
Oblivious Radix Sort: An Efficient Sorting Algorithm
for Practical Secure Multi-party Computation

Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi

NTT Secure Platform Laboratories, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585 Japan
{hamada.koki,ikarashi.dai,chida.koji,takahashi.katsumi}@lab.ntt.co.jp

Abstract. We propose a simple and efficient sorting algorithm for secure multi-
party computation (MPC). The algorithm is designed to be efficient when the
number of parties and the size of the underlying field are small. For a constant
number of parties and a field with a constant size, the algorithm has O(n log n)
communication complexity, which is asymptotically the same as the best previous
algorithm but achieves O(1) round complexity, where n is the number of items.
The algorithm is constructed with the help of a new technique called “shuffle-
and-reveal.” This technique can be seen as an analogue of the frequently used
technique of “add random number and reveal.” The feasibility of our algorithm
is demonstrated by an implementation on an MPC scheme based on Shamir’s
secret-sharing scheme with three parties and corruption tolerance of 1. Our im-
plementation sorts 1 million 32-bit word secret-shared values in 197 seconds.

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of participants (parties) to
compute a function privately. That is, when a function is represented as (y1, . . . , ym) =
f (x1, . . . , xm), each party with its private input xi obtains only the output yi and nothing
else. Although any function can be securely computed using a circuit representation
of the function [3, 14], it is not easy to design efficient MPC protocols for complex
algorithms. Therefore, efficient MPC protocols for specific important operations, such
as computing bit-decomposition and comparison [9] and modulo reduction [23], have
been proposed as building blocks.

Sorting is one of the most important primitives in various systems, and many sort-
ing algorithms have been studied. The importance of sorting is also true in the context
of MPC protocols. MPC sorting protocols are often required in various database op-
erations, and they have many applications such as in cooperative intrusion detection
systems [19], oblivious RAM [10], or private set intersection [18]. Therefore, a number
of MPC sorting protocols have also been studied.

Some efficient sorting algorithms used for MPC are known as sorting networks.
Ajtai et al. proposed an asymptotically optimal sorting network known as the AKS
sorting network, which exhibits a complexity of O(n log n) comparisons, where n is the
number of input elements [1]. However, this algorithm is not practical since its constant
factor is very large. By contrast, Batcher’s merge sort [2] is more efficient unless n is
quite large [20]. This algorithm exhibits a complexity of O(n log2 n) comparisons with
a smaller constant factor.

Recently, data-oblivious sorting algorithms have been studied with the aim of using
them in MPC schemes. We say that an algorithm is data-oblivious if the control flow
of the algorithm is independent of the input. Similar to sorting networks, data-oblivious
sorts are also efficiently applied to MPC protocols. Goodrich proposed a data-oblivious
sort called randomized shellsort [15]. Although randomized shellsort returns a wrong
output with low probability, it exhibits a complexity of O(n) rounds and O(n log n) com-
parisons. Zhang proposed some data-oblivious sorting algorithms [30]. Zhang’s bead
sort and counting sort cleverly compute the sorted list of items without comparisons.
They convert the input key values into an aggregated form and then reconstruct the keys
in a sorted form. These algorithms require O(Rn) comparisons, where R represents the
range of input values. However, these algorithms can handle only keys. That is, all the
values to be sorted must be treated as keys. Zhang also proposed an algorithm with
O(n2) comparisons, which can also handle key indexed data. Hamada et al. proposed
a method for converting sorting algorithms into corresponding sorting protocols [17].
Their quicksort protocol exhibits O(log n) rounds and O(n log n) comparisons on av-
erage. However, O(log n) communication overhead is required to resolve the case in
which the input values include duplications.

Methods for strengthening MPC sorting protocols have also been studied. Jónsson
et al. studied a general method to hide the number of input values for sorting proto-
cols [19]. Goodrich and Mitzenmacher proposed a method to extend internal-memory
sorting algorithms to external-memory sort [16].

In addition, a few experimental results have been reported. Wang et al. [29] im-
plemented sorting algorithms on an MPC system called Fairplay [22]. The running
times of Batcher’s merge sort [2] and randomized shellsort [15] for 256 input values
are approximately 3, 000 and 6, 200 seconds, respectively. Jónsson et al. [19] imple-
mented Batcher’s merge sort [2] and other sorting protocols on an MPC system known
as Sharemind [4]. Their implementation is optimized by using a technique called vec-
torization, and the vectorized Batcher’s merge sort sorts 16, 384 secret-shared values
in 197 seconds. Hamada et al. [17] implemented their quicksort protocol on (2, 3)-
Shamir’s secret-sharing scheme with a corruption tolerance of 1 [27]. It sorts 1 million
32-bit word secret-shared values in 1, 227 seconds. Thus, the sorting operation in MPC
schemes is still expensive, and improving efficiency is an important issue to address.

1.1 Our Contributions

We propose an oblivious sorting algorithm called oblivious radix sort for secret-sharing-
based MPC schemes. Our algorithm exhibits a complexity of O(M`) rounds and O(
`2 log `m2n + `2m3n +M`m2n log n) communications, where n is the number of input
values, m is the number of parties, ` is the bit-length of the underlying field, andM =
2m/
√

m. The 2nd and 3rd columns of Table 1 present a comparison between some
widely used oblivious sorting algorithms and our algorithm.

Our algorithm is designed to be efficient, especially when m and ` are limited. Such
a case seems to be common if we think about the practical use. In practice, almost all
computers use fixed-sized values, such as 32-bit or 64-bit word integers, and the number
of parties is very limited, for example, an auction with three parties by Bogetoft et al.
[5] and network monitoring with three parties by Burkhart et al. [6]. The right two

Table 1. Complexities of sorting algorithms. Here, n, m, and ` represent number of input values,
number of parties, and bit-length of underlying field, respectively.M = 2m/

√
m.

Sorting scheme Complexities Complexities when
m and ` are constant

Round Comm. Round Comm.
AKS sorting network [1] O(log n) O(`2m2n log n) O(log n) O(n log n)
Batcher’s merge sort [2] O(log2 n) O(`2m2n log2 n) O(log2 n) O(n log2 n)
Randomized shellsort [15] O(n) O(`2m2n log n) O(n) O(n log n)
Oblivious keyword sort [30] O(1) O(`2m2n2) O(1) O(n2)

Quicksort (average case) [17] O(M + log n) O
(
`m2n log2 n + `2m2n log n
+M(mn log n + `m2n)

)
O(log n) O(n log2 n)

Proposed algorithm O(M`) O
(
`2 log `m2n + `2m3n
+M`m2n log n

)
O(1) O(n log n)

columns of Table 1 present a comparison of complexities under the assumption that m
and ` are constants. Our algorithm has O(n log n) communication complexity, which
is asymptotically the same as the best previous algorithm, but achieves O(1) round
complexity.

To construct the proposed algorithm, we also propose a technique for MPC, which
we call the “shuffle-and-reveal” technique. This technique is based on the property that
if the set of items included in the encrypted vector is already known, only its order is
newly leaked when the vector is revealed. Namely, if the vector has already been ran-
domly permuted, no additional information is leaked. This can be seen as an analogue
of the frequently used technique of “add random number and reveal.”

The proposed algorithm is efficient not only from a theoretical aspect but also in
practice. The feasibility of our sorting algorithm is demonstrated by means of an im-
plementation on an MPC scheme based on (2, 3)-Shamir’s secret-sharing scheme with
corruption tolerance t = 1. We also implemented other sorting algorithms [2, 15, 30,
17] for comparison. As a result, the proposed algorithm sorts 1 million 32-bit word
secret-shared values in 197 seconds. We present an intuitive graph in Fig.1 and describe
detailed experimental results in Section 5.

2 Overview of Proposed Method

In this section, we give an overview of our sorting algorithm. We only describe the
input, output, and some simple comments of our algorithm. Then, we show an example
of the execution.

Our algorithms are designed to be used as building blocks in the paradigm of com-
puting on shared values, which is one of the most common paradigms for MPC proto-
cols [7]. In this paradigm, secret values are preliminarily shared with a secret-sharing
scheme to all parties that participate in the MPC protocols. Then the MPC protocols
take secret-shared values as inputs from each party and output the result in secret-shared
form.

First, we introduce some necessary notations. For a secret value a, we use [[a]]Pi to
denote the share for the party Pi where the secret value is a. We use [[a]] to denote the

 0.1

 1

 10

 100

 1000

 10000

101 102 103 104 105 106

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

Number of items sorted

Batcher’s merge sort [2]
Randomized shell sort [15]
Oblivious keyword sort [30]

Quicksort [17]
Proposed algorithm

Fig. 1. Running time of five compared sorting implementations. Number of elements on x-axis
and y-axis are on log-scale.

list of shares for all parties [[a]]P1 , . . . , [[a]]Pm , where m denotes the number of parties.
All protocols are executed by m partiesU = {P1, . . . ,Pm}. For a matrix A, we use [[A]]Pi

to denote a matrix of shares of elements in A for the party Pi.
Roughly speaking, our sorting algorithm provides the following function:

Definition 1 (Sorting protocol (informal)). The sorting protocol receives shares of
keys and data from each party as inputs. Then it sorts the data according to the keys,
and outputs renewed shares of data to each party.

More precisely, the sorting protocol accepts shares of keys [[k1]]Pi , . . . , [[km]]Pi and
shares of data [[a1]]Pi , . . . , [[am]]Pi to be sorted from Pi ∈ U, and outputs new shares
of data [[b1]]Pi , . . . , [[bm]]Pi sorted according to the keys to Pi ∈ U. The shares satisfy
k′i ≤ k′i+1, k′j = kπ(i), and b j = aπ(i) for a permutation π : {1, . . . ,m} → {1, . . . ,m}.
Note that one cannot check the correspondence between [[b j]]Pk and [[aπ(i)]]Pk , where
b j = aπ(i), since [[b j]]Pk is renewed.

Now, we show an example of the execution. For simplicity, we consider the case
where the input data and sort keys are given as a matrix of n rows and a column vector
of size n, respectively. Our objective is to reorder the matrix column-wise according to
the given sort keys in non-descending order. For example, we are given a matrix D and
a vector k as below, and an output matrix D′ to be computed is as below.

k =


3
6
10
5
3

 , D =


3 5
6 6
10 5
5 5
3 1

 , D
′ =


3 5
3 1
5 5
6 6
10 5

 .

We show an example of executing our sorting protocol when the underlying secret-
sharing scheme is (2, 3)-Shamir’s secret-sharing scheme [27] with corruption tolerance
1, and each value is an element over a field Z11 = {0, 1, . . . , 10}. That is, [[s]]P j = r j + s
mod 11 (1 ≤ j ≤ 3) holds for a random value r ∈ Z11. The protocols are executed
among parties P1, P2, and P3. We demonstrate how the secret-shared values are sorted
using our protocol. Let us consider the following situation. If secret values D and keys
k are as the above example, and random values for the matrix and keys are chosen as

R =


2 0
4 2
10 1
5 3
8 9

 , r =


1
2
6
10
8

 ,
then P1, P2, and P3 are given

[[D]]P1 =


5 5
10 8
9 6
10 8
0 10

 , [[D]]P2 =


7 5
3 10
8 7
4 0
8 8

 , [[D]]P3 =


9 5
7 1
7 8
9 3
5 6

 ,
and

[[k]]P1 =


4
8
5
4
0

 , [[k]]P2 =


5
10
0
3
8

 , [[k]]P3 =


6
1
6
2
5

 ,
respectively. Next P1, P2, and P3 execute our sorting protocol with the above shared
values as inputs. After that, P1, P2, and P3 receive

[[D′]]P1 =


6 7
9 1
7 4
0 9
0 9

 , [[D′]]P2 =


9 9
4 1
9 3
5 1
1 2

 , [[D′]]P3 =


1 0
10 1
0 2
10 4
2 6

 ,
respectively if random values R′ are chosen as

R′ =


3 2
6 0
2 10
5 3
1 4

 .
With our sorting protocol, secret values are correctly sorted as D′ in the above ex-
ample, where the π(i)-th row of D is equal to the i-th row of D′ for a permutation

π =

(
1 2 3 4 5
1 5 4 2 3

)
. Note that all the output shared values are renewed, and no party knows

the permutation π.

Table 2. Notations for shared vectors and matrices used in this paper.

Notation Description

[[b]]Pi = ([[b[1]]]Pi , . . . , [[b[n]]]Pi)
T vector of shares (for a party Pi)

[[b]] = {[[b]]P1 , . . . , [[b]]Pm } shared vector

[[B]]Pi =


[[B[1, 1]]]Pi · · · [[B[1, d]]]Pi

...
. . .

...

[[B[n, 1]]]Pi · · · [[B[n, d]]]Pi

 matrix of shares (for a party Pi)

[[B]] = {[[B]]P1 , . . . , [[B]]Pm } shared matrix

3 Preliminaries

3.1 Assumptions and Notations

We focus on secret-sharing-based MPC. For simplicity, we assume that m partiesP1, . . . ,
Pm are connected by secure channels. We also assume that the secret-sharing scheme is
constructed over a finite field ZP = {0, 1, . . . , P−1}. Namely, input and output values for
the MPC protocols belong to the field ZP. We use [[s]]Pi to denote a share for Pi where
a secret value is s ∈ ZP. Let Q be a coalition of parties and [[s]]Q denote a set of shares
{[[s]]Pi : Pi ∈ Q}. When U represents all parties, we simply denote [[s]]U as [[s]] and call
it a shared value. We sometimes use shared values over some fields other than ZP. We
use superscripts with parentheses to explicitly distinguish the field. For example, [[s]](Q)

refers to a shared value over a finite field ZQ = {0, 1, . . . ,Q − 1}.
We also use some notations on vectors and matrices. Bold-face, lower-case letters

refer to vectors; bold-face, capital letters refer to matrices; and square brackets refer to
vector or matrix elements. For example, b[i] refers to the i-th element of vector b, and
B[i, j] refers to the element in row i and column j of matrix B. We also use similar
notations for a matrix of shares, or a vector of shared values as indicated in Table 2.

3.2 Security Model

We consider unconditional, perfect security against a semi-honest adversary with static
corruption of at most t. We say that a protocol is secure if there is a simulator that
simulates the view of corrupted parties from the inputs and outputs of the protocol. We
use I = {Pi1 ,Pi2 , . . . ,Pit } ⊂ U to denote the parties that are corrupted.

We give the formal definition of the security against a semi-honest adversary with
static corruption. Let x = (x1, . . . , xn), xI = (xi1 , . . . , xit), fi(x) be the i-th output of f (x),
and fI(x) = (fi1 (x), . . . , fit (x)). We denote the view of Pi during the protocol execution
of ρ on inputs x as viewρPi

(x) = (xi, ri; µ1, . . . , µ`) where ri is Pi’s random tape, and µ j is
the j-th message that Pi received in the protocol execution. We also denote the output
of Pi as outputρPi

(x).
We are now ready to define the security notion in the presence of semi-honest ad-

versaries.

Definition 2 ([13]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
ρ be a protocol, viewρI (x) = (viewρPi1

(x), . . . , viewρPit
(x)), and

outputρ(x) = (outputρP1
(x), . . . , outputρPn

(x)).

We say that ρ t-privately computes f if there exists S such that for all I ⊂ U of cardi-
nality of at most t and all x , it holds that{(S(I, xI, fI(x)), f (x)

)} ≡ {(
view

ρ
I (x), outputρ(x)

)}
.

It is well known that a protocol satisfying the above security notions can be securely
composed with other protocols in a semi-honest setting. To explain this composition
property, we introduce the security notion for a protocol that computes a function with
the help of an oracle.

Definition 3 ([13]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary functionality,
g : ({0, 1}∗)m → ({0, 1}∗)m be a probabilistic m-ary functionality, and ρ be a protocol.
We say that ρ t-privately reduces g to f if ρ privately computes g with an oracle access
of the functionality of f .

We introduce an informal description of the composition theorem. Suppose that a
protocol Πg privately reduces g to f and a protocol Π f privately computes f . Then the
protocol Πg| f , which is the same as Πg except that all oracle calls are substituted with
the executions of Π f , privately computes g. This implies that we can treat a constitutive
protocol as a black box to prove the security of a high-level protocol.

3.3 Complexity Metrics in MPC

We use two metrics, round complexity and communication complexity, to evaluate the
overall running time of protocols. The round complexity of a protocol is the number of
rounds of parallel invocations of the communication. The communication complexity
of a protocol is the total amount of data communicated between parties.

3.4 Secret-Sharing Scheme

A secret-sharing schemeΠSS is a pair of algorithms, dealing and revealing. The dealing
algorithm takes a secret value s as input and outputs a uniformly random shared value
[[s]]. We say a shared value [[s]] is uniformly random if it is uniformly randomly chosen
from the set of possible shared values whose secret value is s. The revealing algorithm
takes a subset of shares [[s]] and outputs s. We assume that the complexities of dealing
and revealing protocols are as summarized in Table 3. We can easily construct protocols
with such complexities. For dealing, for example, a party that has the value to be shared
computes the shares for all parties by applying the dealing algorithm and then sends the
shares to each party. For revealing, for example, every party receives the shares from all
other parties and, reconstructs the secret value by applying the revealing algorithm.

Table 3. Round and communication complexities of existing protocols implemented on Shamir’s
secret-sharing scheme. Input and output shared values of bit-field-conversion protocol are over
ZP and ZQ, and number of input shared values of shuffling protocol is n, and M = 2m/

√
m. `P

and `Q represent bit-lengths of fields ZP for input and ZQ for output, respectively.

Protocol Round complexity Communication complexity
Dealing O(1) O(`m)
Revealing O(1) O(`m2)
Addition - -
Multiplication O(1) O(`m2)
Bit-decomposition [9] O(1) O(`2 log `m2)
Bit-field-conversion [11] O(1) O((`P + `Q)m3)
Shuffling [21] O(M) O(M(mn log n + `m2n))

3.5 Arithmetic on Secret-Shared Values

We also assume that the secret-sharing scheme provides secure addition and multi-
plication protocols on shared values. That is, we are given two shared values [[a]]
and [[b]]; we compute shared values [[a + b mod P]] and [[ab mod P]]. When we
write [[a]] + [[b]] = [[a + b mod P]] and [[a]] × [[b]] = [[ab mod P]], it means that
the parties perform these operations. We also use

∑
, for example

∑3
i=1[[ai]], to denote

[[a1]] + [[a2]] + [[a3]].
In typical secret-sharing schemes such as Shamir’s secret-sharing scheme, the addi-

tion is conducted by only local computations [3], and multiplication is conducted with
O(1) rounds and O(`m2) communications [12]. The complexities are summarized in
Table 3. We use these complexities for evaluating the complexities of our algorithms.

3.6 Existing Protocols

We introduce some existing MPC protocols used as building blocks of our algorithm.
The complexities for the protocols that we will use are summarized in Table 3.

Note that our protocols are designed to be used as building blocks in complex MPC
protocols. That is, our protocols receive a sequence of secret-shared values as input and
the output values are also in secret-shared form.

Bit-decomposition protocol The bit-decomposition protocol [9, 24] converts a shared
value into shared bits of input values. More precisely, the bit-decomposition protocol
accepts [[a]]Pi from eachPi ∈ U as input and outputs ([[a`]]Pi , . . . , [[a1]]Pi) to eachPi ∈ U
such that a j ∈ {0, 1} and a =

∑
j a j2 j−1. We denote this protocol as

([[a`]], . . . , [[a1]])← Bit-Decomposition([[a]]).

We formally define the bit-decomposition protocol with the following function f BD.

Definition 4 (Bit-decomposition function). On inputting [[a]]Pi from each Pi ∈ U,
it reveals a with the revealing algorithm of ΠSS, computes the bits a`, . . . , a1 of a,
and generates [[a`]], . . . , [[a1]] with the dealing algorithm of ΠSS. Finally, it outputs
([[a`]]Pi , . . . , [[a1]]Pi) to each Pi ∈ U.

The bit-decomposition protocol proposed by Damgård et al. [9] exhibits the complexity
of O(1) rounds and O(` log `) invocations of multiplication protocols where ` is the
bit-length of the field.

Shuffling protocol The shuffling protocol receives some shared values and outputs
renewed shared values where their secret values are uniformly randomly permuted.
More precisely, the shuffling protocol accepts [[a1]]Pi , . . . , [[am]]Pi from each Pi ∈ U and
outputs [[b1]]Pi , . . . , [[bm]]Pi to each Pi ∈ U such that b j = aπ(j) for a uniformly random
permutation π : {1, . . . , n} → {1, . . . , n} and every j ∈ {1, . . . , n}. A run of this protocol
is denoted as [[b1]], . . . , [[bm]]← Shuffle([[a1]], . . . , [[am]]).

[[b1]], . . . , [[bm]]← Shuffle([[a1]], . . . , [[am]]).

We formally define the shuffling protocol with the following function f Shuffle.

Definition 5 (Shuffling function). On inputting ([[a1]]Pi , . . . , [[an]]Pi) from each Pi ∈
U, it reveals a1, . . . , an with the revealing algorithm of ΠSS, selects a permutation
π : {1, . . . , n} → {1, . . . , n} uniformly at random, sets bi = aπ(i) for i ∈ {1, . . . , n},
and generates [[b1]], . . . , [[bn]] with the dealing algorithm of ΠSS. Finally, it outputs
([[b1]]Pi , . . . , [[bn]]Pi) to each Pi ∈ U.

Laur et al. proposed efficient shuffling protocols [21]. One of their protocols exhibits
the complexity of O(2m/

√
m) rounds and O(2mm3/2n log n) communications. When the

number of parties is constant, it exhibits O(1) rounds and O(n log n) communications.
We use this protocol as the shuffling protocol. We sometimes write ([[a′]][1], [[b′]][1]), . . . ,
([[a′]][n], [[b′]][n]) ← Shuffle(([[a]][1], [[b]][1]), . . . , ([[a]][n], [[b]][n])) as [[a′]], [[b′]] ←
Shuffle([[a]], [[b]]).

Bit-field-conversion protocol The bit-field-conversion protocol receives a shared bit
over one field and outputs a shared bit over another field. More precisely, the bit-field-
conversion protocol accepts a share [[b]](P)

Pi
over a finite field ZP from each Pi ∈ U and

outputs a share [[b]](Q)
Pi

over another field ZQ to each Pi ∈ U. A run of this protocol is
denoted as

[[b]](Q) ← Bit-Field-Conversion([[b]](P)).

We formally define the bit-field-conversion protocol with the following function f BFC.

Definition 6 (Bit-field-conversion function). On inputting [[b]](P)
Pi

from each Pi ∈ U,
it reveals b with the revealing algorithm of ΠSS over ZP and generates [[b]](Q) with the
dealing algorithm of ΠSS over ZQ. Finally, it outputs [[b]](Q)

Pi
to each Pi ∈ U.

Dodis et al. proposed an efficient bit-field-conversion protocol [11]. Their protocol ex-
hibits the complexity of O(1) rounds and O(m3(`P + `Q)) communications. We use this
protocol as the bit-field-conversion protocol.

Revealing protocol The revealing protocol accepts [[a]]Pi from each Pi ∈ U and out-
puts a to each Pi ∈ U. This protocol just serves as the revealing algorithm in a multi-
party setting. A run of this protocol is denoted as

a← Reveal([[a]]).

We formally define the revealing protocol with the following function f Reveal.

Definition 7 (Revealing function). On inputting [[a]]Pi from each Pi ∈ U, it reveals a
with the revealing algorithm of ΠSS and outputs a to each Pi ∈ U.

The revealing protocol can be easily constructed in a semi-honest model by distributing
all shares among all parties. Even in a malicious model it can be constructed by using
the secret-sharing scheme against cheaters [26, 25].

3.7 Radix Sort

Our algorithm is based on the sorting algorithm radix sort [8]. Radix sort is a kind of
sorting algorithm that sorts fixed-length integers by repeatedly applying a stable sort
algorithm for smaller integers. We say a sorting algorithm is stable if it maintains the
relative order of items with equal keys. Radix sort uses the following property of stable
sorts. If the values are stably sorted according to the lower i digits, we can stably sort
the values according to the lower i + 1 digits by just applying stable sort according to
the (i + 1)th digit. Namely, radix sort sorts the values by iteratively applying digitwise
stable sort from the least significant digit to the most significant digit.

4 Proposed Algorithm

In this section, we propose an efficient oblivious sorting algorithm, which we call obliv-
ious radix sort. We first propose a stable sorting algorithm called binary key sort, which
is applicable only when the input keys are binary. Then we efficiently extend the bi-
nary key sort to the case in which the input keys are not limited to being binary by
constructing a secure variant of the pointer technique for MPC.

4.1 Binary Key Sort

We begin by introducing two building-block algorithms: destination computation and
reveal sort. Then we use them to construct the binary key sort.

Destination computation The destination computation algorithm receives a shared
vector and outputs another shared vector. The i-th element of the output vector rep-
resents the destination position for the i-th element of the input vector after the input
vector is stably sorted.

To be more precise, the input shared vector is given in a special form, which we call
a matrix representation. We say an n× d matrix B is a matrix representation of a vector
k if the condition

Bi, j =

{
1 if k[i] = j − 1,
0 otherwise

Algorithm 1 Destination computation
Notation: [[c]]← Dest-Comp([[B]])
Data: An n × d shared matrix [[B]], where B is a matrix representation of k ∈ {0, . . . , d − 1}n.
Result: A shared vector [[c]], where c[i] represents the position of k[i] after k is stably sorted.
1: Compute the prefix sum of [[B]] in column-major order, and let the resultant shared matrix be

[[S]]. That is, [[S[i, j]]] :=
∑

(i′ , j′)s.t.(j′< j)∨(j′= j∧i′≤i)[[B[i′, j′]]] for (i, j) ∈ {1, . . . , n} × {1, . . . , d}.
2: [[T[i, j]]] := [[S[i, j]]]× [[B[i, j]]] for (i, j) ∈ {1, . . . , n} × {1, . . . , d}. B O(d`m2n) com, O(1) rnd
3: [[c[i]]] :=

∑d
j=1[[T[i, j]]] for i ∈ {1, . . . , n}.

4: return [[c]].

holds for (i, j) ∈ {1, . . . , n} × {1, . . . , d}, where k ∈ {0, . . . , d − 1}n. We give an example
of a vector k and its matrix representation B for illustration:

k =


2
0
0
1

 , B =

0 0 1
1 0 0
1 0 0
0 1 0

 .
Now, we formally define the destination computation algorithm with the following
function f DC:

Definition 8 (Destination computation). On inputting [[B]]Pi from each Pi ∈ U, it
reveals B with the revealing algorithm of ΠSS, computes k s.t. k[i] =

∑d
j=1 B[i, j] ×

(j − 1), stably sorts (k[1], 1), . . . , (k[n], n) to (k′[1], π(1)), . . . , (k′[n], π(n)) such that
k′[i] ≤ k′[i + 1] for i ∈ {1, . . . , n − 1}, computes c s.t. c[i] = π−1(i), and generates [[c]]
with the dealing algorithm of ΠSS. Finally, it outputs [[c]]Pi to each Pi ∈ U.

The algorithm is shown as Algorithm 1. We first compute every prefix sum of the
input matrix in column-major order. Starting from the top-left element, we sum up the
values along the first column then continue to the following columns. The computed
prefix sums are output as a matrix S. Then, we multiply S[i, j] and B[i, j], and obtain
another matrix T. Finally, we sum up the elements of T for each row and obtain the
final destination positions c. For matrix B described above, S, T, and c are computed
as follows:

S =


0 2 4
1 2 4
2 2 4
2 3 4

 ,T =

0 0 4
1 0 0
2 0 0
0 3 0

 , c =

4
1
2
3

 .
We can efficiently construct the matrix representation when the elements of k are

binary since the negation of k and k correspond to the first and second columns of k’s
matrix representation. For example, if k = (1, 0, 0, 1)T, we join its negation (0, 1, 1, 0)T

and the original vector and obtain the matrix representation of k as
(
1 0 0 1
0 1 1 0

)T

. This

conversion requires no communication since the negation for a binary value b ∈ {0, 1}
is computed by 1 − b.

Algorithm 2 Reveal sort
Notation: k′, [[D′]]← Reveal-Sort([[k]](Q), [[D]])
Data: A shared vector [[k]](Q) of size n and an n × e shared matrix [[D]], where n ∈ ZQ.
Result: A shared matrix [[D′]], where D′ is a sorted matrix of D according to k. The components

of k are revealed.
1: [[k′′]](Q), [[D′′]]← Shuffle([[k]](Q), [[D]]). B O(Me`m2n +Mm2n log n) com, O(M) rnd
2: k′′[i]← Reveal([[k′′[i]]](Q)) for i ∈ {1, . . . , n}. B O(m2n log n) com, O(1) rnd
3: Sort k′′ and [[D′′]] according to k′′, and output as k′ and [[D′]], respectively.

Correctness The destination position for the i-th element is determined by the number
of elements smaller than the i-th element and the number of elements that are equal to
the i-th element and that appear no later than the i-th element. By the property of the
matrix representation, the former is equal to the number of 1’s in the left k[i] columns,
and the latter is equal to the number of 1’s in the upper i rows in the (k[i]+1)th column.
Therefore, S[i, k[i] + 1] is equal to the destination position for the i-th element. Since
B[i, j] = 1 if and only if j = k[i] + 1, we have c[i] = S[i, k[i] + 1].

Security Since Algorithm 1 consists of only addition and multiplication protocols, we
have the following theorem.

Theorem 1. Algorithm 1 privately computes f DC.

Complexity Since the addition requires no communication, we only take into account
the multiplications. The complexities for each step are described in Algorithm 1 as
“B x com, y rnd,” where x and y represent the communication and round complexities,
respectively. Since dn multiplications are conducted in the algorithm and these multipli-
cations can be conducted in parallel, this protocol exhibits O(d`m2n) communications
in O(1) rounds.

Reveal sort We introduce a special efficient sorting algorithm that we call reveal sort.
The reveal sort is a sorting algorithm when the keys, which are components of inputs,
are publicly known. We can use this algorithm to sort the data associated with positions
calculated by the destination computation, since we know that the positions are permu-
tations of (1, . . . , n). We formally define the reveal sort algorithm with the following
function f RS:

Definition 9 (Reveal sort). On inputting ([[k]](Q)
Pi
, [[D]]Pi) from each Pi ∈ U, it re-

veals k and D with the revealing algorithm of ΠSS, sorts (k[1], D[1, 1], . . . , D[1, e])
, . . . , (k[n], D[n, 1], . . . , D[n, e]) to (k′[1], D′[1, 1], . . . , D′[1, e]), . . . , (k′[n], D′[n, 1],
. . . , D′[n, e]) such that k′[i] ≤ k′[i + 1] for i ∈ {1, . . . , n − 1}, and generates [[D′]] with
the dealing algorithm of ΠSS. Finally, it outputs (k′, [[D′]]Pi) to each Pi ∈ U.

The idea is to use the property that the components of input keys are publicly known. In
such a case, we can see the keys since we have already known the set of keys; however,
we should not learn how the keys are ordered in the input vector. To hide the order
of the keys, we propose a technique called “shuffle-and-reveal.” As the name implies,

the technique is just shuffling the values and then revealing them. We can efficiently
construct reveal sort by using the “shuffle-and-reveal” technique: we first shuffle the
keys and associated data then sort the data according to the revealed keys. The details
of the algorithm are shown as Algorithm 2.

Correctness Since [[k]](Q) and [[D]] are shuffled together and [[D′′]] is sorted according
to k′′, D′ is a sorted matrix of D according to k.

Security Since Algorithm 2 consists of secure subprotocols, the only possibility of
information leakage would be the vector k′′ revealed by Reveal([[k′′]](Q)). [[k′′]](Q) is
shuffled before Reveal([[k′′]](Q)) is conducted, and only the components of k, which are
part of the outputs, are revealed. Thus, Algorithm 2 leaks no additional information.

Theorem 2. Algorithm 2 privately reduces f RS to f Shuffle and f Reveal.

Proof. The view of adversaries consists of their inputs [[k]](Q)
I and [[D]]I, random tapes,

[[k′′]](Q)
I , k′′, and [[D′′]]I. The output consists of k′ and [[D′]]I. Note that the adversaries

have no view of the subprotocols Shuffle(·) and Reveal(·), since the execution of these
protocols are substituted with the oracle invocation of functionalities f Shuffle and f Reveal,
respectively.

We construct the simulator S as follows. Inputs and outputs are the same as those
of adversaries, and S selects random tapes uniformly at random. As for k′′ and [[D′′]]I,
S reorders (k′, [[D′]]I) column-wise according to uniformly randomly chosen permuta-
tion and sets the reordered values as the simulated values for (k′′, [[D′′]]I). This perfectly
simulates (k′′, [[D′′]]I) since (k′, [[D′]]I) is the column-wise permutation of (k′′, [[D′′]]I),
(k′′, [[D′′]]I) is the output of Shuffle(·), and (k′, [[D′]]I) is independent of how (k′′, [[D′′]]I)
is ordered. As for [[k′′]](Q)

I , S generates uniformly random numbers, and sets them as
the simulated values for [[k′′]](Q)

I . Since [[k′′]](Q)
I is the output share of Shuffle(·), and

Shuffle(·) outputs uniformly random shares, the above simulation is perfect.
Thus, S perfectly simulates the view of adversaries. ut

Complexity Communication and round complexities for each step are denoted as com-
ments in Algorithm 2. Therefore, the complexities of reveal sort are O(M) rounds and
O(Me`m2n +Mm2n log n) communications.

Binary key sort By combining the two aforementioned algorithms, we derive the bi-
nary key sort, which sorts data according to associated binary keys. We formally define
the binary key sort algorithm with the following function f Binary:

Definition 10 (Binary key sort). On inputting ([[b]]Pi , [[D]]Pi) from each Pi ∈ U, it re-
veals b and D with the revealing algorithm ofΠSS, stably sorts (b[1], D[1, 1], . . . , D[1, e])
, . . . , (b[n], D[n, 1], . . . , D[n, e]) to (b′[1], D′[1, 1], . . . , D′[1, e]), . . . , (b′[n], D′[n, 1], . . .
, D′[n, e]) such that b′[i] ≤ b′[i + 1] for i ∈ {1, . . . , n − 1}, and generates [[D′]] with the
dealing algorithm of ΠSS. Finally, it outputs [[D′]]Pi to each Pi ∈ U.

Algorithm 3 Binary key sort
Data: A shared vector [[b]] of size n and an n × e shared matrix [[D]], where b = {0, 1}n.
Result: A shared matrix [[D′]], where D′ is a stably sorted matrix D according to b.
1: Parties agree on a field ZQ s.t. n ∈ ZQ and the bit-length of ZQ is Θ(log n).

B Θ(m log n) com, O(1) rnd
2: [[b[i]]](Q) ← Bit-Field-Conversion([[b[i]]]) for i ∈ {1, . . . , n}.

B O(`m3n + m3n log n) com, O(1) rnd
3: Locally construct a matrix representation [[B]](Q) of [[b]](Q).
4: Compute the destination position of each item.

[[c]](Q) ← Dest-Comp([[B]](Q)). B O(m2n log n) com, O(1) rnd
5: Reorder D according to the computed positions c.

c′, [[D′]]← Reveal-Sort([[c]](Q), [[D]]). B O(Me`m2n +Mm2n log n) com, O(M) rnd
6: return [[D′]].

The details of the algorithm are shown as Algorithm 3. In the first step, the parties
agree on a field ZQ s.t. n ∈ ZQ. This is required since we need to compute the destina-
tion position of each row, and the positions are elements in {1, . . . , n}. Then, we convert
the input binary keys to the shared values over the new field ZQ in order to avoid over-
flow on elements in c. To compute the destination positions, we first construct a matrix
representation of the input binary keys. Since the input keys are binary, this is easy,
as we mentioned in Section 4.1. Namely, we simply construct an n × 2 matrix whose
first column consists of negated keys and second column consists of the original keys.
Finally, we compute the destination positions by applying Dest-Comp() then reorder
the data according to the computed positions by applying Reveal-Sort().

Correctness Dest-Comp([[B]](Q)) computes the destination positions, and Reveal-Sort(
[[c]](Q), [[D]]) orders D′ according to the computed positions. Thus, D′ is stably sorted.

Security Since Algorithm 3 consists of secure subprotocols, the only possibility of in-
formation leakage would be the vector c′ revealed by Reveal-Sort([[c]](Q), [[D]]). How-
ever, the correctness of Algorithm 3 guarantees that c′ = (1, . . . , n)T and leaks no addi-
tional information.

Theorem 3. Algorithm 3 privately reduces f Binary to f BFC, f DC, and f RS.

Proof. The view of adversaries consists of their inputs [[b]]I and [[D]]I, random tapes,
[[b]](Q)

I , [[c]](Q)
I , c′, and [[D′]]I. The output consists of [[D′]]I. Note that adversaries have

no view of the subprotocols Bit-Field-Conversion(·), Dest-Comp(·), or Reveal-Sort(·)
since the execution of these protocols is substituted with the oracle invocation of func-
tionalities f BFC, f DC, and f RS, respectively.

We construct the simulator S as follows. Inputs and outputs are the same as those of
adversaries, and S selects random tapes uniformly at random. For c′, S sets (1, . . . , n)T

as the simulated values for c′. This perfectly simulates c′ since the correctness of f RS

and f DC guarantees that c′ is always equal to (1, . . . , n)T. For [[b]](Q)
I and [[c]](Q)

I , S picks
uniformly random numbers, and sets them as the simulated values for these shares.
Since these shares are output shares of either Bit-Field-Conversion(·) or Dest-Comp(·),
and these subprotocols output uniformly random shares, the above simulation is perfect.

Algorithm 4 Oblivious radix sort
Data: A shared vector [[k]] of size n and an n × e shared matrix [[D]].
Result: A shared matrix [[D′]], where D′ is a stably sorted matrix D according to k.
1: Parties agree on a field ZQ s.t. n ∈ ZQ and the bit-length of ZQ is Θ(log n).

B Θ(m log n) com, O(1) rnd
2: [[b1[i]]], . . . , [[b`[i]]]← Bit-Decomposition([[k[i]]]) for i ∈ {1, . . . , n}.

B O(`2 log `m2n) com, O(1) rnd
3: [[b j[i]]](Q) ← Bit-Field-Conversion([[b j[i]]]) for (i, j) ∈ {1, . . . , n} × {1, . . . , `}.

B O(`2m3n + `m3n log n) com, O(1) rnd
4: Parties agree on a shared vector [[h]](Q) s.t. h = (1, . . . , n)T. B O(`mn) com, O(1) rnd
5: For simplicity, we use [[h1]](Q), [[b′1]](Q), [[b`+1]](Q) and [[b′`+1]](Q) as aliases of [[h]](Q), [[b1]](Q),

[[D]] and [[D′]], respectively.
6: for j = 1 to ` do
7: Locally construct a matrix representation [[B j]](Q) of [[b′j]](Q).
8: [[c j]](Q) ← Dest-Comp([[B j]](Q)). B O(m2n log n) com, O(1) rnd
9: h′j, [[c′j]]

(Q) ← Reveal-Sort([[h j]](Q), [[c j]](Q)). B O(Mm2n log n) com, O(M) rnd
10: Pick up [[b j+1]](Q) and [[h]](Q).
11: c′′j , [[b′j+1]](Q) ||[[h j+1]](Q) ← Reveal-Sort([[c′j]]

(Q), [[b j+1]](Q) ||[[h]](Q)), where x || y represents
horizontal concatenation of column vectors x and y. B O(Mm2n log n) com, O(M) rnd

B O(Me`m2n +Mm2n log n) com, O(M) rnd (if j = `)
12: end for
13: return [[b′`+1]](Q).

Thus, S perfectly simulates the view of adversaries. ut

Complexity Communication and round complexities for each step are denoted as com-
ments in Algorithm 3. Therefore, binary key sort exhibits O(Me`m2n +Mm2n log n)
communications in O(M) rounds.

4.2 Oblivious Radix Sort

Now, we extend binary key sort and propose oblivious radix sort, whose input keys
are not limited to being binary. We begin by defining the functionality f Radix for oblivi-
ous radix sort.

Definition 11 (Oblivious radix sort). On inputting ([[k]]Pi , [[D]]Pi) from each Pi ∈ U,
it reveals k and D with the revealing algorithm of ΠSS, stably sorts (k[1], D[1, 1], . . . ,
D[1, e]), . . . , (k[n], D[n, 1], . . . , D[n, e]) to (k′[1], D′[1, 1], . . . , D′[1, e]), . . . , (k′[n],
D′[n, 1], . . . , D′[n, e]) such that k′[i] ≤ k′[i + 1] for i ∈ {1, . . . , n − 1}, and generates
[[D′]] with the dealing algorithm of ΠSS. Finally, it outputs [[D′]]Pi to each Pi ∈ U.

Because binary key sort is stable, we can construct a sorting algorithm for arbitrary
keys by using the idea of radix sort. That is, we can construct a sorting algorithm for
arbitrary keys by applying bit-decomposition to the keys and iteratively applying binary
key sort to the bitwise keys. However, this naive strategy requires Θ(`) overhead since
the j-th significant bits of the keys are permuted j − 1 times before they are used as the
sort key for the binary key sort.

We can use the pointer technique to avoid this overhead if we do not have to be
concerned about privacy. Namely, we only permute small pointers that indicate the ad-
dresses of the data instead of the data. We construct a secure variant of the pointer
technique by using the reveal sort algorithm again.

The proposed algorithm is shown as Algorithm 4. We first apply the bit-decomposition
protocol to the key and convert the fields of the bitwise keys. Before applying the binary
key sort, we prepare a shared vector [[h]](Q), which stores the original positions of each
row. This vector [[h]](Q) is used like a pointer. Then we iteratively conduct the following
procedure. At the beginning of the j-th iteration, we are given the j-th least significant
bitwise key [[b′j]](Q) and an array [[h j]](Q), which stores original positions. The [[b′j]](Q)

and [[h j]](Q) are stably sorted by j − 1 less significant bits of the keys. We first compute
[[c j]](Q), which indicates the destination positions after stable sort by j less significant
bits of the keys. Then we reorder the computed positions [[c j]](Q) to the original order
with the reveal sort, and pick up the (j + 1)th bitwise keys [[b j+1]](Q) and original po-
sitions [[h]](Q). Finally, we apply the reveal sort to reorder the (j + 1)th bitwise keys
[[b j+1]](Q) and original positions [[h]](Q) according to the computed destination positions
[[c′j]]

(Q) and we obtain (j + 1)th bitwise key [[b′j+1]](Q) and original positions [[h j+1]](Q)

sorted by j less significant bits of the keys.

Correctness We claim that the condition “b′j+1 is a stably sorted vector of b j+1 accord-
ing to b j, . . . , b1 at the end of the j-th iteration,” which we call C j, holds for every
j ∈ {1, . . . , `}. We first assume that the condition “b′j is a stably sorted vector of b j

according to b j−1, . . . , b1 at the beginning of the j-th iteration,” which we call D j, holds
for a j ∈ {1, . . . , `}. Then, Dest-Comp(b′j) computes the positions c j after we stably
sort them by b′j. c j represents the positions of rows after the data are sorted by lower
j bits since b′j is stably sorted by b j−1, . . . , b1. In addition, h j[i] represents the initial
position of b′j[i] for i ∈ {1, . . . , n}. Therefore, we correctly find the next corresponding
key. Thus, if D j holds, C j also holds. Since D j+1 is immediate from C j, and D1 holds,
C` also holds. That is, b′`+1 is stably sorted.

Security Since Algorithm 4 consists of secure subprotocols, the only possibility of
information leakage would be the vectors revealed by Reveal-Sort(·). However, all the
revealed vectors are equal to (1, . . . , n)T. Therefore, Algorithm 4 leaks no additional
information.

Theorem 4. Algorithm 4 privately reduces f Radix to f BD, f BFC, f DC, and f RS.

Proof. The view of adversaries consists of their inputs [[k]]I and [[D]]I, random tapes,
[[b j]]I, [[b j]]

(Q)
I , [[c j]]

(Q)
I , h′j, [[c′j]]

(Q)
I , c′′j , [[b′j+1]](Q)

I , and [[h j+1]](Q)
I . The output consists

of [[D′]]I. Note that adversaries have no view of the subprotocols Bit-Decomposition(·),
Bit-Field-Conversion(·), Dest-Comp(·), or Reveal-Sort(·) since the execution of these
protocols is substituted with the oracle invocation of functionalities f BD, f BFC, f DC, and
f RS, respectively.

We construct the simulator S as follows. Inputs and outputs are the same as those
of adversaries, and S selects random tapes uniformly at random. For h′j and c′′j , S sets
(1, . . . , n)T as the simulated values for h′j and c′′j . This perfectly simulates h′j and c′′j

Table 4. Running time of sorting schemes in seconds. n represents number of input values. “N/A”
means that execution did not finish in 3, 600 seconds.

Sorting scheme n = 10 n = 102 n = 103 n = 104 n = 105 n = 106 n = 107

Batcher’s merge sort [2] 1.164 3.623 20.736 121.214 1100.698 N/A N/A
Randomized shellsort [15] 5.259 77.193 819.018 N/A N/A N/A N/A
Oblivious keyword sort [30] 0.242 2.601 198.996 N/A N/A N/A N/A
Quicksort [17] 0.161 0.452 1.512 9.124 72.793 964.619 N/A
Proposed algorithm 0.143 0.171 0.488 2.290 16.827 196.316 2648.398

since the correctness of f RS and f DC guarantees that these vectors are always equal
to (1, . . . , n)T. For [[b j]]I, [[b j]]

(Q)
I , [[c j]]

(Q)
I , [[c′j]]

(Q)
I , [[b′j+1]](Q)

I , and [[h j+1]](Q)
I , except for

[[b′`+1]](Q)
I , S selects uniformly random numbers and sets them as the simulated values

for these shares. Since these shares are output shares of either Bit-Decomposition(·),
Bit-Field-Conversion(·), Dest-Comp(·), or Reveal-Sort(·), and these subprotocols out-
put uniformly random shares, the above simulation is perfect.

Thus, S perfectly simulates the view of adversaries. ut

Complexity Communication and round complexities for each step are denoted as com-
ments in Algorithm 4. The iteration is conducted ` times where ` represents the bit-
length of the field size. Therefore, Algorithm 4 exhibits O(`2 log `m2n + `2m3n +
M`m2n log n + Me`m2n) communications in O(M`) rounds. If we assume that the
number of parties m is constant and the field bit-length ` is constant, Algorithm 4 ex-
hibits O(n log n) communications in O(1) rounds.

5 Evaluation

5.1 Complexity Analysis

We first evaluated our oblivious radix sort algorithm from an asymptotic perspective.
The complexities of our algorithm and existing sorting protocols are summarized in
Table 1. When the number of parties m and the bit length of the field ` are assumed to
be constant, our oblivious radix sort exhibits a very efficient complexity of O(1) rounds
and O(n log n) communications. Thus, our oblivious radix sort is asymptotically very
efficient in the above setting.

5.2 Experimental Results

To demonstrate practical efficiency of our oblivious radix sort, we implemented our
oblivious radix sort and existing sorting algorithms for comparison. The AKS sorting
network [1] was not implemented since this algorithm is not of practical interest. We
implemented sorting algorithms on (2, 3)-Shamir’s secret-sharing scheme with corrup-
tion tolerance t = 1. For better performance, protocols that are secure against a semi-
honest adversary are implemented. We implemented the comparison protocol proposed
by Damgård et al. [9] as a building block of existing sorting algorithms. The oblivious

radix sort algorithm used the shuffling protocol proposed by Laur et al. [21] and the
bit-decomposition protocol proposed by Damgård et al. [9]. The bit-field-conversion
protocol was not implemented since the size of the field was large enough to deal with
the number of input values n in our experiment. Our implementation of the random-
ized shellsort and Batcher’s merge sort algorithms is based on circuit representations.
That is, we replaced the comparators in the original algorithms with comparator proto-
cols constructed by combining comparisons, multiplications, and additions. All values
are elements over a finite field ZP = {0, 1, . . . , P − 1}, where P is a prime number
4294967291 = 232 − 5 and satisfies 231 < P < 232. That is, the values are 32-bit words.

Experiments were conducted on three laptop machines with an Intel Core i7-2640M
2.8-GHz CPU and 8 GB of physical memory. These three machines were connected
to a 1-Gbps LAN. The implementation was written in C++, and g++ 4.6.3 was used
for compiling. The running times of the sorting algorithms are given in Table 4, and
an intuitive graph is shown in Fig.1. The results show that our oblivious radix sort
outperforms existing sorting algorithms in the above setting.

6 Conclusion

We proposed a simple and efficient oblivious stable sorting algorithm for MPC. The
complexities of the proposed algorithm can be considered as O(n log n) communica-
tions and O(1) rounds if we consider only the asymptotic dependency of the number of
input values n.

We also showed the practical efficiency of the proposed algorithm. The feasibility
of our sorting algorithm was demonstrated by means of an implementation on an MPC
scheme based on (2, 3)-Shamir’s secret-sharing scheme with corruption tolerance t = 1.
Our implementation sorted 1 million 32-bit word secret-shared values in 197 seconds,
and outperformed other existing sorting algorithms on the above MPC scheme.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC. pp. 1–9.
ACM (1983)

2. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computing
Conference. pp. 307–314 (1968)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In: Simon [28], pp. 1–10

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving
computations. In: ESORICS. LNCS, vol. 5283, pp. 192–206. Springer (2008)

5. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T.P., Krøigaard, M.,
Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M.I., Toft, T.: Secure mul-
tiparty computation goes live. In: Financial Cryptography. LNCS, vol. 5628, pp. 325–343.
Springer (2009)

6. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA: Privacy-preserving ag-
gregation of multi-domain network events and statistics. In: USENIX Security Symposium.
pp. 223–240. USENIX Association (2010)

7. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended
abstract). In: Simon [28], pp. 11–19

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press, Cambridge, MA, second edn. (2001)

9. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: TCC.
pp. 285–304 (2006)

10. Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random
oracles. In: TCC. LNCS, vol. 6597, pp. 144–163. Springer (2011)

11. Dodis, Y., Yampolskiy, A., Yung, M.: Threshold and proactive pseudo-random permutations.
In: TCC. Lecture Notes in Computer Science, vol. 3876, pp. 542–560. Springer (2006)

12. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In: PODC. pp. 101–111. ACM (1998)

13. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press (2004)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC. pp. 218–229. ACM (1987)

15. Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. In: SODA. pp.
1262–1277 (2010)

16. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via obliv-
ious RAM simulation. In: ICALP (2). Lecture Notes in Computer Science, vol. 6756, pp.
576–587. Springer (2011)

17. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-
party sorting protocols from comparison sort algorithms. In: ICISC. LNCS, vol. 7839, pp.
202–216. Springer (2012)

18. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than cus-
tom protocols? In: NDSS (2012)

19. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. IACR
Cryptology ePrint Archive 2011, 122 (2011)

20. Knuth, D.E.: Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition),
chap. 5. Addison-Wesley Professional (1998)

21. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: ISC.
LNCS, vol. 7001, pp. 262–277. Springer (2011)

22. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.
In: USENIX Security Symposium. pp. 287–302 (2004)

23. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-decomposition
and a generalization to bit-decomposition. In: ASIACRYPT. pp. 483–500 (2010)

24. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without
bit-decomposition protocol. In: PKC. pp. 343–360 (2007)

25. Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheating for ar-
bitrary secret distribution. In: ASIACRYPT. LNCS, vol. 4284, pp. 364–379. Springer (2006)

26. Ogata, W., Kurosawa, K.: Optimum secret sharing scheme secure against cheating. In: EU-
ROCRYPT. LNCS, vol. 1070, pp. 200–211. Springer (1996)

27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
28. Simon, J. (ed.): Proceedings of the 20th Annual ACM Symposium on Theory of Computing,

May 2-4, 1988, Chicago, Illinois, USA. ACM (1988)
29. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-

party sorting, selection, and permuting. In: ASIACCS. pp. 226–237 (2010)
30. Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: ProvSec. LNCS,

vol. 6980, pp. 240–256. Springer (2011)

