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ABSTRACT. Nonlinearity and resiliency are well known as some of the most impor-
tant cryptographic parameters of Boolean functions, it is actual the problem of the
constructing of functions that have high nonlinearity and resiliency simultaneously.
In 2000 three groups of authors obtained independently the upper bound 27~! —2m+!
for the nonlinearity of an m-resilient function of n variables. It was shown that if
this bound is achieved then (n —3)/2 < m < n — 2. Simultaneously in 2000 Taran-
nikov constructed functions that achieve this bound for (2n —7)/3 <m <n—2. In
2001 Tarannikov constructed such functions for 0.6n — 1 < m introducing for this
aim so called proper matrices; later in 2001 Fedorova and Tarannikov constructed
by means of proper matrices the functions that achieve the bound 2"~! — 2™+ for
m > en(1 + o(1)) where ¢ = 1/1ogy(v/5 + 1) = 0.5902... but proved simultaneously
that by means of proper matrices it is impossible to improve this result. During the
period since 2001 it was not any further progress in the problem on the achievability
of the bound 2"~ ! — 2™+ in gpite of this problem was well known and actual except
the constructing in 2006-2007 by three groups of authors by means of a computer
search concrete functions for n = 9, m = 3. In this paper we find the new ap-
proach that uses the generalization of the concept of proper matrices. We formulate
combinatorial problems solutions of which allow to construct generalized proper ma-
trices with parameters impossible for old proper matrices. As a result we obtain the
constructions of m-resilient functions of n variables with maximal nonlinearity for
m > cn(1+o0(1)) where ¢ = 0.5789..., and also we demonstrate how further advance
in combinatorial problems follows an additional decrease of the constant c.
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1 Introduction

Nonlinearity and correlation immunity (resiliency) belong to the number of the most important
cryptographic characteristics of Boolean functions required for the resistance of cryptosystems
(in particular, ciphers) with Boolean functions as building blocks against linear, correlation
and other kinds of cryptographic attacks. Therefore it is very desirable that functions used in
ciphers have high nonlinearity and resiliency simultaneously. However, in 2000 [11, 15, 20] it
was proved the upper bound for the nonlinearity of m-resilient functions on F5:

nl(f) < 2n71 _ 2m+1

for m < n — 2, and it was shown that if an equality in this bound is achieved then ”Tf?’ <m<
n—2. Hence, it has become important the problem of the constructing of functions that achieve
an equality in this bound (as said, the constructing of functions with maximal possible non-
linearity). After some steps of consecutive improvements in 2001 Fedorova and Tarannikov [3]
obtained the best result before a long break: they constructed m-resilient functions on F§ with
maximal possible nonlinearity for 0.5902...n(1 + o(1)) < m < n — 2 but proved simultaneously
that by means of used technique of proper matrices it is impossible to decrease the constant
0.5902... During the following period it was not any further progress in this problem except the
constructing of concrete functions on small number of variables (n = 9, m = 3) by means of
a computer search. At the same time in recent years it is studied intensively the problem on
the constructing of functions with high nonlinearity for small (constant) values of m, we can
mention the works [4, 5, 14, 17, 19]. The reason of such shift of interest was the difficulty of
the problem on the constructing of functions with maximal possible nonlinearity and a research
stagnation in this problem as well as an opinion that the nonlinearity is some more important
cryptographic property whereas for the resiliency it is sufficient to have a constant order. How-
ever, from a practical point of view the nonlinearity is not important so much as the relative
nonlinearity, i. e. the value an(J ). More exactly, the deviation of relative nonlinearity from 0.5 is
important. From well-known upper bound for the nonlinearity of an arbitrary Boolean function
nl(f) < 2n-! —2571 it follows that the deviation of relative nonlinearity of any Boolean function
1.

on F§ from 0.5 is at least e at the same time, if to construct an m-resilient function on Fj

with maximal possible nonlinearity 27 ' — 27+ for m close to 0.5n then the deviation of its
relative nonlinearity from 0.5 will be equal to W, i. e. close to the lower bound of the best
possible deviation. Therefore a progress in the problem of the constructing of an m-resilient
function on F% with maximal possible nonlinearity 27! — 2m*! for m close to 0.5n is still
important since it allows to combine the nonlinearity close to optimal with very high resiliency.

In this paper the new approach is found. This approach uses the generalization of the
concept of proper matrices. New combinatorial problems are formulated. The solutions of
these problems allow to construct the generalized proper matrices with parameters impossible
for simply proper matrices. As a result we obtain constructions of m-resilient functions of n
variables with maximal nonlinearity for m > cn(1 + o(1)) where ¢ = 0.5789..., and also we
demonstrate how further advance in combinatorial problems follows an additional decrease of
the constant c.




2 General information and the history of the problem

We consider F3, the space of vectors of the length n with components from F5. A Boolean
function of n variables is a mapping from F5 to Fo. We shall denote a function f of n variables
also in the form f(z) = f(z1,22,...,z,) implying that variables x1, z2, ..., x, correspond
uniquely to components of F5. Below we denote the vector from F% by a letter without a low
index whereas a component of this vector by the same letter with the low index that points to
the ordinal number of this component in the vector.

The weight |z| of the vector z from F% is the number of ones in z. The weight wt(f) of a
function f on F% is the number of vectors z from F% such that f(z) = 1. A function f is called
balanced if wt(f) = wt(f @ 1) = 2"~! (i. e. a function takes the values 0 and 1 at the same
numbers of vectors. A subfunction of a Boolean function f is the function f’ obtained by the
substitution into f some constants 0 or 1 instead of some variables.

It is well known that a function f defined on F4 has the unique polynomial representation
over Fy which degree on each variable does not exceed 1, namely

flz1,...,2p) = 69 glay,...,apn)z{" ... oo
(a1,...,an)EFY

where g is also some function on F. Such polynomial representation of f is called the algebraic
normal form (briefly, ANF) of the function f, and each monomial z{* ...z% is called the term
in ANF of the function f.

The algebraic degree of a function f denoted by deg(f) is defined as the number of variables
in the longest term in ANF of the function f. The algebraic degree of a variable z; in function
f denoted by deg(f,x;) is the number of variables in the longest term in ANF of the function
f that contains z;. If deg(f,z;) = 1 then we say that f depends on z; linearly. The term of
the length 1 is called a linear term. If deg(f) < 1 then f is called the affine function. If f is an
affine function and f(0) = 0 then f is called the linear function.

The Hamming distance d(z', z") between two vectors 2’ and z” is the number of components
where vectors 2’ and z” differ. For two Boolean functions f; and f; on F} the distance between
f1 and fo is defined as d(f1, f2) = |{z € Fy|fi(z) # fa(z)}|. It is easy to see that d(f1, f2) =
wt(f1 @ f2). For given function f from F¥ the minimum of distances d(f,[) where [ is running
through the set of all affine functions on F¥ is called the nonlinearity of f and is denoted by
ul(f).

Let x = (x1,...,2,) and u = (uq,...,u,) be vectors of the length n over Fy. The inner
product of z and wu is defined as

n
<z,Uu>= leul

i=1
We assume that the sum x + u of two vectors x and v from F% is their component-wise addition
over Fy.

The Walsh Transform of a Boolean function f is the integer-valued function on F4 defined
as follows:
Wf(u) — Z (_1)f(z)+<u,z>_

z€FY

For each u € F3' the value Wy (u) is called the Walsh coefficient or the spectral coefficient. The
collection of Walsh coefficients Wy(u) of the function f for all vectors u € F% is called the



spectrum of the function f. The collection of all vectors u € F3 such that W(u) # 0 is called
the spectrum support of the function f.
The set of all Walsh coefficients of a Boolean function f on FZ satisfies the Parseval’s

Equality: Z ) )
Wi(u) = 27",
f
uEFg

It is well known that the nonlinearity of a function f on F§ is expressed via its Walsh

coefficients by formula
1

nl(f) =2""" =5 ma (W () (1)

A Boolean function f is called plateaued if there exists the positive integer ¢ such that for
any vector u € F§ we have Wy (u) € {0,£2°}.

A Boolean function f defined on F7 is called correlation-immune of order m, 1 < m < n,
if the output of f and any set of m its input variables are statistically independent. This
concept was introduced by Siegenthaler [13]. In an equivalent non-probabilistic formulation a
Boolean function f is called correlation-immune of order m if wt(f’) = wt(f)/2™ for any its
subfunction f’ of n—m variables. The balanced correlation-immune function of order m is called
m-resilient. In other words, a Boolean function f is called m-resilient if wt(f’) = 2"~™~! for
any its subfunction f’ of n —m variables. From this point of view we can formally consider any
balanced Boolean function as O-resilient and an arbitrary Boolean function as (—1)-resilient (a
function of n variables has not a subfunction of n+ 1 variables, therefore for any its subfunction
of n + 1 variables all statements hold). The concept of an m-resilient function was introduced
in [2].

There is the characterization of a correlation-immune function via its Walsh coefficients. For
the first time this characterization was obtained in [18].

Lemma 1 [18] A function f on FY is the correlation-immune function of order m if and only
if We(u) =0 for all vectors u € F3 such that 1 < |u| < m.

It is easy to see that a function f is balanced if and only if W;(0) = 0. Therefore the next
corollary holds.

Corollary 1 A function f on F3 is m-resilient if and only if Wy(u) = 0 for all vectors u € Fy
such that |u| < m.

It holds also the next property of Walsh coefficients of correlation-immune functions [11].

Lemma 2 [11] If f is a correlation-immune function of order m on F3, m < n—1, then for any
u € FY the formula We(u) =0 (mod 2™*1) holds. Moreover, if f is m-resilient, m < n — 2,
then Wr(u) =0 (mod 2m+2).

In [11, 15, 20] it was proved the upper bound for the nonlinearity of correlation-immune
functions.

Lemma 3 [11, 15, 20] Let f be a correlation-immune of order m Boolean function on F7,
m <n —1. Then the inequality
nl(f) <2nt—2om (2)



holds. Moreover, if f is an m-resilient Boolean function on F5, m <n —2, then the inequality
nl(f) < 2071 — gt (3)
holds.

Corollary 2 If in Lemma 3 in formulas (2) or (3) an exact equality is achieved then the
function f must be plateaued.

Proof. The corollary follows immediately from the representation (1), Lemma 2 and the defini-
tion of plateaued functions. O

Thus, if an equality in bounds (2) or (3) is achieved then the function f is plateaued, its
Walsh coefficients take values only from the set {0, £2™%!} for the bound (2) and {0, £2™*2}
for the bound (3). Conversely, if Walsh coefficients of a function f on F% take values only from
the set {0, £2m+4} then nl(f) = 2n~1 — gm+a-1,

Khalyavin proved [22] that if in (2) an exact equality is achieved then either n = 2511 4 1,
m = 2% orn =2t 42 m = 2% 4 1 for some positive integer s. Examples of functions that
achieve an equality in the bound (2) for n =5, m = 2 and n = 6, m = 3 are given in [15] and
for n =9, m =4 and n = 10, m = 5 were constructed by Khalyavin in [21, 23].

The remained part of this paper is devoted to the constructing of functions that achieve an
equality in the bound (3).

Note that if in the bound (3) an exact equality is achieved then 252 < m < n — 2 since in
the case "T_?’ > m for m-resilient Boolean functions on F% there is more strong bound

nl(f) < gn—1 _ 2%71 _ om+1
that was proved in [11].

Even before obtaining the bound (3) different researchers ([1, 12] etc.) proposed construc-
tions of m-resilient functions on F3 that achieve an equality in (3) for n — m = O(logyn).
Tarannikov in 2000 [15] constructed functions that achieve an equality in (3) for 22T < m <
n—2. In [9] Pasalic, Maitra, Johansson and Sarkar modifying constructions from [15] expanded
the achievability range of the bound (3) till 2228 < m < n —2, n > 7. In [16] Tarannikov by
means of proper matrices constructed functions that achieve an equality in (3) for 0.6n — 1 <
m < n—2. In 2001 Fedorova and Tarannikov [3] constructed functions that achieve an equality
in (3) for m > 0.5902...n(1 + o(1)) but proved simultaneously that by means of proper matrices

it is impossible to decrease the constant 0.5902... = —-L1——. During the next more than

logs (V5+1
10 years it was not any progress in the problem on the %32()(I\1/S_;£'11)Cting of functions achieving an
equality in (3) except the constructing in 2006-2007 in works [6, 7, 10] by means of advanced
algorithms of a computer search some examples of functions that achieve an equality in (3) for
n =9, m = 3. In the next sections we generalize the concept of a proper matrix, decrease the
constant 0.5902... and show how it is possible to obtain further improvements by means of a

progress in combinatorial problems formulated by us.



3 Lemmas on spectra

Lemma 4 Let X = (z1,...,24), Y = (y1,-..,yk) be vectors of variables, c = (o1,...,0%),
w=(Ul,...,Up), v = (v1,...,0x). Suppose that the representation
k
9(X,Y)= P (H(yz- 6901-)) fr(X)
O'EFIQC =1

takes place. Then

Wg(uv) = Z (_1)<U’U>Wfa+(1 ..... 1)(’[1,).
UEF.’Zc

Proof. We have
Wy (uv) = Z (—1)9Fo)+<Xouw> _

XUE]E‘S‘J“]C
Z (_1)<a,v> Z (_1)g(Xa)+<X,u> — Z (_1)<0’,’U>Wfa+(1 ..... 1)(,“)‘
o€F§ XeFg ocFk
O
Lemma 5 Let f(z1,...,2,) be a Boolean function on F§, and let g(x1,. .., %n, Tni1) = f(z1,
cesTp) D Tpt1, U= (U1,...,up). Then

a) Wy(u0) =0, Wy(ul) = 2Wg(u);
b) if [ is m-resilient then g is (m + 1)-resilient.

Proof. a) Denote X = (z1,...,z,). We have

Wyluunin) = 3 (c1)oXemeteXommn>

Xxn+1€Fg+1

Z (_1)g(X0)+<X,u> + (_1)un+1 Z (_1)g(X1)+<X,u> _ Wf(u) - (_1)un+1Wf(u)

It follows the statement of a).

b) Each vector from the spectrum support of the function f has by Corollary 1 the weight
greater than m and, as we see from the proof of the item a), each vector from the spectrum
support of the function g has one in the (n + 1)th component. From here by Corollary 1 the
function g is (m + 1)-resilient. 0

Corollary 3 If a function (x1,...,zy) achieves an equality in the bound (3) then the function
g(x1,. . Tn, Tny1) = f(T1,...,2n) ® Tpi1 also achieves an equality in the bound (3).

Corollary 4 All vectors from the spectrum support of the function g(z1,...,Tn, Tnt1) = f(z1,
ey ZTp) ® Tpyq have 1 in the (n + 1)th component.

In [15] in was introduced the concept of a pair of quasilinear variables. We say that a
function g depends on a pair of variables (z;, ;) quasilinearly if at any two vectors that differ in
the ith and the jth components and identical in all remained components the function g takes
different values. It is easy to see that if a function g on Fg“ depends on the pair of variables



(Zn, Tn+1) quasilinearly then it is possible to represent g in the form g(z1,...,2n—1,%n, Tpy1) =
f(z1, ..o Tpn1,Zn ® Tpi1) ® Tpi1 where f(z1,...,2,) = g(z1,...,2p,0).

Note that if some function f has at least one pair of quasilinear variables then this function
is balanced since it is possible to combine all vectors of F% into pairs (vectors in a pair differ
only in two components corresponding to these variables) such that the function f takes the
value 1 at exactly one vector from a pair of vectors.

Lemma 6 Let f(z1,...,2y,) be a Boolean function on F3, and let g(x1,...,Tp—1,%n, Tni1) =
f@1, . 1,2 @ Tpg1) © Tpyr, u = (U1, ..., uy—1). Then
Wy (utntni1) =0 if up = Upy1, and Wy(wuptng1) = 2Wy(uuy) if up 7 Unii-

Proof. Denote X = (z1,...,x,). We have

Wo(utnuni1) = > (=L)X oe)t<Xonppuuntnin> N (_)o(X0+<Xuun>
XanircFyH! Xery

(_1)Un+1 Z (_1)g(X1)+<X,uun> — Wf(uun) _ (—1)“”@“”+1Wf(uun).

XEF?
It proves the lemma. O
Corollary 5 All vectors from the spectrum support of the function g(x1,...,Tn—1,%Tn, Tni1) =
f(x1, o Tty Ty ®Xy) B xyr1 have in the pair of components (n,n+1) either the combination

01 or the combination 10.

Corollary 6 If a function f(x1,...,z,) achieves an equality in the bound (8) and f is m-
resilient whereas the function g(z1,...,%Tn, Tnt1) = f(T1, .« s Tn-1,Tn®Tpi1) DTy is (Mm+1)-
resilient then the function g also achieves an equality in the bound (3).

Note that the transformation of some variable into a pair of quasilinear variables, in general,
does not guarantee the growth of the resiliency of a function. Nevertheless, below we show that
in Construction 2 the transformation of some just added variable into a pair of quasilinear
variables leads to the growth of the resiliency.

4 Recursive construction and proper matrices

Construction 1. Let X = (z1,...,2n4¢), Y = (y1,...,yr) be vectors of Boolean variables.
Let {fs(X)} cFk be the set of 2¥ functions possessing the next properties:

1) each f,(X) is an (m + t)-resilient Boolean function on F5*¢;

2) each f,(X) achieves the bound (3);

3) for any two functions f,/(X) and f,#(X), o' # ¢”, the spectrum supports of the functions
for(X) and f,n(X) are disjoint.

Lemma 7 In definitions of Construction 1 the function
k
9X.Y)= P (H(yz- 6901-)) fo(X)
O'EF.IZC =1

is an (m —+ t)-resilient Boolean function on F3F that achieves the bound (3).



Proof. By Corollary 2 any of functions f,(X) is plateaued and all nonzero Walsh coefficients
of each of these functions have the absolute value 2”2, From the property of the spectrum
supports of functions f,(X) to be mutually disjoint by Lemma 4 it follows that all nonzero
Walsh coefficients of the function ¢ also have the absolute value 2™+**2. The fact that all
fo(X) are (m + t)-resilient follows that g is also (m + t)-resilient. Therefore g really achieves
the bound (3). 0

Construction 2. Let X = (z1,...,2p4+4¢), ¥ = (y1,---,4x), Z = (21,...,2) be vectors of
Boolean variables. Let ¢ = (ci,...,c;) € F be a fixed binary vector, |¢| = 5. Let {fg(X)}geFéc

be the set of 2¥ functions possessing the same properties as in Construction 1:

1) each f,(X) is an (m + t)-resilient Boolean function on F5**;

2) each f,(X) achieves the bound (3);

3) for any two functions f,/(X) and f,#(X), o' # ¢”, the spectrum supports of the functions
for(X) and f,(X) are disjoint.

Lemma 8 In notation of Construction 2 the function

k k
9.(X,Y,Z.) = P (H(yi ® ciz @ Ui)) fo(X) P cizi
i=1

oeFk \i=1

is an (m + t + s)-resilient Boolean function on F3THE4S that achieves the bound (3) and has
s nonintersecting pairs of quasilinear variables. We assume that if ¢; = 0 then the variable z;
does not belong to the set Z, of variables of the function g..

Proof. If s = 0 then the statement of lemma was already proved in Lemma 7 for the function
go which is plateaued by Corollary 2. If s > 0 then we shall successive replace in gy for all
i such that ¢; = 1 variables y; to pairs of quasilinear variables (y;, z;). At every step of such
replacement by Lemma 6 the absolute value of all nonzero Walsh coefficients of a new function
will be 2 times greater than in a previous function. Therefore at every step we will obtain
a plateaued function again. After all s steps we shall find that all Walsh coefficients of the
function g. belong to the set {0, £2™+ 572} Show that the function g. is (m +t + s)-resilient.
Consider an arbitrary vector « from the spectrum support of the function g.. In left (n + %)
components the vector a by Lemma 4 has more than m + ¢ ones since each of functions f,(X)
is (m + t)-resilient. In each pair of components corresponding to the pairs of variables (y;, z;)
for ¢; = 1 the vector « has one 1 by Corollary 5. Therefore the weight of the vector « is greater
than m+t+s. It follows that the function g, is (m +¢+ s)-resilient and according to arguments
given above it achieves the bound (3). The lemma is proved. 0

Having an m-resilient function f on F3 that achieves the bound (3) we can obtain from
f an (m 4+ t)-resilient function on Fj " that achieves the bound (3) adding to f new t' linear
variables and transforming s variables, #'+s = ¢, into pairs of quasilinear variables. The required
nonlinearity is guaranteed by Lemmas 5 and 6 whereas the required growth of the resiliency can
be achieved according to Lemma 8 if we replace just added variables y; by pairs of quasilinear
variables.

However, for the application of Construction 2 it is necessary to guarantee that the spectrum
supports of any two different functions f, are disjoint. In [16] for this aim it were introduced
(ko, k,p,t)-proper matrices. We shall not repeat now the definition of these matrices but give
its generalization and after this explain the differences between old and new definitions.



5 Disjointed rows and generalization of proper matrices

Consider the set V' of rows of the length p which components are symbols 1/2, 1 or %, moreover,
all symbols 1/2 are joined in pairs inside of each row (thus, the total number of symbols 1/2 in
each row is even). We associate every row « from V with the states of last p variables vy, ..., vy
of some Boolean function f,(u1,...,%n—p,v1,...,vp), namely, if a; = 1 then the corresponding
variable v; of the function f, is linear; if a; = o; = 1/2 and the components ¢ and j in the
row « are joined in a pair then the variables (v;, v;) form the pair of quasilinear variables of the
function fy,.

Two rows a and § from the set V are called disjointed if the spectrum supports of any
correspondingly associated functions f, and fsz are guaranteed to be disjoint.

Example 1. Let o; = a;j =1, #; = f; = 1/2 and the components i and j in the row
are joined in a pair. Then the spectrum supports of any associated functions f, and fz are
guaranteed to be disjoint. Indeed, each vector from the spectrum support of f, by Corollary
4 has ones in components corresponding to the variables v; and v; whereas every vector from
the spectrum support of fz by Corollary 5 has one in some of components corresponding to the
variables v; and v; and zero in another component. In fact, at this property it was based the
using of Construction 2 in [16] (at other language — without the Walsh coefficients) but it was
restricted by this example. Below we show that disjointed rows can have more general form.

Lemma 9 Let o and B be two rows from V of the length p. Let I be a set of indexes, I C
{1,...,p}. Suppose that the rows a and B do not contain symbols % in components from I,
inside of the row « each symbol 1/2 in a component from I is joined in a pair with some symbol
1/2 also in a component from I, the same is true for the row (3. Besides, suppose that the rows
a and B contain different number of pairs of symbols 1/2 in components from I. Then the rows
« and B are disjointed.

Proof. Suppose that the row « contains exactly a pairs of symbols 1/2 in components from I
and consequently exactly |I| — 2a ones in components from I. Then by Corollaries 4 and 5 any
vector from the spectrum support of the function f, in components from I contains exactly
|I| — a ones. If in the row (3 there are exactly b pairs of symbols 1/2 in components from I,
a # b, then |I| —a # |I| — b, so the spectrum supports of the functions f, and fz are disjoint
that proves the lemma. O

Corollary 7 Let o and (3 be two rows of the length p from V, moreover, there exist the compo-
nents i, ..., laq such that o, = v,y = 1, aj; = 1/2, 5 =2,...,2d—1; B, =1/2, j=1,...,2d.
Besides, join in pairs components (izj,i2j41), j = 1,...,d — 1, in the row a and components
(i2j—1,125), § =1,...,d, in the row 3. Then the rows o and § are disjointed.

Lemma 10 Let o and B be two rows from V of the length p =n+k. Let I be a set of indezes,
I C{1,...,p}, |I| =n. Denote by oy and P the restrictions of a and B on I, correspondingly.
Suppose that inside of the row « each symbol 1/2 in a component from I is joined in a pair with
some symbol 1/2 also in a component from I, the same is true for the row (3. Besides, suppose
that the subrows ay and Br are disjointed. Then the rows « and 3 are disjointed too.

Proof. By definition of disjointed rows for given u € F% we have either Wfa(l)(u) = 0 for
any function f,(r) associated with a(I) or Wy, (u) = 0 for any function fs;) associated with



B(I). By Lemma 4 it follows either Wy, (uv) = 0 for any v € F§ and any function f, on Fj*
associated with a or Wy, (uv) = 0 for any v € F% and any function f3 on F§** associated with
0. O

The concept of disjointed rows is helpful for the constructing of sets of functions with
nonintersecting spectrum supports required in Construction 2. Introduce the concept of a
generalized proper matrix.

A matrix A of size 2% x p is called the generalized (ko, k,p,t)-proper matriz if in each of its
cells the symbol from the set {1/2,1,*} is recorded, moreover, inside of each row all symbols
1/2 are joined in nonintersecting pairs, and also the next conditions hold:

1) each row of the matrix A contains at most kg pairs of symbols 1/2;
2) the sum of all number symbols in each row is equal to ¢ (stars are not counted);
3) any two different rows of the matrix A are disjointed.

The difference of generalized proper matrices from simply proper matrices introduced in
[16] is as follows. At first, in [16] all columns were inflexibly joined in pairs and two columns
of every pair were identical (in notation of [16] they were joined in one column with doubled
values of symbols) whereas symbols 1/2 were automatically joined in pairs inside of pairs of
columns. At second, in [16] de facto only such pairs of rows are considered as disjointed for
which the configuration of Example 1 took place. At third, in [16] the condition 2) was relaxed
— it was required that corresponding sums did not exceed ¢; but this unimportant relaxation
led to additional awkwardness in further text.

The next lemma is a reformulation for generalized proper matrices of the statement from
[16].

Lemma 11 Let A be a generalized (ko, k, p,t)-proper matriz. Let n and m be positive integers,
p < n+t. Suppose that for any integer i such that

(0) 0 <i < ko;

(b) the matriz A contains some row o with exactly i pairs of symbols 1/2

the next condition holds: there exists the (m + i)-resilient function on FSH that has 1 nonin-
tersecting pairs of quasilinear variables and achieves the bound (3). Then for each integer s,
0 < s <k, it is possible to construct an (m + t + s)-resilient function on Fg+t+k+s that has s
nonintersecting pairs of quasilinear variables and achieves the bound (3).

Proof. Suppose that the row « of the matrix A contains exactly ¢ pairs of symbols 1/2. Take the
corresponding to this row the function f the existence of which is guaranteed by the condition of
this lemma. Add to f new ¢ — i linear variables. Permute variables in the resulting the (m + t)-
resilient function on Fg"’t by the such way that the last p variables arrive in correspondence
with the form of the row a: to components where 1 is in « we shift linear variables whereas
to components corresponding to a pair of symbols 1/2 we shift a pair of quasilinear variables.
It is easy to see that after a permutation of variables the nonlinearity and the resiliency of
a function are not changed. Make it for each row of the matrix A. As a result we obtain a
family of functions satisfied to the condition of Construction 2 that by Lemma 8 guarantees the
constructing of required new functions. The lemma is proved. O

Example 2. Suppose that p is even, (%2) > 2%, Then there exists the generalized (2, k,p,p—
2)-proper matrix. Indeed, join inflexibly in pairs the components (2i —1,27), i = 1,...,p/2. We
shall record only rows with exactly two pairs of symbols 1/2 (inside of inflexibly joined pairs)
and ones in all remained components. There exist (%2) rows of such form. Tt is easy to see
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that any two different rows of such form are disjointed. By assumption we have (%2) > 2k 5o

we can record 2F different rows of a desired form that is sufficient for the constructing of the
generalized (2, k, p,p — 2)-proper matrix.

The function f(z1,z2, 3, 24) = (21D x2)(23 DB 24) D 2 ® x4 has two nonintersecting pairs of
quasilinear variables and f is 1-resilient achieving an equality in the bound (3). The condition
p < n+t =4+ (p—2) holds too. Therefore using in Lemma, 11 for the function f just constructed

generalized (2,k,p,p — 2)-proper matrix for any fixed k for some p provided (%2) > 2k we

obtain (mg + s)-resilient functions on F5°"* that achieve the bound (3) for any number s of
nonintersecting pairs of quasilinear variables from 0 till £ for some ny and my.

Theorem 1 If there exists the generalized (k,k,p,t)-proper matriz then it is possible to con-
struct the sequence of m-resilient functions on F4 that achieve the bound (3) for n — oo,
w R
Proof. In Example 2 it were constructed (mg + s)-resilient functions on F5°** that achieve the
bound (3) with any number s of nonintersecting pairs of quasilinear variables from 0 till & for
some ng and mg. Applying now r times Construction 2 we obtain an (mg + s + rt)-resilient
function on F’;O*S*’“(t*’“) that achieves the bound (3). Obviously, for r — oo we have = — HL,C
that was required. O
Note that the construction of Example 2 is not effective and it was given here only to provide
a simplicity of the proof of Theorem 1. From a practical points of view it is more profitable to
make not one big transfer from kg to k£ but many small ones. Examples of such sequences of
transfers are given in [3]. Note also that in Example 2 de facto it were used proper matrices
in their old definition since columns were inflexibly joined in pairs and the property of any
two rows to be disjointed was guaranteed by only two columns of some inflexible pair. The
appropriateness of introducing of the definition of generalized proper matrices will be shown in
the next section.

6 New constructions

We say that a matrix M is disjoint if in each of its cells the symbol from the set {1/2,1,x}
is recorded, moreover, inside of each row all symbols 1/2 are joined in pairs, and also any two
rows of M are disjointed. Thus, disjoint matrices differ from generalized proper matrices by the
fact that for disjoint matrices there are no inflexible restrictions on the number of rows and on
the values of sums of number symbols in rows. If the sum of number values in each row of a
disjoint matrix is exactly ¢ then such matrix is called t-disjoint.

Construction 3.  Suppose that a disjoint matrix M has h rows and the sum of number
symbols in the ith row of M is equal to t;, 2 = 1,...,h. Denote tmax = 11216,<Xh t;. We shall
13

construct the sequence of t-disjoint matrices A(t), t = 0,1,... Denote by s(¢) the number of
rows in the matrix A(t). Define initial ¢-disjoint matrices A(t), t = 0,1,...,tmax -1, arbitrary
(for example, certainly it is possible to take the row of ¢ ones as an initial matrix A(¢) although
from the practical reasons it is desirable that the matrix A(t) contains as many rows as possible).
Define for ¢ > tyax the matrix A(t) recursively by the next way. For the row « of the matrix M
with the index i, s = 1,..., h, record into A(t) rows that are a result of the concatenation of «
with each of rows of the matrix A(¢—t;). Since, in general, the rows of the resulting matrix A(#)
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can be of different length, for the alignment record stars to absents components on the right
side of rows. From this construction and Lemma 10 it is easy to see that A(t) is a t-disjoint
matrix and there is the recurrence equation

s(t) = s(t — )

=1

with the corresponding characteristic polynomial

h
xtmax _ Z xtmax*ti . (4)
=1

The largest root of the characteristic polynomial (4) is real and positive except some degen-
erate cases. The classification of degenerate and non-degenerate cases is connected closely with
conditions of the Perron—Frobenius theorem for nonnegative matrices [8]. In non-degenerate
cases if Xax is the largest root of the characteristic polynomial (4) then the asymptotics of
the value s(t) has the form s(t) = C X! . (1 + o(1)) where the constant C is defined by initial
conditions. If in the matrix A(t) to remove rows up to the nearest power of two leaving 2*
rows where k = |logy s(t)] = tlogy Xmax(l + o(1)) then it is easy to see that the resulting
matrix will be the generalized (¢, k,p,t)-proper matrix where p is the number of columns in
the matrix A(t). However, if we are interested in the generalized (ko, k, p, t)-proper matrix for
k = tlogy Xmax(1 + 0(1)) then we must remove in the matrix A(t) all rows with the number of
pairs of symbols 1/2 greater than kg and to prove that the number of such rows is asymptotically
small in comparison with s(t).

Note that in [3] in the capacity of a matrix M in fact it was used the matrix

1 1
(1/2)2 (1/2)

that gave the recurrence equation s(t) = s(¢
22 — x — 1 with the largest root Xax = \/52"'1 = 1.6180... This gave the possibility to construct
a (ko, k,p,t)-proper matrix for ky < k, k = logy Xmax(1 + o(1)), and, thus, to achieve the ratio
HLk = m(l +0(1)) = 0.5902...(1 + o(1)).

It is possible to develop this construction by the next way. We shall use our new terminology

but for now actually not going beyond old proper matrices.

—2) + s(t — 1) and the characteristic polynomial

Construction 4. Suppose n is even. Join in pairs the columns (2i — 1,2i), i = 1,...,n/2,
and record into the matrix M,, one copy of all such rows a = (aq,...,a,) of symbols 1/2 and 1
that ag;—1 = a9, 1 =1,...,n/2. As a result we obtain the matrix with 2"/2 rows. For example,
for n = 4 we have
1 1 1 1
M, = (1/2)2 (1/2); 1 1
1 1 (1/2)s (1/2)3

(1/2)2 (1/2)1 (1/2)a (1/2)3

It is easy to see that the matrix M,, constructed by this way contains exactly ("]/2) rows with
J pairs of symbols 1/2, the sum of number values equal to n — j, and M,, is disjoint. Therefore
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the recursive construction for A(t) that uses the matrix M, corresponds to the characteristic
polynomial

n/ 21
" — g( ]/2>3:%j:(332)n/2 (z+1)"? = (2% -z -1) (Zw az-l-l)) (5)

The largest root of the characteristic polynomial (5) is real and positive, it can be shown
easily from the Perron—Frobenius theorem. All real roots of the polynomial in the right-most
bracket in (5) are negative, therefore the largest root of the characteristic polynomial (5) is the
same as of 22 — z — 1. However, we can try to improve the construction of the matrix M,,.

Construction 5. From Lemma 9 it is possible to see that if at least for one pair n and k
where n is even and 0 < k& < n/2 we construct a set V' of mutually disjointed rows of the length
n with symbols from the set {1,1/2} (without stars) in any of which all symbols 1/2 are joined
in pairs, the number of such pairs is exactly k£ and the number of rows in V is greater than
("142) then replacing in M,, all rows that contain exactly k pairs of symbols 1/2 by all rows
from V we obtain the matrix M for which in the characteristic polynomial (5) the absolute
value of the coefficient of 22 * will increase whereas other coefficients will not be changed. It
is obvious that such transformation can not convert a non degenerate case into a degenerate
one (in respect to conditions of the Perron—Frobenius theorem). Therefore the largest (real and
positive) root Xpax will increase, so the asymptotic order of magnitude of s(¢) will increase too.

The search of the set of mutually disjointed rows it is possible to realize at the language
of the graph theory. To each of (,; ) (2k — 1)!! possible rows we corresponds the vertex of a
graph, two vertices of a graph are connected by an edge if and only if corresponding rows are
disjointed. The problem of the search of maximal (large) set of mutually disjointed rows it is
possible to solve by the way of the search of maximal (large) clique in a corresponding graph.
It is not hard to prove that for k = 0, 1,2, § — 1, 5 it is impossible to construct more than ("42
mutually disjointed rows. For n = 10, £ = 3 it was made a computer search by the hill-climbing
method with a random choice of some first rows. At a gradient step of the algorithm it was
chosen the vertex of a graph (the row) connected with the greatest number of vertices that were
still in consideration (i. e. not yet chosen nor rejected), all non-connected with it vertices in
consideration were rejected after this. As a result of the work of this algorithm it was found
the set of 15 rows given below:
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(1/2)2  (1/2)1  (1/2)s (1/2)
(1/2)2  (1/2) 1 (1/2)
(1/2)2  (1/2)1 1 1
(1/2)s  (1/2)5  (1/2)1 1
(1/2)4 1 1 (1/2)
(1/2)s  (1/2)3  (1/2)2 1
(1/2)s 1 (1/2)10 (1/2)
V=1 (1/2)7 (1/2)10 1 1
(1/2)10 (1/2)7  (1/2)s (1/2)
1 (1/2)s  (1/2)7 (1/2)
1 1/2), 1 1
1 1 (1/2)s (1/2)
1 1 (1/2) 1
1 1 (1/2)s (1/2)
1 1 1 (12

At the next table in the intersection

3 (1/2)s
6 1
1
(1/2)2
1 (1/2)7
(1/2)1
8 1
(1/2)6
3 1
9 1
(1/2)10
o (1/2)3
(1/2)3
6 (1/2)9
7 1

(1/2)5
(1/2)4
1
1
(1/2)9
1
(1/2)1
(1/2)5
1
1
(1/2)s
1
(1/2)s
(1/2)4
(1/2)10

1

1
(1/2)9
(1/2)s
(1/2)s

1

1
(1/2)
(1/2)2
(1/2)s

1
(1/2)10
(1/2)10

1
(1/2)4

1 1 1
(1/2)9  (1/2)s 1
(1/2)10  (1/2)7  (1/2)s
(1/2)7 1 1

1 (1/2)s 1

1 (1/2)10 (1/2)9
(1/2)4 1 (1/2)3

1 1 (1/2)2

1 1 (1/2)1
(1/2)2  (1/2)4 1
(1/2)  (1/2)2 (1/2)s

1 (1/2)a  (1/2)7
(1/2)6 1 (1/2)7
(1/2)3  (1/2)s 1
(1/2)9  (1/2)s (1/2)s

of the 7th row and the jth column it is indicated

the indexes of components that provide the property of the ith and the jth rows of V to be

disjointed.
N 213 4 5 6 7 8 9 10 11 12 13 14 15
11X|89(34] 78 (2143 910 |2165| 34 56 56 34 12 12 12 12
2 X146 46 57 46 310 | 89 89 37 46 12 12 12 12
3 X1|13125| 810 |5123] 79 56 34 |13794(1297] 12 12 12 12
4 X 69 78 25 (31785278 49 13 49 11352 46 13
5 X 23 57 | 210 69 28 14 11496 14 38 (1475
6 X 48 |7T156|7234| 15 68 (1532 68 46 15
7 X 48 48 16 29 16 (1684 59 (7489
8 X 56 56 17 49 13568 17 89
9 X 110 34 |5349| 68 110 89
10 X 37 28 49 12837 610
11 X 68 29 |3864| 47
12 X 49 710 35
13 X 710 35
14 X 13895
15 X

Construction 6. Replacing in Mg the submatrix consisted of 10 rows that contain exactly 3
pairs of symbols 1/2 by the set of rows of V' we obtain the matrix M’. Using M’ in Construction
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3 for the number of rows s(t) of the matrix A(t) we obtain the recurrence equation
s(t) = s(t — 5) + 5s(t — 6) + 15s(t — 7) + 10s(t — 8) + 5s(t — 9) + s(t — 10)
with the characteristic polynomial
2'% — 2% — 5g* — 152 —102° — 5z — 1

the largest root of which is equal to Xpmax = 1.6556... Then the ratio tJ%k for the generalized
Trog, X = 0-5789...

It is remained to prove that the number of rows with the number of pairs of symbols 1/2
asymptotically greater than ¢logy Xmax = 0.7274... is small in comparison with s(¢). In [3] in
the corresponding proof for the recurrence equation s(t) = s(t — 1) + s(¢t — 2) it was used a
simplicity of this equation, as a result its solution was written in almost explicit form that for
the characteristic polynomial of 10th degree seems to be problematic. We shall not develop
now any general theory and for the simplicity of a presentation we give the proof only for
Construction 6 with the using of the matrix M'.

The recursive construction that uses the matrix M’ works beginning with ¢ = 10. In the
capacity of initial matrices A(t), ¢t =0,1,...,9, it is possible to take arbitrary ¢-disjoint matrices;
it is essentially that initial matrices must not be empty; the choice of these matrices affects the
asymptotics but not the order of the growth of magnitude of s(¢) since the asymptotic of the
value s(t) is equal to C' XL . . and initial matrices affects only constant C. Of course, from a
practical point of view it is better to take matrices A(t), t =0,1,...,9, with maximal possible
number of rows.

By construction, the set of rows of the matrix A(t) is the collection of all possible concatena-
tions of admissible parts of the length 10 corresponding to the steps of the recursive construction
that are completed by a suffix which is a row of some initial matrix. Having a row of the matrix
A(t) it is possible to find its suffix uniquely, namely, separating step by step from the left side
of a row parts of the length 10 we check the sum of number symbols in current prefix, and then
this sum becomes no smaller than £ —9 we declare that all remained right part of the row is its
suffix.

From the form of M’ it follows that the set of all admissible parts of the length 10 consists
of 1 part with 0 pairs of symbols 1/2 and the sum of symbols equal to 10; 5 parts with 1 pair of
symbols 1/2 and the sum of symbols equal to 9; 10 parts with 2 pairs of symbols 1/2 and the
sum of symbols equal to 8; 15 parts with 3 pairs of symbols 1/2 and the sum of symbols equal
to 7; b parts with 4 pairs of symbols 1/2 and the sum of symbols equal to 6; 1 part with 5 pairs
of symbols 1/2 and the sum of symbols equal to 5.

Denote by [;(t) the number of rows of the matrix A(t) that contain exactly j pairs of symbols
1/2.

proper matrices constructed by means of A(t) tends to

Lemma 12 Let ¢ > 0. For the matriz A(t) from Construction 3 constructed by means of the
matriz M’ from Construction 6 for j > (2/3+¢)t(1+0(1)) beginning with some t the inequality

li—2(t+2)

> 15
Li(t)

holds.
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Proof. For an arbitrary row « of the matrix A(¢) denote by n;(«), i =0,1,2,3,4,5, the number
of parts of the length 10 in the row « (not counting its suffix) that contain exactly 7 pairs of
symbols 1/2. Let jo(«) be the number of pairs of symbols 1/2 in the suffix of o and let #y(cx)
be the sum of number symbols in the suffix of a. For the ratio of the number j(a) of pairs of
symbols 1/2 to the sum #(a) of number symbols in the row a we have

i) _ 5ns(a) 4 4na(@) + 3ns(a) + 2ny(e) + 1 (a) 4 jo(@)
tla)  bns(a)+ 6na(a) + Tng(@) + 8nz(a) + 9Inq (a) + 10ng(a) + to(a)

(6)

We are interested by only such rows a from the set A*(¢) "bad” rows of A(t) for which beginning
with some ¢ the inequality % > %—i—&" , 0 < &' < e, holds. Therefore by (6) we can assume that

rr}‘ir% )n5(a) — oo for £ — oo and beginning with some ¢ for each row « of A*(¢) the inequality
acA*(t

ns(a) > n3(a) + 1 holds.

Denote by S(t, j,ns5) the set of rows of the matrix A(t) that contain exactly j pair of symbols
1/2 and exactly ns parts of the length 10 that consists of 5 pairs of symbols 1/2. For given j and
sufficiently large ¢ for all values of ns for which the set S(¢,j,n5) is not empty, replace in each
row « from S(t,7,n5) one of parts of the length 10 with 5 pairs of symbols 1/2 by admissible
part of the length 10 with 3 pairs of symbols 1/2. It is possible to do it by 15n5; ways. We
obtain a row of the matrix A(¢ + 2) that contains exactly j — 2 pairs of symbols 1/2 and could
be obtained by such way from ng(a) + 1 < ns rows of S(¢,7,n5). Thus, the set S(,7,mn5) is
associated with the set of rows S(t + 2,5 — 2,n5 — 1) the cardinality of which exceed the first
one in more than 15 times. Running through all values of ns we prove the statement of the
lemma. O

Lemma 13 In the matriz A(t) from Construction 3 constructed by means of the matriz M’
from Construction 6 the number of rows with the number of pairs of symbols 1/2 no less than
ko = |0.70t] is asymptotically small in comparison with the number of all rows in A(t).

Proof. Estimate the ratio of the number of rows indicated in the statement of this lemma to
the number of all rows in A(¢). Choose d so that d — oo for ¢ — oo but % > 2/3 +e.
Using Lemma 12 beginning with some ¢ we have

t t—2d
L;(t Li(t+2d
j;:co ) j:choZZd i ) < s(t + 2d) X2 .. I (1+0(1)) = 0
s(t) 155(t) 15%5(t) 15 )
The lemma is proved. O

Thus, we showed that the number of rows with the number of pairs of symbols 1/2 asymp-
totically greater than tlogy Xmax = 0.7274... is really small in comparison with s(¢). Thus,
Lemma 13 and Theorem 1 prove the next theorem.

Theorem 2 Construction 6 with the using of the matriz M’ allows to construct the sequence
of m-resilient functions on ¥§ that achieve the bound (3) for which

1

= ——n(l 1)) =0. ..n(l 1
m 1+10g2Xmaxn( +0(1)) = 0.5789...n(1 + o(1))

where Xmax = 1.6556... is the largest root of the characteristic polynomial z'° — x5 — 5x* —
1523 — 1022 — bz — 1.
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Corollary 8 Let a be a real constant, 0.5789... < a < 1. Then there exists the sequence of
me-resilient functions on Fy that achieve the bound (3) for which = — o

The Corollary 8 is arised easily from the fact that taking the functions of the sequence
from the formulation of Theorem 2 and adding ¢ new linear variables to them we increase the
order of resiliency and the number of variables at ¢ whereas an equality in the bound (3) will
be remain valid. Such functions with linear variables have cryptographic weaknesses, therefore
from practical considerations it is more reasonable to apply a bit more complicated constructions
using the results and methods of this or cited papers.

7 Issues on implementation complexity

In this section we discuss briefly the implementation complexity of functions from constructions
proposed by us above. There exists the prejudice that an application in ciphers functions of
large number of variables is unprofitable in practice due to high computational complexity.
However, in some cases including our ones functions of large number of variables could have
small computational complexity.

Show how to calculate effectively the value of our function by a branching program. Look
at the functions g(X,Y) and ¢g(X,Y,Z) in Constructions 1 and 2. At every step of a cipher
performance it is necessary to calculate the values of the function at some concrete vector (X,Y")
or (X,Y, 7). Knowing subvectors Y and Z we reduce the calculation of the value of the function
g(X,Y) (or g(X,Y, Z)) to the calculation of only one its subfunction f,(X) where the index o
can be found immediately and uniquely from Y and Z. For the calculation of the value f,(X)
we look, at first, how variables in the vector X were rearranged for the producing f,(X) from
the function constructed at the previous step of the recursion. In the proof of Lemma 11 we
described the process of a permutation of variables in accordance to the form of a corresponding
row in a generalized proper matrix but not specified this process since for the proof of lemma
it was not important. In the aims of effective implementation this process should be strictly
defined. It is possible to permute variables only to attribute the required state (linearity or
quasilinearity) to last p variables of the function although it could be appeared that in the aims
of the resistance of a cipher (obfuscation) it could be helpful more global permutation. In any
case, after the inverse permutation of variables we obtain the function f'(X) constructed at
the previous step of the recursion and apply to it the procedures already described above. It
is easy to see that if to fix a generalized (k, k,p,t)-proper matrix and to apply it successively
in Construction 2 a growing number of times restricting permutations of variables at each step
by at most last 2p variables then the computation complexity for the value of the constructed
function by a branching program will be linear.

The author is grateful to Prof. Oleg A. Logachev and Mikhail S. Lobanov for helpful
discussions and the anonymous referee for valuable remarks.
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