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Abstract

The well known impossibility result of Cleve (STOC 1986) implies that in general it is
impossible to securely compute a function with complete fairness without an honest majority.
Since then, the accepted belief has been that nothing non-trivial can be computed with complete
fairness in the two party setting. The surprising work of Gordon, Hazay, Katz and Lindell (STOC
2008) shows that this belief is false, and that there exist some non-trivial (deterministic, finite-
domain) boolean functions that can be computed fairly. This raises the fundamental question
of characterizing complete fairness in secure two-party computation.

In this work we show that not only that some or few functions can be computed fairly, but
rather an enormous number of functions can be computed fairly. In fact, almost all boolean
functions with distinct domain sizes can be computed with complete fairness (for instance,
more than 99.999% of the boolean functions with domain sizes 31 x 30). The class of functions
that is shown to be possible includes also rather involved and highly non-trivial tasks, such
as set-membership, evaluation of a private (boolean) function, private matchmaking and set-
disjointness.

In addition, we demonstrate that fairness is not restricted to the class of symmetric boolean
functions where both parties get the same output, which is the only known feasibility result.
Specifically, we show that fairness is also possible for asymmetric boolean functions where the
output of the parties is not necessarily the same. Moreover, we consider the class of functions
with non-binary output, and show that fairness is possible for any finite range.

The constructions are based on the protocol of Gordon et. al, and its analysis uses tools from
convex geometry.
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1 Introduction

In the setting of secure multiparty computation, some mutually distrusting parties wish to compute
some function of their inputs in the presence of adversarial behavior. The security requirements of
such a computation are that nothing is learned from the protocol other than the output (privacy),
that the outputs are distributed according to the prescribed functionality (correctness) and that
the parties cannot choose their inputs as a function of the others’ inputs (independence of inputs).
Another important security property is that of fairness, which intuitively means that the adversary
learns the output if and only if, the honest parties learn their output.

In the multiparty case, where a majority of the parties are honest, it is possible to compute any
functionality while guaranteeing all the security properties mentioned above [GMW87, BGWSS,
CCD88, RB89, Gol04]. In the multiparty case when honest majority is not guaranteed, including
the important case of the two-party settings where one may be corrupted, it is possible to compute
any function while satisfying all security properties mentioned above except for fairness [Yao86,
GMW8T7, Gol04]. The deficiency of fairness is not just an imperfection of theses constructions,
but rather a result of inherent limitation. The well-known impossibility result of Cleve [Cle86]
shows that there exist functions that cannot be computed by two parties with complete fairness,
and thus, fairness cannot be achieved in general. Specifically, Cleve showed that the coin-tossing
functionality, where two parties toss an unbiased fair coin, cannot be computed with complete
fairness. This implies that any function that can be used to toss a fair coin (like, for instance, the
boolean XOR function) cannot be computed fairly as well.

Since Cleve’s result, the accepted belief has been that only trivial functions® can be computed
with complete fairness. This belief is based on a solid and substantiate intuition: In any protocol
computing any interesting function, the parties move from a state of no knowledge about the
output to full knowledge about it. Protocols proceed in rounds and the parties cannot exchange
information simultaneously, therefore, apparently, there must be a point in the execution where
one party knows more about the output than the other party. Aborting at that round yields the
unfair situation where one party can guess better the output, and learn the output alone.

Our understanding regarding fairness has been changed recently by the surprising work of
Gordon, Hazay, Katz and Lindell [GHKLOS]. This work shows that there exist some non-trivial
(deterministic, finite-domain) boolean functions that can be computed in the malicious settings
with complete fairness, and re-opens the research on this subject. The fact that some functions
can be computed fairly, while some other were proven to be impossible to compute fairly, raises the
following fundamental question:

1

Which functions can be computed with complete fairness?

Recently, [ALR13] provided a full characterization for the class of functions that imply fair
coin-tossing and thus are ruled out by Cleve’s impossibility. This extends our knowledge on what
functions cannot be computed with complete fairness. However, there have been no other works
that further our understanding regarding which (boolean) functions can be computed fairly, and
the class of functions for which [GHKLO08] shows possibility are the only known possible functions.
There is therefore a large class of functions for which we have no idea as to whether or not they
can be securely computed with complete fairness.

In our context, the term “trivial functions” refers to constant functions, functions that depend on only one party’s
input and functions where only one party receives output. It is easy to see that these functions can be computed
fairly.



To elaborate further, the work of [GHKLOS8| show that any function that does not contain an
embedded XOR (i.e., inputs z1,z2,y1,y2 such that f(z1,y1) = f(x2,y2) # f(x1,y2) = f(z2,11))
can be computed fairly. Examples of functions without an embedded XOR include the boolean OR
/ AND functions and the greater-than function. Given the fact that Cleve’s impossibility result
rules out completely fair computation of boolean XOR, a natural conjuncture is that any function
that does contain an embedded XOR is impossible to compute fairly. However, the work shows that
this conclusion is incorrect. Namely, it considers a specific function that does contain an embedded
XOR, and constructs a protocol that securely computes this function with complete fairness.

In a more detail, [GHKLOS] considered a specific simple (but non-trivial) 3 x 2 function, and
showed that this function can be computed fairly by constructing a protocol for this function and
a simulator for this protocol. Then, [GHKLO0S8] showed that this protocol can be generalized, by
identifying certain values and constants that can be parameterized, and parameterized the simulator
also in a similar way. In addition, [GHKLO0S8] showed how to examine whether the (parameterized)
simulator succeed to simulate the protocol, by constructing a set of equations, where its solution is
in fact, the actual parameters that the simulator has to use. The set of equations that [GHKLOS]
presented is rather involved, relies heavily on the actual parameters of the real protocol rather than
properties of the computed function, and in particular it is hard to decide for a given function
whether it can be computed fairly using this protocol, or not.

The protocol of [GHKLO0S] is ground-breaking and completely changed our perception regarding
fairness. The fact that something non-trivial can be computed fairly is surprising, and raises many
interesting questions. For instance, are there many functions that can be computed fairly, or only
a few? Which functions can be computed fairly? Which functions can be computed using this
generalized GHKL protocol? What property distinguishes these functions from the functions that
are impossible to compute fairly? Furthermore, the protocol of GHKL is especially designed for
deterministic symmetric boolean functions with finite domain, where both parties receive the same
output. Is fairness possible in any other class of functions, over larger ranges, or for asymmetric
functions? Overall, our understanding of what can be computed fairly is very vague.

1.1 Our Work

In this paper, we study the fundamental question of characterizing which functions can be computed
with complete fairness. We show that any function that defines a full-dimensional geometric object,
can be computed with complete fairness. That is, we present a simple property on the truth table
of the function, and show that every function that satisfies this property, the function can be
computed fairly. This extends our knowledge of what can be computed fairly, and is an important
step towards a full characterization for fairness.

Our results deepen our understanding of fairness and show that many more functions can be
computed fairly than what has been thought previously. Using results of combinatorics, we show
that a random function with distinct domain sizes (i.e., functions f : X x Y — {0,1} where
|X| # |Y]) defines a full-dimensional geometric object with overwhelming probability. Therefore,
surprisingly, not only some or few functions can be computed fairly, but rather almost all functions
in this class can be computed with complete fairness.

Although only one bit of information is revealed by output, the class of boolean functions that
define full-dimensional geometric object is very rich, and includes fortune of interesting and non-
trivial tasks. For instance, the task of set-membership, where P; holds some set S C Q, P> holds
an element x € , and the parties wish to find (privately) whether x € S, is a part of this class.



Other examples are tasks like private matchmaking and secure evaluation of a private (boolean)
function, where the latter task is very general and can be applied in many practical situations.
Unexpectedly, it turns out that all of these tasks can be computed with complete fairness.

In addition to the above, we provide an additional property that indicates that a function
cannot be computed using the protocol of GHKL (with the particular simulation strategy described
in [GHKLO8]). This property is almost always satisfied in the case where | X| = |Y'|. Thus, at least
at the intuitive level, almost all functions with | X| # |Y| can be computed fairly, whereas almost
all functions with |X| = |Y| cannot be computed using the only known possibility result that we
currently have in fairness. We emphasize that this negative result does not rule out the possibility of
these functions using some other protocols or even the [GHKLOS8| protocol itself using some other
simulation strategy. Combining this result with [ALR13] (i.e., characterization of coin-tossing),
there exists a large class of functions for which the only known possibility result does not apply,
the only known impossibility result does not apply either, and so fairness for this set of functions
is left as an interesting open problem.

Furthermore, we also consider larger families of functions rather than the symmetric boolean
functions with finite domain, and show that fairness is also possible in these classes. We consider
the class of asymmetric functions where the parties do not necessarily get the same output, as well
as the class of functions with non-binary outputs. This is the first time that fairness is shown to be
possible in both families of functions, and it shows that fairness can be achieved in a much larger
and wider class of functions than previously known.

Intuition. We present some intuition before proceeding to our results in more detail. The most
important and acute point is to understand what distinguishes functions that can be computed
fairly from functions that cannot. Towards this goal, let us reconsider the impossibility result of
Cleve. This result shows that fair coin-tossing is impossible by constructing concrete adversaries
that bias and influence the output of the honest party in any protocol implementing coin-tossing.
We believe that such adversaries can be constructed for any protocol computing any function,
and not specific to coin-tossing. In any protocol, one party can better predict the outcome than
the other, and abort the execution if it is not satisfied with the result. Consequently, it has a
concrete ability to influence the output of the honest party by aborting prematurely. Of course,
a fair protocol should limit and decrease this ability to the least possible, but in general, this
phenomenon cannot be totally eliminated and cannot be prevented.

So if this is the case, how do fair protocols exist? The answer to this question does not lie in
the real execution but rather in the ideal process: the simulator can simulate this influence in the
ideal execution. In some sense, for some functions, the simulator has the ability to significantly
influence the output of the honest party in the ideal execution and therefore the bias in the real
execution is not considered a breach of security. This is due to the fact that in the malicious setting
the simulator has an ability that is crucial in the context of fairness: it can choose what input it
sends to the trusted party. Indeed, the protocol of GHKL uses this switching-input ability in the
simulation, and as pointed out by [ALR13], once we take away this advantage from the simulator —
every function that contains an embedded XOR cannot be computed fairly, and fairness is almost
always impossible.

Therefore, the structure of the function plays an essential role in the question of whether a
function can be computed fairly or not. This is because this structure reflects the “power” and
the “freedom” that the simulator has in the ideal world and how it can influence the output of the
honest party. The question of whether a function can be computed fairly is related to the amount of



“power” the simulator has in the ideal execution. Intuitively, the more freedom that the simulator
has, it is more likely that the function can be computed fairly.

A concrete example. We demonstrate this “power of the simulator” on two functions. The
first is the XOR function, which is impossible to compute by a simple implication of Cleve’s result.
The second is the specific function for which GHKL has proved to be possible (which we call “the
GHKL function”). The truth tables of the functions are given in Figure 1.
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Figure 1: (a) The XOR function — impossible, (b) The GHKL function — possible

What is the freedom of the simulator in each case? Consider the case where P; is corrupted
(that is, we can assume that P is the first to receive an output, and thus it is “harder” to simulate).
In the XOR function, let p be the probability that the simulator sends the input z; to the trusted
party, and let (1—p) be the probability that it sends x3. Therefore, the output of P, in the ideal
execution can be represented as (q1,¢2) =p-(0,1) + (1—p) - (1,0) = (1—p, p), which means that if
P, inputs y1, then it receives 1 with probability 1—p, and if it uses input y2, then it receives 1 with
probability p. We call this vector “the output distribution vector” for P, and the set of all possible
output distribution vectors reflects the freedom that the simulator has in the ideal execution. In
the XOR function, this set is simply {(1—p,p) | 0 < p < 1}, which gives the simulator one degree
of freedom. Any increment of the probability in the first coordinate, must be balanced with an
equivalent decrement in the second coordinate, and vice versa.

On the other hand, consider the case of the GHKL function. Assume that the simulator chooses
x1 with probability p;, xo with probability ps and x3 with probability 1 —p; —ps. Then, all the
output vector distributions are of the form:

(q1:92) =p1-(0,1) +p2- (1,0) + (L —p1 —p2) - (1, 1) = (L —p1,1 — p2) .
This gives the simulator two degrees of freedom, which is significantly more power.

Geometrically, we can refer to the rows of the truth table as points in R?, and so in the XOR
function we have the two points (0, 1) and (1,0). All the output distribution vectors are of the form
p-(0,1)4 (1—p)-(1,0) which is exactly the line segment between these two points (geometric object
of dimension 1). In the GHKL function, all the output distribution vectors are the triangle between
the points (0,1),(1,0) and (1,1), which is a geometric object of dimension 2 (a full dimensional
object in R?).

The difference between these two geometric objects already gives a perception for the reason
why the XOR function is impossible to compute, whereas the GHKL function is possible, as the
simulator has significantly more options in the latter case. However, we provide an additional
refinement. At least on the intuitive level, fix some output distribution vector of the honest party
(q1,42). Assume that there exists a real-world adversary that succeeds in biasing the output and
obtain output distribution vector (¢}, ¢5) that is at most e-far from (g1, ¢2). In the case of the XOR
function, this results in points that are not on the line, and therefore this adversary cannot be
simulated. In contrast, in the case of the GHKL function, these points are still in the triangle, and
therefore this adversary can be simulated.

In Figure 2, we show the geometric objects defined by the XOR and the GHKL functions. The
centers of the circles are the output distribution of honest executions, and the circuits represent the



possible biases in the real execution. In (a) there exist small biases that are invalid points, whereas
in (b) all small biases are valid points that can be simulated.

()

(a) The potential output distribution vectors of the XOR (b) The potential output distribution vectors of the GHKL
function: a line segment between (0, 1) and (1, 0). function: the triangle between (0, 1), (1,0) and (1,1).

Figure 2: The geometric objects defined by the XOR, function (a) and the GHKL function (b).

1.2 Our Results

For a given function f : {x1,...,2¢} X {y1,...,ym} — {0,1}, we consider its geometric represen-
tation as the convex-hull of ¢ points over R™, where the jth coordinate of the ith point is simply
f(xi,y;). We say that this geometric object is of full dimension in R™, if it cannot be embedded
in any subspace of dimension smaller than m (or, any subspace that is isomorphic to R™~1). We
then prove that any function that its geometric representation is of full dimension can be computed
with complete fairness. We prove the following theorem:

Theorem 1.1 (informal) Let f : X x Y — {0,1} be a function. Assuming the existence of an
Oblivious Transfer, if the geometric object defined by f is of full-dimension, then the function can
be computed with complete fairness.

For the proof, we use the extended GHKL protocol (with some concrete set of parameters).
Moreover, the proof uses tools from convex geometry. We find the connection between the problem
of fairness and convex geometry very appealing.

On the other hand, we show that if the function is not full dimensional, and satisfies some
additional requirements (that are almost always satisfied in functions with |X| = |Y]), then the
function cannot be computed using the protocol of [GHKLOS|.

We then proceed to the class of asymmetric functions where the parties do not necessarily get
the same output, and the class of non-binary output. Interestingly, the GHKL protocol can be
extended to these classes of functions. We show:

Theorem 1.2 (informal) Assuming the existence of an Oblivious Transfer,

1. There exists a large class of asymmetric Boolean functions that can be computed with complete
fairness.

2. For any finite range %, there exists a large class of functions f : X xY — X that can be
computed with complete-fairness.

For the non-binary case, we provide a general criterion that holds only for functions for which
|X| > (|2] —1)-]Y], that is, when the ratio between the domain sizes is greater than |¥| — 1. This,
together with the results in the binary case, may refer to an interesting relationship between the size
of the domains and possibility of fairness. This is the first time that a fair protocol is constructed



for both non-binary output, and asymmetric Boolean functions. This shows that fairness is not
restricted to a very specific and particular type of functions, but rather a property that under
certain circumstances can be achieved. Moreover, it shows the power that is concealed in the
GHKL protocol alone.

Related work. Several other impossibility results regarding fairness, rather than the result of
Cleve, have been published [EY80, AP13]. However, it seems that only Cleve’s impossibility can
be reduced into the family of boolean functions with finite domain. The work of [ALR13] identi-
fies which function imply fair coin-tossing and are ruled out by the impossibility result of Cleve.
Interestingly, the class of functions that imply fair coin-tossing shares a similar (but yet distinct)
algebraic structure with the class of functions that we show that cannot be computed using the
GHKL protocol. We link between the two criterions in the body of our work.

For decades fairness was believed to be impossible, and so researchers have simply resigned
themselves to being unable to achieve this goal. Therefore, a huge amount of works consider several
relaxations like gradual release, partial fairness and rational adversaries ([Cle89, GL90, BGMR90,
GK10, BLOO11, HT04] to state a few. See [Gorl0] for a survey of fairness in secure computation).

Open problems. Our work is an important step towards a full characterization of fairness of
finite domain functions. The main open question is to finalize this characterization. In addition,
can our results be generalized to functions with infinite domains (domains with sizes that depend
on the security parameter)? Finally, in the non-binary case, we have a positive result only when
the ratio between the domain sizes is greater than |X| — 1. A natural question is whether fairness
be achieved in any other case, or for any other ratio.

2 Definitions and Preliminaries

We present the necessary definitions for secure computation, which are merely the standard stand
alone definitions [Can00, Gol04]. We distinguish between security-with-abort (subsection 2.1.2),
for which the adversary may receive output while the honest party does not (security without
fairness), and security with fairness (subsection 2.1.1), where all parties receive output (this is
similar to security with respect to honest majority, although we do not have honest majority). In
addition, we cover the mathematical background that is needed for our results.

Notations. In most of the paper, we consider binary deterministic functions over a finite domain;
i.e., functions f: X x Y — {0,1} where X,Y C {0,1}" are finite sets. Throughout the paper, we
denote X = {x1,...,z¢} and Y = {y1,...,ym}, for constants £, m € N. Let My be the £ xm matrix
that represents the function, i.e., a matrix whose entry position (4, j) is f(x;,y;). For 1 <i </,
let X; denote the ith row of My, and for 1 < j < m let Y; denote the jth column of M;. A
vector p = (p1,...,p¢) is a probability vector if p; > 0 for every 1 < i < £ and Zle p; = 1. As
a convention, we use bold-case letters to represent a vector (e.g., p, q), and sometimes we use
upper-case letters (e.g., X;, as above). We denote by 1j, (resp. 0) the all one (resp. all zero) vector
of size k. We work in the Euclidian space R™, and use the Euclidian norm ||z|| = y/(z,z) and the
distance function as d(z,y) = ||z — y||.



2.1 Secure Computation — Definitions

We let k denote the security parameter. We use standard O notation, and let poly denote a
polynomial function. A function p(-) is negligible if for every positive polynomial p(-) and all
sufficiently large x it holds that pu(n) < 1/p(k). A distribution ensemble X = {X(a,kK)}acD reN
is an infinite sequence of random variables indexes by a € D and « € N. In the context of
secure computation, k is the security parameter and D denotes the domain of the parties’ input.
Two distribution ensembles X = {X (a, k) }aep ey and Y = {Y(a, k) }aep ren are computationally

indistinguishable, denoted X = Y, if for every non-uniform polynomial-time-algorithm D there
exists a negligible function u(-) such that for every x and every a € D:

[P [D(X (a, %)) = 1] = Pr[D(Y (a, 8)) = 1]| < pu()

In most of the paper, we consider binary deterministic functions over a finite domain; i.e., functions
f: X xY — {0,1} where X,Y C {0,1}" are finite sets. Throughout, we will denote X =
{z1,...,x¢} and Y = {y1,...,Ym}, for constants £, m € N.

2.1.1 Secure Two-Party Computation with Fairness

We now define what it means for a protocol to be secure with complete fairness. Our definition
follows the standard definition of [Can00, Gol04], except for the fact that we require complete
fairness even though we are in the two-party setting. We consider active adversaries (malicious),
who may deviate from the protocol in an arbitrary manner, and static corruptions. Let 7 be a two
party protocol for computing a two party function f : X x Y — ({0,1}")? be a two party function,
and let f1(x,y) (resp. fa(x,y)) denote the first (resp. second) element of f(x,y) (in most cases, we
will consider fi(z,y) = fa(z,y), i.e., both parties get the same output). We briefly describe the
real execution and the ideal execution.

Execution in the ideal model. An ideal execution involves parties P; and P», an adversary S
who has corrupted one of the parties, and the trusted party. An ideal execution for the computation
of f proceeds as follows:

Inputs: P; and P» hold inputs ¢ € X, and y € Y, respectively; the adversary S receives the
security parameter 1 and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by & may send any value of its choice. Denote the pair of inputs
sent to the trusted party by (2/,/).

Trusted party sends outputs: If 2/ ¢ X, the trusted party sets z’ to be the default value
x1; likewise if ' &€ Y the trusted party sets 3y = y;. Next, the trusted party computes
f(x/a y/) = (fl(x/a y/)7 f2(x/7 y/)) and sends the result fl ((L’l,y/) to Pl and f2($/7y/) to PQ-

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing and S outputs an arbitrary function of its view.

We denote by IDEALf s() (7, Y, k) the random variable consisting of the output of the adversary and
the output of the honest party following an execution in the ideal model as described above.



Execution in the real model. In the real execution, the parties P, and P, interact, where one
is corrupted and therefore controlled by the real-world adversary A. In this case, the adversary
A gets the inputs of the corrupted party and sends all messages on behalf of this party, using
an arbitrary strategy. The honest party follows the instructions of 7. Let REAL. 4(.)(7,y, k) be
the random variable consisting of the view of the adversary and the output of the honest party,
following an execution of m where P; begins with input x, P» with input y, the adversary has
auxiliary input z, and all parties have security parameter 17.

Security by emulation. Informally, a real protocol 7 is secure if any “attack” carried out by
a real adversary A on 7 can be carried out by the ideal adversary S in the ideal model. This
is formalized by requiring that S can simulate the real-model outputs while running in the ideal
model.

Definition 2.1 Protocol m securely computes f with complete fairness in the presence of malicious
adversaries if for every non-uniform probabilistic polynomial-time adversary A in the real model,
there exists a mon-uniform probabilistic polynomial-time adversary S in the ideal model such that:

[llo

{IDEALﬁS(Z) (.ZL', Ys H) }LEEX,yEY,ZE{O,l}*,HEN {REALWPA(Z) (1’, Ys /i) }xeX,yEY,ze{O,l}*,ﬁeN ’

2.1.2 Secure Two-Party Computation without Fairness (Security with Abort)

The following is the standard definition of secure computation without fairness. This is formalized
by changing the ideal world and allowing the adversary to learn the output alone. This implies
that the case where the adversary learns the output without the honest party is not considered as
a breach of security since this is allowed in the ideal world. We modify the ideal world as follows:

Inputs: As previously.
Send inputs to trusted party: As previously.

Trusted party sends output to corrupted party: If 2’ ¢ X, the trusted party sets '’ to be
the default value z1; likewise if ¢’ € Y the trusted party sets ¢y’ = 1. Next, the trusted party
computes f(z',y') = (f1(2',y), f2(2',y")) = (w1, w2) and sends w; to the the corrupted party
P; (i.e., to the adversary A).

Adversary decides whether to abort: After receiving its output, the adversary sends either
proceed or abort message to the trusted party. If its sends proceed to the trusted party, the
trusted party sends w; to the honest party P;. If it sends abort, then it sends the honest
party P; the special symbol L.

Outputs: As previously.

We denote by IDEAL}b‘;&) (z,y, k) the random variable consisting of the output of the adversary and
the output of the honest party following an execution in the ideal model with abort as described
above. The following definition is the analogue to Definition 2.1 and formalizes security with abort:



Definition 2.2 Protocol w securely computes f with abort in the presence of malicious adversaries if
for every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a
non-uniform probabilistic polynomial-time adversary S in the ideal model such that:
abort £
{IDEALLS(Z) (.9, ) }xe Xyevae(onymen = \FEALTAG) (2.9 5) Yo X yevioe (o1} men

We remark that in the case of two-party computation, for any functionality f there exists a
protocol 7 that securely computes it with security-with-abort [GMW87, Gol04]. This is true also
for reactive functionalities, that is, functionalities that consist of several stages, where in each stage
the parties can give inputs and get outputs from the current stage of f, and the function f stores
some state between its stages.

2.1.3 Hybrid Model and Composition

The hybrid model combines both the real and ideal models. Specifically, an execution of a protocol
7 in the g-hybrid model, for some functionality g, involves the parties sending normal messages to
each other (as in the real model) and, in addition, having access to a trusted party computing g.
The composition theorems of [Can00] imply that if 7 securely computes some functionality f in
the g-hybrid model, and a protocol p securely computes g, then the protocol 7 (where every ideal
call of g is replaced with an execution of p) securely-computes f in the real world.

In our work, we consider the case where g is a reactive functionality, and assume that the proto-
col 79 that uses the functionality g does not contain any messages between the parties (i.e., all the
communication between them is performed via the functionality g). Recall that any functionality
(even reactive one) can be computed with security-with-abort, and therefore there exists a protocol
p (or, in case of reactive functionalities, several protocols pi,...,pm,) that securely computes g.
Since there are no messages in 79 we can apply the sequential composition theorem of [Can00] and
obtain the following Proposition:

Proposition 2.3 Let g be a reactive functionality, let m be a protocol that securely computes f
with complete fairness in the g-hybrid model (where g is computed according to the ideal world with
abort), and assumes that m contains no communication between the parties rather than queries of
g and that a single execution of g occurs at the same time. Then, there exists a protocol I that
securely computes f with complete fairness in the plain model.

2.2 Mathematical Background

Our characterization is based on the geometric representation of the function f. In the following,
we provide the necessary mathematical background, and link it to the context of cryptography
whenever possible. Most of the following mathematical definitions are taken from [Rom08, Grii03].

Output vector distribution and convex combination. We now analyze the “power of the
simulator” in the ideal execution. The following is an inherent property of the concrete function
and the ideal execution, and is true for any protocol computing the function. Let A be an adversary
that corrupts the party Pp, and assume that the simulator & chooses its input according to some
distribution p = (p1,...,pe). That is, the simulator sends an input x; with probability p;, for

1 <4 < £. Then, the length m vector q = (gy,, - - -, Gy,,) def p- My represents the output distribution
vector of the honest party . That is, in case the input of P is y; for some 1 < j < m, then it
gets 1 with probability g, .
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Convex combination. The output distribution vector is in fact a convex combination of the rows
{X1,..., Xy} of the matrix M. That is, when the simulator uses p, the output vector distribution
of P2 is:

p-My=(p1,....pe) My=p1-X1+...+p Xy .

A convex combination of points Xi,..., X, in R is a linear combination of the points, where all
the coefficients (i.e., (p1,...,p¢)) are non-negative and sum up to 1.

Convex hull. The set of all possible output distributions vectors that the simulator can produce
in the ideal execution is:
{p- My | p is a probability vector} .

In particular, this set reflects the “freedom” that the simulator has in the ideal execution. This set
is in fact, the convexr hull of the row vectors Xi,..., X, and is denoted as conv({X1,..., Xy}).
That is, for a set S = {Xi,..., Xy}, conv(S) = {Zlepi-Xi 10<p <1,> 0 pi= 1}. The
convex-hull of a set of points is a convex set, which means that for every X,Y € conv(S), the line
segment between X and Y also lies in conv(S), that is, for every X,Y € conv(S) and for every
0 < A <1, it holds that A\- X + (1 —\)-Y € conv(S).

Geometrically, the convex-hull of two (distinct) points in R?, is the line-segment that connects
them. The convex-hull of three points in R? may be a line (in case all the points lie on a single
line), or a triangle (in case where all the points are collinear). The convex-hull of 4 points may
be a line, a triangle, or a parallelogram. In general, the convex-hull of k points in R? may define
a convex polygon of at most k vertices. In R?, the convex-hull of k& points can be either a line, a
triangle, a tetrahedron, a parallelepiped, etc.

Affine-hull and affine independence. A subset B of R™ is an affine subspace if A\-a+u-b € B
for every a,b € B and A, u € R such that A + 4 = 1. For a set of points S = {X1,..., Xy}, its
affine hull is defined as: aff(S) = {Zle Ai - X | Zle Ai = 1} , which is similar to convex hull, but
without the additional requirement for non-negative coefficients. The set of points Xi,..., Xy in
R™ is affinely independent if 3>, A\;X; = 0,, holds with >2%_ \; =0 only if \; =... =\, =0. In
particular, it means that one of the points is in the affine hull of the other points. It is easy to see that
the set of points {X7,..., Xy} is affinely independent if and only if the set {Xs — X1,..., X, — X3}
is a linearly independent set. As a result, any m + 2 points in R™ are affine dependent, since any
m+1 points in R are linearly dependent. In addition, it is easy to see that the points { X1, ..., X}
over R™ is affinely independent if and only if the set of points {(X1,1),..., (X, 1)} over R™*! is
linearly independent.

Affine-dimension and affine-basis. If the set S = {Xj,..., Xy} over R™ is affinely indepen-
dent, then aff(S) has dimension ¢ — 1, and we write dim(aff(S)) = ¢ — 1. In this case, S is the
affine basis for aff(S). Note that an affine basis for an m-dimensional affine space has m + 1 ele-
ments. As we will see, the affine dimension of ¢ row vectors X1, ..., Xy play an essential role in our
characterization.

Linear hyperplane. A linear hyperplane in R™ is a (m—1)-dimensional affine-subspace of R™.
The linear hyperplane can be defined as all the points X = (x1,...,z,,) which are the solutions of
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a linear equation:
a1r1+ ... amTm =0,

for some constants a = (ai,...,a,) € R™ and b € R. We denote this hyperplane by:

H(a,b) € {X e R™ | (X,a) = b} .

Throughout the chapter, for short, we will use the term hyperplane instead of linear hyperplane. It
is easy to see that indeed this is an affine-subspace. In R!, an hyperplane is a single point, in R?
it is a line, in R? it is a plane and so on. We remark that for any m affinely independent points in
R™ there exists a unique hyperplane that contains all of them (and infinitely many in case they are
not affinely independent). This is a simple generalization of the fact that for any distinct 2 points
there exists a single line that passes through them, for any 3 (collinear) points there exists a single
plane that contains all of them and etc.

Convex polytopes. Geometrically, a full dimensional convex polytope in R™ is the convex-hull of
a finite set S where dim(aff(S)) = m. Polytopes are familiar objects: in R? we get convez polygons
(a triangle, a parallelogram etc.). In R3 we get convex polyhedra (a tetrahedron, a parallelepiped
etc.). Convex polytopes play an important role in solutions of linear programming.

In addition, a special case of polytope is simplex. If the set S is affinely independent of cardinality
m + 1, then conv(S) is an m-dimensional simplex (or, m-simplex). For m = 2, this is simply a
triangle, whereas in m = 3 we get a tetrahedron. A simplex in R™ consists of m + 1 facets, which
are themselves simplices of lower dimensions. For instance, a tetrahedron (which is a 3-simplex)
consists of 4 facets, which are themselves triangles (2-simplex).

3 The Protocol of Gordon, Hazay, Katz and Lindell [GHKLOS]|

In the following, we give a high level overview of [GHKLO8]. We also present its simulation strategy,
and the set of equations that indicates whether a given function can be computed with this protocol,
which is the important part for our discussion. We also generalize a bit the protocol by adding
additional parameters, which adds some flexibility to the protocol and may potentially compute
more functions, and we also represent it a bit differently than the original construction, which is
merely a matter of taste.

3.1 The Protocol

Assume the existence of an online dealer (a reactive functionality that can be replaced using stan-
dard secure computation that is secure-with-abort). The parties invoke this online-dealer and send
it their respective inputs (x,y) € X xY. The online dealer computes values ai,...,ar and by,...,bg
(we will see later how they are defined). In round i the dealer sends party P; the value a; and
afterward it sends b; to P». At each point of the execution, each party can halt the online-dealer,
preventing the other party from receiving its value at that round. In such a case, the other party
is instructed to halt and output the last value it has received from the dealer. For instance, if P;
aborts at round ¢ after it learns a; and prevents from P; to learn b;, P» halts and outputs b;_1.
The values (ay,...,ag), (b1,...,br) are generated by the dealer in the following way: The dealer
first chooses a round i* according to geometric distribution with parameter . In each round 7 < 7*,
the parties receive bits (a;,b;), that depend on their respective inputs solely and uncorrelated to
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the input of the other party. In particular, for party P; the dealer computes a; = f(z;,y) for
some random g, and for P it computes b; = f(&,y;) for some random Z. As we will see, we
will choose ¢ uniformly from Y, whereas & will be chosen according to some distribution X,.q,
which is a parameter for the protocol?. For every round i > i*, the parties receive the correct
output a; = b; = f(z;,y;). Note that if we set R = a~! - w(lnk), then i* < R with overwhelming
probability, and so correctness holds.

The full specification consists of the definition of the online-dealer, which is the Fyeaer func-
tionality and is formally defined in Functionality 3.2. In addition, we present the protocol in the
Fyealer-hybrid model in Protocol 3.3. Algorithm 3.1 is needed for both the Fyeaer functionality and
the protocol.

RandOut; (z) — Algorithm for P;: RandOutz(y) — Algorithm for P;:
Input: An input z € X. Input: An input y € Y.
Parameter: Distribution X, ..
Output: Choose g < Y uniformly Output: Choose & < X according to
and output f(z,7). distribution X, and output f(z,y).

ALGORITHM 3.1 (Default output algorithms — RandOut; (), RandOutz(y))

FUNCTIONALITY 3.2 (The (reactive) online-dealer functionality — Fiealer)

e Inputs: P; sends z as its input, Y sends y.
e Parameters: (o, R), where 0 < a < 1 and R is the number of rounds.
e The functionality:
1. Check inputs: If x € X or y ¢ Y then send abort to both parties and halt.
2. Preliminary phase:
1. Choose i* according to a geometric distribution with parameter a.
2. Define values (a1,...,ar), (b1,...,br), where:
(a) Fori=1toi* —1: set (a;,b;) = (RandOuty(z), RandOuta(y)).
(b) For i =1i* to R: set (ai,b:) = (f(x,9), f(z,v)).
3. The online phase:
1. In every round i =1 to R:
(a) Upon receiving proceed from P», send a; to Pi.
(b) Upon receiving proceed from Pi, send b; to Ps.

Upon receiving abort from any one of the parties at any point of the execution, send
abort to both parties and halt.

2This is the generalization of the protocol of GHKL that we have mentioned, which adds some flexibility, and will
make the proof of security a bit simpler. We note that a similar distribution Y;eq could have been added as well,
but as we will see, this modification is not helpful and will just add complication.
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PROTOCOL 3.3 (Computing f in the Fuee-hybrid model)

e Inputs: P, holds =, P holds y.
e Parameters: Some value 0 < « < 1, and security parameter .
e The protocol:
1. Set R=a""' w(logk).
2. P, computes ap = RandOut:(z), P, computes by = RandOutz(y).
3. The parties invoke the Fyeuer functionality. P; sends as input z, P sends y.
4. For every round i =1 to R:
(a) P» sends proceed t0 Fyealer, and P; receives a; from Fyeuer. If Pi receives abort from Fyeaer,
it halts and outputs a;_1.
(b) P sends proceed tO Fyealer, and P> receives b; from Fyeuer. If P> receives abort from Fyeaer,
it halts and outputs b;_1.

e Output: If all R iterations have been run, party P; outputs ar and party P> outputs bg.

3.2 Security

Since P, is the second to receive an output, it is easy to simulate an adversary that corrupts P». If
the adversary aborts before ¢*, then it has not obtained any information about the input of P;. If
the adversary aborts at or after ¢*, then in the real execution the honest party P; already receives
the correct output f(z;,y;), and fairness is obtained. Therefore, the protocol is secure with respect
to corrupted P, for any function f.

The case of corrupted P; is more delicate, and defines some requirements from f. Intuitively, if
the adversary aborts before ¢*, then the outputs of both parties are uncorrelated, and no one gets
any advantage. If the adversary aborts after ¢*, then both parties receive the correct output and
fairness is obtained. The worst case, then, occurs when P aborts exactly in iteration ¢*, as P, has
then learned the correct value of f(z;,y;) while P» has not. Since the simulator has to give P; the
true output if it aborts at ¢*, it sends the trusted party the true input z; in round i*. As a result,
P in the ideal execution learns the correct output f(z;,y;) at round ¢*, unlike the real execution
where it outputs a random value f(Z,y;). [GHKLOS] overcomes this problem in a very elegant way:
in order to balance this advantage of the honest party in the ideal execution in case the adversary
aborts at ¢*, the simulator chooses a random value & different from the way it is chosen in the
real execution in case the adversary abort before i* (that is, according to a different distribution
than the one the dealer uses in the real execution). The calculations show that overall, the output
distribution of the honest party is distributed identically in the real and ideal executions. This
balancing is possible only sometimes, and depends on the actual function f that is being evaluated.

In more detail, in the real execution the dealer before i* chooses b; as f(&,y;), where Z is
chosen according to some distribution X,.. In the ideal execution, in case the adversary sends
x to the simulated online-dealer, aborts at round ¢ < #* upon viewing some a;, the simulator
chooses the input 7 it sends to the trusted party according to distribution X% . Then, define

Q% =X Zlg;l - My, the output distribution vector of the honest party P in thilsd egéltse. In fact, the
protocol and the simulation define the output distribution vectors Q*%, and simulation is possible
only if the corresponding X;o, exists, which depends on the function f being computed.

We now present the exact requirements from the output distribution vectors @Q%%. In the
proof sketch below, we do not present the simulator nor a full proof of security; We just give a
perception for the reason why the vectors Q% are defined like that. The full proof can be found

in Appendix A and [GHKLO0S|.
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The output distributions vectors Q™®. Let f : {x1,...,z¢} X {y1,...,ym} — {0,1}. Fix
Xreal, and let Uy denote the uniform distribution over Y. For every x € X, denote by p, the
probability that a; = 1 before i*. Similarly, for every y; € Y, let p,, denote the probability b; = 1

before ¢*. That is: p, o Pryc vy [f(z,9) = 1], and py, o Pricx..., [f(Z,y;) =1]. For every

z € X, a € {0,1}, define the row vectors Q™ = (gy;", ..., ¢y, ) indexed by y; € Y as follows:
; N — (p ) .
v Py + martimpny I F(®y) =0 7Y Py, it f(z,y) =0

For every z € X, a € {0,1} there exists a probability vector X_;%  such that X" - M; = Q™

then the simulator succeeds to simulate the protocol. We therefore have the following theorem:

Theorem 3.4 Let f: {x1,...,z¢} X {y1,...,ym} — {0,1} and let My be as above. If there exist
probability vector X,eq and a parameter 0 < o < 1 (where a~* € O(poly(k))), such that for every
z € X, ac{0,1}, there exists a probability vector X% for which:

X% Mf_Qaca

zdeal

then the protocol securely computes f with complete fairness.

Proof Sketch: The full proof, including the case where P, is corrupted, appears in Appendix A.
Here, we consider the case where P; is corrupted. Let A be the adversary that corrupts it, and let S
be the simulator mentioned above. Let x be the input the adversary sends to the simulated Fyesler
functionality. We recall that in case the adversary aborts exactly at ¢*, the simulator S sends
the input z to the trusted party, and so both parties receive f(z,y), unlike the real execution.
Moreover, in case the adversary has aborted at round i < 1", upon viewing a at round i, the
simulator S chooses input # according to distribution X de ;- Full specification of the simulator
appears in the full proof.

We show that the joint distribution of the view of the adversary and the output of the honest
party is distribution identically in the hybrid and the ideal executions. This is done easily in the
case where the adversary aborts some round i > ¢* (and thus, both parties receive the correct
output f(z,y)), and is given in the full proof of this theorem. Now, we consider the case where
i < ¢*. In the full proof we show that the view of the adversary until round i (i.e., of the first ¢ — 1
rounds) is distributed identically in both executions. Thus, all is left to show is that the view of
the adversary in the last round and the output of the honest party are distributed identically in
both executions, and this is what we show here in this proof sketch. That is, we show that for
every (a,b) € {0,1}%,

Pr [(VIEW}p, OUThyp) = (a,b) | i <i*]
= Pr [(VIEWl4ea), OUTideat) = (a,b) | i <] (2)

where (VIEW%Wb? OUThyb) denote the view of the adversary at round i (i.e., the round where it has

aborted), and the output of the honest party in the hybrid execution. VIEWfdeal, OUTjdeal) denote
the outputs in the ideal execution.
We now show that these probabilities are equal. First, observe that:

Prli=i"]|i<i]=a and Pri<i|i<i’]l=1-«

We now show that Eq. (2) holds, by considering all possible values for (a,b).
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In case f(x,y) = 0. We compute the probability that the outputs of the parties are (0,0) in
the real execution, when the adversary A aborts at round 7 < ¢*. with probability «, we get that
i = i*. In this case, the output of the adversary P; is always the correct output 0. On the other
hand, the output of the honest party P» is chosen independently according to RandOuts(y). With
probability 1 — «, we have that ¢ < ¢*. In this case both parties get uncorrelated values, chosen
according to RandOut; (x), RandOuts(y). Thus, the probability that we get (0,0) is:

Pr [(VIEW}p, OUThyp) = (0,0) | i <i*] =a-1-(1—py) + (1 —a)- (1 —ps) - (1 —py)

On the other hand, in the ideal execution, with probability « both parties receive the true output
f(x,y). With probability 1 — a, we have that i < ¢*. Thus, the simulator sends the adversary
the value 0 with probability (1 — p,), and in case it aborts, it chooses the input Z according to
distribution de’gal. Since Q*° = X fd’gal - My, the probability that the honest party receives 0 is

exactly 1—gjy ¥ We therefore have that:
Pr [(VIEWiidealv OUTideal) = (aa b) | P < Z*] =a+ (1 - a) ’ (1 - px) : (1 - QZ?O) .

Similarly, we compute the above for all possible outputs (a, b) € {0, 1}2 and obtain:

output (a,b) | real ideal
(0,0) (I—a)-(I-ps)-A=p)+a-(1-p)|(1-a)- Q-p)-(1-gq") + 0
(0,1) | (1=a)-(L=ps)-py+ap (L-a)-(1—p.)-q5"
(1,0) (1—a) pe-(1—py) (I—a) ps- (1 —qy")
(1,1) (1—a) pz-py (1—a) ps- Qy7

Therefore, we get the following constraints:

Q- py
l1—a) - (1-ps)
which are satisfied according to our assumption in the theorem.

qlajyo =pyt ( and q;f’l =Dy

In case f(x,y) = 1. This is similar for the previous case. We have:

output (a,b) | real ideal
(0,0) (I—a)-(1=p2)-(1—py) (1—a)-(1—ps) - (1—q")
(0.1) | (1=a)-(1=ps)-p (1-a) (1=p.)-q;"
(1,0) (1—a) ps- (1—py)+a'(1—py) (1—a) ps- ( Qy D)
(1,1) (1—a) -py-py+a-py (1—a) p.-q" +a
we again get the following constraints:
However, since X ; d’ ca - My = Q% the above constraints are satisfied. [ |

An alternative formulation for Theorem 3.4, is to require that for every z, a, the points Q%% is
in conv({X1,...,X,}), where X; is the ith row of M. Moreover, observe that in order to decide
whether a function can be computed using the protocol, there are 2¢ linear systems that should be
satisfied, with m constraints each, and with 2¢? variables overall. This criterion depends heavily
on some parameters of the protocols (like py,, pyj) rather than properties of the function. We are
interested in a simpler and easier way to validate criterion.
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4 Our Criteria

4.1 Possibility of Full-Dimensional Functions

In this section, we show that any function that defines a full-dimensional geometric object, can be
computed using the protocol of [GHKLO08]. The formal definition for this notion is as follows:

Definition 4.1 (full-dimensional function) Let f : {x1,...,z¢} X {y1,...,ym} — {0,1} be a
function, and let X1,..., X, be the £ rows of My over R™. If dim(aff ({X1,...,X¢})) = m then we
say that f is a full-dimensional function.

Recall that for a set of points S = {X1,..., X,} € R™, if dim(aff(S)) = m then the convex-hull of
the points defines a full-dimensional convex polytope. Thus, intuitively, the simulator has enough
power to simulate the protocol. Recall that a basis for an affine space of dimension m has cardinality
m + 1, and thus we must have that ¢ > m. Thus, we assume without loss of generality that this
holds (and consider the transposed function f7 : {y1,...,ym} x {z1,...,2¢} — {0,1}, defined as
fT(y,z) = f(x,y), otherwise). Overall, our property inherently holds only if £ # m.

4.1.1 Alternative Representation

Before we prove that any full-dimensional function can be computed fairly, we give a different
representation for this definition. This strengthens our understanding of this property, and is also
related to the balanced property defined in [ALR13] (see more in Section 4.3). We have:

Claim 4.2 Let f : {z1,...,xz¢} x {y1,...,Yym} — {0,1} be a function, let My be as above and let
S ={Xi1,...,X¢} be the rows of My (¢ points in R™ ). The following are equivalent:

1. The function is right-unbalanced with respect to arbitrary vectors.
That is, for every non-zero q € R™ and any 0 € R it holds that: My - ql #6-1,.

2. The rows of the matrix do not lie on the same hyperplane.
That is, for every non-zero q € R™ and any § € R, there exists a point X; such that X; &
H(q,d). Alteratively, conv({Xy,...,X}) € H(q,9).

8. The function is full-dimensional.
There ezists a subset of {X1,..., Xy} of cardinality m + 1, that is affinely independent. Thus,
dim(aff ({X1,...,X¢})) = m.

Proof:

-1 & —2: By contradiction, if there exists q,d such that My - q’ = § - 1,4, then for every row of
the matrix M it holds that (X;,q) = ¢ and so X; € H(q,0). This also implies that for any point
in conv({Xy,...,Xy}), the point is in H(q,d). This is because any point in conv({Xy,..., X/})
can be represented as a - My where a is a probability vector, and thus we have that

<a-Mf,q>:a~Mf-qT:a-5-1g:5,

since a is a probability vector and sum-up to 1. We therefore have that conv({X1,..., X,}) C
H(q,d). For the reverse direction, if such H(q,d) exists that contains all the rows of the matrix,
then clearly M - ql =6 1ZT in contradiction.
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3 = 2: Since the affine dimension of {X,..., X;} is m, then it cannot lie in a single hyperplane
(an affine subspace of dimension m — 1). Thus, this implication trivially holds.
2

= 3: We first claim that there exists a subset of m + 1 points S’ = {Xl, .. 7Xm+1} that does
not lie on the same hyperplane, for any hyperplane. This set can be found iteratively, where we
start with a single point, and add some other distinct point (such must exist otherwise we found an
hyperplane that contains all the points). Then, we look for another point that do not lie on the same
line that is defined by the 2 points that we have (again, such must exist from the same reason as
above). We then look for a forth points that do not lie on the same plane that contains all the three
points that we have, and so on. At the end of this process, we get the set S’ = {Xl, e ,Xm+1},
which are m + 1 points that do not lie on the same hyperplane, for any hyperplane. We now claim
that S’ is affinely independent. Take the first m points, which define some hyperplane H(q,d).
Since Xy41 € H(q,0) and since H(q,d) = aff({X1,...,X,,}) then X1 & aff ({X1,..., X)),
and therefore the points X1, ..., X;,+1 are affine independent.

From Alternative 1, checking whether a function is full-dimensional can be done very efficiently.
Giving that £ > m, all we have to do is to verify that the only possible solution q to the linear system
My - ql = O{ is the trivial one, and the there is no solution q to the linear system M; - ql = 1{.
This implies that the function is unbalanced for every ¢ € R.

4.1.2 The Proof of Possibility

We now show that any function that is full-dimensional can be computed with complete fairness,
using the protocol of [GHKLO08]. The proof for this Theorem is geometrical. Recall that by
Theorem 3.4, we need to show that there exists a solution for some set of equations. In our proof
here, we show that such a solution exists without solving the equations explicitly. We show that
all the points @™ that the simulator needs (by Theorem 3.4) are in the convex-hull of the rows
{X1,..., Xy}, and therefore there exist probability vectors X fd’sal as required. We show this in two

steps. First, we show that all the points are very “close” to some point ¢, and therefore, all the

points are inside the Euclidian ball centered at c for some small radius e (defined as B(c,¢) e

{Z € R™ | d(Z,c) < €}). Second, we show that this whole ball is embedded inside the convex-
polytope that is defined by the rows of the function, which implies that all the points Q% are in
the convex-hull and simulation is possible.

In more detail, fix some distribution X,.q for which the point ¢ = (py,,...,Py.) = Xpear - My
is inside the convex-hull of the matrix. Then, we observe that by adjusting «, all the points Q%
that we need are very “close” to this point c. This is because each coordinate q{fj’.a is exactly py,
plus some term that is multiplied by «/(1 — ), and therefore we can control its distance from Dy;
(see Eq. (1)). In particular, if we choose o = 1/In &, then for all sufficiently large x’s the distance
between Q' and c is smaller than any constant. Still, for « = 1/Ink, the number of rounds of
the protocol is R = a~! - w(Ink) = Ink - w(ln k), and thus asymptotically remains unchanged.

All the points Q™® are close to the point ¢. This implies that they all lie in the m-dimensional
Fuclidian ball of some constant radius € > 0 centered at c. Moreover, since the function is of full-
dimension, the convex-hull of the function defines a full-dimensional convex polytope, and therefore
this ball is embedded in this polytope. We prove this by showing that the center of the ball c is
“far” from each facet of the polytope, using the separation theorems of closed convex sets. As
a result, all the points that are “close” to ¢ (i.e., our ball) are still “far” from each facet of the
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polytope, and thus they are inside it. As an illustration, consider again the case of the GHKL
function in Figure 2, in the Introduction (where here, the circle represents the ball and the center
of the circle is the point ¢). We conclude that all the points that the simulator needs are in the
convex-hull of the function, and therefore the protocol can be simulated.

Before we proceed to the full proof formally, we give an additional definition and an important
Claim that will be helpful for our proof. For a set F© C R™ and a point p € R™, we define
the distance between p and F' to be the minimal distance between p and a point in F, that is:
d(p, F') = min{d(p,f) | f € F'}. The following claim states that if a point is not on a closed convex
set, then there exists a constant distance between the point and the convex set. We use this claim
to show that the point c is far enough from each one of the facets of the polytope (and therefore the
ball centered in c is in the convex). This Claim is a simple implication of the separation theorems
for convex sets, see [Rom08]. We have:

Claim 4.3 Let C be a closed convexr subset of R™, and let a € R™ such that a &€ C. Then, there
exists a constant € > 0 such that d(a,C) > € (that is, for every Z € C it holds that d(a, Z) > €).

We now ready for our main theorem of this section:

Theorem 4.4 Let f : {x1,...,z¢} X {y1,-..,ym} — {0,1} be a Boolean function. If f is of
full-dimension, then f can be computed with complete fairness.

Proof: Since f is full-dimensional, there exists a subset of m+1 rows that are affinely independent.
Let 8" = {X1,..., X;nt1} be this subset of rows. We now choose parameters for the GHKL protocol,
such that ¢ will be inside the simplex that is defined by S’. For this, we can simply define X,y
to be the uniform distribution over S’ (the ith position of X, is 0 if X; ¢ S’, and 1/(m + 1) if
X; € 8'). We also set & = 1/In k, and this all the parameters that are needed for the real protocol.

Let ¢ = (py,,-- s Pym) = Xreal - My, the output distribution vector that is correspond to X cq.
Consider the set of points {Q™},cx 4ef0,1} that are needed for the simulation as in Eq. (1). The
next claim shows that all these points are close to ¢, and in the m-dimensional ball B(c, ¢) for some
small € > 0. That is:

Claim 4.5 For every constant € > 0, for every x € X,a € {0,1} , and for all sufficiently large ks
it holds that:
Q" € B(c,e¢)

Proof: Fix e. Since a = 1/lnk, for every constant § > 0 and for all sufficiently large x’s it
holds that: a/(1 —a) < §. We show that for every z,a, it holds that d(Q™%,c) < ¢, and thus
Q™" € B(c,e).

Recall the definition of Q*Y as in Eq. (1): If f(x,y;) = 1 then qgj = py, and thus |p,, —q(y)j] =0.
In case f(z,y;) =1, for § = €(1 — p,)/+/m and for all sufficiently large x’s it holds that:

« 1 1) €
< . < =
1l—a (1—p)

(1_px) \/Tin ‘

< €/y/m irrespectively to whether f(z,y;) is 1

Py, Dy 1—a (1_pm)

0
)pyj B qu

Therefore, for all sufficiently large x’s, |py,, — q;;_o

< €¢/y/m. Overall, for every

or 0. Similarly, for all sufficiently large «’s it holds that: ’pyj — qZ]?l
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x € X, a € {0,1} we have that the distance between the points @™ and c is:

d(Q™,¢) = i (a5 —zoyj)2 < i (\/%)2 <e

j=1 j=1

and therefore Q** € B(c,€). [ |
We now show that this whole ball is embedded inside the simplex of S’. That is:

Claim 4.6 There exists a constant € > 0 for which B(c,¢€) C conv(S").

Proof: Since S" = {X1,..., X;n41} is affinely independent set of cardinality m + 1, conv(S’) is a
simplex. Recall that ¢ is a point in the simplex (since it assigns 0 to any row that is not in S’), and
so ¢ € conv(S’). We now show that for every facet of the simplex, there exists a constant distance
between the point ¢ and the facet. Therefore, there exists a small ball around ¢ that is “far” from
each facet of the simplex, and inside the simplex.

For every 1 <i < m + 1, the ith facet of the simplex is the set F; = conv(S"\ {X;}), i.e., the
convex set of the vertices of the simplex without the vertex X;. We now show that ¢ ¢ F;, and
therefore, using Claim 4.3, c is e-far from Fj, for some small ¢ > 0.

In order to show that ¢ ¢ F;, we show that ¢ € H(q,d), where H(q,0) is an hyperplane that
contains F;. That is, let H(q,d) be the unique hyperplane that contains all the points S’ \ {X;}
(these are m affinely independent points and therefore there is a unique hyperplane that contains
all of them). Recall that X; & H(q,d) (otherwise, S’ is affinely dependent). Observe that F; =
conv(S'\{X;}) C H(q,0), since each point X; is in the hyperplane, and the hyperplane is an affine
set. We now show that since X; & H(q,d), then ¢ € H(q,d) and therefore ¢ ¢ F;.

Assume by contradiction that ¢ € H(q,d). We can write:

™o 1 1 1 m

0=leq) = < ; m+1 'Xj’q> R RR e ;<Xj’q> S mpie vt T 0
and so, (X;,q) = 0, which implies that X; € H(q,d) in contradiction.

Since ¢ € F;, and since F; is a closed® convex, we can apply Claim 4.3 to get the existence of a
constant ¢; > 0 such that d(c, F;) > ¢;.

Now, let Fi,..., Fn+1 be the facets of the simplex. We get the existence of €q,...,€n41 for
each facet as above. Let € = min{ey, ..., €nt1}/2, and so for every i, we have: d(c, F;) > 2e.

Consider the ball B(c,€). We show that any point in this ball is of distance at least € from each
facet F;. Formally, for every b € B(c,¢), for every facet F; it holds that: d(b, F;) > e. This can be
easily derived from the triangle inequality, where for every b € B(c,€/2):

d(c,b) +d(b, F}) > d(c, F}) > 2,

and so d(b, F;) > € since d(b,c) < e.
Overall, all the points b € B(c, €) are of distance at least € from each facet of the simplex, and
inside the simplex. This shows that B(c,¢) C conv(S’). [ |

3The convex-hull of a finite set S of vectors in R™ is a compact set, and therefore is closed (See [Rom08, Theo-
rem 15.4]).

20



For conclusion, there exists a constant € > 0 for which B(c,€) C conv(S’) C conv({X1,..., Xs}
Moreover, for all z € X,a € {0,1} and for all sufficiently large x’s, it holds that @™* € B(c,e
Therefore, the requirements of Theorem 3.4 are satisfied, and the protocol securely computes f
with complete fairness. |

).
).

4.1.3 On the Number of Full-Dimensional Functions

We count the number of functions that are full dimensional. Recall that a function with | X| = |Y|
cannot be full-dimensional, and we consider only functions where |X| # |Y|. Interestingly, the
probability that a random function with distinct domain sizes is full-dimensional tends to 1 when
| X|,]Y| grow. Thus, almost always, a random function with distinct domain sizes can be computed
with complete fairness(!). The answer for the frequency of full-dimensional functions within the class
of Boolean functions with distinct sizes relates to a beautiful problem in combinatorics and linear
algebra, that has received careful attention: Estimating the probability that a random Boolean
matrix of size m x m is singular. Denote this probability by P,,. The answer for our question is
1— P, and is even larger when the difference between | X| and |Y| increases (see Claim 4.7 below).
The value of P, is conjectured to be (1/2 + o(1))™. Recent results [Kom67, JKS95, Woo09]
are getting closer to this conjuncture by showing that P, < (1/v/2 4 0(1))™, which is roughly the
probability to have two identical or compliments rows or columns. Observe that this is a negligible
function. Since our results hold only for the case of finite domain, it is remarkable to address
that P, is small already for very small dimensions m. For instance, Pjg < 0.29, P;5 < 0.047 and
P3p < 1.6 - 1076 (and so > 99.999% of the 31 x 30 functions can be computed fairly). See more
experimental results in [VZ06]. The following Claim is based on [Zie00, Corollary 14]:

Claim 4.7 With a probability that tends to 1 when |X|, |Y| grow, a random function with | X| # |Y|
18 full-dimensional.

Proof: Our question is equivalent to the following: What is the probability that the convex-hull
of m+ 1 (or even more) random 0/1-points in R™ is an m-dimensional simplex?

Recall that P,, denotes the probability that a random m vectors of size m are linearly dependent.
Then, the probability for our question is simply 1 — P,,,. This is because with very high probability
our m + 1 points will be distinct, we can choose the first point X; arbitrarily, and the rest of
the points S = {Xo,..., X;+1} uniformly at random. With probability 1 — P,,, the set S is
linearly independent, and so it linearly spans X;. It is easy to see that this implies that {Xo —
X1,..., Xmyt1— X1} is a linearly independent set, and thus { X1, ..., X;,+1} is affinely-independent
set. Overall, a random set {X7,..., X;,4+1} is affinely independent with probability 1 — P,,. [ |

4.2 Functions that Are Not Full-Dimensional
4.2.1 A Negative Result

We now consider the case where the functions are not full-dimensional. This includes the limited
number of functions for which |X| # |Y|, and all functions with |X|=|Y|. In particular, for a
function that is not full-dimensional, all the rows of the function lie in some hyperplane (a (m—1)-
dimensional subspace of R™), and all the columns of the matrix lie in a different hyperplane (in
R?). We show that under additional requirements, the protocol of [GHKLOS] cannot be simulated
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for any choice of parameters, with respect to the specific simulation strategy defined in the proof
of Theorem 3.4.
We have the following Theorem:

Theorem 4.8 Let f, My, {X1,...,X¢} be as above, and let {Y1,...,Y} be the columns of My.
Assume that the function is not full-dimensional, that is, there exist non-zero p € RY, q € R™ and

some 01,09 € R such that:
Xl,...,XgEH(q,ég) and Yl,...,YmGH(p,él) .

Assume that in addition, 0p,1y & H(p,01) and Op, 1., & H(q,d2). Then, the function f cannot
be computed using the GHKL protocol, for any choice of parameters (o, X ear), with respect to the
specific simulation strategy used in Theorem 3.4.

Proof: We first consider the protocol where P; plays the party that inputs z € X and P
inputs y € Y (that is, P is the second to receive output, exactly as GHKL protocol is described
in Section 3). Fix any X,eq, @, and let ¢ = (py,,...,Dy,) = Xrear - My. First, observe that
conv({Xy,...,Xy}) C H(q,d2), since for any point Z € conv({Xy,...,X}), we can represent Z
as a- My for some probability vector a. Then, we have that (Z,q) = (a-My,q) = a-d-1;, = 3 and
so Z € H(q,02). Now, assume by contradiction that the set of equations is satisfied. This implies
that Q™* € H(q, d2) for every z € X, a € {0,1}, since Q** € conv({Xy, ..., Xs}) C H(q,d2).

Let o denote the entrywise product over R™, that is for Z = (21,...,2m), W = (w1, ..., wpn),
the point Z o W is defined as (21 - w1, ..., Zm - wm). Recall that ¢ = (py,,...,Dy,, ). We claim that
for every X;, the point c o Xj is also in the hyperplane H(q,d2). This trivially holds if X; = 1,,.
Otherwise, recall the definition of Q%" (Eq. (1)):

q:m‘,O def | Py; ap if f(xl’ yj) =1

oY = v , ,

" Py; + ey (@) =0

Since X; # 1,,, it holds that p,, # 1. Let v = (1_06)?‘71_2%) We can write Q%0 as follows:

Q™ =(1+7)-c—7y-(coXy) .
Since for every i, the point Q% is in the hyperplane H(q, d2), we have:
02 = (Q™%, @) = ((1+7)-c—7-(coX;),q) = (1+7) - (c,@) =7+ (co X, q) = (1+7) - da—7-(coX;, q)

and thus, (c o X;,q) = d2 which implies that c o X; € H(q, J2).

We conclude that all the points (co X1),..., (co Xy) are in the hyperplane H(q, d2). Since all
the points Y1, ...,Y,, are in H(p, d1), it holds that p - My = 41 - 1,,,. Thus, Zlepi X =01 1y,
which implies that:

ZE:pi 02 = ) i <COXi,Q> = <ZZ:I% : (COXz')aQ> = <C° (ZZ:ZH ‘Xi)’CI> =(co (01 1), q)
i=1 =1 i=1 =1
= d1-(c,q) =01 - 62

M~

=

and thus it must hold that either Zle p; = 01 or d3 = 0, which implies that 1 € H(p,d1) or
0 € H(q,d2), in contradiction to the additional requirements.
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The above shows that the protocol does not hold when the P, party is the first to receive output.
We can change the roles and let P» to be the first to receive an output (that is, we can use the
protocol to compute f7). In such a case, we will get that it must hold that Yot qi=0d20r 6 =0,
again, in contradiction to the assumptions that 1 € H(q, d2) and 0 &€ H(p, d1). [ |

This negative result does not rule out the possibility of these functions using some other pro-
tocol. However, it rules out the only known possibility result that we have in fairness. Moreover,
incorporating this with the characterization of coin-tossing [ALR13], there exists a large set of func-
tions for which the only possibility result does not hold, and the only impossibility result does not
hold either. Moreover, this class of functions shares similar (but yet distinct) algebraic structure
with the class of functions that imply fair coin-tossing. See more in Subsection 4.3.

A possible generalization of [GHKLO08]. In Section 3, we generalized the protocol such that
the algorithm RandOuts(y) chooses & according to some distribution X,..,; and not just uniformly
at random as in [GHKLOS]. Similarly, we could have generalized the protocol for the RandOut; ()
algorithm as well, while defining some distribution Y,..,;, and parameterized the protocol with this
additional distribution (in the same sense as we parameterized X,q;). By using this modification,
the protocol may potentially compute more functions. However, by a simple adjustment of the
proof of Theorem 4.8, as long as Y, is “valid” (in a sense that p,, = 1 if and only if X; = 1,, and
pz; = 0if and only if X; = 0,,, otherwise the output distribution vectors Q** are not well-defined),
this generalization does not help, and the negative result holds for this generalization also.

Our theorem does not hold in cases where either 0, € H(p,d1) or 1, € H(p, 1) (likewise, for
H(q, d2)). These two requirements are in some sense equivalent. This is because the alphabet is
not significant, and we can switch between the two symbols 0 and 1. Thus, if for some function f
the hyperplane H(p, 01) passes through the origin 0, the corresponding hyperplane for the function
f(x,y)=1—f(x,y) passes through 1 and vice versa. Feasibility of fairness for f and f is equivalent.

4.2.2 On the Number of Functions that Satisfy the Additional Requirements

We now count on the number of functions with | X | = |Y| that satisfy these additional requirements,
that is, define hyperplanes that do not pass through the origin 0 and the point 1. As we have seen
in Theorem 4.8, these functions cannot be computed with complete fairness using the protocol
of [GHKLO08]. As we will see, only negligible amount of functions with | X| = |Y| do not satisfy
these additional requirements. Thus, our characterization of [GHKLO0S8] is almost tight: Almost
all functions with |X| # |Y'| can be computed fairly, whereas almost all functions with | X| = |Y|
cannot be computed using the protocol of [GHKLO08]. We have the following Claim:

Claim 4.9 With a probability that tends to 0 when |X|, |Y| grow, a random function with | X| = |Y|
define hyperplanes that pass through the points 0 or 1.

Proof: Let m = |X| = |Y|. Recall that P, denotes the probability that a random m vectors
of size m are linearly dependent. Moreover, by Claim 4.7, the probability that a random set
{X1,..., X;m+1} is affinely independent with probability 1 — P,,, even when one of the points is
chosen arbitrarily.

Thus, with probability P, the set {Xi,..., X,,,1} where X;,...,X,, are chosen at random
is affinely dependent. In this case, the hyperplane defined by {Xi,..., X,,} contains the point 1.
Similarly, the set {X1,..., X, 0} is affienely dependent with the same probability P,,. Overall,
using union-bound, the probability that the hyperplane of random points X1,...,X,, contains
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the points 1 or O is less than equal to 2 - P,,. From similar arguments, the probability that the
hyperplane that is defined by the columns of the matrix contains either 1 or 0 is 2- P,,,, and therefore
the overall probability is 4 - P,,.

H

4.2.3 Functions with Monochromatic Input

We consider a limited case where the above requirements do not satisfy, that is, functions that are
not full-dimensional but define hyperplanes that pass through 0 or 1. For this set of functions, the
negative result does not apply. We now show that for some subset in this class, fairness is possible.
Our result here does not cover all functions in this subclass.

Assume that a function contains a “monochromatic input”, that is, one party has an input that
causes the same output irrespectively to the input of the other party. For instance, P» has input
y; such that for every x € X: f(z,y;) = 1. In this case, the point 1; is one of the columns of the
matrix, and therefore, the hyperplane H(p, d;) must pass through it. We show that in this case we
can ignore this input and consider the “projected” m x (m — 1) function f’ where we remove the
input y;. This latter function may now be full-dimensional, and the existence of a protocol for f’
implies the existence of a protocol for f. Intuitively, this is because when P uses y;, the real-world
adversary P; cannot bias its output since it is always 1. We have:

Claim 4.10 Let f : X x Y — {0,1}, and assume that My contains the all-one (resp. all-zero)
column. That is, there exists y € Y such that for every & € X, f(&,y) =1 (resp. f(Z,y) =0).

If the function f': X x Y' — {0,1}, where Y =Y \ {y} is full-dimensional, then f can be
computed with complete-fairness.

Proof: Assume that the function contains the all one column, and that it is obtained by input
Ym (i-e., the mth column is the all-one column). Let X7,..., X, be the rows of My, and let X] be
the rows over R™~! without the last coordinate, that is, X; = (X/,1). Consider the “projected”
function [’ : {z1,...,xm} X {y1,. .-, Ym-1} — {0,1} be defined as f’'(z,y) = f(z,y), for every =,y
in the range (we just remove y,, from the possible inputs of P,). The rows of My are X1{,...,X],.

Now, since f’ is of full-dimensional, the function f’ can be computed using the GHKL protocol.
Let X% be the solutions for equations of Theorem 3.4 for the function f’. It can be easily
verified that X% are the solutions for equations for the f function as well, since for every z,a,
the first m — 1 coordinates of Q* are the same as f’, and the last coordinate of Q% is always
1. For Q*Y it holds immediately, for Q®! observe that Dy, = 1 no matter what X,.q is, and thus

Py; + % = 1+0 = 1). Therefore, X" are the solutions for f as well, and Theorem 3.4
follows for f as well. [ |

The above implies an interesting an easy to verify criterion:

Proposition 4.11 Let f : {x1,...,zm} X {y1,.--,ym} — {0,1} be a function. Assume that f
contains the all-one column, and that My is of full rank. Then, the function f can be computed
with complete fairness.

Proof: Let Xi,...,X,, be the rows of My, and assume that the all-one column is the last one (i.e.,
input yy,). Consider the points X1, ..., X/, in R™~1 where for every i, X; = (X/,1) (i.e., X] is the
first m—1 coordinates of X;). Since My is of full-rank, the rows X1, ..., X, are linearly independent,
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which implies that m points X7, ..., X/ in R™! are affinely independent. We therefore can apply
Claim 4.10 and fairness in f is possible. [ |

Finally, from simple symmetric properties, almost always a random matrix that contains the
all one row / vector is of full rank, in the sense that we have seen in Claims 4.7 and 4.9. Therefore,
almost always a random function that contains a monochromatic input can be computed with
complete fairness.

Functions with no embedded XOR. [GHKLO0S8| presents a totally different and simpler pro-
tocol for handling functions that do not contain an embedded XOR (i.e., the Boolean AND/OR
functions, and the greater-than function). An immediate Corollary from Proposition 4.11 is that
all the functions that can be computed using this simpler protocol, can also be computed using the
second generalized protocol. This is because all functions that do not contain an embedded XOR
(or their complement function) have both full-rank and monochromatic input, and therefore can
be computed using the generalized protocol by Proposition 4.11. This shows that indeed, the only
known possibility result that we have in fairness is Protocol 3.3.

However, this first totally different protocol gives an answer for an interesting question regarding
the round-complexity of fair protocols. In particular, [GHKLOS8] gives a lower bound of w(log k)
for the round complexity of protocol for computing functions that contain embedded XOR. The
simpler protocol for handling functions with no embedded XOR has round complexity that is linear
in | X|, Y| and is independent of the security parameter k.

4.3 Conclusion: Symmetric Boolean Functions with Finite Domain

We overview all the known results in complete fairness for symmetric Boolean functions with finite
domain, and we link our results to the balanced property of [ALR13]. Moreover, we give few
examples for functions that can be computed with complete fairness, that are part of this class of
functions.

Characterization of coin-tossing [ALR13]. The work of Asharov, Lindell and Rabin [ALR13|
considers the task of coin-tossing, which was shown to be impossible to compute fairly [Cle86]. The
work provides a simple property that indicates whether a function implies fair coin-tossing or not.
If the function satisfies the property, then the function implies fair coin tossing, in the sense that a
fair protocol for the function implies the existence of a fair protocol for coin-tossing, and therefore
it cannot be computed fairly by Cleve’s impossibility. On the other hand, if a function f does
not satisfy the property, then for any protocol for coin-tossing in the f-hybrid model there exists
an (inefficient) adversary that biases the output of the honest party. Thus, the function does not
imply fair coin-tossing, and may potentially be computed with complete fairness. The results hold
also for the case where the parties have an ideal access to Oblivious Transfer [Rab81, EGL82]. The
property that [ALR13] has defined is as follows:

Definition 4.12 (strictly-balanced property [ALR13]) Let f: {x1,...,z¢} X {y1,...,Ym} —
{0,1} be a function. We say that the function is balanced with respect to probability vectors if there
exist probability vectors p = (p1,...,0¢), 4= (q1,.--,qm) and a constant 0 < § < 1 such that:

p-My=0-1, and Mf-qT:(s-lgT.
Intuitively, if such probability vectors exist, then in a single execution of the function f, party P;
can choose its input according to distribution p which fixes the output distribution vector of P to
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be 0-1,,. This means that no matter what input (malicious) P» uses, the output is 1 with probability
0. Likewise, honest P, can choose its input according to distribution q, and malicious P; cannot
bias the result. We therefore obtain a fair coin-tossing protocol. On the other hand, [ALR13] shows
that if the function does not satisfy the condition above, then there always exists a party that can
bias the result of any coin-tossing protocol that can be constructed using f.

4.3.1 The Characterization

A full-dimensional function is an important special case of this unbalanced property, as was pointed
out in Claim 4.2. Combining the above characterization of [ALR13], we get the following Theorem:

Theorem 4.13 Let f : {x1,...,2¢} X {y1,...,ym} — {0,1}, and let My be the corresponding
matriz representing f as above. Then:

1. Balanced with respect to probability vectors [ALR13|:
If there exist probability vectors p = (p1,...,0¢),d = (q1,--.,qm) and a constant 0 < § < 1
such that: p-Mp=6-1, and Mf-qT:5o1ZT.

Then, the function f implies fair coin-tossing, and is impossible to compute fairly.

2. Balanced with respect to arbitrary vectors, but not balanced with respect to
probability vectors:
If there exist two non-zero vectors p = (p1,...,pe) €ERY, a = (q1,...,qn) € R™, §1,00 € R,
such that: p-My=06 -1, and My - ql =6, - 1;{
then we say that the function is balanced with respect to arbitrary vectors. Then, the function
does not (information-theoretically) imply fair-coin tossing [ALR13]. Moreover:
(a) If 61 and 3 are non-zero, Zle pi # 01 and X" q; # 02, then the function f cannot be
computed using the GHKL protocol (Theorem 4.8).
(b) Otherwise: this case is left not characterized. For a subset of this subclass, we show
possibility (Proposition 4.10).

3. Unbalanced with respect to arbitrary vectors:
If for every non-zero p = (p1,...,p¢) € RY and any 61 € R it holds that: p-My #61-1,,, OR
for every non-zero q = (q1,-..,qm) € R™ and any 62 € R it holds that: My - ql # 6, - 1£T,
then f can be computed with complete fairness (Theorem 4.4).

We remark that in general, if |X| # |Y| then almost always a random function is in subclass 3.
Moreover, if |X| = |Y|, only negligible amount of functions are in subclass 2b, and thus only
negligible amount of functions are left not characterized.

If a function is balanced with respect to arbitrary vectors (i.e., the vector may contain negative
values), then all the rows of the function lie in the hyperplane H(q, d2), and all the columns lie in
the hyperplane H(p,d1). Observe that §; = 0 if and only if H(p, d1) passes through the origin, and
Zle p; = 01 if and only if H(p, 1) passes through the all one point 1. Thus, the requirements
of subclass 2a are a different formalization of the requirements of Theorem 4.8. Likewise, the
requirements of subclass 3 are a different formalization of Theorem 4.4, as was proven in Claim 4.2.
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4.3.2 Examples

We give few examples for interesting functions and practical tasks that can be computed with
complete-fairness.

e Set membership. Assume some finite possible elements 2, and consider the task of set-
membership: P; holds S C 2, P, holds some elements w € (), and the parties with to find out
(privately) whether w € S. The number of possible inputs for P; is |§2|, whereas the number of
possible inputs for P is |P(Q)| = 2/2l, and the truth table for this function contains all possible
Boolean vectors of length-|Q?| (See Figure 3 for the case of 2 = {a, b}).

e Private evaluation of Boolean function. Let 7 = {g | g : 2 — {0,1}} be the family of all
Boolean functions with |2] inputs. Assume that P; holds some function g € F and P, holds some
input y € . The parties wish to privately learn g(y). This task has the exact same truth-table
as the set-membership functionality, i.e., it contains all possible Boolean vectors of length-|Q?| (in
this case, each vector represents a possible function g).

e Private matchmaking. Assume that P; holds some set of preferences, while P, holds a profile.
The parties wish to learn (privately) whether there is a matching between them. In fact, this
task is a special case of the subset-equal functionality. that is, P; holds some A C €2, P, holds
B C Q, and the parties wish to learn whether A C B. Although the possible inputs for both
parties is 2/l (i.e., |X| = |Y|), the truth-table for this functionality satisfies Proposition 4.11,
contains monochromatic row and can be computed using the protocol. See Figure 3.

e Set disjointness. The set-disjointness is another functionality that is feasible although |X| =
|Y'|, and is defined as follows: P; holds A C €, P5 holds B C Q, and the parties learn whether
ANB = (. In fact, the possibility of this function is easily derived from the possibility of A C B,
using the following observation:

ANB=() < ACB

a_b 0 {a} {0} {a,b} 0 {a} {b} {ab}
O 10 0 o |1 1 1 1 P 1 1 1 1
{a} |1 0 {fa} 1O 1 0 1 {fa} |1 0 1 0
oy o 1 o 0o 1 1 mr 1 1 0 0
{a,b} | 1 1 {a,b} |0 0 0 1 {a,} |1 0 0 0
(a) The set-membership functionality (b) The A C B functionality (C) The set-disjointness functionality

Figure 3: (1) The functionalities (a), (b) and (c) with Q = {a, b}

5 Extensions: Asymmetric Functions and Non-Binary Outputs

5.1 Asymmetric Functions

We now move to a richer class of functions, and consider asymmetric Boolean functions where the
parties do not necessarily get the same output. We consider functions f(z,y) = (fi(z,v), f2(z,y)),
where each f;, i € {1,2} is defined as: f; : {x1,...,2¢} X {y1,...,ym} — {0,1}. Interestingly,
our result here shows that if the function fs is of full-dimensional, then f can be computed fairly,
irrespectively to the function f;. This is because simulating P; is more challenging (because it is
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the first to receive an output) and the simulator needs to assume the rich description of fy in order
to be able to bias the output of the honest party P,. On the other hand, since P, is the second to
receive an output, simulating P; is easy and the simulator does not need to bias the output of P;.

The protocol. We first revise the protocol of [GHKLO08]. The RandOut; (z) algorithm is changed
such the function that is being evaluated is f1, and algorithm RandOuty(y) is modified such that
the function that is being evaluated is fo. Step 2.2.b in the Fyeaer functionality (Functionality 3.2)
is modified such that each party receives an output according to its respective output, that is:

Step 2.2.b: Fori =1i* to R: set (ai,b;) = (f1(z,y), f2(x,y)).

Analysis. The proof for the case where P» follows exactly along the lines of the proof of Claim A.1.
We now turn to corrupted P;. Here, we again define the probability p, for every x € X as
Pry. vy [fi(z,9) = 1]. Then, for every y; € Y, we define p,; = Prz, x,.,, [f2(%,y;) = 1]. This time,
(Py1s -+ Pym) = Xreal - My,, where My, represents the function fo.

The case where P is corrupted is very similar to the symmetric case, however, the constraints
and the vectors Q*% are different. Using same calculations as the symmetric case, we get the

following vectors Q*° = (qil’o, e qgf,’,?) and Q%! = (qu{l, . ,q;’j):

4 APy .

Py, + iy i f(@ys) =(0,0)
a:(py;—1) .

o0 = Pyt Tty i fl@y)=(01)

Py; if f(z,y;)=(1,1)

Py, lf f(z, yj) = (070)

o def | Pui o if f(x,y;)=1(0,1)

Ty; =\ py; + 7(1(_(1);7%) if f(x,y;) = (1,0)
a(py.—1 .

pyj + (1—3% if f(CC,yj) = (1, 1)

Observe that if f1(z;,y;) = 0 it implies that p,, # 1, and therefore Q*° is well defined (i.e., p, = 1
if and only of the row Xj is the all one row). Similarly, if fi(z;,y;) = 1 it implies that p,, # 0, and
therefore Q%! is well-defined. Overall, we get:

Theorem 5.1 Let f: {x1,...,x¢} X {y1,...,ym} — {0,1} x {0,1}, where f = (f1, f2). Let My,
be the matrix that represents fo. If there exist Xyeq, 0 < a < 1 such that o=t € O(poly(k)), such
that for every x € X, a € {0,1}, there exists a probability vector Xigzl’:al such that:

Xre . Mf2 — Qz,a ’

ideal
then Protocol 3.3 securely computes f with complete fairness.

Proof: The case of P, is corrupted follows exactly the same as the case in the proof of Theorem A.2.
All is left is just to what are the requirements from f(x,y;) in each one of the possible outputs
(0,0),(0,1),(1,0),(1,1). The cases of (0,0) and (1,1) are exactly the same as in the proof of
Theorem A.2, where the case of (0,0) corresponds to the symmetric case of f(z,y;) = 0, and the
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case of (1, 1) corresponds to the symmetric case f(z,y;) = 1. This defines the following requirements
(exactly as Equation 1):

D . 1—a)-
" a-py; (1-a)ps

z,0 def ) Py if fla,y;) = (1,1) gt ) Pyt )it flayyy) = (1,1)
Dy, + (A-a)-(1—pz) if f($,yj) = (070) v Py; if f(xvyj) = (070)

We now turn to the cases where the outputs are distinct.

The case where f(x,y;) = (0,1). That is, we consider the case where fi(z,y;) = 0, whereas
fa(z,y;) = 1. We get the following four possibilities:

output (a,b) | REAL IDEAL
(0,0) (1—a) - (1—pz) - (A—py)+a-(1—py) | (1—a) (1—ps)- (1 —qy”)
(0,1) (1—a) (1—ps) - py+a p, (1—a) (1—ps)-qy°+a
(1,0) (1—a) ps-(1-py) (1-a) po-(1—q)
(171) (1—04) Dz - Dy (1_04)'173:'(]5’1

The only difference from the case of f(x,y;) = (0,0) is that in the ideal execution, the +o is
obtained in the second row instead of the first row. The probabilities are equal if and only if, the
following hold:

- (py —1)
1—a) - (1—pg)

quO — py + ( and qgvl — py .

The case where f(x,y) = (1,0). Similarly to the above, we obtain:

output (a,b) | REAL IDEAL
(0,0) (I—a)-(1=pg)-(1—py) (1—a) (1—ps) (1—gq°)
(0,1) (I—a) (1—pz) py 1—a)-(1—ps) g
(1,0) 1—a) pa-(I=p)+a-(1—py) | (1—a) ps-(1—gy)+a
(1,1) (1—a) ps-py+a-py (1—a) p.-qy

The only difference from the case of f(x,y;) = (1,1) is that in the ideal execution, the +o is
obtained in the second row instead of the forth row, which result in the following constraints:

a°=py and ql=p, g
X

Similarly to the case of single output, the above implies that:

Corollary 5.2 Let f: {x1,...,2¢} X {y1,- .., ym} — {0,1} x {0,1}, where f = (f1, f2). If f2 is a
full-dimensional function, then f can be computed with complete fairness.

Proof: 1t is easy to see that for every constant ¢ > 0, for every x € X and a € {0,1}, and for all
sufficiently large x’s, it holds that Q™ € B(c,€), where ¢ = (py,,...,Py,.). As we saw, in case fo
is of full-dimension, we can embed c inside the convex and there exists a constant € > 0 such that
B(c,€) C comv({XfQ)7 . ,XéQ)}), where Xi(Q) is the ith row of fo. The corollary follows. [ |
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5.2 Functions with Non-Binary Output

Until now, all the known possibility results in fairness deal with the case of binary output. We
now extend the results to the case of non-binary output. Let ¥ = {0,...,k — 1} be an alphabet
for some finite k£ > 0 (the alphabet may be arbitrary, we use [0, k — 1] for the sake of convenience),
and consider functions f: {z1,...,z¢} X {y1,.. ., ym} — =.

The protocol is exactly the GHKL protocol presented in Section 3, where here a;, b; are elements
in 3 and not just bits. We just turn to the analysis. The proof of corrupted P> again follows along
the lines of the proof of Claim A.1. The difficult part is corrupted P;. Again, all the claims follow
exactly the same and we just need to compare the output distributions of the parties in case the
adversary aborts before or at ¢*. We analyze this in the following.

Fix some X,q, and let Uy denote the uniform distribution over Y. For any symbol o € X,
and for every = € X, denote by p,(o) the probability that RandOut;(z) is o. Similarly, for every
yj €Y, let py, (o) denote the probability that the output of RandOuty(y;) is 0. That is:

def def

Dz (0) = Q(E)(I}y [f(x7 g) = 0] and DPy; (O') = jﬁl?(l;eal [f(j;a y]) = U] :
Observe that ) cypz(0) =1 and ) cxpy,(0) =1.
For every o € 3, we want to present the vector (py, (0),...,py,,(c)) as a function of X,., and

My, as we did in the binary case (where there we just had: (py,,...,Dy.) = Xrear - My). However,
here it is a bit more complicated then the binary case. Therefore, for any o € ¥ we define the
binary matrix M7 as follows:

ol 1 if f((L'Z',yj) =0
My (i,7) = { 0 otherwise

Then, for every o € ¥, it holds that: (py, (0),...,py,,(0)) = Xyea - M7 . Moreover, it holds that:
Y oes MJ‘Z = Jyxm, where Jyyp, is the all one matrix with sizes £ x m. In the binary case, My is
in fact M }, and there was no need to consider the matrix M}), for a reason that we will see below
(intuitively, since in the binary case, p,,;(0) + py, (1) = 1).

The output distribution vectors. Similarly as in the binary case, in case the adversary sends
x to the simulated Fyealer and aborts at round ¢ < ¢* upon receiving some symbol a € 3, the
simulator chooses its input & according to some distribution X3;% . For each such a vector X;;%
we define |X| points Q%%(01), ..., Q" %(ok) in R™, where each vector Q*?(b) (for b € ¥) is obtained
by: Q™(b) = Xien - M}.

For a given x € X,y; € Y and a,b € ¥, we define the requirements from each vector Q*%(b) =

(qy*(b), ..., gy (b)). We have:

(py, (0)-1)

DPy; (b) + (13[0() Pe(@) if f(ffayj) =a=0b
def
T,a Lol a () .
(0= () + 2 if f(z,y;) =a#b 3)
pyj(b) if f($,yj) 7éa

We then require that for the same distribution X% it holds that X;;7, - M} = Q**(b) for every
b € X, simultaneously. We have the following Theorem:
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Theorem 5.3 Let f: {z1,...,z¢} X {y1,...,ym} — X be a function. If there exists a parameter
0<a<l,ateO(poly(k)) and a distribution X, eq, such that for every x € X, for every a € ¥
and for every b € ¥ it holds that:

deeal Mf - Qza( )
Then the function f can be computed with complete fairness.

Proof: The simulator for P} is exactly the same as in Theorem 3.4. All is left is to show that the
outputs are distributed identically in case the adversary aborts before or at ¢*.

The real execution. We now consider the output distribution where the adversary halts at
round ¢ for which ¢ < ¢*. In such a case, both parties output independent outputs according
to RandOut;(z) and RandOuty(y;), where (x,y;) are the inputs sent to the Fyeer. As a result,
they receive output (a,b) with probability (1 — ) - pz(a) - py,(b), where (1 — ) is the probability
that ¢ < i* given that i < ¢*. In case i = ¢* (which given ¢ < ¢*, it happens with probability
«), the adversary P; learns the correct output f(z,y;), whereas P» gets an output according to
RandOuty(y;). Overall, we have that:

Pr [(VIEW}p, OUThyp) = (a,b) | i <]
(1 =) pz(a) - py;(b) +a-1-py,(b) if f(z,y;)=a=10
= (1 —a)-pz(a)-py;(b) +a-1-p,.(b) if f(x,y;)=a#b
(1 —a) - pa(a) - py, (b) if f(z,y;) #a

(we differentiate between the first two cases although they are equal here, since they are different
in the ideal.)

The ideal execution. In case the adversary aborts at ¢*, the simulator sends the true input x to
the trusted party and both parties receive the correct output f(z,y;). On the other hand, in case
the adversary aborts at round 7 < ¢* after sending some x € X to the simulated Fyealer and upon
receiving a symbol a € X, the simulator chooses an input & according to distribution de’sal, and the
output of the honest party is determined accordingly, where we denote by qgj’.a(b) the probability
that the output of the honest party P» is b in this case. Therefore, we have that:

Pr [(VIEWl4ea), OUTideal) = (a,b) | i < i*]

(1= ) pefa) - 5" () + if flz,y;) =a
= (1—a)-pz(a)- qy] “(b) if f(x,y;)=a#b
(1 =) pu(a) - gy;" (b) if f(z,y;) #a

Therefore, if Eq. (3) holds, then we have for every (a,b) € X%

Pr [(VIEW} 4, OUThyb) = (a,b) | i <i*] = Pr [(VIEW}ge,), OUTideat) = (a,b) | @ <i*] .

ideal»

This, combining with the rest of the proof of Theorem A.2 shows that the protocol can be simulated.
H
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Relaxing the requirements. In the above Theorem, for the same distribution X deal it is
required that X° M;Z = Q"%(b) for every b € ¥ simultaneously. This requirement makes the

ideal
things much harder, since it involves convex combinations with the same coefficients (X[ ) of
different convex-hulls M}”, ey M;’“ We therefore want to encode all the requirements together

for the same Xil’gal. We do it in two steps. First, we show that it it is enough to consider equality
with respect to |X|— 1 symbols in the alphabet, and the last one is a simple derivation of the others
(this also explains why in the binary case, we did not consider the matrix MJQ) Next, we show
hot to encode all the requirements together into a single system.

Claim 5.4 Let f, be as above and let o € ¥ be arbitrary. Then, if there exists 0 < o < 1 (such
that a1 € O(poly(k)), distribution X,eq such that for every x € X, for every a € ¥ and for every

be X\ {o}
deeal Mf - Qxa( )
then it holds that Xigiigal M7 = Q% (o) as well and thus f can be computed with complete fairness.

Proof: Fix o, a, X,eq and assume that for every x € X, a € ¥ there exists X deal as above. We
now show that the X7 - M7 7 = @"(0). The key observation is that the sum of all matrices

Y obes be is J¢xm (the all-one matrix). Moreover, for every z,a, it holds that ), Q"*(b) = 1,,
This can is derived by analyzing each coordinate qﬁjﬁa separately as follows:

e Case 1 — f(x,y;) # a: In this case, ¢;;"(b) = py, (b) for every b € 3. Therefore,

St 0) = p, () =

bex bex
e Case 2 — f(x,y;) = a: In this case, for every b # a, we have that:

x,a _ « . pyj (b)
A N (e R )

Observe that ., py,(b) =1 — py,(a) (since they all sum-up to 1), and therefore we have:
o 1 —py,(a)
@, — py;(a) + : sunl
20" 0 = (L=n @)+ =5

On the other hand, for b = a we have: ¢;“(a) = py,(a) + ey (py;:(li)_l), and thus:

D aptv) = ap(@) + Y apt(d)

beS ba

@M®+(a ‘%“ﬁ4§+(u—%w»+(“ .wmmw>zk

l—a)  pula l—a)  ps(a)

Therefore, we can conclude that for every z,a it holds that: Q®%(0) = Ly — >, ., @™ (b).
Thus, we conclude:

b s — s
deeal Mf deeal (J€><m Z Mf) =1, Zngil:al Mf =1y — Z QI a(b) - Qm a(o_) .
b#o b#o b#o

and the claim follows. [ |
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Encoding the requirements together. Let My denote the ¢ x (|¥| — 1) - m binary matrix
defined as the concatenation of M7!||... HM}T"'_I. Let @*® be the (|X| — 1) - m vector which is a
concatenation of Q%% = (Q*(o1),...,Q"*(0k—1)). Then, we have that:

Corollary 5.5 Let f: {x1,...,2¢} X {y1,...,ym} = X, My, Q" be as above. If there exists a
parameter 0 < o < 1 (for which o=t € O(poly(k)), and a distribution X,.q, such that for every
x € X, for every a € X it holds that:

X5a . Mf — Qac,a

ideal

then the function f can be computed with complete fairness.

As a result, if the rows of the matrix My define a full-dimensional object (this time, in RE*(IZI=1)-m

then the function can be computed fairly.

Corollary 5.6 let My be an ¢ x ((|X]|—1)-m) matriz as above and let X1, ..., X, be the rows of M.
If there exists a subset of cardinality (|| —1)-m+1 of {X1,...,X¢} that is affinely-independent,
then f can be computed with complete fairness.

Proof: Let s = (|| — 1) -m. Fix a = 1/In(k) and let X,.q be the uniform distribution over
the affinely independent rows in My (and assigns 0 to the others, if exist). Similarly to the binary
case, we observe that all the points @™ (this time - points in R* and not R™) are in the Euclidian
ball B(c,€), where ¢ = X,¢q; - My. Moreover, since conv({X7,..., X;}) defines an s-dimensional
simplex in R®, the ball B(c,¢) is inside it, and therefore there exist probability vectors de’gal as
above.

Alternative representation. We now write the above in a different form. Giving a function
f: X xY = %, let p € ¥ be arbitrarily, and define ¥, = ¥\ {p}. Define the Boolean function
fli X xY* —{0,1}, where Y> = {y7 ly; € Y,0 € X}, as follows:

raap={ o HIGw e

0 otherwise

Observe that |[Y>| = (|X| —1)-|Y|. It is easy to see that if f is full-dimensional, then the function
f can be computed with complete-fairness. This provide a property that may be satisfied only
when | X|/|Y| > || — 1.

An example. We give an example for a non-binary function that can be computed with complete-
fairness. We consider trinary alphabet ¥ = {0, 1,2}, and thus we consider a function of dimensions
5 x 2. We provide the trinary function f and the function f’ that it reduced to. Since the binary
function f’ is a full-dimensional function in R%, it can be computed fairly, and thus the trinary
function f can be computed fairly as well. We have:
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A Security Proofs of [GHKLO0S]

We now analyze the security of the protocol. All the analysis that we present in this section appears
also in [GHKLOS], and is given here for completeness.

First, when both parties are honest, they both receive an output except for some negligible
probability. Recall that in the first step of the protocol, the number of rounds R is set as o~ ! -
w(log k). Both parties learn the correct output unless i* > R, which happens with probability
(1-a)f<e < e~w(ogr) " which is negligible in k. Note that we can set o to be polynomially
small (say, 1/k), and still get number of rounds which is polynomial ( - w(log x)). In our results,
we set a = 1/Ink.

A.1 Security with Respect to Corrupted P,

In each round, P; is the first to receive a message from Fyeaer- As a result, in round ¢* the party
P, gets an output after P; has already received its output. Therefore, simulating corrupted P
is easy: the simulator invokes the adversary and receives its input y to the simulated Fyealer- It
then chooses the round i* as Fyealer, and gives the adversary values according to RandOuty(y) for
each round until ¢*. In case the round ¢* is reached, the simulator sends y to the trusted party
computing f, receives the output f(x,y), and gives the adversary this value until round R. Clearly,
if the adversary aborts after or at i*, the honest party P, has already learned the correct output in
the real execution and also in the ideal. If the adversary aborts before i*, the output of the honest
party P; is determined according to RandOut;(z), that is, f(x,y) where ¢ is chosen uniformly at
random. Therefore, in case the adversary aborts before i*, the simulator chooses g according to
the uniform distribution over Y and sends this input to the trusted party. Overall, the protocol
can be simulated for any function f. [GHKLOS] proves the following claim:

Claim A.1 For every function f : {x1,...,x¢} x{y1,...,ym} — {0, 1}, for every set of distribution
Xreal, for every 0 < a < 1 such that a=' € O(poly(k)), Protocol 3.3 securely computes f in the
presence of malicious adversary corrupting Ps.

Proof: Fix f, X,¢q and a. Let A be an adversary that corrupts P». We construct the simulator
S as follows:

1. S invokes A on input y and with auxiliary input z.

2. § chooses 4 < Y uniformly, as in algorithm RandOut;. This value will be sent to the trusted
party as the input of A in case A aborts before i*.

3. S receives y from A as was sent to Fyealer (Step 3 in the protocol). It then verifies that
y' € Y, if not — it sends abort as response from Fyeajer, sends 7 to the trusted party and halts.

4. § chooses i* according to geometric distribution with parameter «.
5. Forevery i =1,...,7" — 1:

(a) If S receives proceed from A, then it sets b; = RandOutz(y’) and sends b; to A as was
given from Fyealer-

(b) If S receives abort from A, it sends to A the message abort as was given from Fyegler. In
addition, it sends ¢ to the trusted party computing f, outputs whatever A outputs and
halts.
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6. In the simulated round 7 = 7*:

(a) If S receives proceed from A, then it sends y’ to the trusted party computing f and
receives back the output byt = f(2,9’). It then gives by, back to A.

(b) If S receives abort from A, it gives back to A the message abort as was sent from Fyealer-
Then, it sends the default input ¢ to the trusted party computing f, outputs whatever
A outputs and halts.

7. In the simulated rounds ¢ = * + 1 to R:

(a) If S receives proceed from A, then it gives by to A.

(b) If S receives abort from A, it sends abort to A as was given from Fyeyler-
8. If § has not halted yet and i* > R — S sends ¢ to the trusted party.
9. S outputs whatever A outputs and halts.

There is no communication between P, and P», and all the view of P, consists of the outputs of
the Fyealer functionality to P,. Moreover, P, only sends ¢ in the first round to Fyealer, and all the
rest of the messages are either proceed or abort. Therefore, after sending 1/, all what A can do is
either send proceed or to abort the interaction. Assume that A aborts at some round i. If i = 0,
i.e., if A does not send the input ¥’ to Fyealer, then in the real execution P; outputs RandOut; (z)
which is independent of /. In the ideal, S chooses § uniformly from Y, and sends to the trusted
party computing f the value §, which determines the output of P; to be f(x,4). This is exactly the
same as the implementation of RandOut;(x). In case A aborts at some round 7 < i*, the view of P
consists of 7 independent invocations of RandOuts(y’), while the output of the honest P; consists
of RandOut;(x). S works exactly in the same way — for every round until ¢*, it sends to P» a fresh
output that depends only on the value y' — RandOuty(y’). In case it aborts, it sends § as we above,
resulting the output of P; to distribute identically as in the real execution. In case A aborts at ¢* or
after ¢* (i.e., in case i* > i), P; has already learned the output by, = f(z,%’) in the real execution.
Therefore, S can send the true input ¥’ to the trusted party, which determines the output of P; to
be f(x,y'). It learns the output by, and gives this value to A as the outputs of Fyealer, €xactly as
in the real execution. [ |

A.2 Security with Respect to Corrupted P;

This case is more complex. Intuitively, the adversary does have an advantage in the real execution,
in case it succeeds to predict correctly and aborts exactly at round ¢*. In such a case, the corrupted
party P; learns the correct output f(z,y), whereas P» learns a value according to RandOuta(y).
However, as we will see, this advantage in the real execution can be simulated in the ideal execution
under certain circumstances, for some functions f.

The output vector distributions Q*%. Let f : {x1,...,z¢} X {y1,...,ym} — {0,1}. Fix
Xreal, and let Uy denote the uniform distribution over Y. For every x € X, denote by p, the
probability that the output of RandOut; is 1 on the input x. Similarly, for every y; € Y, let py,
denote the probability that the output of RandOuts is 1 on the input y;. That is:

def N def N
Pe = @f{]y [f(z,9)=1] and p, = %I;EW f(2,y;) =1]
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For every x € X, a € {0,1}, define the m-dimensional row vectors Q% = (qy.", ..., qy)
indexed by y; € Y as follows:

a(py,—1) .
1 4ol déf{ py; + OTW if f(z,y;)

0 Y Py, if f(z,y;)

1
0

(4)

2.0 def Py, if f(a;, yj)
qy;- = a'py]- f )
Dy; + (T—a)-(1—pa) 1 f(.l“, y])

We have:

Theorem A.2 Let f:{x1,...,2¢} x {y1,...,ym} — {0,1} and let M be as above. If there exist
probability vector X,eq, parameter 0 < a < 1 such that a=' € O(poly(k)), such that for every
x € X, a € {0,1}, there exists a probability vector X% . for which:

ideal
xT,a _ s
Xideal ’ Mf - Qxa )
then Protocol 3.8 securely computes f with complete fairness.

Proof: We start with the description of the simulator §. The simulator chooses i* as Fyealer. If
the adversary aborts after i*, then both parties learn output and so the simulator sends the true
input to the trusted party and fairness is obtained. If the adversary aborts ¢*, then the simulator
needs to give the adversary the true output f(x,y). Thus, it sends the true input to the trusted
party. However, by doing so the honest party learn the correct output unlike the real execution,
when it outputs a random value according to RandOuty(y). Thus, if the adversary aborts before i*,
the simulator chooses the input to send to the trusted party not according to X,.q, but according
to X fd’gal. This should balance the advantage that the simulator gives the honest party in case the
adversary aborts exactly at ¢*.

The simulator S.
1. § invokes A with input z and auxiliary input z.

2. When A sends 2’ to Fyealer; S checks that 2/ € X and sets x = 2/. If 2/ € X, S chooses a
default input & € X according to the distribution X,.,;, sends Z to the trusted party, outputs
whatever A outputs and halts.

3. S chooses i* according to geometric distribution with parameter «.
4. For every i1 =1 to i* — 1:
(a) S chooses a; = RandOut;(z) and gives a; to A as was sent from Fyeyler-

(b) If A sends abort back to Fyealer, then S chooses & according to the distribution X ;% . Tt

ideal”
then sends Z to the trusted party computing f, outputs whatever A outputs and halts.
If A sends proceed, then S proceeds to the next iteration.
5. In round ¢ = ¢*:

(a) S sends the input = to the trusted party computing f and receives ao = f(x,y).

(b) S gives to A the value ay; as was sent from Fyegler-

6. In rounds i =*+ 1 to R:
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(a) If A sends proceed, S gives back to A the value a,,; and proceeds to the next iteration.

7. If S has not halted yet and ¢* > R, then S chooses & according to the distribution X4, it
sends Z to the trusted party.

8. S outputs whatever A outputs and halts.

Let VIEWhy(,y) denote the view of P; in an execution of the protocol with the adversary A, where
A’s input is x, its auxiliary input is z and P»’s input is y. Let OUThyp(2z,y) be the output of P»
in such an execution. Let VIEWqeai(,y) denote the view of the adversary in the ideal execution
where the parties are invoked with the inputs (x,y), respectively, and the auxiliary input of the
simulator is z. Let OUTjgeal be the output of P in the ideal execution.

Since A can only abort the execution, let i denote the round for which A has aborted. In case
A does not abort during the execution of the protocol, then set i = R+ 1. Note that A may also
abort before the invocation of Fyeaer; in such a case we say that i = 0. We want to show that for
every (@,b) € {0,1}"*1, it holds that:

Pr [(VIEWhyb (2, y), OUThyb (2, y)) = (@,D)] = Pr [(VIEWideal (7, Y), OUTideal (2, ¥)) = (@, D)] (5)

If A aborts before the invocation of Fyealer (0r has sent an invalid input to Fyealer), then the view
of the adversary is empty, and the honest party P» outputs a value according to RandOuty(y). The
same happens in the ideal execution, since S sends in such a case a value & distributed according
t0 Xy eqr- In such a case, both terms of Eq. (5) are 0 in case @ is not empty, and clearly both terms
have the same probability for any value of b. Thus, we get that for every b € {0,1}:

Pr [(VIEWhyb (2, ), OUThyb(2,y)) = (X, D) | i = 0] = Pr [(VIEWideal (%, ¥), OUTideal (7, y)) = (A, 0) | i = 0] .

In case ¢ = R+ 1 (i.e., the adversary does not abort), in the real the adversary sees values
ai,...,a;+—1 that are independent to y, and all the values a;«,...,ar are f(z,y). In the ideal, we
have the exact same thing. Therefore, Eq. (5) holds conditioning on the event i = R+ 1. Moreover,
the above is true whenever the adversary aborts at a round ¢ > ¢*, and thus the equation holds
also when we condition on the event ¢ > *.

We remain with the case where 1 < ¢ < ¢*. If ¢ = ¢*, in the real execution the output
of P, is independent of x, and is determined according to RandOut;(z). However, In the ideal
execution, the simulator S queries the trusted party computing f on z, receives back f(z,y), which
determines the output of P to be the correct output. Therefore, if A aborts exactly at i*, in the
real execution it learns the correct output while P, does not, and in the ideal execution both parties
output the true output f(x,y). Therefore, in order to simulate the protocol correctly, the simulator
modifies the output of P in case the adversary aborts before i*, and chooses Z according to some
distribution X all and not according to X, as apparently expected. In the following, we show

idea

that if X% - My = Q™% then Eq. (5) is satisfied.

Let @ = (di—1,a), and VIEWhyp(z,y) = (VIE f&;, VIEWf]yb). We have that:

Pr [(VIEWhyb(2,y), OUThyb (2, y)) = (a@,b) | i < i¥]

I

= Pr [(VIEwﬁyb,OUThyb) = (a,b) | VIE ﬁ;& ai—1, 1 <1 ] - Pr |:VIEW> o
= Pr[(VIEW},, OUThyb) = (a,b) | i <i*] - Pr [VIEW o = i1 |

3-&
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where the last equations is true since conditioning on the even that ¢ < ¢*, the random variables

; . —i—1 .. . — .
(VIEW} 1, OUThyb) are independent of VIEWy, . Similarly, write VIEWigeal (2,y) = (VIEWigeal, VIEWY 1),
we have:

-1
ideal»

Pr [(VIEWdeal (%, ¥), OUTideal (7, y)) = (@, ) | 1 < i*]
= Pr [(vmw?deah OUTideal) = (a, ) | VIE f(;eL =di_1, 1 < z*] -Pr |:VIEW>ii(j_ei| =di_1, 1 <"

= Pr[(ViEW]

. . —1 — . .
ideal> OUTideal) = (a,b) | 1 < z*] -Pr [VIE eal = Qi1 | 1< z*}

It is easy to see that for any values @;_; € {0,1}" "

Pr [VIEW> ideal = @i—1 | 1< ] =Pr [VIEV\? yé =di—1 | 1< z*}

since in both the simulation and the real execution, the adversary receives values according to
RandOut; ().
It is left to show that for every (a,b) € {0,1}?, it holds that:

Pr [(VIEW}p, OUThyp) = (a,b) | i <i*] = Pr [(VIEW}4e,), OUTideat) = (a,b) | i < i] (6)

We have already seen it in the proof sketch in Section 3. We just give the high-level overview.

In case f(x,y) = 0. The probabilities are as follows:

output (a,b) | real ideal
(0,0) (1—a) - (1=ps)-(L=p)+a-(1-p) | (1-a)-1-p) - (1-g") +a
(0,1) (=) - (1=pz) py+a-py (1—a)-(1-p)-g5°
(1L,0) | (1-a)-ps-(1-py) (1—a)-pe-(1—gy")
(1,1) (1-a) ps- Py (1-a) ps- q;ﬂ
Therefore, we get the following constraints:
P C -

which are satisfied according to our assumption in the theorem.

In case f(x,y) = 1. Similarly, for the case of f(x,y) = 1, we have:

output (a,b) | real ideal
(0,0) (1—a) (1 =p2) (1—py) (I—a) - (1—-ps) (10—(15’0)
(0,1) (I-a)-(1=pz)-p (1—a) (1—ps) -qul’
(1,0) (I—a) pe- (1_py)+a'(1_py) (1—00'%-(11—615’)
(1,1) (1_a)‘px'py+a'py (1_04)’]790'@[;7 +a
we again get the following constraints:
z,0 z,1 Q- (py — 1)
Y= and C=py .
qy Py qy Py (1 - a) - D
However, since X ; d’ e - My = Q% the above constraints are satisfied. [ |
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