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Abstract

In CRYPTO 2008, one year earlier than Gentry’s pioneering “bootstrapping” technique
on constructing the first fully homomorphic encryption (FHE) scheme, Ostrovsky and Skeith
III had suggested a completely different approach towards achieving FHE. Namely, they
showed that the NAND operator can be realized in some non-commutative groups; conse-
quently, in combination with the NAND operator realized in such a group, homomorphically
encrypting the elements of the group will yield an FHE scheme. However, no observations
on how to homomorphically encrypt the group elements were presented in their paper, and
there have been no follow-up studies in the literature based on their approach.

The aim of this paper is to exhibit more clearly what is sufficient and what seems to
be effective for constructing FHE schemes based on their approach. First, we prove that it
is sufficient to find a surjective homomorphism π : G̃ → G between finite groups for which
bit operators are realized in G and the elements of the kernel of π are indistinguishable
from the general elements of G̃. Secondly, we propose new methodologies to realize bit
operators in some groups, which enlarges the possibility of the group G to be used in our
framework. Thirdly, we give an observation that a naive approach using matrix groups
would never yield secure FHE due to an attack utilizing the “linearity” of the construction.
Then we propose an idea to avoid such “linearity” by using combinatorial group theory, and
give a prototypical but still incomplete construction in the sense that it is “non-compact”
FHE, i.e., the ciphertext size is unbounded (though the ciphertexts are noise-free as opposed
to the existing FHE schemes). Completely realizing FHE schemes based on our proposed
framework is left as a future research topic.

1 Introduction

Until the pioneering work by Gentry [16] in 2009, it had been a long-standing open problem
to construct fully homomorphic encryption (FHE ) that enables arbitrary “computation on
encrypted data” through special kinds of “homomorphic” operations on the ciphertexts. After
that, studies of FHE to improve the efficiency (e.g., [9, 13, 17, 19, 22, 30]) and to give various
frameworks of construction (e.g., [3, 4, 5, 6, 7, 8, 10, 11, 18, 26]) have been one of the main
research topics in cryptology (see e.g., [29] for a survey). Here we emphasize that, all the
previous FHE schemes in the literature rely on Gentry’s “bootstrapping” framework. Namely,
ciphertexts for these FHE schemes involve “noise” terms to conceal plaintexts, and the noise
is increased by homomorphic operations and will finally collapse the ciphertext; hence the
increased noise must be cancelled before the collapse. The bootstrapping, which is the additional
procedure for noise cancellation, is a major bottleneck for efficiency improvement and makes
the syntax of FHE less analogical to the classical homomorphic encryption.
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On the other hand, in 2008, which is one year earlier than Gentry’s work, Ostrovsky and
Skeith III [27] had suggested a completely different, group-theoretic approach towards achiev-
ing FHE. Namely, they showed that the NAND operator (which is sufficient for constructing
arbitrary bit operators) can be realized (in a certain suitable sense) in some non-commutative
groups. In combination with the NAND operator realized in such a group, if the elements
of the non-commutative group can be homomorphically encrypted, then it will yield an FHE
scheme where the ciphertexts involve no noise terms, hence the bootstrapping procedure will
no longer be required. However, no observations on how to homomorphically encrypt the group
elements were presented in their paper and, to the author’s best knowledge, there have been no
follow-up studies in the literature based on their approach. The aim of this paper is to exhibit
more clearly what is sufficient and what seems to be effective for constructing “noise-free” FHE
schemes based on their approach.

1.1 Our Contributions

Our results in this paper are summarized as follows. First, in Section 3, we revisit the approach
towards constructing FHE suggested in the previous paper [27]. We give a formalization of
“realizations of bit operators in groups” in a slightly generalized manner (e.g., our formalization
can handle probabilistic realizations of bit operators as well, which were not considered in [27]).
Then we reduce the problem of “homomorphically encrypting the elements of a group G” (where
the bit operators are realized in G) to finding a surjective homomorphism π : G̃→ G to G from
another finite group G̃ (where elements of G̃ play the role of ciphertexts) and prove that, the
resulting FHE scheme is CPA-secure if the elements of the kernel kerπ of π are indistinguishable
from the general elements of G̃ even when a certain generating set of kerπ is publicly given.
This clarifies the problem to be solved from a group-theoretic viewpoint.

In Section 4, we propose new methodologies to realize bit operators in some groups, which
are different from the previous methodology in [27] (recalled in Section 4.1 below) analogous to
Barrington’s theorem [1]. Our result enlarges the possibility of the group G to be used in our
framework, which is beneficial in order to search for a suitable homomorphism π : G̃→ G. For
example, we are now able to choose the matrix group G = SL2(Fp) with exponentially large
prime p, for which the previous methodology in [27] is not efficient.

In the final Section 5, we give several observations and discussions on how to find a suitable
homomorphism π : G̃→ G. First, in Section 5.2, we give an observation that a naive approach
to construct the group G̃ as a random conjugate of block upper-triangular matrices (where
the map π extracts the upper-left block) would never yield a secure FHE scheme, due to the
existence of the following kind of attacks1. We start with the simplified situation where G̃ is
just a set of some block upper-triangular matrices (without taking a random conjugate) and the
value of the map π is the upper-left block of the matrix. In this case, all the elements of kerπ
satisfy the constraint “the off-diagonal components of the upper-left block are zero”, which is
a linear constraint in terms of the matrix components. This linear constraint separates the
elements of kerπ and general elements of G̃ in the sense that, a general element of G̃ does not
belong to the linear space spanned by kerπ while any element of kerπ does belong to this linear
space; hence these two kinds of elements become easily distinguishable. Now, even when a
random conjugate is taken in the construction of G̃, the aforementioned constraint for elements
of kerπ still remains linear after taking the conjugate, which enables one to easily distinguish
the two kinds of elements in the same way as above. This observation suggests that, in order
to find a suitable π : G̃→ G, such a linear constraint for kerπ should be avoided.

In order to avoid such a linear constraint for kerπ, in Section 5.4, we propose an idea of
making the map π : G̃→ G “non-linear” by utilizing properties from combinatorial group theory.

1This attack was pointed out by an anonymous reviewer at a previous submission of this work.
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More precisely, we try to establish a homomorphism π : G̃→ G as a quotient map between two
Coxeter groups (see e.g., [23] for the terminology), which is expected to be “non-linear” in a
general case. It is useful for us that any Coxeter group admits a well-studied realization as
a subgroup of the matrix group GLn(R); this enables one to take a conjugate by a random
matrix for the group G̃ realized in GLn(R) in order to hide the information on the very detailed
structure of G̃. However, an appropriate choice of G̃ as a finite group following this approach
has not yet been found. The group G̃ in our prototypical construction described in that section
is an infinite group, which results in a so-called non-compact FHE scheme, i.e., the sizes of
ciphertexts are not bounded. A realization of our proposed approach with a finite group G̃,
which will yield a compact FHE scheme, is left as a future research topic.

We also discuss in Section 5.5 another possible approach that highly relies on techniques
in combinatorial group theory. In this alternative approach, the group G̃ is described in terms
of a group presentation consisting of a generating set and a set of fundamental relations for
generators. Then the group presentation for G̃ is randomly modified (without changing the
group structure itself) in order to conceal the detailed structure of G̃. However, even if such
a random modification of a group presentation provides sufficient security, the lack of efficient
group operators for G̃ based on the random presentation implies that the resulting FHE is again
non-compact FHE so far. Overcoming this issue of inefficient group operators for such a group
G̃ is also left as a future research topic.

2 Preliminaries

In this section, we summarize some basic definitions and notations used throughout the paper.
For a probability distribution (or a random variable) X , let a ← X mean that an element a
is randomly chosen according to X . For a finite set X, let a ↢ X mean that an element a is
chosen uniformly at random from the set X. We also write a ← A(x) for any algorithm A to
indicate that a is chosen according to the output distribution of A with input x. The statistical
distance between two probability distributions X ,Y over a finite set Z is defined by

∆(X ,Y) = 1

2

∑
z∈Z
|Pr[z ← X ]− Pr[z ← Y]| .

For ε ≥ 0, we say that X is ε-close to Y, if ∆(X ,Y) ≤ ε.
Let λ denote the security parameter unless otherwise specified. We say that a function

ε = ε(λ) ≥ 0 is negligible, if for any integer n ≥ 1, there exists a λ0 > 0 with the property
that we have ε(λ) < λ−n for every λ > λ0. We say that ε ∈ [0, 1] is overwhelming, if 1 − ε
is negligible. We say that ε is noticeable, if there exist integers n ≥ 1 and λ0 > 0 with the
property that we have ε > λ−n for every λ > λ0.

A public key encryption (PKE ) scheme consists of the following three algorithms. The key
generation algorithm Gen(1λ) outputs a pair of a public key pk and a secret key sk. The encryp-
tion algorithm Enc(m) = Encpk(m) outputs a ciphertext as the encryption result of plaintext
m. The decryption algorithm Dec(c) = Decsk(c) outputs either a plaintext m as the decryption
result of ciphertext c, or a distinguished symbol ⊥ indicating decryption failure. Let the correct-
ness of a PKE scheme mean that, for any plaintext m, the probability Pr[Decsk(Encpk(m)) ̸= m]
is negligible, where the probability is taken over the internal randomness for the algorithms.

For a finite setM, we say that a set F of operators onM is functionally complete, if any
function with inputs and outputs in M can be computed by combining operators in F . We
say that a PKE scheme with plaintext space M is a fully homomorphic encryption (FHE )
scheme, if there exist a functionally complete set F of operators onM and an efficient homo-
morphic evaluation algorithm Eval with the property that, for each, say n-ary operator f ∈ F
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(f : Mn → M) and for given ciphertexts ci for plaintexts mi (i = 1, . . . , n), the algorithm
Evalpk(f ; c1, . . . , cn) outputs a ciphertext for plaintext f(m1, . . . ,mn) ∈ M with overwhelming
probability.

We say that a PKE scheme with plaintext spaceM is CPA-secure, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage AdvA(λ) = |Pr[b = b∗] − 1/2| of A is
negligible, where Pr[b = b∗] is the probability that b = b∗ holds in the following game:

(pk, sk)← Gen(1λ) ; (m0,m1, state)← A(submit, 1λ, pk) ;

b∗ ← {0, 1} ; c∗ ← Encpk(mb∗) : b← A(guess, 1λ, pk, state, c∗) .

2.1 Preliminaries on Group Theory

Unless otherwise specified, a (not necessarily commutative) group G is written in multiplicative
form and its identity element is denoted by 1G (or by 1 if the group G is clear from the context).
The reader may refer to a textbook of group theory (e.g., [28]) for definitions and basic facts
for groups mentioned without explicit references. We say that a subgroup N of a group G is
normal, if we have gxg−1 ∈ N for any x ∈ N and g ∈ G. Then the quotient group G/N of a
group G by its normal subgroup N is uniquely determined (up to group isomorphisms) in a way
that, there is a surjective group homomorphism G→ G/N (here we write the map as g 7→ g),
and for any group H and any homomorphism φ : G→ H satisfying φ(N) = {1H}, there exists
a homomorphism φ : G/N → H satisfying φ(g) = φ(g) for any g ∈ G. We say that a group G
is simple, if G does not have normal subgroups other than G itself and {1G}. For a subset X
of a group G, let ⟨X⟩ denote the subgroup of G generated by X. We define the normal closure
of a subset X, denoted by ⟨X⟩normal, to be the subgroup generated by {gxg−1 | x ∈ X, g ∈ G}.

For any integer n ≥ 1, let Sn denote the symmetric group on n letters, i.e., the group of
permutations {1, 2, . . . , n} → {1, 2, . . . , n} with multiplication defined by the composition of
maps. Let An denote the alternating group on n letters, i.e., the (normal) subgroup of Sn of
permutations that can be written as the product of an even number of transpositions (a, b),
a ̸= b. It is known that An is a simple group if n ≥ 5.

For any field F and any integers k, ℓ ≥ 1, let Mk,ℓ(F ) denote the set of matrices with
components in F having k rows and ℓ columns. Let GLk(F ) denote the general linear group,
consisting of the multiplicatively invertible matrices in Mk,k(F ). Let SLk(F ) denote the special
linear group defined by SLk(F ) = {A ∈ GLk(F ) | det(A) = 1}. Moreover, let PSLk(F ) denote
the projective special linear group defined by PSLk(F ) = SLk(F )/N where N denotes the
normal subgroup of SLk(F ) consisting of scalar matrices in SLk(F ). For example, we have
PSL2(F ) = SL2(F )/{±I} where I denotes the identity matrix.

We also give a summary of some basic definitions and facts from combinatorial group theory;
see e.g., [24] for those mentioned without explicit references. By a group word on a set X we
mean a finite-length sequence of symbols of the form x or x−1 with x ∈ X. The empty word,
denoted by ∅ or 1, is also regarded as a group word. Let Free(X) denote the set of group words
on X with an additional rule that, two words are identified with each other in Free(X) if and
only if one of the two words can be converted to the other word by a finite number of steps
of inserting or deleting a subword of the form xx−1 or x−1x with x ∈ X. The set Free(X)
forms a group, with multiplication defined by the concatenation of two words. Moreover, for
any set R of group words on X, we define ⟨X | R⟩ to be the quotient group Free(X)/⟨R⟩normal

where the normal closure ⟨R⟩normal is taken in the group Free(X). If a group G is isomorphic to
⟨X | R⟩, then ⟨X | R⟩ is called a presentation of the group G with generating set X and set of
fundamental relations R. In the group ⟨X | R⟩, two words are identified with each other if and
only if one of the two words can be converted to the other word by a finite number of steps of
inserting or deleting a subword of the form xx−1 or x−1x with x ∈ X or a subword r belonging
to R.
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3 Our Framework for FHE

In this section (in particular Section 3.3), we describe our proposed generic framework towards
constructing FHE free from ciphertext noise. This is based on the notion of group-theoretic
realization of functions (or operators) on plaintext sets introduced in Sections 3.1 and 3.2, and
is seen as a concretization of a framework suggested in the previous work [25, 27].

3.1 Group-Theoretic Realization of Functions

Roughly speaking, a group-theoretic realization of a function in a group G is a way to emulate
the given function “by using the group operators of G only”. To clarify the meaning, first we
give the following definition.

Definition 1 (group word). A group word w(x1, . . . , xn) with variables x1, . . . , xn is a finite-
length sequence of symbols of the form xi or x

−1
i with i ∈ {1, . . . , n} (cf. Section 2.1). Then

one can substitute given elements g1, . . . , gn of a group into the variables x1, . . . , xn in the word
w(x1, . . . , xn) to yield an element of the same group, denoted by w(g1, . . . , gn).

For example, w(x1, x2) = x1x2x2x1
−1x1

−1 is a group word, abbreviated as x1x2
2x1
−2 in a

usual way, and by substituting matrices g1 =

(
1 1
0 1

)
and g2 =

(
1 0
1 1

)
we obtain w(g1, g2) =

g1g2
2g1
−2 =

(
3 −5
2 −3

)
.

By using the notion of group words, we define a group-theoretic realization of functions.
We note that our definition here is a generalization of a similar definition made by the previous
work [25] from the following two viewpoints. First, our definition is extended to the cases where
the underlying group may be composed of two or more direct product components and these
components may be dealt with separately in the realization of functions. Secondly, while the
definition in [25] is restricted to realizing functions in a deterministic manner, our definition
also allows probabilistic realizations of functions. Our definition is as follows:

Definition 2 (group-theoretic realization of functions). Let G be a group andM be a set. Let
F be a set of functions of the form f :Mℓf → M with ℓf ≥ 1. We define a group-theoretic
realization (or simply a realization) of F in G to be a collection of the following objects:

• a polynomially bounded integer n ≥ 1, which we call the degree of the realization;

• non-empty and mutually disjoint subsets Xm ⊂ Gn for all m ∈M;

• a collection of n group words wf,i(x⃗1, . . . , x⃗ℓf , y⃗) (i = 1, . . . , n), denoted by w⃗f (x⃗1, . . . , x⃗ℓf , y⃗),
of polynomially bounded lengths for each f ∈ F , where we write x⃗j = (xj,1, . . . , xj,n) for
j = 1, . . . , ℓf and y⃗ = (y1, . . . , yk) (we note that the latter list y⃗ of variables may be
redundant so that some variable yh may be not appearing in a group word wf,i);

• a collection of n polynomial-time samplable random variables rh with values in the group
G for each h = 1, . . . , k, denoted by r⃗;

satisfying the following condition:

For any f ∈ F , any m1, . . . ,mℓf ∈ M, and any g⃗i = (gi,1, . . . , gi,n) ∈ Xmi (i =
1, . . . , ℓf ), the probability Pr[w⃗f (g⃗1, . . . , g⃗ℓf , r1, . . . , rk) ̸∈ Xf(m1,...,mℓf

)] taken over

the random choices of values of r1, . . . , rk ∈ G is bounded by a common negligible
value not depending on f , m1, . . . ,mℓf , and g⃗1, . . . , g⃗ℓf .
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When it is the case, we denote byAf with f ∈ F an algorithm that, for given inputs g⃗1, . . . , g⃗ℓf ∈
Gn, outputs w⃗f (g⃗1, . . . , g⃗ℓf , r1, . . . , rk) ∈ Gn where the values of random variables r1, . . . , rk are
sampled according to the specified distributions.

We note that the formulation above includes the special cases where some of the random
variables rh takes a constant value in G. When all the random variables appearing in a realiza-
tion of functions are constant, we call the realization deterministic, or else call it probabilistic.
Concrete examples of such (deterministic or probabilistic) realizations of functions will be given
in Section 4.

3.2 Lift of Realization of Functions

Given a group homomorphism G̃→ G and a realization of functions in the group G, the notion
of a “lift” of the realization up to the other group G̃ plays a central role in our proposed
framework. We note that such a notion is not introduced in the previous work [25, 27]. The
notion is defined as follows:

Definition 3 (lift of realization of functions). We suppose that a set F of functions on a set
M has a group-theoretic realization in a group G as in Definition 2. Let π : G̃ → G be a
group homomorphism from another group G̃ onto G. We define a lift of the realization of F
up to G̃ to be a collection of polynomial-time samplable random variables r̃h taking values in
the group G̃ for all h = 1, . . . , k with the property that each value π(r̃h) ∈ G has the same
probability distribution as the corresponding random variable rh. When it is the case, we denote
by Ãf with f ∈ F an algorithm that outputs w⃗f (⃗g̃1, . . . ,

⃗̃gℓf , r̃1, . . . , r̃k) ∈ (G̃)n for given inputs

⃗̃g1, . . . ,
⃗̃gℓf ∈ (G̃)n where the values of random variables r̃1, . . . , r̃k are sampled according to the

specified distributions.

For example, when the underlying realization of functions is deterministic, it suffices for
constructing its lift to choose a constant element r̃h of G̃ with π(r̃h) = rh for each h = 1, . . . , k.

Lifts of realizations of functions play a role of homomorphic operations in our proposed
framework for FHE. The following is a key fact for this purpose; here we also write as π the
map (G̃)n → Gn given by π(g̃1, . . . , g̃n) = (π(g̃1), . . . , π(g̃n)).

Lemma 1. In the situation of Definition 3, let f ∈ F , m1, . . . ,mℓf ∈ M, and let ⃗̃gi ∈ (G̃)n

satisfy π(⃗g̃i) ∈ Xmi for each i = 1, . . . , ℓf . Then the probability Pr[π(Ãf (⃗g̃1, . . . ,
⃗̃gℓf )) ̸∈

Xf(m1,...,mℓf
)] is bounded by the same negligible value as in Definition 2; hence the bound is

again independent of f , m1, . . . ,mℓf , and
⃗̃g1, . . . ,

⃗̃gℓf .

Proof. As π : G̃→ G is a group homomorphism, we have

π(wf,i(⃗g̃1, . . . ,
⃗̃gℓf , r̃1, . . . , r̃k)) = wf,i(π(⃗g̃1), . . . , π(⃗g̃ℓf ), π(r̃1), . . . , π(r̃k))

for any i = 1, . . . , ℓf and any values of the random variables r̃h. By Definition 2, the claim
follows from the property in Definition 3 that the probability distribution for each π(r̃h) is
identical to that for rh.

3.3 The Proposed Framework

Based on the definitions in Sections 3.1 and 3.2, here we describe our proposed framework for
constructing FHE. Roughly summarizing, the set of plaintextsM is encoded into the group Gn

given as in the group-theoretic realization of functions. The set of ciphertexts is the product
of the other group (G̃)n. A lift up to G̃ of a realization of operators on M in G plays a role
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of homomorphic operations for the corresponding operators on M. Moreover, a ciphertext of
a plaintext m ∈ M is generated by rerandomizing an initially provided ciphertext of the m,
which is performed by multiplying random elements of the kernel of the group homomorphism
G̃→ G.

Our proposed framework for constructing FHE is as follows:

Gen(1λ): Choose the following objects according to the security parameter λ, whereM denotes
the set of plaintexts:

• groups G, G̃ and a group homomorphism π : G̃→ G between them;

• a group-theoretic realization of a functionally complete set F of operators onM in
the group G and its lift up to G̃, where the degree n is dependent solely on λ;

• a polynomial-time samplable random variable rker taking values in the set kerπ =
{g̃ ∈ G̃ | π(g̃) = 1G};

• for each m ∈ M, a tuple g⃗enm = (genm,1, . . . , genm,n) ∈ (G̃)n satisfying π(g⃗enm) ∈
Xm.

Then output a public key pk consisting of G̃, n, rker, g⃗enm for all m ∈ M, and the
algorithms Ãf for all f ∈ F appearing in the lift of the realization of F ; and output a
secret key sk consisting of G, π, and Xm for all m ∈M.

Encpk(m) for m ∈M: Sample n values rker,1, . . . , rker,n of the random variable rker indepen-

dently, and then output c⃗ = (c1, . . . , cn)← g⃗enm·r⃗ker ∈ (G̃)n where r⃗ker = (rker,1, . . . , rker,n).

Decsk(c) for c⃗ ∈ (G̃)n: Compute π(c⃗) ∈ Gn, and if π(c⃗) ∈ Xm for an m ∈ M, then output the
m. If no such m exists, output ⊥.

Evalpk(f ; c⃗1, . . . , c⃗ℓf ) for f ∈ F and c⃗1, . . . , c⃗ℓf ∈ (G̃)n: Output Ãf (c⃗1, . . . , c⃗ℓf ) ∈ (G̃)n.

The correctness of Encpk in the construction above follows easily from the choices of rker
and g⃗enm; indeed, when c⃗ = g⃗enm · r⃗ker ← Encpk(m) we have

π(c⃗) = π(g⃗enm) · π(r⃗ker) = π(g⃗enm) · (π(rker,1), . . . , π(rker,n))
= π(g⃗enm) · (1G, . . . , 1G) = π(g⃗enm) ∈ Xm

since rker,i ∈ kerπ for each i. The correctness of Evalpk is just a restatement of Lemma 1.
For the security, we have the following result:

Theorem 1. In the setting above, suppose that G̃ is a finite group with polynomial-time com-
putable group operators, and suppose either n = 1 or that the uniform random variable over
G̃ is polynomial-time samplable. Then, our proposed FHE scheme is CPA-secure if the sub-
group membership problem for kerπ ⊂ G̃ with respect to the random variable rker with aux-
iliary input pk is computationally hard; that is, for any PPT adversary A†, the advantage
AdvA†(λ) = |Pr[b = b†]− 1/2| of A† in the following game is negligible:

pk← Gen(1λ) ; b† ↢ {0, 1} ;

{
g† ↢ G̃ (if b† = 1)

g† ← rker (if b† = 0)
: b← A†(1λ, pk, g†) .

Proof. Let A be any PPT CPA adversary for our scheme. Then we define an adversary A† for
the subgroup membership problem specified in the statement as follows:

1. Given inputs 1λ, pk, and g† chosen according to the random bit b†, the adversary A†
chooses i↢ {1, . . . , n} and executes A(submit, 1λ, pk) to obtain a tuple (m0,m1, state).
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2. The adversary A† chooses b∗ ↢ {0, 1}, and executes A(guess, 1λ, pk, state, cb∗,b†,i) to ob-
tain a bit b′, where

cb
∗,b†,i = (genmb∗ ,1

ρ1, . . . , genmb∗ ,i−1ρi−1, genmb∗ ,i
g†, genmb∗ ,i+1ui+1, . . . , genmb∗ ,n

un)

with independent random values ρ1, . . . , ρi−1 of rker and ui+1, . . . , un ↢ G̃.

3. The adversary A† outputs b = XOR(b∗, b′).

Note that this adversary A† is PPT as well as A. Now we have

AdvA†(λ) = |Pr[b = b†]− 1/2| =
∣∣∣∣12 (

Pr[b = 0 | b† = 0] + Pr[b = 1 | b† = 1]− 1
)∣∣∣∣

and

Pr[b = 0 | b† = 0] = Pr[b′ = b∗ | b† = 0] =

n∑
i=1

1

n
Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,0,i)] ,

while

Pr[b = 1 | b† = 1] = 1− Pr[b′ = b∗ | b† = 1] = 1−
n∑

i=1

1

n
Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,1,i)] .

By the choice of g†, for each i = 1, . . . , n− 1 and any choice of b∗, the two tuples cb
∗,0,i and

cb
∗,1,i+1 follow the identical probability distribution. Therefore, we have

Pr[b = 0 | b† = 0] + Pr[b = 1 | b† = 1]− 1

=
1

n
Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,0,n)]− 1

n
Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,1,1)] .

Now we have
cb

∗,1,1 = (genmb∗ ,1
g†, genmb∗ ,2

u2, . . . , genmb∗ ,n
un)

and the element g† when b† = 1 is a uniformly random and independent element of G̃ as well
as u2, . . . , un. This implies that cb

∗,1,1 is uniformly random over (G̃)n regardless of the choice
of b∗, therefore we have

Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,1,1) = 1

2

and

AdvA†(λ) =
1

2n

∣∣∣∣Pr[b∗ ← A(guess, 1λ, pk, state, cb∗,0,n)]− 1

2

∣∣∣∣ .

Moreover, we have

cb
∗,0,n = (genmb∗ ,1

ρ1, . . . , genmb∗ ,n−1ρn−1, genmb∗ ,n
g†)

and the element g† when b† = 0 is a random value of rker as well as ρ1, . . . , ρn−1. This implies
that cb

∗,0,n follows the same probability distribution as Encpk(mb∗), therefore we have

AdvA†(λ) =
1

2n

∣∣∣∣Pr[b∗ ← A(guess, 1λ, pk, state,Encpk(mb∗))]−
1

2

∣∣∣∣ = 1

2n
AdvA(λ) .

Since the adversary A† is PPT, the assumption in the statement implies that AdvA†(λ) is
negligible, therefore AdvA(λ) is also negligible as n is polynomially bounded. This completes
the proof.
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4 Examples of Realizations of Functions in Groups

4.1 Deterministic Case: Known Result

The following result (which is restated according to our terminology here) is proved in the
previous work [25, 27] (see e.g., Theorem 2.1 of [27]), which shows the existence of realizations
of the NAND operator in various non-commutative finite groups.

Proposition 1 ([25, 27]). Let G be any non-commutative finite simple group. Then there exists
a deterministic group-theoretic realization of the NAND operator in G of degree n = 1.

This result was proved by utilizing the property of the commutator operator [g, h] =
ghg−1h−1 in a way analogous to Barrington’s Theorem [1]. We note that NAND alone forms a
functionally complete set of bit operators, therefore it is sufficient for the use in our proposed
framework. However, although it is a beautiful result, the result above shows in general the
existence of such a realization only; and it is expected that the realization implied by the proof
might be inefficient when the group G is large, which would restrict the choice of the group
G in practical situations. As an example of Proposition 1, Section 6 of [25] gives a concrete
realization of NAND in the alternating group G = A5, which is the smallest non-commutative
simple group, where the group word for the realization has length 65.

4.2 Deterministic Case: Binary Plaintexts

Here we give another way of realizing bit operators in some small non-commutative groups with
degree n = 1. Our approach, which we call approximate-then-correct method, is completely
different from the approach in the previous work [25, 27] based on Barrington’s Theorem.

An intuition for our approach can be explained as follows. The two-input OR operator has
behavior similar to (or can be “approximated” by) the integer addition + and in fact differs
at only one input pair (1, 1) among the four possible input pairs; and the latter operator + is
purely an additive group operator and hence seems to be suitable for group-theoretic realization.
Now the operator OR will be realized if we can realize the addition + for inputs from {0, 1} and
then “correct” the output value 2 = 1 + 1 to 1 = 1OR 1 while not changing the output values
for the other three input pairs. Moreover, according to the same correction function 0 7→ 0,
1 7→ 1, 2 7→ 1, any other bit operator can be also realized provided it can be approximated by
a mod-3 affine function in a way that some of the output values 1 may become 2 instead and
the other output values are correct. For example, the function 2− b1 − b2 mod 3 approximates
the NAND operator for inputs b1, b2 ∈ {0, 1} in this sense; the input pair (b1, b2) = (0, 0) yields
the output 2 instead of 1, while the output is correct for any other input pair. Similarly, the
functions b2 − b1 mod 3 and b1 + b2 − 1 mod 3 approximate the XOR operator and the equality
operator denoted here by EQ (which returns 1 if two input bits are equal and 0 otherwise) in
this manner, respectively.

Based on the observation above, we construct a realization (with parameter n = 1) of bit
operations NOT, OR, NAND, XOR, and EQ in the symmetric group S5 as follows. First of all,
we define X0 = {σ0} and X1 = {σ1} where σ0 = 1S5 and σ1 = (1, 2, 3) ∈ S5. For the NOT
operator, we define wNOT = x1

−1y1 and r1 = σ1, i.e.,

wNOT(g) = g−1σ1

where we omit the constant value r1 = σ1 of y1 in the input of wNOT(x1, y1) in order to
emphasize that wNOT is essentially regarded as a function of x1 only. Then we indeed have
wNOT(σb) = σNOT(b) for any b ∈ {0, 1} as desired.

9



For the remaining four operators (with two input bits), based on the observation above and
the fact that the subgroup {σ0, σ1, σ2} of S5 with σ2 = σ1

2 is isomorphic to Z/3Z via the map
σm 7→ m, first we define

win
OR(g1, g2) = g1g2 , w

in
NAND(g1, g2) = g1

−1g2
−1σ1

2 ,

win
XOR(g1, g2) = g1

−1g2 , w
in
EQ(g1, g2) = g1g2σ1

−1

(we note that the definition win
NAND(g1, g2) = g1

−1g2
−1σ1

2 above is an abbreviation and should
formally be the combination of win

NAND(x1, x2, y1) = x1
−1x2

−1y1
2 and r1 = σ1; and similarly for

the other operators OR, XOR, and EQ). Secondly, to realize the “correction” function σ0 7→ σ0,
σ1 7→ σ1, σ2 = σ1

2 7→ σ1, we define

wout(g) = (1, 5)(2, 3, 4)g(2, 3, 4)g(3, 4)g2(2, 3)(4, 5)g(2, 3, 4)g(3, 4)g2(1, 4, 2, 5)

(which is again an abbreviation of the combination of a group word of the form wout(x1, y⃗) and
the elements rh ∈ S5 being appeared in the right-hand side). Then a straightforward calculation
shows that we have wout(σ0) = σ0 and wout(σ1) = wout(σ2) = σ1 as desired. Hence, for each
operator ∗ ∈ {OR,NAND,XOR,EQ}, by substituting the group word win

∗ into the variable in
the group word wout we obtain a group word w∗(x1, x2) = wout(win

∗ (x1, x2)) for realizing the
operator ∗ in the group S5; we have w∗(σb1 , σb2) = σb1∗b2 for any b1, b2 ∈ {0, 1}.

4.3 Deterministic Case: Ternary Plaintexts

The idea of our approximate-then-correct method explained in Section 4.2 can be extended to
the case of realization of modular arithmetic operators +,× over Z/3Z. We take the group
G = S5 and choose the subsets Xm = {σm} for m = 0, 1, 2 where σ0 = 1S5 , σ1 = (1, 2, 3) ∈ S5,
and σ2 = σ1

2 = (1, 3, 2) ∈ S5. Then, owing to the group isomorphism {σ0, σ1, σ2} → Z/3Z
given by σm 7→ m, the operator + can be realized by the group word w+(x1, x2) = x1x2.

On the other hand, to realize the other operator ×, first we define

win
×(x1, x2) = x1((1, 4)(2, 3, 5))

−1x2(1, 4)(2, 3, 5) .

Then, by putting

X ′0 = {1S5 , (2, 4, 5), (2, 5, 4), (1, 2, 3), (1, 3, 2)} ⊂ S5 ,

X ′1 = {(1, 2, 4, 5, 3), (1, 3, 2, 5, 4)} ⊂ S5 ,

X ′2 = {(1, 2, 5, 4, 3), (1, 3, 2, 4, 5)} ⊂ S5 ,

we have win
×(σm1 , σm2) ∈ X ′m1m2

for anym1,m2 ∈ Z/3Z by a straightforward calculation. Hence,
it suffices to realize in S5 a function that maps elements of X ′m to σm for each m ∈ Z/3Z. For
the purpose, we define

w′1(x) = x3 , w′2(x) = (2, 3, 4)−1x−1(3, 4, 5)x2(3, 4, 5)−1x(2, 3, 4) , w′3(x) = w′2(x) ,

w′4(x) = x(1, 5, 3, 4, 2)x−1(1, 5, 3, 4, 2)−1x(1, 4, 2, 3, 5)x−1(1, 4, 2, 3, 5)−1

and define
wout(x) = w′4(w

′
3(w

′
2(w

′
1(x)))) .

We verify that this wout satisfies the required condition step by step. First, by putting

X
(1)
0 = {1S5} , X

(1)
1 = {(1, 5, 2, 3, 4), (1, 5, 3, 4, 2)} ,

X
(1)
2 = {(1, 4, 2, 3, 5), (1, 4, 3, 5, 2)} ,
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we have w′1(g) ∈ X
(1)
m for any m ∈ Z/3Z and any g ∈ X ′m. Secondly, by putting

X
(2)
0 = {1S5} , X

(2)
1 = {(1, 4, 2, 3, 5)} , X(2)

2 = {(1, 5, 3, 4, 2), (1, 5, 2, 3, 4)} ,

we have w′2(g) ∈ X
(2)
m for any m ∈ Z/3Z and any g ∈ X

(1)
m . Thirdly, since X

(2)
0 = X

(1)
0 ,

X
(2)
1 ⊂ X(1)

2 , and X
(2)
2 = X

(1)
1 , the same calculation implies that, by putting

X
(3)
0 = {1S5} , X

(3)
1 = {(1, 5, 3, 4, 2)} , X(3)

2 = {(1, 4, 2, 3, 5)} ,

we have w′3(g) ∈ X
(3)
m for any m ∈ Z/3Z and any g ∈ X(2)

m . Finally, we have w′4(g) = σm for any

m ∈ Z/3Z and any g ∈ X(3)
m . By summarizing the argument above, we have wout(g) = σm for

any m ∈ Z/3Z and any g ∈ X ′m as desired; hence the group word w×(x1, x2) = wout(win(x1, x2))
realizes the operator × on Z/3Z.

4.4 Preliminaries: On Random Sampling of Group Elements

As a preliminary for constructing probabilistic realizations of bit operators in Sections 4.5 and
4.6, here we recall the following result by Dixon [12] on sampling an almost uniformly random
element of any finite group G.

We introduce a notation to clarify the result. For any elements g1, . . . , gL of the group G,
let Sample[g1, . . . , gL] denote the random variable that takes the value x1

e1 · · ·xLeL ∈ G where
e1, . . . , eL ↢ {0, 1}. Then the result is as follows:

Proposition 2 ([12], Theorem 3). Let G be a finite group, let 0 ≤ ε < 1, and let U be a random
variable taking a value in G that is ε-close to the uniform random variable on G. Let L be a
positive integer, and let h, k ≥ 0. If

L ≥ log2 |G|+ h+ 2k − 2

log2(2/(1 + ε))
,

then we have Prx1,...,xL←U [Sample[x1, . . . , xL] is not 2−k-close to uniform ] < 2−h.

4.5 Probabilistic Case: Some Matrix Groups

Here we give a probabilistic realization of degree n = 2 of bit operators NOT and AND in a
certain appropriate group G specified below. First, we define

X0 = {g⃗ ∈ G2 | g1 ̸= 1G , g2 = 1G} , X1 = {g⃗ ∈ G2 | g1 ̸= 1G , g2 = g1} .

For the operator NOT, we define

wNOT,1(x⃗) = x1 , wNOT,2(x⃗) = x2
−1x1 .

Then it follows immediately that (wNOT,1(g⃗), wNOT,2(g⃗)) ∈ XNOT(b) for any b ∈ {0, 1} and any
g⃗ ∈ Xb as desired, regardless of the choice of the group G.

On the other hand, the correctness of the following construction for the operator AND
depends on the choice of the group G. We define

wAND,1(x⃗, x⃗′, y1) = [y1x1y1
−1, x′1] , wAND,2(x⃗, x⃗′, y1) = [y1x2y1

−1, x′2]

where [g, h] = ghg−1h−1 denotes the commutator operator, and define r1 to be the uniform
random variable over G. Namely, for g⃗, g⃗′ ∈ G2 we have

w⃗AND(g⃗, g⃗′) = ([ug1u
−1, g′1], [ug2u

−1, g′2]) ∈ G2 with u↢ G .
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Now if g⃗ ∈ X0, then we have g2 = 1G and hence

wAND,2(g⃗, g⃗′) = [ug2u
−1, g′2] = [1G, g

′
2] = 1G

by the property of the commutator. Similarly, if g⃗′ ∈ X0, then we have g′2 = 1G and hence

wAND,2(g⃗, g⃗′) = [ug2u
−1, g′2] = [ug2u

−1, 1G] = 1G

by the property of the commutator again. Moreover, if g⃗, g⃗′ ∈ X1, then we have g2 = g1 and
g′2 = g′1, therefore

wAND,2(g⃗, g⃗′) = [ug2u
−1, g′2] = [ug1u

−1, g′1] = wAND,1(g⃗, g⃗′) .

By these properties, for any b, b′ ∈ {0, 1}, g⃗ ∈ Xb, and g⃗′ ∈ Xb′ , we have w⃗AND(g⃗, g⃗′) ∈ XAND(b,b′)

as desired provided wAND,1(g⃗, g⃗′) = [ug1u
−1, g′1] ̸= 1G holds.

However, the condition wAND,1(g⃗, g⃗′) = [ug1u
−1, g′1] ̸= 1G for the correctness is not always

satisfied for given g⃗, g⃗′, and random u ∈ G. For example, we must have wAND,1(g⃗, g⃗′) = 1G
when g⃗ = g⃗′ and u = 1G. In fact, whether the failure probability Pr[wAND,1(g⃗, g⃗′) = 1G]

can be bounded by a negligible value for any given g⃗, g⃗′ ∈ X0 ∪ X1 or not depends heavily
on the structure of the group G (as an easy example, this condition is never satisfied by a
commutative group G since now the commutator always takes the value 1G). Regarding this
issue, we introduce the following definition:

Definition 4 (commutator-separable groups). Let ε > 0. We say that a finite group G is
ε-commutator-separable, if there exists a non-empty subset Y of G \ {1G} satisfying

Pr
u↢G

[ [ugu−1, g′] ̸∈ Y ] ≤ ε for any g, g′ ∈ Y . (1)

Moreover, we say that a family of finite groups G = Gλ parameterized by the security parameter
λ is commutator-separable, if there exists a negligible function ε = ε(λ) for which G is ε-
commutator-separable for any λ.

Now suppose that G is commutator-separable in this sense. Then, by modifying the defini-
tion of the subsets X0, X1 of G as

X0 = {g⃗ ∈ G2 | g1 ∈ Y , g2 = 1G} , X1 = {g⃗ ∈ G2 | g1 ∈ Y , g2 = g1}

where Y is the subset of G yielded by Definition 4, it follows, by combining the argument above
with the property (1), that the construction above indeed provides a probabilistic realization
of degree 2 of the operators NOT and AND in the group G.

Remark 1. Although only the existence of such a subset Y is concerned in Definition 4, the
efficient samplability of an element of Y is needed to be used as a part of our proposed framework
for FHE. In general, this is at least probabilistically achievable if the ratio |G \ Y |/|G| is
negligible; now a uniformly random element of G is also an element of Y except for a negligible
probability.

From now, as a concrete example, we show that the special linear group SL2(Fq) of size two
over q-element finite field Fq and the projective special linear group PSL2(Fq) = SL2(Fq)/{±I}
of size two are commutator-separable, if q is sufficiently large so that the value 1/q is negligible.
We present some lemmas for the purpose. First we fix a notation: for an element g of any group
H, let ZH(g) = {h ∈ H | gh = hg} denote the centralizer of g in H. Now we have the following
result:
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Lemma 2. Let H be a finite group, and let X ⊂ H. Then for any x1, x2 ∈ H, we have

Pr
g↢H

[ [gx1g
−1, x2] ∈ X ] ≤ |X| · |ZH(x1)| · |ZH(x2)|

|H|
.

Proof. We put Hy = {g ∈ H | [gx1g−1, x2] = y} for y ∈ X. Then we have

Pr
g↢H

[ [gx1g
−1, x2] ∈ X ] =

∑
y∈X

Pr
g↢H

[ [gx1g
−1, x2] = y ] =

∑
y∈X

|Hy|
|H|

.

For each y ∈ X with Hy ̸= ∅, fix an element gy ∈ Hy. Then for each g ∈ Hy, we have

(gx1g
−1)x2(gx1g

−1)−1x2
−1 = [gx1g

−1, x2]

= [gyx1gy
−1, x2] = (gyx1gy

−1)x2(gyx1gy
−1)−1x2

−1 ,

therefore (gyx1gy
−1)−1(gx1g

−1) ∈ ZH(x2). Now for each h ∈ ZH(x2), we put

Hy,h = {g ∈ Hy | (gyx1gy−1)−1(gx1g−1) = h} .

Then we have |Hy| =
∑

h∈ZH(x2)
|Hy,h|. If Hy,h ̸= ∅, we fix an element gy,h ∈ Hy,h. Now for

any g ∈ Hy,h, we have gx1g
−1 = gyx1gy

−1 · h = gy,hx1gy,h
−1, therefore gy,h

−1g ∈ ZH(x1). This
implies that |Hy,h| ≤ |ZH(x1)| for any h ∈ ZH(x2). Summarizing, we have

Pr
g↢H

[ [gx1g
−1, x2] ∈ X ] ≤

∑
y∈X

∑
h∈ZH(x2)

|ZH(x1)|
|H|

≤ |X| · |ZH(x1)| · |ZH(x2)|
|H|

.

This completes the proof.

Before moving to the next lemma, we note the following fact: for any finite group H and
x ∈ H, we have |ZH(x)| = |H|/|xH |, where xH = {hxh−1 | h ∈ H} denotes the conjugacy class
of x in H. Then we have the following result:

Lemma 3. Let φ : H1 → H2 be a surjective group homomorphism between two finite groups.
Then we have |ZH2(φ(x))| ≤ |ZH1(x)| ≤ |ZH2(φ(x))| · |H1|/|H2| for any x ∈ H1.

Proof. First we note that, for each h ∈ H2, the number of elements g ∈ H1 with φ(g) = h is
constant independent of h, namely |H1|/|H2|. Moreover, we have φ(xH1) = φ(x)H2 . By these
arguments, we have |φ(x)H2 | ≤ |xH1 | ≤ |φ(x)H2 | · |H1|/|H2|, therefore

|H2|
|φ(x)H2 |

≤ |H1|
|xH1 |

≤ |H1|
|φ(x)H2 |

=
|H1|
|H2|

· |H2|
|φ(x)H2 |

.

This completes the proof.

In contrast to the general argument above, the following result is specific to our choice of
the group here.

Lemma 4. For any A =

(
a b
c d

)
∈ SL2(Fq) with A ̸= ±I, we have |ZSL2(Fq)(A)| ≤ 2q if b ̸= 0

or c ̸= 0, and |ZSL2(Fq)(A)| = q − 1 if b = c = 0.
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Proof. Let X =

(
x y
z w

)
∈ ZSL2(Fq)(A), therefore XA = AX. Then we have

det(X) = 1 and

(
ax+ cy bx+ dy
az + cw bz + dw

)
=

(
ax+ bz ay + bw
cx+ dz cy + dw

)
,

therefore
xw − yz = 1 , cy = bz , bx+ dy = ay + bw , az + cw = cx+ dz .

First, suppose that b ̸= 0. Then we have z = b−1cy and w = x + b−1(d − a)y, therefore
x2 + b−1(d− a)xy − b−1cy2 = 1. Now for each y ∈ Fq, the quadratic equation in x has at most
two solutions, and z and w are uniquely determined from x and y by the relations above. This
implies that the number of the possible X is at most 2q. The argument for the case c ̸= 0 is
similar; x and y are linear combinations of z and w, and w satisfies a quadratic equation when
an element z ∈ F is fixed, therefore the number of the possible X is at most 2q.

On the other hand, suppose that b = c = 0. By the condition det(A) = 1, we have ad = 1,
therefore a ̸= 0 and d ̸= 0. Now we have dy = ay and az = dz, while the assumption A ̸= ±I
implies that a ̸= d. Therefore, we have y = 0 and z = 0. This implies that xw = 1, therefore
w ̸= 0 and x = w−1. Hence, the number of the possible X is q−1. This completes the proof.

Corollary 1. We have |ZPSL2(Fq)(A)| ≤ 2q for any non-identity element A ∈ PSL2(Fq).

Proof. This follows from Lemmas 3 and 4 and the fact that there exists a surjective homomor-
phism SL2(Fq)→ PSL2(Fq) that maps ±I to the identity element.

By combining the results above, we have the following:

Theorem 2. If the finite field Fq satisfies

8q

q2 − 1
≤ ε , or equivalently q ≥ 4 +

√
16 + ε2

ε
≈ 8

ε
,

then SL2(Fq) and PSL2(Fq) are ε-commutator-separable with the subsets Y = SL2(Fq) \ {±I}
and Y = PSL2(Fq) \ {1PSL2(Fq)}, respectively.

Proof. Let H ∈ {SL2(Fq),PSL2(Fq)}. First, it is known that |H| = q(q2 − 1)/η, where η = 1 if
H = SL2(Fq) and η = 2 if H = PSL2(Fq). We also note that |H \Y | = 2/η for this value η. Now
for any x1, x2 ∈ Y , Lemma 4 and Corollary 1 imply that |ZH(x1)|, |ZH(x2)| ≤ 2q. Therefore,
by Lemma 2, we have

Pr
g↢H

[ [gx1g
−1, x2] ̸∈ Y ] = Pr

g↢H
[ [gx1g

−1, x2] ∈ H \ Y ] ≤ (2/η) · 2q · 2q
q(q2 − 1)/η

=
8q

q2 − 1
≤ ε

by the condition for q in the statement. This completes the proof.

4.6 Probabilistic Case: Simple Groups

We also give a variant of the probabilistic realization of bit operators NOT and AND described
in Section 4.5. Although the correctness of the realization here relies on a heuristic assumption
given below, the underlying group G for the realization can be taken as any non-commutative
finite simple group that is sufficiently large, more precisely, provided 1/|G| is negligible.

Let G be a non-commutative finite simple group as mentioned above. The definitions of
subsets X0, X1 and the group word for the operator NOT are similar to Section 4.5. Namely,

X0 = {g⃗ ∈ G2 | g1 ̸= 1G , g2 = 1G} , X1 = {g⃗ ∈ G2 | g1 ̸= 1G , g2 = g1}
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and
wNOT,1(x⃗) = x1 , wNOT,2(x⃗) = x2

−1x1 .

Then we have (wNOT,1(g⃗), wNOT,2(g⃗)) ∈ XNOT(b) for any b ∈ {0, 1} and any g⃗ ∈ Xb.
To consider the AND operator, first we note that, for any g ∈ G \ {1G}, the simple group

G is generated by the elements of the form ugu−1 with u ∈ G; indeed, the normal closure of g
must coincide with the whole G. Keeping this property in mind, we put the following heuristic
assumption:

Assumption 1. Let ε > 0, and let L be a sufficiently large parameter. We assume that, for
any g ∈ G \ {1G}, the probability distribution of the element u1gu1

−1 · · ·uLguL−1 ∈ G, where
u1, . . . , uL ↢ G, is ε-close to the uniform distribution over G.

Now let ε > 0 be a negligible value, and let the parameter L be as in Assumption 1. We
define

wAND,1(x⃗, x⃗′, y1, . . . , y2L) = [y1x1y1
−1 · · · yLx1yL−1, yL+1x

′
1yL+1

−1 · · · y2Lx′1y2L−1] ,

wAND,2(x⃗, x⃗′, y1, . . . , y2L) = [y1x2y1
−1 · · · yLx2yL−1, yL+1x

′
2yL+1

−1 · · · y2Lx′2y2L−1] ,

and define the random variables r1, . . . , r2L to be the uniform random variable over G. Then
an argument similar to Section 4.5 implies that, for b, b′ ∈ {0, 1}, g⃗ ∈ Xb and g⃗′ ∈ Xb′ , we
have w⃗AND(g⃗, g⃗′) ∈ XAND(b,b′) as desired provided wAND,1(g⃗, g⃗′) ̸= 1G holds. To evaluate the

probability of not satisfying the condition wAND,1(g⃗, g⃗′) ̸= 1G, we use the following result by
Guralnick and Robinson [21]:

Proposition 3 ([21], Theorem 9). For any non-commutative finite simple group H, we have

Pr
h1,h2↢H

[ [h1, h2] = 1H ] ≤ |H|−1/2 .

Then we have the following result:

Theorem 3. For the group G as above, assume that Assumption 1 holds. Then for any g⃗, g⃗′ ∈
X0 ∪X1, we have

Pr
r1,...,r2L↢G

[wAND,1(g⃗, g⃗′, r1, . . . , r2L) = 1G] ≤ |G|−1/2 + 2ε .

Hence the definition above gives a probabilistic realization of degree 2 of the operators NOT and
AND in G if both 1/|G| and ε are negligible.

Proof. The latter part of the claim follows from the former part and the argument above. For
the former part of the claim, first, if the elements

h1 = r1g1r1
−1 · · · rLg1rL−1 and h2 = rL+1g

′
1rL+1

−1 · · · r2Lg′1r2L−1 (2)

were uniformly random overG, then by Proposition 3, we would have wAND,1(g⃗, g⃗′, r1, . . . , r2L) =
[h1, h2] = 1G with probability at most |G|−1/2. Now we note that g1 ̸= 1G and g′1 ̸= 1G since

g⃗, g⃗′ ∈ X0 ∪ X1, therefore Assumption 1 implies that the probability distributions of h1 and
h2 are independent and both ε-close to the uniform distribution over G. Hence, in fact, we
have wAND,1(g⃗, g⃗′, r1, . . . , r2L) = 1G with probability at most |G|−1/2 + 2ε. This completes the
proof.
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5 Towards Achieving Secure Lift of Realization

In this section, we give some observations towards constructing a lift of a group-theoretic real-
ization of operators for plaintexts (see Section 4) that will yield a secure FHE scheme based on
our framework in Section 3. More precisely, though we give a candidate construction of such a
lift, the resulting FHE scheme has an issue that the sizes of ciphertexts are not bounded, hence
the scheme is currently so-called non-compact FHE. Realization of compact FHE (i.e., FHE in
the usual sense) based on the strategy in this paper is left as a future research topic.

5.1 A Remark on the Choice of Random Variables

Here we give a remark on the construction of random variables r̃h involved in a lift of a group-
theoretic realization of functions. First, for realizations of functions using a uniform random
variable on a given group G, such as those in Sections 4.5 and 4.6, it may happen that sampling
a uniformly random element of the other group G̃ is not easy even if uniformly random sampling
of elements of G is easy. In such a case, owing to Proposition 2, a uniform random variable on
G may be approximated as follows: a sufficiently large number of random elements g1, . . . , gL
of G are chosen at the beginning, and a random element of G is chosen for each time by taking
g1

e1 · · · gLeL with e1, . . . , eL ↢ {0, 1}. Provided L is sufficiently large, this approximation will
work well except for a negligible probability for the choice of g1, . . . , gL, and now the uniform
random variable on G is replaced by the collection of L random variables, the i-th of which
takes values 1G and gi with probabilities 1/2 each. Then the corresponding random variables
on G̃ can be constructed by choosing an element g̃i ∈ G̃ with π(g̃i) = gi (yielding a random
variable taking values 1

G̃
and g̃i with probabilities 1/2 each) for each i = 1, . . . , L, which is

expected to be not difficult.
On the other hand, for the random variable rker used by the algorithm Gen(1λ) in our

proposed framework, it may also happen that sampling a uniformly random element of the
subgroup kerπ of G̃ seems not easy. An approach similar to the previous paragraph would be
useful in such a case: namely, we may choose a large number of elements g′1, . . . , g

′
L′ of kerπ

first and then generate an element of kerπ for each time by randomly multiplying the elements
g′1, . . . , g

′
L′ . It is naively expected that the probability distribution of the resulting element of

kerπ will be significantly random if L′ is sufficiently large.

5.2 Insecurity of a Matrix-Based Naive Construction

In order to exhibit the difficult point in the problem, here we show an example of an insecure
construction of a lift of a realization of functions and explain why the resulting FHE scheme
based on this construction is not secure.

We start with the realization of the AND and NOT operators in the group G = SL2(Fq)

proposed in Section 4.5. We define the corresponding group G̃ by

G̃ =

{
T

(
A B
0 C

)
T−1 | A ∈ SL2(Fq), B ∈M2,k(Fq), C ∈ GLk(Fq)

}
where k is a parameter and T ∈ GLk+2(Fq) is a fixed, randomly chosen matrix that must be

secret. Then the group homomorphism π : G̃ → G is defined as follows: for g ∈ G̃, π(g) is
obtained by first computing the (k+2)× (k+2) matrix T−1gT and then extracting the upper-
left 2× 2 block of T−1gT . The conjugation by the random T in the definition of G̃ intends to

hide the internal block upper-triangular structure (i.e., the part

(
A B
0 C

)
) of elements of G̃.

However, this construction is not secure by the following reason (this attack was pointed
out by an anonymous reviewer in a previous submission of this work). First, any matrix of
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the form

(
A B
0 C

)
with A = I ∈ SL2(Fq) satisfies a constraint “the first column of the second

row is zero”, which is a linear constraint in terms of the components of the matrix. By taking
conjugation by the matrix T , this constraint is changed to another constraint, which is more
complex but still a linear constraint in terms of the components of the matrix. We denote
the resulting constraint by “F (g) = 0”; namely, any element g of kerπ (i.e., element with the
component A in the form above being I) satisfies F (g) = 0.

Now we consider the linear subspace span(kerπ) generated by the set kerπ in the matrix
ring Mk+2,k+2(Fq). By the choice of the linear constraint F , span(kerπ) is a linear subspace of
V := {g ∈ Mk+2,k+2(Fq) | F (g) = 0}. Now by collecting sufficiently many elements h1, . . . , hL
of kerπ, it is expected that span(kerπ) is generated by these elements h1, . . . , hL. In this case,
for a given element g ∈ G̃, if g ∈ kerπ, then by adding g to the subspace span(h1, . . . , hL)
generated by h1, . . . , hL (which is now equal to span(kerπ)), the dimension of the subspace is
not increased. On the other hand, if g ̸∈ kerπ, then the constraint F (g) = 0 is not satisfied with
high probability, and now the dimension is increased by one when g is added to span(h1, . . . , hL)
since span(h1, . . . , hL) ⊂ V and g ̸∈ V . This yields a way for an adversary to decide whether
a given g ∈ G̃ belongs to kerπ or not (hence to break the proposed FHE) by only comparing
the dimensions of span(h1, . . . , hL) and span(h1, . . . , hL, g) even if the actual constraint F is
not known to the adversary. This example suggests that the existence of a non-trivial linear
constraint for the set kerπ will yield a powerful tool for the adversary.

5.3 Preliminaries on Combinatorial Group Theory

For the sake of arguments in the following subsections, here we summarize some more definitions
and facts from combinatorial group theory; see e.g., [24] for those mentioned without explicit
references.

First, the following efficient presentations of the groups SL2(Fp) and PSL2(Fp) are given by
Guralnick et al. [20]. Here we introduce a notation: for an integer m > 0 with base-4 expression
m =

∑k
j=0mj4

j and symbols u, h2, we write E(u,m;h2) = um0h2
−1 · · ·umk−1h2

−1umkh2
k.

Proposition 4 ([20], Theorem 3.6 and Remark 3.7). Let p > 3 be a prime. Let j be a generator
of the group Fp

×. Let 2 and j denote the multiplicative inverses of 2 and j modulo p, respectively.
Then the group SL2(Fp) admits a presentation ⟨S | R⟩, where S = {u, h2, h, t} and R consists
of the following words

E(u, p;h2) , h2
−1uh2u

−4 , h−1uhE(u, j2;h2)
−1 , t2ut−2u−1 , t−1hth , t−1ut−1utu ,

t−1h2
−1E(u, 2;h2)t

−1u2tE(u, 2;h2) , t
−1h−1E(u, j;h2)t

−1E(u, j;h2)tE(u, j;h2) .

In the presentation, the generators in S correspond to the following elements of SL2(Fp):

u =

(
1 1
0 1

)
, t =

(
0 1
−1 0

)
, h2 =

(
2 0
0 2

)
, h =

(
j 0
0 j

)
.

Similarly, a presentation of the group PSL2(Fp) is obtained by replacing the word t2ut−2u−1 ∈ R
in the presentation above with the word t2.

The following result on presentations of direct products of groups is known:

Proposition 5 (see e.g., [24]). Let ⟨Si | Ri⟩, i = 1, 2, be two presentations of groups with
S1 ∩ S2 = ∅. Then the direct product of these two groups admits a presentation ⟨S1 ∪ S2 |
R1 ∪R2 ∪ {s1−1s2−1s1s2 | s1 ∈ S1 , s2 ∈ S2}⟩.

17



We also have the following two results on generating a new presentation of a group from
a given presentation. The former is a consequence of the property of Tietze transformation
and intuitively means that we can add any element of the group to its generating set without
changing the group structure.

Lemma 5 (see e.g., [24]). Given a presentation ⟨X | R⟩ of a group, let w be a group word on X
and let y be a symbol not belonging to X. Then the group ⟨X ∪{y} | R∪{wy−1}⟩ is isomorphic
to ⟨X | R⟩ where each element of X in the group ⟨X | R⟩ corresponds to the same element in
the group ⟨X ∪ {y} | R ∪ {wy−1}⟩.

Lemma 6. Given a presentation ⟨X | R⟩ of a group, let ⟨Y | T ⟩ be a presentation of the trivial
group (i.e., the group of size one), and for each element y ∈ Y , choose an element ry of R. Let
T (ry | y ∈ Y ) denote the set of words of the form t(ry | y ∈ Y ) with t(y⃗) ∈ T , where t(ry | y ∈ Y )
denotes the group word on X obtained by substituting the word ry into the variable y in the word
t(y⃗) for each y ∈ Y . Then the subsets R and R′ := (R \ {ry | y ∈ Y }) ∪ T (ry | y ∈ Y ) have the
same normal closure in Free(X), therefore ⟨X | R′⟩ is isomorphic to ⟨X | R⟩.

Proof. The definition of the words t(ry | y ∈ Y ) implies that R′ ⊂ ⟨R⟩normal. To prove the
opposite relation R ⊂ ⟨R′⟩normal, it suffices to show that ry ∈ ⟨R′⟩normal for each y ∈ Y .
Now by the assumption that ⟨Y | T ⟩ is a trivial group, y is the product of words of the form
u(y⃗)t(y⃗)u(y⃗)−1 with u(y⃗) ∈ Free(Y ) and t(y⃗) ∈ T . By substituting the word ry′ into the variable
y′ for each y′ ∈ Y , it follows that ry is the product of words of the form u(ry′ | y′ ∈ Y )t(ry′ |
y′ ∈ Y )u(ry′ | y′ ∈ Y )−1 with u(ry′ | y′ ∈ Y ) ∈ Free(X) and t(ry′ | y′ ∈ Y ) ∈ T (ry′ | y′ ∈ Y ).
This implies that ry ∈ ⟨R′⟩normal, as desired. This completes the proof.

We also give a brief summary of the theory of Coxeter groups; see e.g., [23] for the definitions
and facts mentioned without explicit references. A Coxeter matrix of size n is an n× n matrix
Γ = (Γij)i,j∈{1,...,n} satisfying that Γii = 1 for i = 1, . . . , n and Γij = Γji ∈ {2, 3, . . . } ∪ {∞}
for any i ̸= j. Then the Coxeter group W (Γ) with Coxeter matrix Γ is the group defined by
the presentation ⟨S | R⟩ with the generating set S = {s1, . . . , sn} and the set of fundamental
relations R consisting of the words (sisj)

Γij for each i ≤ j with Γij ̸=∞. In particular, the set
R always involves the words si

2 for i = 1, . . . , n, which allows one to freely replace the symbol
si
−1 in a given word with si and hence implies that any element of the group W (Γ) can be

expressed by a word with symbols s1, . . . , sn only (not using symbols s1
−1, . . . , sn

−1). For any
element w of W (Γ), we define the length ℓ(w) of w to be the length ℓ of the shortest word
si1 · · · siℓ (sij ∈ S) that is equal to w in the group W (Γ).

Example 1. We say that a Coxeter matrix Γ of size n is of type A, or more precisely type An, if
we have Γi,i+1 = 3 for i = 1, . . . , n− 1 and Γij = 2 for any i, j with |i− j| ≥ 2. Let ΓAn denote
the Coxeter matrix of type An. For example,

ΓA4 =


1 3 2 2
3 1 3 2
2 3 1 3
2 2 3 1


and W (ΓA4) = ⟨s1, s2, s3, s4 | R⟩ where

R = {s12, s22, s32, s42, (s1s2)3, (s1s3)2, (s1s4)2, (s2s3)3, (s2s4)2, (s3s4)3} .

It is known that, the Coxeter group W (ΓAn) of type An is isomorphic to the symmetric group
Sn+1, where the generator si of W (ΓAn) with i ∈ {1, . . . , n} corresponds to the adjacent trans-
position (i, i+ 1) in Sn+1.
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Let Γ be a Coxeter matrix of size n. For each generator si of W (Γ) with i = 1, . . . , n, we
define the corresponding matrix φ(si) = (φ(si)jk)j,k∈{1,...,n} by

φ(si)ii = −1 , φ(si)jj = 1 and φ(si)ij = 2 cos(π/Γij) for any j ̸= i ,

φ(si)jk = 0 for any j ̸= i and k ̸= j ,

where we interpret cos(π/∞) = cos(0) = 1 when Γjk =∞. For example, for the Coxeter group
W (ΓA4) of type A4 appeared in Example 1, we have (since cos(π/2) = 0 and cos(π/3) = 1/2)

φ(s1) =


−1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , φ(s2) =


1 0 0 0
1 −1 1 0
0 0 1 0
0 0 0 1

 ,

φ(s3) =


1 0 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

 , φ(s4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

 .

Then the following fact is known for any Coxeter matrix Γ.

Proposition 6 (see e.g., Sections 5.3 and 5.4 of [23]). In the current situation, the map given
by φ(si1si2 · · · siℓ) = φ(si1)φ(si2) · · ·φ(siℓ) for words si1si2 · · · siℓ with symbols si1 , . . . , siℓ ∈
S defines a group isomorphism φ from the Coxeter group W (Γ) to the subgroup of GLn(R)
generated by the matrices φ(s1), . . . , φ(sn).

To compute the inverse of the group isomorphism φ yielded by Proposition 6, the following
fact is useful.

Proposition 7 (see e.g., Section 5.4 of [23]). In the current situation, let w ∈ W (Γ) and
let i ∈ {1, . . . , n}. Then we have ℓ(wsi) < ℓ(w) if and only if the i-th column of the matrix
φ(w) ∈ GLn(R) involves at least one negative component.

Proposition 7 yields the following recursive algorithm to, given a matrix g ∈ φ(W (Γ)) as
input, construct a word w satisfying g = φ(w):

• When g = I, the algorithm outputs the empty word.

• When g ̸= I, the algorithm searches any index i satisfying that the i-th column of g
involves at least one negative component. Proposition 7 ensures that such an index i is
always found (provided g ∈ φ(W (Γ))) and then the element φ−1(g · φ(si)) of W (Γ) has
shorter length than φ−1(g). Now a recursive procedure yields a word w′ ∈W (Γ) satisfying
g · φ(si) = φ(w′); then the algorithm outputs the word w′si (note that si

2 = 1 in W (Γ)).

We also summarize the following two well-known facts, which will be used in our argument
below. The first fact follows immediately from the definition of the Coxeter group W (Γ), and
the second fact is included in, e.g., [2].

Proposition 8. Let Γ be any Coxeter matrix, where the indices for the rows (as well as columns)
are chosen from a set Λ. Let Λ′ be a subset of Λ with the following property: if i ∈ Λ′ and
j ∈ Λ \ Λ′ then Γij is either an even integer or ∞. Moreover, let Γ′ be a Coxeter matrix where
the indices for the rows (as well as columns) are chosen from the set Λ′, and suppose that for
any i, j ∈ Λ′, we have either Γij = ∞ or that Γ′ij is a divisor (hence not ∞) of Γij. For any
word w of symbols si with i ∈ Λ, we denote by w′ the word obtained from w by removing all
symbols si with i ∈ Λ \ Λ′. Then the map that sends a word w in W (Γ) to the corresponding
word w′ in W (Γ′) defines a surjective group homomorphism from W (Γ) to W (Γ′).
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Example 2. We consider two Coxeter matrices Γ and Γ′ given by

Γ =


1 4 2 2
4 1 ∞ 2
2 ∞ 1 6
2 2 6 1

 , Γ′ =


1 ∗ 2 2
∗ ∗ ∗ ∗
2 ∗ 1 3
2 ∗ 3 1


where the symbols ∗ in Γ′ means that the second row and the second column are deleted. This
corresponds to the case Λ = {1, 2, 3, 4} and Λ′ = {1, 3, 4} in Proposition 8. Then Proposition
8 yields a surjective group homomorphism W (Γ) → W (Γ′). For example, this map sends
s1s2s3s4s3s2s4s3s2s4 ∈ W (Γ) to s1s3s4s3s4s3s4 ∈ W (Γ′) by removing all symbols s2, which is
equivalent to the word s1 in W (Γ′) owing to the component Γ′34 = 3 of the Coxeter matrix Γ′.

Proposition 9 (see e.g., Theorem 3.3.1 of [2]). Let W (Γ) be a Coxeter group, and let w be
a word in W (Γ) that involves the symbols si ∈ S only (not their inverses si

−1). Then w can
be converted to an equivalent word w′ with the minimal length by using the following kinds of
operations only:

• for some generator si ∈ S, remove a subword of the form si
2;

• for some different generators si ̸= sj ∈ S with Γij < ∞, replace a subword of the form
sisjsi · · · of length Γij with a subword sjsisj · · · of length Γij.

Example 3. Let W (ΓA4) be the Coxeter group of type A4. Then the element s2s1s2s1s2s4s1s4
of W (ΓA4) is in fact the identity element (i.e., equivalent to the empty word ∅), which can be
verified by using the two kinds of transformations specified in Proposition 9 as follows:

s2s1s2s1s2s4s1s4 7→ s2s1s2s1s2s4s4s1 (using transformation s1s4 7→ s4s1),
s2s1s2s1s2s4s4s1 7→ s2s1s2s1s2s1 (removing subword s4s4),
s2s1s2s1s2s1 7→ s2s1s2s2s1s2 (using transformation s1s2s1 7→ s2s1s2),
s2s1s2s2s1s2 7→ s2s1s1s2 (removing subword s2s2),
s2s1s1s2 7→ s2s2 (removing subword s1s1),
s2s2 7→ ∅ (removing subword s2s2).

5.4 A Candidate Construction for Non-Compact FHE

The discussion in Section 5.2 showed that a naive matrix-based construction of the group
homomorphism π : G̃→ G to lift the realization of functions in a group G will be insecure due
to the existence of a non-trivial linear constraint for the elements of kerπ. Here we describe
an idea aiming at violating such linear constraints among the map π by utilizing combinatorial
group theory mentioned in Section 5.3. However, a concrete example of a finite group G̃
constructed in this manner has not been discovered so far; accordingly, we choose an infinite
group G̃ in the following example and hence the resulting FHE is a so-called non-compact
FHE. We note that, though an infinite group G̃ is out of the scope of Theorem 1, it is still
naively expected that the security of the resulting non-compact FHE is also closely related to
the computational hardness of recognizing elements of kerπ. A more detailed analysis of the
security of the proposed scheme and a search for a finite group G̃ suitable for the proposed idea
are left as future research topics.

To construct the homomorphism π : G̃ → G, we start with the group G = S5 in which the
bit operators are realized as in Section 4.2. Let d be a sufficiently large integer depending on the
security parameter. Let Γ be the Coxeter graph of size d determined by Γij = 6 for any distinct
i, j. We randomly choose five distinct indices i1, . . . , i5 from the set Λ = {1, . . . , d}, and define
another Coxeter graph Γ′, with row and column indices chosen from the set Λ′ = {i1, . . . , i5},
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by Γ′ij ,ij+1
= Γ′ij+1,ij

= 3 for j = 1, . . . , 4 and Γ′ij ,ik = 2 for any j, k ∈ {1, . . . , 5} with |j−k| ≥ 2.

By Example 1, the Coxeter group W (Γ′) corresponding to the Coxeter graph Γ′ is of type A4

(except different numbering for the row and column indices) and is isomorphic to the group
G = S5; we identify W (Γ′) with G in the following argument. Now Proposition 8 yields a
surjective group homomorphism W (Γ) → W (Γ′) = G, which we write as ψ. On the other
hand, Proposition 6 yields a group isomorphism φ from W (Γ) to a certain subgroup of GLd(R).
We note that the subgroup φ(W (Γ)) of GLd(R) is in fact contained in GLd(Q(

√
3)) by the

construction of the map φ, since cos(π/6) =
√
3/2. Moreover, we take a random matrix T from

GLd(Q(
√
3)), and define the group G̃ by

G̃ = T · φ(W (Γ)) · T−1 = {T · φ(w) · T−1 | w ∈W (Γ)} .

In the resulting (non-compact) FHE scheme, the elements of G̃ required to implement the public
key are announced (i.e., elements gen0 and gen1, elements of G̃ appearing in the group words
for the lift of the realization of bit operators, and elements of G̃ used to sample the random
variable rker as specified below), while the choice of the matrix T and the indices i1, . . . , i5 are
kept secret.

Given an element g ∈ G̃, the value π(g) of the map π : G̃→ G is computed as follows:

1. Compute the conjugate T−1gT of the matrix g by using the secret matrix T .

2. Compute the word w = φ−1(T−1gT ) in W (Γ) corresponding to T−1gT by using the
algorithm yielded by Proposition 7.

3. Compute a word w′ = ψ(w) in W (Γ′) by the rule specified in Proposition 8.

4. Compute a shortest word equivalent to w′ inW (Γ′) by using Proposition 9; this enables us
to determine the element π(g) ∈ G = S5 that corresponds to the w′ via the isomorphism
G ≃W (Γ′).

In the construction of the public key mentioned above, first, to choose an element w̃ ∈ G̃
satisfying π(w̃) = w for a given element w ∈ W (Γ) ≃ G, we take an element r of kerπ ⊂ G̃
and then compute the product w̃ = φ(w) · r where the word w is also regarded as an element
of W (Γ) (note that the generating set of W (Γ′) is a subset of the generating set of W (Γ)
by the construction). Secondly, to sample the random variable rker on the set kerπ, we choose
sufficiently many elements of kerπ in advance, and then take a random product of those elements
for each time to sample a value of rker. For both purposes, it suffices to choose an element of
kerπ in a suitable way. Here we consider the following way of randomly choosing an element
of kerπ:

1. Take one of the words sj with j ∈ Λ\Λ′, (sijsij+1)
3 with j ∈ {1, . . . , 4}, and (sijsik)

2 with
distinct indices j, k ∈ {1, . . . , 5}. Let w0 denote the resulting word in W (Γ).

2. Take a sufficiently long random word u in W (Γ), and compute the conjugate uw0u
−1.

3. Compute the matrix φ(uw0u
−1) ∈ GLd(Q(

√
3)) and then output the conjugate T ·

φ(uw0u
−1) · T−1 ∈ G̃. This element satisfies π(T · φ(uw0u

−1) · T−1) = 1 by the con-
struction.

For possible parameter choices, first, we would be able to choose d = 4 as the minimal
possible choice of d, but it is naively expected that a larger value of d would yield stronger
security by hiding the actual choice of the sequence i1, . . . , i5. Secondly, we would be able to
choose each component of the matrix T ∈ GLd(Q(

√
3)), say a+b

√
3, in a way that each of a and

b is a random integer of at least (40/d)-bit length; now approximately at least ((240/d)2)d = 280
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choices exist for each row and each column of the matrix T . Thirdly, for each choice of a random
element of kerπ mentioned above, we would be able to choose the random word u appeared in
the algorithm above in such a way that u has at least length 80; now approximately at least
280 choices exist for each word u. However, a detailed analysis of the security of the proposed
(non-compact) FHE in practical implementation is left as a future research topic.

Remark 2. One may be curious about whether or not the Coxeter group W (Γ) in the construc-
tion above can be chosen as a finite group, which will yield a compact FHE (i.e., FHE in the
ordinary sense) as desired. In fact, starting from the Coxeter matrix Γ′ of type A4 as above,
or more generally the Coxeter matrix Γ′ of type An with n ≥ 4, there is essentially a unique
irreducible Coxeter matrix Γ other than Γ′ for whichW (Γ) is finite and a group homomorphism
W (Γ) → W (Γ′) exists as specified in Proposition 8. This is the Coxeter matrix of type Bn+1,
which is the Coxeter matrix Γ of size n+1 determined by the following conditions: restricting to
the first n rows/columns of Γ yields the Coxeter matrix of type An, and we also have Γi,n+1 = 2
for 1 ≤ i ≤ n−1 and Γn,n+1 = 4. Now the group homomorphismW (Γ)→W (Γ′) in Proposition
8 is given by removing the symbols sn+1 from a given word in W (Γ).

However, by using the known expression of the Coxeter group W (Γ) of type Bn+1 as a
“signed” permutation group (see e.g., [23]), it can be proved that the kernel of the group
homomorphism W (Γ) → W (Γ′) is an elementary abelian 2-group generated by the elements
sjsj+1 · · · snsn+1sn · · · sj+1sj with j = 1, . . . , n + 1, and it follows further that the image of
any element of the kernel of the map W (Γ) → W (Γ′) above via the isomorphism φ : W (Γ) →
φ(W (Γ)) ⊂ GLn+1(R) in Proposition 6 is a lower triangular matrix. This yields a linear
constraint “each component at the upper triangular part is 0” for the kernel of the resulting
map φ(W (Γ))→W (Γ′) ≃ G, which is not desirable as discussed in Section 5.2. Moreover, it is
also known (see e.g., [14]) that, for any group automorphism ρ of φ(W (Γ)), we have ρ(g) ∈ {±g}
for each g ∈ φ(W (Γ)); therefore the linear constraint cannot be violated even by considering the
composition of a group automorphism of φ(W (Γ)) followed by the map φ(W (Γ))→W (Γ′). This
argument suggests that, in order to construct an appropriate homomorphism G̃ → G = Sn+1

with finite G̃, the group G̃ must be searched from outside the class of Coxeter groups.

5.5 Another Approach

We also propose another idea to avoid an undesirable linear constraint as in Section 5.2 for the
kernel of the map π : G̃→ G by utilizing combinatorial group theory. In the idea, we start with
a finite group G in which the bit operators are realized and for which an efficient presentation
is known. All of the group G = S5 used in Section 4.2 and the groups SL2(Fp) and PSL2(Fp)
used in Section 4.5 satisfy the condition (see Proposition 4 for the latter case). We take, in
a certain suitable way discussed below, another finite group H that also admits an efficient
presentation. Then we take the direct product G ×H of these two groups, which also admits
an efficient presentation due to Proposition 5. However, if we adopt the group G × H with
the aforementioned presentation as the group G̃ in our proposed framework and the projection
G ×H → G to the first component as the corresponding map π : G̃ → G, the construction in
Proposition 5 of the presentation of G × H will leak the direct product structure of G × H.
This implies that the information on the map π : G̃→ G is not hidden and hence the resulting
FHE will never be secure.

Our idea to prevent the leakage of the direct product structure of the group G × H is
to randomly modify the aforementioned presentation of this group yielded by Proposition 5
without changing the abstract group structure itself, by utilizing the facts in Lemmas 5 and
6. It is naively expected that, if this modification is successfully executed, then the resulting
presentation of the group will not leak the information on the direct product structure G×H,
hence the resulting group will be used as the group G̃. The record of the modification process
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will be a part of the secret key, which enables one to recover the original presentation of the
direct product group G×H in order to compute the map π : G̃→ G.

Here we note that there are (at least) three problems to be solved for this approach. The
first problem is to analyze a suitable way of modifying the presentation of the group in or-
der to achieve the security in practice, e.g., to evaluate the sufficient number of steps of the
modification. The second problem is that, in the resulting group G̃ with a randomly modified
presentation, the multiplication of two elements given as group words can, in theory, be com-
puted by first concatenating the two words and then simplifying the resulting word by using
the given fundamental relations for the group G̃. However, as the presentation of G̃ has been
randomly modified, it is not obvious how to simplify the resulting word in an efficient way. If
an efficient simplification of the resulting word does not work, then the words representing the
elements of G̃ will be unboundedly long, which will again result in a non-compact FHE (though
the group G̃ itself is a finite group).

Moreover, even if the aforementioned two problems are completely solved, it may still happen
that the resulting FHE is not secure if the group H is not appropriately chosen. From now, we
give some discussions on appropriate choices of the group H.

The idea of a potential attack against our FHE is as follows. Any element of the group
G̃ ≃ G × H can be decomposed into the “G-component” and the “H-component”. The G-
component of an element is nothing but the value of the map π : G̃→ G, therefore the elements
of kerπ are those with G-components being the identity element, i.e., the elements of H. Now
suppose that an adversary obtains an element w0 of G̃ whose H-component is the identity
element but G-component is not the identity element. Then any element of kerπ is commutative
with w0, while a random element of G̃ \ kerπ is expected to be not commutative with w0. This
property would enable the adversary to distinguish the elements of kerπ from the other elements,
which will violate the security of the proposed scheme. Hence, such an element w0 should not
be efficiently found.

For conditions of the group H to prevent to efficiently find such an element w0, first, H
should not be a commutative group; indeed, if H were a commutative group, then the element
w0 could be obtained by w0 = [w,w′] for randomly chosen w,w′ ∈ G̃. On the other hand, a
pair of distinct elements w,w′ ∈ G̃ with the same H-component will yield the element w0 by
w0 = w−1w′. Therefore, due to the Birthday Paradox, the cardinality of the group H should
be at least 2160 if we expect to achieve 80-bit security.

We also have to consider the following kind of attacks. Suppose that an integer k satisfies
that both of the probabilities Prw↢H [wk = 1] and Pr

w↢G̃
[wk ̸= 1] are non-negligible and at least

one of them is noticeable. Then an adversary can distinguish a random element of H = kerπ
from a random element of G̃ by checking whether a given random element w satisfies wk = 1
or not. Therefore, such an integer k should not be efficiently found.

For example2, suppose that G = H = Aλ with λ ≥ 4. Let p be the largest odd prime
with p ≤ λ. Then the number of elements of Aλ that are cyclic permutations on p letters is(
λ

p

)
(p−1)! =

2

p · (λ− p)!
· |Aλ|. This implies that Pr

w↢H
[wp = 1] =

2

p · (λ− p)!
+

1

|Aλ|!
, denoted

here by P ; while we have Pr
w↢G̃

[wp = 1] = P 2. Since λ− p is small for reasonable choices of λ
(e.g., λ−p ≤ 6 for λ ≤ 80), P is significantly larger than P 2, therefore the uniform distributions
over H and over G̃ ≃ G×H can be distinguished with non-negligible advantage by checking if
wp = 1 for a given random element w.

In order to avoid the aforementioned attack strategies, here we propose to use H = SL2(Fq)
for an odd prime q satisfying that 1/q is negligible. Note that this H indeed admits an efficient
presentation by Proposition 4. For the sake of preventing the attack in the previous paragraph,

2This is the case of the candidate instantiation given in a previous version (20150819:140754) of this paper
posted to http://eprint.iacr.org/2014/097 on August 19, 2015.
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Table 1: The conjugacy classes in SL2(Fq) for odd prime q > 3 (here ζ denotes a generator of
(Fq)

×, and matrices Ai and Bj are as defined in the text)

type representative x cardinality order of x

1

(
1 0
0 1

)
1 1

2

(
−1 0
0 −1

)
1 2

3

(
1 1
0 1

)
q2 − 1

2
q

4

(
1 ζ
0 1

)
q2 − 1

2
q

5

(
−1 1
0 −1

)
q2 − 1

2
2q

6

(
−1 ζ
0 −1

)
q2 − 1

2
2q

7-i Ai (1 ≤ i <
q − 1

2
) q2 + q

q − 1

gcd(q − 1, i)

8-i B(q−1)i (1 ≤ i <
q + 1

2
) q2 − q q + 1

gcd(q + 1, i)

we investigate the distribution of the orders of elements of H.
Following the argument in Section 5.2 of [15], we choose a generator ζ of the cyclic group

Fq
×. Put Ai =

(
ζi 0
0 ζ−i

)
for i = 0, 1, . . . , q − 2. On the other hand, by considering the

quadratic extension field Fq2 of Fq, ζ has a square root in Fq2
× \ Fq

× (since q is odd), denoted
by
√
ζ. Then we have a bijection Fq × Fq → Fq2 , (a, b) 7→ a + b

√
ζ. Choose a generator υ

of the cyclic group Fq2
×. For i = 0, 1, . . . , q2 − 2, put Bi =

(
a b
bζ a

)
where υi = a + b

√
ζ.

By using these notations, the list of conjugacy classes in SL2(Fq) is obtained as in Table 1,
where the second column (showing a representative element x for each conjugacy class) and the
third column (showing the cardinality of the conjugacy class) are quoted (with slightly different
notations) from Section 5.2 of [15]. The fourth column gives the order of an element of each
conjugacy class, which is constant on the conjugacy class. Note that, for elements of type 8 in
the table, the map υi 7→ Bi is a homomorphism from Fq2

× to the matrix group.
In Table 1, the ratio of the cardinality of each conjugacy class of type 1 to 6 to the cardinality

of the whole group is at most a negligible value
(q2 − 1)/2

q(q2 − 1)
=

1

2q
, therefore these conjugacy

classes can be ignored in the current argument. On the other hand, for each divisor k of q − 1,
an element x of the conjugacy class of type 7-i satisfies xk = 1 if and only if i is a multiple of

(q − 1)/k. Therefore, the number of such elements x is at most
(q − 1)/2

(q − 1)/k
(q2 + q) =

k

2
(q2 + q),

whose ratio to the size q(q2−1) of the whole group is
k

2(q − 1)
. To make the ratio non-negligible,

one must find a divisor k of q−1 which is almost as large as q−1; this is expected to be difficult
if the size q of the coefficient field Fq is not known. The same also holds for conjugacy classes
of type 8.

Summarizing, the attack strategy described above will be not effective for the group H =
SL2(Fq), provided the size of the coefficient field Fq is appropriately hidden by the random
modification of the presentation of the group. A further analysis of other possible attack
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strategies will be a future research topic.
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