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omAbstra
t. Nonlinearity and resilien
y are well known as some of the most impor-tant 
ryptographi
 parameters of Boolean fun
tions, it is a
tual the problem of the
onstru
ting of fun
tions that have high nonlinearity and resilien
y simultaneously.In 2000 three groups of authors obtained independently the upper bound 2n�1�2m+1for the nonlinearity of an m-resilient fun
tion of n variables. It was shown that ifthis bound is a
hieved then (n� 3)=2 � m � n� 2. Simultaneously in 2000 Taran-nikov 
onstru
ted fun
tions that a
hieve this bound for (2n� 7)=3 � m � n� 2. In2001 Tarannikov 
onstru
ted su
h fun
tions for 0:6n � 1 � m introdu
ing for thisaim so 
alled proper matri
es; later in 2001 Fedorova and Tarannikov 
onstru
tedby means of proper matri
es the fun
tions that a
hieve the bound 2n�1 � 2m+1 form � 
n(1 + o(1)) where 
 = 1= log2(p5 + 1) = 0:5902::: but proved simultaneouslythat by means of proper matri
es it is impossible to improve this result. During theperiod sin
e 2001 it was not any further progress in the problem on the a
hievabilityof the bound 2n�1�2m+1 in spite of this problem was well known and a
tual ex
eptthe 
onstru
ting in 2006{2007 by three groups of authors by means of a 
omputersear
h 
on
rete fun
tions for n = 9, m = 3. In this paper we �nd the new ap-proa
h that uses the generalization of the 
on
ept of proper matri
es. We formulate
ombinatorial problems solutions of whi
h allow to 
onstru
t generalized proper ma-tri
es with parameters impossible for old proper matri
es. As a result we obtain the
onstru
tions of m-resilient fun
tions of n variables with maximal nonlinearity form � 
n(1+ o(1)) where 
 = 0:5789:::, and also we demonstrate how further advan
ein 
ombinatorial problems follows an additional de
rease of the 
onstant 
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1 Introdu
tionNonlinearity and 
orrelation immunity (resilien
y) belong to the number of the most important
ryptographi
 
hara
teristi
s of Boolean fun
tions required for the resistan
e of 
ryptosystems(in parti
ular, 
iphers) with Boolean fun
tions as building blo
ks against linear, 
orrelationand other kinds of 
ryptographi
 atta
ks. Therefore it is very desirable that fun
tions used in
iphers have high nonlinearity and resilien
y simultaneously. However, in 2000 [11, 15, 20℄ itwas proved the upper bound for the nonlinearity of m-resilient fun
tions on Fn2 :nl(f) � 2n�1 � 2m+1for m � n� 2, and it was shown that if an equality in this bound is a
hieved then n�32 � m �n�2. Hen
e, it has be
ome important the problem of the 
onstru
ting of fun
tions that a
hievean equality in this bound (as said, the 
onstru
ting of fun
tions with maximal possible non-linearity). After some steps of 
onse
utive improvements in 2001 Fedorova and Tarannikov [3℄obtained the best result before a long break: they 
onstru
ted m-resilient fun
tions on Fn2 withmaximal possible nonlinearity for 0:5902:::n(1 + o(1)) � m � n� 2 but proved simultaneouslythat by means of used te
hnique of proper matri
es it is impossible to de
rease the 
onstant0:5902::: During the following period it was not any further progress in this problem ex
ept the
onstru
ting of 
on
rete fun
tions on small number of variables (n = 9, m = 3) by means ofa 
omputer sear
h. At the same time in re
ent years it is studied intensively the problem onthe 
onstru
ting of fun
tions with high nonlinearity for small (
onstant) values of m, we 
anmention the works [4, 5, 14, 17, 19℄. The reason of su
h shift of interest was the diÆ
ulty ofthe problem on the 
onstru
ting of fun
tions with maximal possible nonlinearity and a resear
hstagnation in this problem as well as an opinion that the nonlinearity is some more important
ryptographi
 property whereas for the resilien
y it is suÆ
ient to have a 
onstant order. How-ever, from a pra
ti
al point of view the nonlinearity is not important so mu
h as the relativenonlinearity, i. e. the value nl(f)2n . More exa
tly, the deviation of relative nonlinearity from 0:5 isimportant. From well-known upper bound for the nonlinearity of an arbitrary Boolean fun
tionnl(f) � 2n�1�2n2�1 it follows that the deviation of relative nonlinearity of any Boolean fun
tionon Fn2 from 0:5 is at least 12n2 +1 ; at the same time, if to 
onstru
t an m-resilient fun
tion on Fn2with maximal possible nonlinearity 2n�1 � 2m+1 for m 
lose to 0:5n then the deviation of itsrelative nonlinearity from 0:5 will be equal to 12n�m�1 , i. e. 
lose to the lower bound of the bestpossible deviation. Therefore a progress in the problem of the 
onstru
ting of an m-resilientfun
tion on Fn2 with maximal possible nonlinearity 2n�1 � 2m+1 for m 
lose to 0:5n is stillimportant sin
e it allows to 
ombine the nonlinearity 
lose to optimal with very high resilien
y.In this paper the new approa
h is found. This approa
h uses the generalization of the
on
ept of proper matri
es. New 
ombinatorial problems are formulated. The solutions ofthese problems allow to 
onstru
t the generalized proper matri
es with parameters impossiblefor simply proper matri
es. As a result we obtain 
onstru
tions of m-resilient fun
tions of nvariables with maximal nonlinearity for m � 
n(1 + o(1)) where 
 = 0:5789:::, and also wedemonstrate how further advan
e in 
ombinatorial problems follows an additional de
rease ofthe 
onstant 
.
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2 General information and the history of the problemWe 
onsider Fn2 , the spa
e of ve
tors of the length n with 
omponents from F2. A Booleanfun
tion of n variables is a mapping from Fn2 to F2. We shall denote a fun
tion f of n variablesalso in the form f(x) = f(x1; x2; : : : ; xn) implying that variables x1, x2, . . . , xn 
orresponduniquely to 
omponents of Fn2 . Below we denote the ve
tor from Fn2 by a letter without a lowindex whereas a 
omponent of this ve
tor by the same letter with the low index that points tothe ordinal number of this 
omponent in the ve
tor.The weight jxj of the ve
tor x from Fn2 is the number of ones in x. The weight wt(f) of afun
tion f on Fn2 is the number of ve
tors x from Fn2 su
h that f(x) = 1. A fun
tion f is 
alledbalan
ed if wt(f) = wt(f � 1) = 2n�1 (i. e. a fun
tion takes the values 0 and 1 at the samenumbers of ve
tors. A subfun
tion of a Boolean fun
tion f is the fun
tion f 0 obtained by thesubstitution into f some 
onstants 0 or 1 instead of some variables.It is well known that a fun
tion f de�ned on Fn2 has the unique polynomial representationover F2 whi
h degree on ea
h variable does not ex
eed 1, namelyf(x1; : : : ; xn) = M(a1;:::;an)2Fn2 g(a1; : : : ; an)xa11 : : : xannwhere g is also some fun
tion on Fn2 . Su
h polynomial representation of f is 
alled the algebrai
normal form (brie
y, ANF) of the fun
tion f , and ea
h monomial xa11 : : : xann is 
alled the termin ANF of the fun
tion f .The algebrai
 degree of a fun
tion f denoted by deg(f) is de�ned as the number of variablesin the longest term in ANF of the fun
tion f . The algebrai
 degree of a variable xi in fun
tionf denoted by deg(f; xi) is the number of variables in the longest term in ANF of the fun
tionf that 
ontains xi. If deg(f; xi) = 1 then we say that f depends on xi linearly. The term ofthe length 1 is 
alled a linear term. If deg(f) � 1 then f is 
alled the aÆne fun
tion. If f is anaÆne fun
tion and f(0) = 0 then f is 
alled the linear fun
tion.The Hamming distan
e d(x0; x00) between two ve
tors x0 and x00 is the number of 
omponentswhere ve
tors x0 and x00 di�er. For two Boolean fun
tions f1 and f2 on Fn2 the distan
e betweenf1 and f2 is de�ned as d(f1; f2) = jfx 2 Fn2 jf1(x) 6= f2(x)gj. It is easy to see that d(f1; f2) =wt(f1 � f2). For given fun
tion f from Fn2 the minimum of distan
es d(f; l) where l is runningthrough the set of all aÆne fun
tions on Fn2 is 
alled the nonlinearity of f and is denoted bynl(f).Let x = (x1; : : : ; xn) and u = (u1; : : : ; un) be ve
tors of the length n over F2. The innerprodu
t of x and u is de�ned as < x; u >= nXi=1 xiui:We assume that the sum x+u of two ve
tors x and u from Fn2 is their 
omponent-wise additionover F2.The Walsh Transform of a Boolean fun
tion f is the integer-valued fun
tion on Fn2 de�nedas follows: Wf (u) = Xx2Fn2 (�1)f(x)+<u;x>:For ea
h u 2 F n2 the value Wf (u) is 
alled the Walsh 
oeÆ
ient or the spe
tral 
oeÆ
ient. The
olle
tion of Walsh 
oeÆ
ients Wf (u) of the fun
tion f for all ve
tors u 2 Fn2 is 
alled the3



spe
trum of the fun
tion f . The 
olle
tion of all ve
tors u 2 Fn2 su
h that Wf (u) 6= 0 is 
alledthe spe
trum support of the fun
tion f .The set of all Walsh 
oeÆ
ients of a Boolean fun
tion f on Fn2 satis�es the Parseval'sEquality: Xu2Fn2 W 2f (u) = 22n:It is well known that the nonlinearity of a fun
tion f on Fn2 is expressed via its Walsh
oeÆ
ients by formula nl(f) = 2n�1 � 12 maxu2Fn2 jWf (u)j: (1)A Boolean fun
tion f is 
alled plateaued if there exists the positive integer 
 su
h that forany ve
tor u 2 Fn2 we have Wf (u) 2 f0;�2
g.A Boolean fun
tion f de�ned on Fn2 is 
alled 
orrelation-immune of order m, 1 � m � n,if the output of f and any set of m its input variables are statisti
ally independent. This
on
ept was introdu
ed by Siegenthaler [13℄. In an equivalent non-probabilisti
 formulation aBoolean fun
tion f is 
alled 
orrelation-immune of order m if wt(f 0) = wt(f)=2m for any itssubfun
tion f 0 of n�m variables. The balan
ed 
orrelation-immune fun
tion of orderm is 
alledm-resilient. In other words, a Boolean fun
tion f is 
alled m-resilient if wt(f 0) = 2n�m�1 forany its subfun
tion f 0 of n�m variables. From this point of view we 
an formally 
onsider anybalan
ed Boolean fun
tion as 0-resilient and an arbitrary Boolean fun
tion as (�1)-resilient (afun
tion of n variables has not a subfun
tion of n+1 variables, therefore for any its subfun
tionof n+ 1 variables all statements hold). The 
on
ept of an m-resilient fun
tion was introdu
edin [2℄.There is the 
hara
terization of a 
orrelation-immune fun
tion via its Walsh 
oeÆ
ients. Forthe �rst time this 
hara
terization was obtained in [18℄.Lemma 1 [18℄ A fun
tion f on Fn2 is the 
orrelation-immune fun
tion of order m if and onlyif Wf (u) = 0 for all ve
tors u 2 Fn2 su
h that 1 � juj � m.It is easy to see that a fun
tion f is balan
ed if and only if Wf (0) = 0. Therefore the next
orollary holds.Corollary 1 A fun
tion f on Fn2 is m-resilient if and only if Wf (u) = 0 for all ve
tors u 2 Fn2su
h that juj � m.It holds also the next property of Walsh 
oeÆ
ients of 
orrelation-immune fun
tions [11℄.Lemma 2 [11℄ If f is a 
orrelation-immune fun
tion of order m on Fn2 , m � n�1, then for anyu 2 Fn2 the formula Wf (u) � 0 (mod 2m+1) holds. Moreover, if f is m-resilient, m � n� 2,then Wf (u) � 0 (mod 2m+2).In [11, 15, 20℄ it was proved the upper bound for the nonlinearity of 
orrelation-immunefun
tions.Lemma 3 [11, 15, 20℄ Let f be a 
orrelation-immune of order m Boolean fun
tion on Fn2 ,m � n� 1. Then the inequality nl(f) � 2n�1 � 2m (2)4



holds. Moreover, if f is an m-resilient Boolean fun
tion on Fn2 , m � n� 2, then the inequalitynl(f) � 2n�1 � 2m+1 (3)holds.Corollary 2 If in Lemma 3 in formulas (2) or (3) an exa
t equality is a
hieved then thefun
tion f must be plateaued.Proof. The 
orollary follows immediately from the representation (1), Lemma 2 and the de�ni-tion of plateaued fun
tions. utThus, if an equality in bounds (2) or (3) is a
hieved then the fun
tion f is plateaued, itsWalsh 
oeÆ
ients take values only from the set f0;�2m+1g for the bound (2) and f0;�2m+2gfor the bound (3). Conversely, if Walsh 
oeÆ
ients of a fun
tion f on Fn2 take values only fromthe set f0;�2m+ag then nl(f) = 2n�1 � 2m+a�1.Khalyavin proved [22℄ that if in (2) an exa
t equality is a
hieved then either n = 2s+1 + 1,m = 2s, or n = 2s+1 + 2, m = 2s + 1 for some positive integer s. Examples of fun
tions thata
hieve an equality in the bound (2) for n = 5, m = 2 and n = 6, m = 3 are given in [15℄ andfor n = 9, m = 4 and n = 10, m = 5 were 
onstru
ted by Khalyavin in [21, 23℄.The remained part of this paper is devoted to the 
onstru
ting of fun
tions that a
hieve anequality in the bound (3).Note that if in the bound (3) an exa
t equality is a
hieved then n�32 � m � n� 2 sin
e inthe 
ase n�32 > m for m-resilient Boolean fun
tions on Fn2 there is more strong boundnl(f) � 2n�1 � 2n2�1 � 2m+1that was proved in [11℄.Even before obtaining the bound (3) di�erent resear
hers ([1, 12℄ et
.) proposed 
onstru
-tions of m-resilient fun
tions on Fn2 that a
hieve an equality in (3) for n � m = O(log2 n).Tarannikov in 2000 [15℄ 
onstru
ted fun
tions that a
hieve an equality in (3) for 2n�73 � m �n�2. In [9℄ Pasali
, Maitra, Johansson and Sarkar modifying 
onstru
tions from [15℄ expandedthe a
hievability range of the bound (3) till 2n�83 � m � n � 2, n � 7. In [16℄ Tarannikov bymeans of proper matri
es 
onstru
ted fun
tions that a
hieve an equality in (3) for 0:6n � 1 �m � n� 2. In 2001 Fedorova and Tarannikov [3℄ 
onstru
ted fun
tions that a
hieve an equalityin (3) for m � 0:5902:::n(1+ o(1)) but proved simultaneously that by means of proper matri
esit is impossible to de
rease the 
onstant 0:5902::: = 1log2(p5+1) . During the next more than10 years it was not any progress in the problem on the 
onstru
ting of fun
tions a
hieving anequality in (3) ex
ept the 
onstru
ting in 2006{2007 in works [6, 7, 10℄ by means of advan
edalgorithms of a 
omputer sear
h some examples of fun
tions that a
hieve an equality in (3) forn = 9, m = 3. In the next se
tions we generalize the 
on
ept of a proper matrix, de
rease the
onstant 0:5902::: and show how it is possible to obtain further improvements by means of aprogress in 
ombinatorial problems formulated by us.
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3 Lemmas on spe
traLemma 4 Let X = (x1; : : : ; xn), Y = (y1; : : : ; yk) be ve
tors of variables, � = (�1; : : : ; �k),u = (u1; : : : ; un), v = (v1; : : : ; vk). Suppose that the representationg(X;Y ) = M�2Fk2  kYi=1(yi � �i)! f�(X)takes pla
e. Then Wg(uv) = X�2Fk2(�1)<�;v>Wf�+(1;:::;1)(u):Proof. We have Wg(uv) = XX�2Fn+k2 (�1)g(X�)+<X�;uv> =X�2Fk2(�1)<�;v> XX2Fn2 (�1)g(X�)+<X;u> = X�2Fk2(�1)<�;v>Wf�+(1;:::;1)(u): utLemma 5 Let f(x1; : : : ; xn) be a Boolean fun
tion on Fn2 , and let g(x1; : : : ; xn; xn+1) = f(x1,: : : ; xn)� xn+1, u = (u1; : : : ; un). Thena) Wg(u0) = 0, Wg(u1) = 2Wf (u);b) if f is m-resilient then g is (m+ 1)-resilient.Proof. a) Denote X = (x1; : : : ; xn). We haveWg(uun+1) = XXxn+12Fn+12 (�1)g(Xxn+1)+<Xxn+1;uun+1> =XX2Fn2 (�1)g(X0)+<X;u> + (�1)un+1 XX2Fn2 (�1)g(X1)+<X;u> =Wf (u)� (�1)un+1Wf (u):It follows the statement of a).b) Ea
h ve
tor from the spe
trum support of the fun
tion f has by Corollary 1 the weightgreater than m and, as we see from the proof of the item a), ea
h ve
tor from the spe
trumsupport of the fun
tion g has one in the (n + 1)th 
omponent. From here by Corollary 1 thefun
tion g is (m+ 1)-resilient. utCorollary 3 If a fun
tion (x1; : : : ; xn) a
hieves an equality in the bound (3) then the fun
tiong(x1; : : : ; xn; xn+1) = f(x1; : : : ; xn)� xn+1 also a
hieves an equality in the bound (3).Corollary 4 All ve
tors from the spe
trum support of the fun
tion g(x1; : : : ; xn; xn+1) = f(x1,: : : ; xn)� xn+1 have 1 in the (n+ 1)th 
omponent.In [15℄ in was introdu
ed the 
on
ept of a pair of quasilinear variables. We say that afun
tion g depends on a pair of variables (xi; xj) quasilinearly if at any two ve
tors that di�er inthe ith and the jth 
omponents and identi
al in all remained 
omponents the fun
tion g takesdi�erent values. It is easy to see that if a fun
tion g on Fn+12 depends on the pair of variables6



(xn; xn+1) quasilinearly then it is possible to represent g in the form g(x1; : : : ; xn�1; xn; xn+1) =f(x1; : : : ; xn�1; xn � xn+1)� xn+1 where f(x1; : : : ; xn) = g(x1; : : : ; xn; 0).Note that if some fun
tion f has at least one pair of quasilinear variables then this fun
tionis balan
ed sin
e it is possible to 
ombine all ve
tors of Fn2 into pairs (ve
tors in a pair di�eronly in two 
omponents 
orresponding to these variables) su
h that the fun
tion f takes thevalue 1 at exa
tly one ve
tor from a pair of ve
tors.Lemma 6 Let f(x1; : : : ; xn) be a Boolean fun
tion on Fn2 , and let g(x1; : : : ; xn�1; xn, xn+1) =f(x1; : : : ; xn�1; xn � xn+1)� xn+1, u = (u1; : : : ; un�1). ThenWg(uunun+1) = 0 if un = un+1, and Wg(uunun+1) = 2Wf (uun) if un 6= un+1.Proof. Denote X = (x1; : : : ; xn). We haveWg(uunun+1) = XXxn+12Fn+12 (�1)g(Xxn+1)+<Xxn+1;uunun+1> = XX2Fn2 (�1)g(X0)+<X;uun>+(�1)un+1 XX2Fn2 (�1)g(X1)+<X;uun> =Wf (uun)� (�1)un�un+1Wf (uun):It proves the lemma. utCorollary 5 All ve
tors from the spe
trum support of the fun
tion g(x1; : : : ; xn�1; xn, xn+1) =f(x1; : : : ; xn�1; xn�xn)�xn+1 have in the pair of 
omponents (n; n+1) either the 
ombination01 or the 
ombination 10.Corollary 6 If a fun
tion f(x1; : : : ; xn) a
hieves an equality in the bound (3) and f is m-resilient whereas the fun
tion g(x1; : : : ; xn, xn+1) = f(x1; : : : ; xn�1; xn�xn+1)�xn+1 is (m+1)-resilient then the fun
tion g also a
hieves an equality in the bound (3).Note that the transformation of some variable into a pair of quasilinear variables, in general,does not guarantee the growth of the resilien
y of a fun
tion. Nevertheless, below we show thatin Constru
tion 2 the transformation of some just added variable into a pair of quasilinearvariables leads to the growth of the resilien
y.4 Re
ursive 
onstru
tion and proper matri
esConstru
tion 1. Let X = (x1; : : : ; xn+t), Y = (y1; : : : ; yk) be ve
tors of Boolean variables.Let ff�(X)g�2Fk2 be the set of 2k fun
tions possessing the next properties:1) ea
h f�(X) is an (m+ t)-resilient Boolean fun
tion on Fn+t2 ;2) ea
h f�(X) a
hieves the bound (3);3) for any two fun
tions f�0(X) and f�00(X), �0 6= �00, the spe
trum supports of the fun
tionsf�0(X) and f�00(X) are disjoint.Lemma 7 In de�nitions of Constru
tion 1 the fun
tiong(X;Y ) = M�2Fk2  kYi=1(yi � �i)! f�(X)is an (m+ t)-resilient Boolean fun
tion on Fn+t+k2 that a
hieves the bound (3).7



Proof. By Corollary 2 any of fun
tions f�(X) is plateaued and all nonzero Walsh 
oef�
ientsof ea
h of these fun
tions have the absolute value 2m+t+2. From the property of the spe
trumsupports of fun
tions f�(X) to be mutually disjoint by Lemma 4 it follows that all nonzeroWalsh 
oeÆ
ients of the fun
tion g also have the absolute value 2m+t+2. The fa
t that allf�(X) are (m + t)-resilient follows that g is also (m + t)-resilient. Therefore g really a
hievesthe bound (3). utConstru
tion 2. Let X = (x1; : : : ; xn+t), Y = (y1; : : : ; yk), Z = (z1; : : : ; zk) be ve
tors ofBoolean variables. Let 
 = (
1; : : : ; 
k) 2 Fk2 be a �xed binary ve
tor, j
j = s. Let ff�(X)g�2Fk2be the set of 2k fun
tions possessing the same properties as in Constru
tion 1:1) ea
h f�(X) is an (m+ t)-resilient Boolean fun
tion on Fn+t2 ;2) ea
h f�(X) a
hieves the bound (3);3) for any two fun
tions f�0(X) and f�00(X), �0 6= �00, the spe
trum supports of the fun
tionsf�0(X) and f�00(X) are disjoint.Lemma 8 In notation of Constru
tion 2 the fun
tiong
(X;Y;Z
) = M�2Fk2  kYi=1(yi � 
izi � �i)! f�(X) kMi=1 
iziis an (m + t + s)-resilient Boolean fun
tion on Fn+t+k+s2 that a
hieves the bound (3) and hass noninterse
ting pairs of quasilinear variables. We assume that if 
i = 0 then the variable zidoes not belong to the set Z
 of variables of the fun
tion g
.Proof. If s = 0 then the statement of lemma was already proved in Lemma 7 for the fun
tiong0 whi
h is plateaued by Corollary 2. If s > 0 then we shall su

essive repla
e in g0 for alli su
h that 
i = 1 variables yi to pairs of quasilinear variables (yi; zi). At every step of su
hrepla
ement by Lemma 6 the absolute value of all nonzero Walsh 
oeÆ
ients of a new fun
tionwill be 2 times greater than in a previous fun
tion. Therefore at every step we will obtaina plateaued fun
tion again. After all s steps we shall �nd that all Walsh 
oeÆ
ients of thefun
tion g
 belong to the set f0;�2m+t+s+2g. Show that the fun
tion g
 is (m+ t+ s)-resilient.Consider an arbitrary ve
tor � from the spe
trum support of the fun
tion g
. In left (n + t)
omponents the ve
tor � by Lemma 4 has more than m+ t ones sin
e ea
h of fun
tions f�(X)is (m + t)-resilient. In ea
h pair of 
omponents 
orresponding to the pairs of variables (yi; zi)for 
i = 1 the ve
tor � has one 1 by Corollary 5. Therefore the weight of the ve
tor � is greaterthan m+ t+s. It follows that the fun
tion g
 is (m+ t+s)-resilient and a

ording to argumentsgiven above it a
hieves the bound (3). The lemma is proved. utHaving an m-resilient fun
tion f on Fn2 that a
hieves the bound (3) we 
an obtain fromf an (m + t)-resilient fun
tion on Fn+t2 that a
hieves the bound (3) adding to f new t0 linearvariables and transforming s variables, t0+s = t, into pairs of quasilinear variables. The requirednonlinearity is guaranteed by Lemmas 5 and 6 whereas the required growth of the resilien
y 
anbe a
hieved a

ording to Lemma 8 if we repla
e just added variables yi by pairs of quasilinearvariables.However, for the appli
ation of Constru
tion 2 it is ne
essary to guarantee that the spe
trumsupports of any two di�erent fun
tions f� are disjoint. In [16℄ for this aim it were introdu
ed(k0; k; p; t)-proper matri
es. We shall not repeat now the de�nition of these matri
es but giveits generalization and after this explain the di�eren
es between old and new de�nitions.8



5 Disjointed rows and generalization of proper matri
esConsider the set V of rows of the length p whi
h 
omponents are symbols 1=2, 1 or �, moreover,all symbols 1=2 are joined in pairs inside of ea
h row (thus, the total number of symbols 1=2 inea
h row is even). We asso
iate every row � from V with the states of last p variables v1; : : : ; vkof some Boolean fun
tion f�(u1; : : : ; un�p; v1; : : : ; vp), namely, if �i = 1 then the 
orrespondingvariable vi of the fun
tion f� is linear; if �i = �j = 1=2 and the 
omponents i and j in therow � are joined in a pair then the variables (vi; vj) form the pair of quasilinear variables of thefun
tion f�.Two rows � and � from the set V are 
alled disjointed if the spe
trum supports of any
orrespondingly asso
iated fun
tions f� and f� are guaranteed to be disjoint.Example 1. Let �i = �j = 1, �i = �j = 1=2 and the 
omponents i and j in the row �are joined in a pair. Then the spe
trum supports of any asso
iated fun
tions f� and f� areguaranteed to be disjoint. Indeed, ea
h ve
tor from the spe
trum support of f� by Corollary4 has ones in 
omponents 
orresponding to the variables vi and vj whereas every ve
tor fromthe spe
trum support of f� by Corollary 5 has one in some of 
omponents 
orresponding to thevariables vi and vj and zero in another 
omponent. In fa
t, at this property it was based theusing of Constru
tion 2 in [16℄ (at other language | without the Walsh 
oeÆ
ients) but it wasrestri
ted by this example. Below we show that disjointed rows 
an have more general form.Lemma 9 Let � and � be two rows from V of the length p. Let I be a set of indexes, I �f1; : : : ; pg. Suppose that the rows � and � do not 
ontain symbols � in 
omponents from I,inside of the row � ea
h symbol 1=2 in a 
omponent from I is joined in a pair with some symbol1=2 also in a 
omponent from I, the same is true for the row �. Besides, suppose that the rows� and � 
ontain di�erent number of pairs of symbols 1=2 in 
omponents from I. Then the rows� and � are disjointed.Proof. Suppose that the row � 
ontains exa
tly a pairs of symbols 1=2 in 
omponents from Iand 
onsequently exa
tly jIj � 2a ones in 
omponents from I. Then by Corollaries 4 and 5 anyve
tor from the spe
trum support of the fun
tion f� in 
omponents from I 
ontains exa
tlyjIj � a ones. If in the row � there are exa
tly b pairs of symbols 1=2 in 
omponents from I,a 6= b, then jIj � a 6= jIj � b, so the spe
trum supports of the fun
tions f� and f� are disjointthat proves the lemma. utCorollary 7 Let � and � be two rows of the length p from V , moreover, there exist the 
ompo-nents i1; : : : ; i2d su
h that �i1 = �i2d = 1, �ij = 1=2, j = 2; : : : ; 2d� 1; �ij = 1=2, j = 1; : : : ; 2d.Besides, join in pairs 
omponents (i2j ; i2j+1), j = 1; : : : ; d � 1, in the row � and 
omponents(i2j�1; i2j), j = 1; : : : ; d, in the row �. Then the rows � and � are disjointed.Lemma 10 Let � and � be two rows from V of the length p = n+ k. Let I be a set of indexes,I � f1; : : : ; pg, jIj = n. Denote by �I and �I the restri
tions of � and � on I, 
orrespondingly.Suppose that inside of the row � ea
h symbol 1=2 in a 
omponent from I is joined in a pair withsome symbol 1=2 also in a 
omponent from I, the same is true for the row �. Besides, supposethat the subrows �I and �I are disjointed. Then the rows � and � are disjointed too.Proof. By de�nition of disjointed rows for given u 2 Fn2 we have either Wf�(I)(u) = 0 forany fun
tion f�(I) asso
iated with �(I) or Wf�(I)(u) = 0 for any fun
tion f�(I) asso
iated with9



�(I). By Lemma 4 it follows either Wf�(uv) = 0 for any v 2 Fk2 and any fun
tion f� on Fn+k2asso
iated with � or Wf�(uv) = 0 for any v 2 Fk2 and any fun
tion f� on Fn+k2 asso
iated with�. utThe 
on
ept of disjointed rows is helpful for the 
onstru
ting of sets of fun
tions withnoninterse
ting spe
trum supports required in Constru
tion 2. Introdu
e the 
on
ept of ageneralized proper matrix.A matrix A of size 2k � p is 
alled the generalized (k0; k; p; t)-proper matrix if in ea
h of its
ells the symbol from the set f1=2; 1; �g is re
orded, moreover, inside of ea
h row all symbols1=2 are joined in noninterse
ting pairs, and also the next 
onditions hold:1) ea
h row of the matrix A 
ontains at most k0 pairs of symbols 1=2;2) the sum of all number symbols in ea
h row is equal to t (stars are not 
ounted);3) any two di�erent rows of the matrix A are disjointed.The di�eren
e of generalized proper matri
es from simply proper matri
es introdu
ed in[16℄ is as follows. At �rst, in [16℄ all 
olumns were in
exibly joined in pairs and two 
olumnsof every pair were identi
al (in notation of [16℄ they were joined in one 
olumn with doubledvalues of symbols) whereas symbols 1=2 were automati
ally joined in pairs inside of pairs of
olumns. At se
ond, in [16℄ de fa
to only su
h pairs of rows are 
onsidered as disjointed forwhi
h the 
on�guration of Example 1 took pla
e. At third, in [16℄ the 
ondition 2) was relaxed| it was required that 
orresponding sums did not ex
eed t; but this unimportant relaxationled to additional awkwardness in further text.The next lemma is a reformulation for generalized proper matri
es of the statement from[16℄.Lemma 11 Let A be a generalized (k0; k; p; t)-proper matrix. Let n and m be positive integers,p � n+ t. Suppose that for any integer i su
h that(a) 0 � i � k0;(b) the matrix A 
ontains some row � with exa
tly i pairs of symbols 1=2the next 
ondition holds: there exists the (m + i)-resilient fun
tion on Fn+i2 that has i nonin-terse
ting pairs of quasilinear variables and a
hieves the bound (3). Then for ea
h integer s,0 � s � k, it is possible to 
onstru
t an (m + t + s)-resilient fun
tion on Fn+t+k+s2 that has snoninterse
ting pairs of quasilinear variables and a
hieves the bound (3).Proof. Suppose that the row � of the matrix A 
ontains exa
tly i pairs of symbols 1=2. Take the
orresponding to this row the fun
tion f the existen
e of whi
h is guaranteed by the 
ondition ofthis lemma. Add to f new t� i linear variables. Permute variables in the resulting the (m+ t)-resilient fun
tion on Fn+t2 by the su
h way that the last p variables arrive in 
orresponden
ewith the form of the row �: to 
omponents where 1 is in � we shift linear variables whereasto 
omponents 
orresponding to a pair of symbols 1=2 we shift a pair of quasilinear variables.It is easy to see that after a permutation of variables the nonlinearity and the resilien
y ofa fun
tion are not 
hanged. Make it for ea
h row of the matrix A. As a result we obtain afamily of fun
tions satis�ed to the 
ondition of Constru
tion 2 that by Lemma 8 guarantees the
onstru
ting of required new fun
tions. The lemma is proved. utExample 2. Suppose that p is even, �p=22 � � 2k. Then there exists the generalized (2; k; p; p�2)-proper matrix. Indeed, join in
exibly in pairs the 
omponents (2i�1; 2i), i = 1; : : : ; p=2. Weshall re
ord only rows with exa
tly two pairs of symbols 1=2 (inside of in
exibly joined pairs)and ones in all remained 
omponents. There exist �p=22 � rows of su
h form. It is easy to see10



that any two di�erent rows of su
h form are disjointed. By assumption we have �p=22 � � 2k, sowe 
an re
ord 2k di�erent rows of a desired form that is suÆ
ient for the 
onstru
ting of thegeneralized (2; k; p; p � 2)-proper matrix.The fun
tion f(x1; x2; x3; x4) = (x1�x2)(x3�x4)�x2�x4 has two noninterse
ting pairs ofquasilinear variables and f is 1-resilient a
hieving an equality in the bound (3). The 
onditionp � n+t = 4+(p�2) holds too. Therefore using in Lemma 11 for the fun
tion f just 
onstru
tedgeneralized (2; k; p; p � 2)-proper matrix for any �xed k for some p provided �p=22 � � 2k weobtain (m0 + s)-resilient fun
tions on Fn0+s2 that a
hieve the bound (3) for any number s ofnoninterse
ting pairs of quasilinear variables from 0 till k for some n0 and m0.Theorem 1 If there exists the generalized (k; k; p; t)-proper matrix then it is possible to 
on-stru
t the sequen
e of m-resilient fun
tions on Fn2 that a
hieve the bound (3) for n ! 1,mn ! tt+k .Proof. In Example 2 it were 
onstru
ted (m0 + s)-resilient fun
tions on Fn0+s2 that a
hieve thebound (3) with any number s of noninterse
ting pairs of quasilinear variables from 0 till k forsome n0 and m0. Applying now r times Constru
tion 2 we obtain an (m0 + s + rt)-resilientfun
tion on Fn0+s+r(t+k)2 that a
hieves the bound (3). Obviously, for r!1 we have mn ! tt+kthat was required. utNote that the 
onstru
tion of Example 2 is not e�e
tive and it was given here only to providea simpli
ity of the proof of Theorem 1. From a pra
ti
al points of view it is more pro�table tomake not one big transfer from k0 to k but many small ones. Examples of su
h sequen
es oftransfers are given in [3℄. Note also that in Example 2 de fa
to it were used proper matri
esin their old de�nition sin
e 
olumns were in
exibly joined in pairs and the property of anytwo rows to be disjointed was guaranteed by only two 
olumns of some in
exible pair. Theappropriateness of introdu
ing of the de�nition of generalized proper matri
es will be shown inthe next se
tion.6 New 
onstru
tionsWe say that a matrix M is disjoint if in ea
h of its 
ells the symbol from the set f1=2; 1; �gis re
orded, moreover, inside of ea
h row all symbols 1=2 are joined in pairs, and also any tworows of M are disjointed. Thus, disjoint matri
es di�er from generalized proper matri
es by thefa
t that for disjoint matri
es there are no in
exible restri
tions on the number of rows and onthe values of sums of number symbols in rows. If the sum of number values in ea
h row of adisjoint matrix is exa
tly t then su
h matrix is 
alled t-disjoint.Constru
tion 3. Suppose that a disjoint matrix M has h rows and the sum of numbersymbols in the ith row of M is equal to ti, i = 1; : : : ; h. Denote tmax = max1�i�h ti. We shall
onstru
t the sequen
e of t-disjoint matri
es A(t), t = 0; 1; : : : Denote by s(t) the number ofrows in the matrix A(t). De�ne initial t-disjoint matri
es A(t), t = 0; 1; : : : ; tmax�1, arbitrary(for example, 
ertainly it is possible to take the row of t ones as an initial matrix A(t) althoughfrom the pra
ti
al reasons it is desirable that the matrix A(t) 
ontains as many rows as possible).De�ne for t � tmax the matrix A(t) re
ursively by the next way. For the row � of the matrix Mwith the index i, i = 1; : : : ; h, re
ord into A(t) rows that are a result of the 
on
atenation of �with ea
h of rows of the matrix A(t� ti). Sin
e, in general, the rows of the resulting matrix A(t)11




an be of di�erent length, for the alignment re
ord stars to absents 
omponents on the rightside of rows. From this 
onstru
tion and Lemma 10 it is easy to see that A(t) is a t-disjointmatrix and there is the re
urren
e equations(t) = hXi=1 s(t� ti)with the 
orresponding 
hara
teristi
 polynomialxtmax � hXi=1 xtmax�ti : (4)The largest root of the 
hara
teristi
 polynomial (4) is real and positive ex
ept some degen-erate 
ases. The 
lassi�
ation of degenerate and non-degenerate 
ases is 
onne
ted 
losely with
onditions of the Perron{Frobenius theorem for nonnegative matri
es [8℄. In non-degenerate
ases if Xmax is the largest root of the 
hara
teristi
 polynomial (4) then the asymptoti
s ofthe value s(t) has the form s(t) = CXtmax(1 + o(1)) where the 
onstant C is de�ned by initial
onditions. If in the matrix A(t) to remove rows up to the nearest power of two leaving 2krows where k = blog2 s(t)
 = t log2Xmax(1 + o(1)) then it is easy to see that the resultingmatrix will be the generalized (t; k; p; t)-proper matrix where p is the number of 
olumns inthe matrix A(t). However, if we are interested in the generalized (k0; k; p; t)-proper matrix fork = t log2Xmax(1 + o(1)) then we must remove in the matrix A(t) all rows with the number ofpairs of symbols 1=2 greater than k0 and to prove that the number of su
h rows is asymptoti
allysmall in 
omparison with s(t).Note that in [3℄ in the 
apa
ity of a matrix M in fa
t it was used the matrix 1 1(1=2)2 (1=2)1 !that gave the re
urren
e equation s(t) = s(t � 2) + s(t � 1) and the 
hara
teristi
 polynomialx2� x� 1 with the largest root Xmax = p5+12 = 1:6180::: This gave the possibility to 
onstru
ta (k0; k; p; t)-proper matrix for k0 < k, k = log2Xmax(1 + o(1)), and, thus, to a
hieve the ratiott+k = 11+log2Xmax (1 + o(1)) = 0:5902:::(1 + o(1)).It is possible to develop this 
onstru
tion by the next way. We shall use our new terminologybut for now a
tually not going beyond old proper matri
es.Constru
tion 4. Suppose n is even. Join in pairs the 
olumns (2i � 1; 2i), i = 1; : : : ; n=2,and re
ord into the matrix Mn one 
opy of all su
h rows a = (a1; : : : ; an) of symbols 1=2 and 1that a2i�1 = a2i, i = 1; : : : ; n=2. As a result we obtain the matrix with 2n=2 rows. For example,for n = 4 we have Mn = 0BBB� 1 1 1 1(1=2)2 (1=2)1 1 11 1 (1=2)4 (1=2)3(1=2)2 (1=2)1 (1=2)4 (1=2)3 1CCCA :It is easy to see that the matrix Mn 
onstru
ted by this way 
ontains exa
tly �n=2j � rows withj pairs of symbols 1=2, the sum of number values equal to n� j, and Mn is disjoint. Therefore12



the re
ursive 
onstru
tion for A(t) that uses the matrix Mn 
orresponds to the 
hara
teristi
polynomialxn � n=2Xj=0�n=2j � xn2�j = �x2�n=2 � (x+ 1)n=2 = (x2 � x� 1)0�n2�1Xj=0 x2(n2�1�j)(x+ 1)j1A : (5)The largest root of the 
hara
teristi
 polynomial (5) is real and positive, it 
an be showneasily from the Perron{Frobenius theorem. All real roots of the polynomial in the right-mostbra
ket in (5) are negative, therefore the largest root of the 
hara
teristi
 polynomial (5) is thesame as of x2 � x� 1. However, we 
an try to improve the 
onstru
tion of the matrix Mn.Constru
tion 5. From Lemma 9 it is possible to see that if at least for one pair n and kwhere n is even and 0 � k � n=2 we 
onstru
t a set V of mutually disjointed rows of the lengthn with symbols from the set f1; 1=2g (without stars) in any of whi
h all symbols 1=2 are joinedin pairs, the number of su
h pairs is exa
tly k and the number of rows in V is greater than�n=2k � then repla
ing in Mn all rows that 
ontain exa
tly k pairs of symbols 1=2 by all rowsfrom V we obtain the matrix M for whi
h in the 
hara
teristi
 polynomial (5) the absolutevalue of the 
oeÆ
ient of xn2�k will in
rease whereas other 
oeÆ
ients will not be 
hanged. Itis obvious that su
h transformation 
an not 
onvert a non degenerate 
ase into a degenerateone (in respe
t to 
onditions of the Perron{Frobenius theorem). Therefore the largest (real andpositive) root Xmax will in
rease, so the asymptoti
 order of magnitude of s(t) will in
rease too.The sear
h of the set of mutually disjointed rows it is possible to realize at the languageof the graph theory. To ea
h of � n2k � (2k � 1)!! possible rows we 
orresponds the vertex of agraph, two verti
es of a graph are 
onne
ted by an edge if and only if 
orresponding rows aredisjointed. The problem of the sear
h of maximal (large) set of mutually disjointed rows it ispossible to solve by the way of the sear
h of maximal (large) 
lique in a 
orresponding graph.It is not hard to prove that for k = 0; 1; 2; n2 �1; n2 it is impossible to 
onstru
t more than �n=2k �mutually disjointed rows. For n = 10, k = 3 it was made a 
omputer sear
h by the hill-
limbingmethod with a random 
hoi
e of some �rst rows. At a gradient step of the algorithm it was
hosen the vertex of a graph (the row) 
onne
ted with the greatest number of verti
es that werestill in 
onsideration (i. e. not yet 
hosen nor reje
ted), all non-
onne
ted with it verti
es in
onsideration were reje
ted after this. As a result of the work of this algorithm it was foundthe set of 15 rows given below:
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V =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�

(1=2)2 (1=2)1 (1=2)4 (1=2)3 (1=2)6 (1=2)5 1 1 1 1(1=2)2 (1=2)1 1 (1=2)6 1 (1=2)4 1 (1=2)9 (1=2)8 1(1=2)2 (1=2)1 1 1 1 1 (1=2)9 (1=2)10 (1=2)7 (1=2)8(1=2)3 (1=2)5 (1=2)1 1 (1=2)2 1 (1=2)8 (1=2)7 1 1(1=2)4 1 1 (1=2)1 (1=2)7 (1=2)9 (1=2)5 1 (1=2)6 1(1=2)5 (1=2)3 (1=2)2 1 (1=2)1 1 1 1 (1=2)10 (1=2)9(1=2)6 1 (1=2)10 (1=2)8 1 (1=2)1 1 (1=2)4 1 (1=2)3(1=2)7 (1=2)10 1 1 (1=2)6 (1=2)5 (1=2)1 1 1 (1=2)2(1=2)10 (1=2)7 (1=2)4 (1=2)3 1 1 (1=2)2 1 1 (1=2)11 (1=2)8 (1=2)7 (1=2)9 1 1 (1=2)3 (1=2)2 (1=2)4 11 (1=2)9 1 1 (1=2)10 (1=2)8 1 (1=2)6 (1=2)2 (1=2)51 1 (1=2)5 (1=2)9 (1=2)3 1 (1=2)10 1 (1=2)4 (1=2)71 1 (1=2)5 1 (1=2)3 (1=2)8 (1=2)10 (1=2)6 1 (1=2)71 1 (1=2)8 (1=2)6 (1=2)9 (1=2)4 1 (1=2)3 (1=2)5 11 1 1 (1=2)7 1 (1=2)10 (1=2)4 (1=2)9 (1=2)8 (1=2)6

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
:

At the next table in the interse
tion of the ith row and the jth 
olumn it is indi
atedthe indexes of 
omponents that provide the property of the ith and the jth rows of V to bedisjointed.N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 X 8 9 3 4 7 8 2 1 4 3 9 10 2 1 6 5 3 4 5 6 5 6 3 4 1 2 1 2 1 2 1 22 X 4 6 4 6 5 7 4 6 3 10 8 9 8 9 3 7 4 6 1 2 1 2 1 2 1 23 X 3 1 2 5 8 10 5 1 2 3 7 9 5 6 3 4 3 7 9 4 1 2 9 7 1 2 1 2 1 2 1 24 X 6 9 7 8 2 5 3 1 7 8 5 2 7 8 4 9 1 3 4 9 1 3 5 2 4 6 1 35 X 2 3 5 7 2 10 6 9 2 8 1 4 1 4 9 6 1 4 3 8 1 4 7 56 X 4 8 7 1 5 6 7 2 3 4 1 5 6 8 1 5 3 2 6 8 4 6 1 57 X 4 8 4 8 1 6 2 9 1 6 1 6 8 4 5 9 7 4 8 98 X 5 6 5 6 1 7 4 9 3 5 6 8 1 7 8 99 X 1 10 3 4 5 3 4 9 6 8 1 10 8 910 X 3 7 2 8 4 9 2 8 3 7 6 1011 X 6 8 2 9 3 8 6 4 4 712 X 4 9 7 10 3 513 X 7 10 3 514 X 3 8 9 515 XConstru
tion 6. Repla
ing in M10 the submatrix 
onsisted of 10 rows that 
ontain exa
tly 3pairs of symbols 1=2 by the set of rows of V we obtain the matrixM 0. UsingM 0 in Constru
tion14



3 for the number of rows s(t) of the matrix A(t) we obtain the re
urren
e equations(t) = s(t� 5) + 5s(t� 6) + 15s(t� 7) + 10s(t� 8) + 5s(t� 9) + s(t� 10)with the 
hara
teristi
 polynomialx10 � x5 � 5x4 � 15x3 � 10x2 � 5x� 1the largest root of whi
h is equal to Xmax = 1:6556::: Then the ratio tt+k for the generalizedproper matri
es 
onstru
ted by means of A(t) tends to 11+log2Xmax = 0:5789:::It is remained to prove that the number of rows with the number of pairs of symbols 1=2asymptoti
ally greater than t log2Xmax = 0:7274::: is small in 
omparison with s(t). In [3℄ inthe 
orresponding proof for the re
urren
e equation s(t) = s(t � 1) + s(t � 2) it was used asimpli
ity of this equation, as a result its solution was written in almost expli
it form that forthe 
hara
teristi
 polynomial of 10th degree seems to be problemati
. We shall not developnow any general theory and for the simpli
ity of a presentation we give the proof only forConstru
tion 6 with the using of the matrix M 0.The re
ursive 
onstru
tion that uses the matrix M 0 works beginning with t = 10. In the
apa
ity of initial matri
es A(t), t = 0; 1; : : : ; 9, it is possible to take arbitrary t-disjoint matri
es;it is essentially that initial matri
es must not be empty; the 
hoi
e of these matri
es a�e
ts theasymptoti
s but not the order of the growth of magnitude of s(t) sin
e the asymptoti
 of thevalue s(t) is equal to CXtmax, and initial matri
es a�e
ts only 
onstant C. Of 
ourse, from apra
ti
al point of view it is better to take matri
es A(t), t = 0; 1; : : : ; 9, with maximal possiblenumber of rows.By 
onstru
tion, the set of rows of the matrix A(t) is the 
olle
tion of all possible 
on
atena-tions of admissible parts of the length 10 
orresponding to the steps of the re
ursive 
onstru
tionthat are 
ompleted by a suÆx whi
h is a row of some initial matrix. Having a row of the matrixA(t) it is possible to �nd its suÆx uniquely, namely, separating step by step from the left sideof a row parts of the length 10 we 
he
k the sum of number symbols in 
urrent pre�x, and thenthis sum be
omes no smaller than t� 9 we de
lare that all remained right part of the row is itssuÆx.From the form of M 0 it follows that the set of all admissible parts of the length 10 
onsistsof 1 part with 0 pairs of symbols 1=2 and the sum of symbols equal to 10; 5 parts with 1 pair ofsymbols 1=2 and the sum of symbols equal to 9; 10 parts with 2 pairs of symbols 1=2 and thesum of symbols equal to 8; 15 parts with 3 pairs of symbols 1=2 and the sum of symbols equalto 7; 5 parts with 4 pairs of symbols 1=2 and the sum of symbols equal to 6; 1 part with 5 pairsof symbols 1=2 and the sum of symbols equal to 5.Denote by lj(t) the number of rows of the matrix A(t) that 
ontain exa
tly j pairs of symbols1=2.Lemma 12 Let " > 0. For the matrix A(t) from Constru
tion 3 
onstru
ted by means of thematrix M 0 from Constru
tion 6 for j � (2=3+ ")t(1+o(1)) beginning with some t the inequalitylj�2(t+ 2)lj(t) > 15holds. 15



Proof. For an arbitrary row � of the matrix A(t) denote by ni(�), i = 0; 1; 2; 3; 4; 5, the numberof parts of the length 10 in the row � (not 
ounting its suÆx) that 
ontain exa
tly i pairs ofsymbols 1=2. Let j0(�) be the number of pairs of symbols 1=2 in the suÆx of � and let t0(�)be the sum of number symbols in the suÆx of �. For the ratio of the number j(�) of pairs ofsymbols 1=2 to the sum t(�) of number symbols in the row � we havej(�)t(�) = 5n5(�) + 4n4(�) + 3n3(�) + 2n2(�) + n1(�) + j0(�)5n5(�) + 6n4(�) + 7n3(�) + 8n2(�) + 9n1(�) + 10n0(�) + t0(�) : (6)We are interested by only su
h rows � from the set A�(t) "bad" rows of A(t) for whi
h beginningwith some t the inequality j(�)t(�) > 23 +"0, 0 < "0 < ", holds. Therefore by (6) we 
an assume thatmin�2A�(t) n5(�)!1 for t!1 and beginning with some t for ea
h row � of A�(t) the inequalityn5(�) > n3(�) + 1 holds.Denote by S(t; j; n5) the set of rows of the matrix A(t) that 
ontain exa
tly j pair of symbols1=2 and exa
tly n5 parts of the length 10 that 
onsists of 5 pairs of symbols 1=2. For given j andsuÆ
iently large t for all values of n5 for whi
h the set S(t; j; n5) is not empty, repla
e in ea
hrow � from S(t; j; n5) one of parts of the length 10 with 5 pairs of symbols 1=2 by admissiblepart of the length 10 with 3 pairs of symbols 1=2. It is possible to do it by 15n5 ways. Weobtain a row of the matrix A(t+ 2) that 
ontains exa
tly j � 2 pairs of symbols 1=2 and 
ouldbe obtained by su
h way from n3(�) + 1 < n5 rows of S(t; j; n5). Thus, the set S(t; j; n5) isasso
iated with the set of rows S(t + 2; j � 2; n5 � 1) the 
ardinality of whi
h ex
eed the �rstone in more than 15 times. Running through all values of n5 we prove the statement of thelemma. utLemma 13 In the matrix A(t) from Constru
tion 3 
onstru
ted by means of the matrix M 0from Constru
tion 6 the number of rows with the number of pairs of symbols 1=2 no less thank0 = b0:70t
 is asymptoti
ally small in 
omparison with the number of all rows in A(t).Proof. Estimate the ratio of the number of rows indi
ated in the statement of this lemma tothe number of all rows in A(t). Choose d so that d ! 1 for t ! 1 but b0:70t
�2dt+2d > 2=3 + ".Using Lemma 12 beginning with some t we havetPj=k0 lj(t)s(t) < t�2dPj=k0�2d lj(t+ 2d)15ds(t) < s(t+ 2d)15ds(t) �  X2max15 !d (1 + o(1))! 0:The lemma is proved. utThus, we showed that the number of rows with the number of pairs of symbols 1=2 asymp-toti
ally greater than t log2Xmax = 0:7274::: is really small in 
omparison with s(t). Thus,Lemma 13 and Theorem 1 prove the next theorem.Theorem 2 Constru
tion 6 with the using of the matrix M 0 allows to 
onstru
t the sequen
eof m-resilient fun
tions on Fn2 that a
hieve the bound (3) for whi
hm = 11 + log2Xmaxn(1 + o(1)) = 0:5789:::n(1 + o(1))where Xmax = 1:6556::: is the largest root of the 
hara
teristi
 polynomial x10 � x5 � 5x4 �15x3 � 10x2 � 5x� 1. 16



Corollary 8 Let � be a real 
onstant, 0:5789::: � � � 1. Then there exists the sequen
e ofm-resilient fun
tions on Fn2 that a
hieve the bound (3) for whi
h mn ! �.The Corollary 8 is arised easily from the fa
t that taking the fun
tions of the sequen
efrom the formulation of Theorem 2 and adding t new linear variables to them we in
rease theorder of resilien
y and the number of variables at t whereas an equality in the bound (3) willbe remain valid. Su
h fun
tions with linear variables have 
ryptographi
 weaknesses, thereforefrom pra
ti
al 
onsiderations it is more reasonable to apply a bit more 
ompli
ated 
onstru
tionsusing the results and methods of this or 
ited papers.7 Issues on implementation 
omplexityIn this se
tion we dis
uss brie
y the implementation 
omplexity of fun
tions from 
onstru
tionsproposed by us above. There exists the prejudi
e that an appli
ation in 
iphers fun
tions oflarge number of variables is unpro�table in pra
ti
e due to high 
omputational 
omplexity.However, in some 
ases in
luding our ones fun
tions of large number of variables 
ould havesmall 
omputational 
omplexity.Show how to 
al
ulate e�e
tively the value of our fun
tion by a bran
hing program. Lookat the fun
tions g(X;Y ) and g(X;Y;Z) in Constru
tions 1 and 2. At every step of a 
ipherperforman
e it is ne
essary to 
al
ulate the values of the fun
tion at some 
on
rete ve
tor (X;Y )or (X;Y;Z). Knowing subve
tors Y and Z we redu
e the 
al
ulation of the value of the fun
tiong(X;Y ) (or g(X;Y;Z)) to the 
al
ulation of only one its subfun
tion f�(X) where the index �
an be found immediately and uniquely from Y and Z. For the 
al
ulation of the value f�(X)we look, at �rst, how variables in the ve
tor X were rearranged for the produ
ing f�(X) fromthe fun
tion 
onstru
ted at the previous step of the re
ursion. In the proof of Lemma 11 wedes
ribed the pro
ess of a permutation of variables in a

ordan
e to the form of a 
orrespondingrow in a generalized proper matrix but not spe
i�ed this pro
ess sin
e for the proof of lemmait was not important. In the aims of e�e
tive implementation this pro
ess should be stri
tlyde�ned. It is possible to permute variables only to attribute the required state (linearity orquasilinearity) to last p variables of the fun
tion although it 
ould be appeared that in the aimsof the resistan
e of a 
ipher (obfus
ation) it 
ould be helpful more global permutation. In any
ase, after the inverse permutation of variables we obtain the fun
tion f 0(X) 
onstru
ted atthe previous step of the re
ursion and apply to it the pro
edures already des
ribed above. Itis easy to see that if to �x a generalized (k; k; p; t)-proper matrix and to apply it su

essivelyin Constru
tion 2 a growing number of times restri
ting permutations of variables at ea
h stepby at most last 2p variables then the 
omputation 
omplexity for the value of the 
onstru
tedfun
tion by a bran
hing program will be linear.The author is grateful to Prof. Oleg A. Loga
hev and Mikhail S. Lobanov for helpfuldis
ussions and the anonymous referee for valuable remarks.Referen
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