈ t λ ≤ β − r log(3qh)− k ε′ ≤ ε+ εext + 2−k,

where qh = poly(k) denotes the number of queries to the random oracle.

The proof borrows ideas from [32, Theorem 4]. The original proof requires to rewind A, yielding a
loose reduction. Intuitively, relying on the straight-line extractor of Fischlin’s transformation, we
can avoid rewinding and thus get a tight reduction.

Proof. By contradiction assume there exists a PPT adversary A running in time t′ and having
advantage ε′ > ε+ εext + 2−k in the experiment Explkg−ufcma

SS,A (k, λ) (for leakage parameter λ as in
the theorem statement). Consider all possible states during the execution of A in the unforgeability
experiment, and for any such state i let hi denote the hash query made at that state. If an execution
of A terminates with a valid forgery (m?, (comi, ch

∗
i , respi)i∈[r]), we say that the forgery is associated

with a set of states {hi} where hi = H(m?, x, com, i, ch∗i , respi) for all i ∈ [r]. Note that the size of
this set is

(
qh
r

)
≤ ( qh·er )r < (3qh)r.

We build a PPT adversary B (running in time t ≈ t′) breaking the hardness of the representation
problem forR with advantage larger than ε (a contradiction). Without loss of generality, we assume
that whenever A outputs a forgery (m?, σ?): (i) A queried the random oracle at some point on input
(m?, x, com, i, ch∗i , respi), for i ∈ [r]; (ii) A never queried the signing oracle on m?. For simplicity,
we further assume that every leakage query makes the same number of H evaluations. (This can
always be achieved adding dummy queries.)

Adversary B starts by generating (x,w) ← Gen(1k), where (x,w) ∈ R. Hence, B gives the
public key pk = x to A and implicitly defines sk = w. Note that since B knows a valid witness w
corresponding to x, the reduction can perfectly simulate the experiment Explkg−ufcma

SS,A (k, λ); this
includes the answers to A’s queries to both oracles Sign(sk , ·) and Oλ(state, ·), as well as the queries
to the random oracle H. Adversary B keeps also track of all the queries QH(A) of A to H, and
the corresponding answers. Eventually, A outputs a forgery (m?, σ?). At this point B runs the
straight-line extractor K on input (m?, σ?,QH(A)) and obtains a value w′ ← K(m?, σ?,QH(A)).
Finally B outputs (x,w,w′) as a solution to the representation problem for R.

By definition, B solves the representation problem for R whenever A succeeds and: (i) the
extractor K does not fail; (ii) the extracted witness w′ is different from w. Denote by Fail the
event that the extractor does not return a valid witness and with Equal the event that the returned
w′ is equal to w. Since the event that A wins and the latter two events are all independent, we can
write:

P [B wins] = P
[
w′ 6= w; (x,w), (x,w′) ∈ R : (x,w,w′)← B(1k)

]
= P [A wins ∧ ¬Fail ∧ ¬Equal]

= P [A wins] · P[¬Fail] · P [¬Equal]

≥ P [A wins]− P [Fail]− P[Equal]

≥ ε′ − εext − P [Equal] , (1)

where (1) follows by our assumption on A and by the fact that the probability that the extractor
fails is bounded by εext.
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Claim 3.3 P[Equal] ≤ 2−k.

Proof (of claim). We show that the statement holds even in case A is unbounded. We will argue
that H̃∞(W |V ) ≥ k, where W is the random variable corresponding to the witness, and V is the

random variable corresponding to the view of A in a run of Explkg−ufcma
SS,A (k, λ). Clearly, this is

sufficient as by definition of average min-entropy P[Equal] ≤ 2−H̃∞(W |V ).
Notice that the view of A has a type V := (Σ,R,Λ, X), where the random variable Σ =

(Σ1, . . . ,Σqs) corresponds to the signing queries of A, the random variable R = (R1, . . . , Rqh)
corresponds to the responses to A’s random oracle queries, Λ corresponds to the leakage queries,
and X corresponds to the public key. Now,

H̃∞(W |Σ,R,Λ, X) ≥ H̃∞(W |Σ, X)− λ− r log(3qh) (2)

≥ H̃∞(W |X)− λ− r log(3qh) (3)

≥ k. (4)

(2) follows by Lemma 2.1 and the fact that: (i) Λ ∈ {0, 1}λ and (ii) a forgery reveals at most
r log(3qh) bits of information on the witness, corresponding to the set of random oracle queries
associated with the forgery itself;4 (3) follows by (perfect) honest-verifier zero-knowledge, as we can
compute each Σi using only the public key X and the zero-knowledge simulator Z (cf. Theorem 2.5).
Finally, (4) follows by our assumption that H̃∞(W |X) ≥ β and the bound on λ ≤ β−r log(3qh)−k.

The above claim together with our assumption that ε′ > ε + εext + 2−k, clearly imply that
P [B wins] > ε, which contradicts the (t, ε)-hardness of the representation problem for R. This
finishes the proof.

Concrete Instantiations. Below, we discuss two concrete instantiations of Theorem 3.2, the
first one based on the discrete-log assumption and the second one based on the RSA assumption
(and on factoring).

Generalized Okamoto [39]. For a cyclic group G of prime order p, let LDL := {(g1, . . . , g`, h) :
∃(w1, . . . , w`) s.t. h =

∏`
i=1 g

wi
i }, where (g1, . . . , g`) are generators of G. The tuple w =

(w1, . . . , w`) is called a representation of h; the `-representation problem asks to compute two
distinct representations w,w′ for some x = (g1, . . . , g`, h) ∈ L. As argued in [3, Lemma 4.1],
the `-representation problem is hard for RDL if and only if the discrete-log problem is hard
in G.5

The standard Σ-protocol (P,V) to prove knowledge of a representation of an element h goes
as follows: (i) P chooses randomly a1, . . . , a` and sets com :=

∏`
i=1 g

ai
i ; (ii) V selects a random

ch ∈ Zp; (iii) P returns resp = (ch·w1+a1, . . . , ch·w`+a`). Given a proof σ = (com, ch, resp),

the verifier outputs 1 if and only if
∏`
i=1 g

respi
i = hch · com.

We obtain the following result:

4Recall that leakage queries can depend on the random oracle; this could make the set of states associated with a
forgery a function of the witness.

5Recall that the discrete-log problem requires to compute w such that gw = h, given (g, h,G, p).

10



Corollary 3.4 Let G be a cyclic group of prime order p, such that the `-representation prob-
lem is hard for RDL. Then, the signature scheme obtained by applying Fischlin’s transfor-
mation to the generalized Okamato Σ-protocol is fully leakage-resilient for leakage parameter
λ ≤ (1− o(1)) · n, where n = ` log p is the length of the secret key.

Proof. By Theorem 3.2, we get that for any desired δ > 0 the leakage bound is λ ≤ (1−1/`−
δ) · n. Now, choosing ` > 1/δ gives λ ≤ (1− δ) · n as desired.

Generalized Guillou-Quisquater [30]. For N = p · q, where p and q are primes, let (e, d) be
such that e·d = 1 mod φ(N) and e is a prime. Consider the language LRSA := {(g1, . . . , g`, h) :
∃(ρ, (w1, . . . , w`)) ∈ Z∗N ×Z`e s.t. h =

∏`
i=1 g

wi
i · ρe mod N}, where (g1, . . . , g`) are generators

of Z∗N . The tuple w = (ρ, (w1, . . . , w`)) is called a representation of h; the `-representation
problem asks to compute two distinct representations w,w′ for some x = (g1, . . . , g`, h) ∈ L.
As shown in [39], the `-representation problem is hard for RRSA if and only if the RSA
problem is hard in Z∗N .6

The standard Σ-protocol (P,V) to prove knowledge of a representation of an element h goes
as follows: (i) P chooses randomly a1, . . . , a` ← Ze and s ← Z∗N and sets com :=

∏`
i=1 g

ai
i ·

se mod N ; (ii) V selects a random ch ∈ Ze; (iii) P computes z = (ch ·w1 +a1, . . . , ch ·w`+a`),
u = (s ·ρch) mod N and returns resp = (z, u). Given a proof σ = (com, ch, resp), the verifier
outputs 1 if and only if ue ·

∏`
i=1 g

zi
i = hch · com mod N .

We obtain the following result:

Corollary 3.5 Let (N, e) be such that the `-representation problem is hard for RRSA. Then,
the signature scheme obtained by applying Fischlin’s transformation to the generalized Guillou-
Quisquater Σ-protocol is fully leakage-resilient for leakage parameter λ ≤ (1− o(1)) ·n, where
n = ` log(e) + log φ(N) is the length of the secret key.

A similar statement can be obtained based on factoring, following Fischlin and Fischlin [25].

4 Comparison

In this section we investigate the efficiency of signature schemes obtained via the Fiat-Shamir
transform and Fischlin’s transformation. We do so by comparing the performance of the two
paradigms for an implementation of the signature scheme resulting from the Generalized Okamoto
scheme [39] (see Section 3). Our implementation was carried out in the Charm cryptographic
framework [2] in Python. The experiments were performed on a single core of a 3 GHz Intel Core
i7. We instantiated the random oracle by SHA-2.

In our implementation of Fischlin’s transformation we do not impose an upper bound on the
challenge size (i.e., µ =∞). As a consequence we do not require a threshold S because given b · r =
ω(log k) the probability of finding appropriate challenges chi mapping H(m,x, com, i, chi, respi) to
0b is negligibly close to 1 in the security parameter k. Having no threshold in the loop-clause yields
to a signature scheme with expected (rather than strict) polynomial running time. Nonetheless,

6Recall that the RSA problem requires to compute ρ such that ρe = u mod N , given (u,N, e).
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the running times of the original version and ours do not differ noticeably. Our experiments have
shown, in fact, that the full span of challenge candidates was rarely explored.

We stress that our implementations are not optimized. In particular, we expect faster running
times when carrying out the implementation in C/C#. However, a prototype implementation in
Python gives still reasonable timings for the purpose of comparing the two transformations.

4.1 Parameter Selection

In order to select reasonable parameters for the two signature schemes we have to assess the hardness
of the underlying hardness assumption and take the tightness gap of the reduction into account. The
security of the Generalized Okamoto scheme relies on the hardness of the representation problem
in a group G of prime order p, which is equivalent to the discrete logarithm problem [3, Lemma
4.1]. Here, we focus on the case where G = GF (p) is a Galois fields. More precisely, we take the
multiplicative group Z∗p where p is a safe prime, i.e. p = 2q + 1, and p and q are both prime.

The best known algorithm to solve the discrete logarithm problem in G = GF (p) is the Number
Field Sieve (NFS), with complexity Lp[1/3, (64/9)1/3] for modulus p, where the complexity function

Lp[t, s] is defined as Lp[t, s] = es(1+o(1))(ln p)
t(ln ln p)1−t . When estimating security parameters we take

previously known attacks and timings into account by saying that if computing discrete logarithms
in groups of order p takes time t, than we expect that computing discrete logarithms in groups of

order p′ takes time roughly t′ ≈ t
Lp[1/3,

3
√

64/9]

Lp′ [1/3,
3
√

64/9]
. If the difference between p′ and p is not too large,

the term o(1) goes to zero. A similar strategy was recommended in [36]. We take as reference the
2009 factorization of a 768-bit modulus, which offers roughly 66-bit security (t ≈ 266).

Let us now consider both schemes with their respective security reduction. If an adversary A
(t′, ε′)-breaks the signature scheme obtained via Fiat-Shamir (see [3, 32]), there exists an adversary
B with runtime ≈ t′ that solves the `-representation problem in G with probability (ε′)2/qh, where
qh is the number of queries to the random oracle H. Thus, we need to run B around O(qh/(ε

′)2),
yielding a runtime t ≈ t′ · qh/(ε′)2. For ε′ large enough (say ε′ > 0.1) and for qh ≈ t′, we have
t ≈ 2165 for 80-bit security. Thus, the parameters must be chosen such that computing the discrete
logarithm in G with NFS takes time roughly 2165. This holds for a prime p of roughly 5400 bits.
Analogously, for 128-bits of security one needs a prime p of roughly 15000 bits.

We compare these results to Fischlin’s scheme. Since the reduction is tight (ε ≈ ε′−εext−2−k),
an adversary B solves the `-representation problem in G in time t ≈ t′ · (ε′ − εext − 2−k)−1. Recall
that εext is the extractor’s success probability to extract the witness in the security reduction. We
have to set parameters r and b such that εext ≤ qh · 2−br is smaller than the advantage of solving
the representation problem ε.7 We can choose a 1130-bit prime p for G = GF (p) for 80-bit security
and 3048-bit prime for 128-bit security, respectively.

In the following we compare both signature schemes in terms of performance and signature
size. We stress that for some signature schemes obtained via Fiat-Shamir or Fischlin (e.g., the
Schnorr signature scheme [43]), signatures can be shortened by removing the commitment(s) from
the signature because the commitment is re-computable from the challenge and response alone.
(This holds in particular for the signature derived from the Generalized Okamoto scheme.) Given
the above system parameters, a signature computed via Fiat-Shamir consists of one hash value (the
challenge, from Z∗p), and ` elements from Z∗p (the response), yielding a signature of size 16200 bits

7We derive the bound εext ≤ qh · 2−br by adapting the proof of Corollary 2.6 to the proposed modifications of the
scheme, as described above.
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80-bit security 128-bit security
FS Fischlin Fischlin Fischlin FS Fischlin Fischlin Fischlin

r = 7 r = 14 r = 6 r = 7 r = 19 r = 11
b = 12 b = 6 b = 14 b = 19 b = 7 b = 12

Signing time (in sec) 0.463 1.037 0.103 3.531 5.3 290.262 1.889 4.715
Verification (in sec) 1.16 0.060 0.117 0.062 30.89 0.993 2.552 1.451

Signature size (in kB) 1.98 1.94 3.87 1.67 5.49 5.22 14.15 8.2
Public-key size (in kB) 1.98 0.41 0.41 0.41 5.49 1.12 1.12 1.12
Secret-key size (in kB) 1.32 0.28 0.28 0.28 3.66 0.37 0.37 0.37

Table 1: Comparison between Fiat-Shamir (FS) and Fischlin for the Generalized Okamoto signature
scheme. The table shows performance and sizes for ` = 2.

for 80-bit security (resp. 45000 bits for 128-bit security) and ` = 2. On the other hand, a signature
computed via Fischlin consists of r challenge values of expected size b bits, and r · ` elements from
Z∗p. We obtain comparable signature sizes with r = 7 for both 80 and 128 bits of security.

In Table 1 and Figures 2 and 3 we illustrate the performances of both schemes in terms of key
generation, signing time, verification time, and leakage resilience. The result of the comparison are
discussed in the following subsections.

4.2 On Key Generation

The key generation algorithm is exactly the same for both schemes. However, due to the loose
reduction of the Fiat-Shamir transform, the resulting signature scheme requires much larger groups
than the one derived via Fischlin’s transformation.

Recall that, in order to resist special discrete logarithm solvers, we have to instantiate the
groups in Z∗p where p is a safe prime, i.e., p = 2q + 1 with p, q prime. Finding safe primes is an
expensive task. Especially, signatures derived via Fiat-Shamir require to sample a safe prime p of
size 15000 which may take several days or weeks.8 Even finding a safe prime of 5400 bits (for 80-bit
security) took us roughly 12 hours using the safe prime generator of OpenSSL.

As a consequence Fischlin’s transformation is preferable when it comes to key generation in
both performance and size. Both public and secret-key size of Fischlin’s scheme are roughly 80%
shorter than the ones in Fiat-Shamir.

4.3 On Signature Generation

For what concerns the signing time, we paid attention to perform the comparison between the two
schemes as fair as possible. In particular group operations were implemented in the same way, and
the experiments were run on the same machine using the same crypto libraries. As recommended
by Fischlin [24], we enhanced the computation of the hash function in Fischlin’s scheme by pre-
computing and saving part of the hash values H(m,x, com, ·, ·, ·) (since this part is fixed throughout
all loops).9 We also note that a clever implementation of Fischlin’s scheme, requires just additions

8For this reason we took a slightly larger safe prime p of size 16384. More precisely we took the publicly available
prime p = 216384 − 364486013 [5].

9We note that doing so, we distance our implementation from the random-oracle proof.
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Figure 2: Runtime of the signature algorithm for the Fiat-Shamir and Fischlin transformation.

in the group G when searching for an appropriate challenge (see step 2. in Fig. 1). Here, one can
re-use the previously computed response resp instead of computing it from scratch each time in the
loop.

Fischlin’s transformation offers a trade-off between performance and signature size. In Fig. 2
we illustrate the running time of the signature algorithm for different choices of the parameters
r and b, and compare it with the case of signatures obtained via Fiat-Shamir. We observe that
for similar signature sizes and 80-bit security, generating Fiat-Shamir signatures is twice as fast
as generating signatures via Fischlin. For 128-bit security, the situation is even worse (Fischlin is
roughly 58 times slower). Nonetheless, we see that if one is flexible with respect to the signature
size, Fischlin’s transformation yields a signing time which is up to 4.5 times faster than the one for
Fiat-Shamir, while the signature size only doubles.

The signing time for Fischlin’s transformation increases rapidly from a certain threshold b =
b∗.10 For instance, if b = 14 and we stick to 80-bit security, the signing algorithm takes time
roughly 3.5 seconds. Taking 128-bit security, any b > 13 leads to huge signing time. For b = 13,
a signature requires 9.47 seconds. The signing time for Fischlin and Fiat-Shamir becomes of the
same magnitude for r = 11 and b = 12 (128-bit security).

4.4 On Verification

Recall that, as mentioned in Section 4.1, we implemented the compressed form of the Generalized
Okamoto scheme. That is, signatures consist of (ch, resp) for the Fiat-Shamir transform and
(chi, respi)1≤i≤r for Fischlin’s transformation. Consequently, the verification algorithm first has to
reconstruct the commitment (vector) and then check for the validity of the response(s).

Fig. 3 shows the running time of the verification algorithm for the two schemes. Interestingly,
verifying signatures obtained via Fischlin’s transformation is significantly faster than verifying

10We believe that the value for the threshold b∗ is dependent on the implementation and programming language.
For example, for certain parameters, the time needed to compute all hash values exceeds the time needed to perform all
necessary group operations. If the gap between the former and the latter changes (e.g., due to a different programming
language), one might expect that the threshold b∗ shifts, eventually leading to a different outcome for the comparison
of signing time.
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Figure 3: Runtime of the verification algorithm for the Fiat-Shamir and Fischlin transformation.

signatures obtained via Fiat-Shamir. For comparable signature sizes, Fischlin’s transformation
yields a verification time which is roughly 19 times faster than Fiat-Shamir for 80-bit security, and
roughly 30 times faster for 128-bit security. The latter choice of parameters, however, leads to high
signing times (209.262 seconds). For comparable signing times, Fischlin’s transformation offers still
21 times faster verification with 37% signature size increase.

4.5 On Leakage Resilience

As discussed in Section 3 (see Corollary 3.4), our analysis of Fischlin’s transformation applied to
the Generalized Okamoto scheme yields relative leakage asymptotically approaching 1. (This is in
contrast to [3, 32], where the relative leakage is always smaller than 1/2.)

In Table 2 one can find the time for running the signing algorithm when considering different
values for the desired tolerated leakage λ. Note that to allow higher relative leakage, the parameter
` must be increased. This generates a linear blow-up in both the running times and signature
size. However, if we set parameters b, r, ` such that signatures resulting by applying Fischlin’s
transformation match Fiat-Shamir in terms of signature size and amount of tolerated leakage, the
signing time for Fischlin’s transform decreases considerably. This is because the parameter ` can
be fixed to 2 if we want to tolerate relative leakage less than 1/2. Thus, one can choose larger
r—and smaller b—to meet the signature size of Fiat-Shamir, and end-up with an efficiency gain.

In conclusion, when we take leakage resilience into account, Fischlin’s transformation outper-
forms the Fiat-Shamir transform in signing time, verification time and signature size.

5 Discussion

We have shown that Fischlin’s transformation is a viable approach to get fully leakage-resilient
signatures with a tight reduction to the underlying hard problem, and asymptotically optimal
relative leakage (in the random oracle model). This is in contrast to the situation for signatures
obtained via Fiat-Shamir (having a non-tight reduction and non-optimal relative leakage). When
one takes into account this gap (as demonstrated by our implementation), it becomes evident that,
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Signature 80-bit security
running time λ ≤ 1/4 λ ≤ 3/8 λ ≤ 7/16 λ ≤ 3/4

(in sec) ` = 2 ` = 4 ` = 8 —
`′ = 2 `′ = 2 `′ = 2 `′ = 4

|σ| ≈ 1.98 |σ| ≈ 3.3 |σ| ≈ 5.93 |σ| ≈ 5.52

Fiat-Shamir (with `) 0.463 0.951 1.858 —
Fischlin (with `′) 1.037 0.114 0.103∗ 0.287

Table 2: Comparison of Fischlin’s transformation and the Fiat-Shamir transform for the Generalized
Okamoto signature scheme, with different leakage parameter λ. Fischlin is instantiated with r and b
such that the resulting signature size is comparable in both schemes. For the timing (*) we selected
the fastest parameters r, b where the resulting signature size is even smaller.

in many important scenarios, Fischlin’s transformation might be preferable (or at least comparable)
to the Fiat-Shamir transformation in terms of verification time, signing time and key generation.

We conclude with a number of remarks on our results.

• Our model of leakage resilience assumes that the overall amount of leakage is bounded by
some a-priori fixed parameter. Using the techniques of [3, 1], our results extend to continuous
leakage resilience in the so-called “Floppy model” (see also [12]), where one assumes the
existence of a (leakage free) floppy that can be used to update the secret key (leaving the
corresponding public key unchanged).

• Our analysis can be extended to the context of memory tampering (see, e.g., [18, 21, 22] and
references therein). In particular Theorem 3.2 can be generalized to the setting of bounded
leakage and tamper resilience [12], where the adversary is not only allowed to leak from the
state of the signer but can also inject (an a-priori bounded number of) faults into the secret
key and then obtain access to a “faulty” signing oracle.

• We remark that in general Fischlin’s transformation can be preferable to Fiat-Shamir in all
settings where simulation extractability is needed [20].

Furthermore, we ask ourselves how secure signature schemes are against quantum adversaries if
the underlying identification scheme is quantum immune. More precisely, does the Fischlin’s trans-
formation yield secure signature schemes in the quantum random oracle model [6]. Dagdelen et
al. [10] have shown that this does not always hold for the Fiat-Shamir transformation.
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[42] Sven Schäge. Tight proofs for signature schemes without random oracles. In EUROCRYPT,
pages 189–206, 2011.

[43] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in
CryptologyCrypto89 Proceedings, pages 239–252. Springer, 1990.

[44] Torsten Schütze. Automotive security: Cryptography for car2x communication. In Embedded
World Conference, 2011.

[45] Yannick Seurin. On the exact security of schnorr-type signatures in the random oracle model.
In EUROCRYPT, pages 554–571, 2012.

19


	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Notation
	Signature Schemes
	Fischlin's Transformation

	Leakage Resilience of Fischlin's Transformation
	Comparison
	Parameter Selection
	On Key Generation
	On Signature Generation
	On Verification
	On Leakage Resilience

	Discussion

