
Efficient Privacy-Preserving Big Data Processing through

Proxy-Assisted ORAM

(Extended Abstract)

Nikolaos P. Karvelas1, Andreas Peter2, Stefan Katzenbeisser1, and Sebastian Biedermann1

1 CASED & TU-Darmstadt, Germany
2 University of Twente, the Netherlands

Abstract. We present a novel mechanism that allows a client to securely outsource his

private data to the cloud while at the same time to delegate to a third party the right to

run certain algorithms on his data. The mechanism is privacy-preserving, meaning that the

third party only learns the result of his algorithm on the client’s data, while at the same

time the access pattern on the client’s data is hidden from the cloud. To achieve this we

combine recent advances in the field of Oblivious RAM and Secure Two-Party Computation:

We develop an Oblivious RAM which is ran between the cloud and a proxy server, and which

does not need the data to be decrypted at any point. The evaluation on the data is done by

employing Yao’s garbled circuit solution for Secure Two-Party Computation.

Keywords: Oblivious RAM, Secure Two-Party Computation, Garbled Circuits, Privacy.

1 Introduction

Outsourcing data to remote servers has in the recent years evolved from an optional feature to a

practical need. Personal data grows fast by the day and it seems reasonable to store it remotely,

where the user can access it from any part of the world and with any computational device that

can connect to the Internet. Furthermore, it is preferable for the user to outsource demanding

operations to the cloud, since the computations are done faster and without adding extra local

load. In this setting it is reasonable to assume that in the near future applications will arise, in

which the user will delegate to a third party the rights to access and process private information

stored in the cloud, so that the latter will evaluate on the data, while the data owner is offline.

The above mentioned applications however raise some serious privacy concerns. Imagine for

example the case, where the client uploads to a remote server his encrypted fully sequenced DNA

and wants to delegate a doctor (i.e. the delegated third party which in the sequel we will call the

investigator) to perform a query on his private data, such as checking if a specific mutation is

present. In this case the client wants to maintain data privacy as far as both the storage server

and the investigator are concerned: Encrypting the data and using secure two-party computation

(STC) techniques achieves data privacy as far as the investigator is concerned. On the server side

however the situation is quite different. Although the server never sees the underlying plaintexts,

1

he can extract important information about the query itself by carefully examining the parts of

the data that have been accessed. Knowing for example that a client has been checked for a certain

mutation is already an important privacy leakage, even if the result of the test is never revealed.

It is then clear that hiding the access patterns should be dealt with in any of the above mentioned

applications.

In this work we propose a scheme, which employs two servers (the cloud and the proxy) and

solves the above described problem as efficiently as current secure two-party computation protocols

allow. We extend the solution to a setting where the remote server stores the data of multiple users

and allows the investigator to compute on different users’ encrypted data stored on the server’s

database.

After the data is uploaded to the cloud, we split the overall problem of obliviously computing on

it into two distinct subproblems as indicated in Figure 1: We first retrieve the required encrypted

data and subsequently evaluate the data using STC. In the first step the investigator retrieves

the encrypted data from the cloud in a way that maintains access pattern privacy. In the second

step he obtains the result of the computation by running an STC protocol between the cloud

and the proxy. We deal with the first subproblem by adjusting current ORAM schemes to our

needs. We thus end up with what we call a proxy-ORAM, which provides the same functionalities

as traditional ORAMs, without however demanding the data owner to be online. For the second

subproblem we employ tools developed recently for STC and which allow a plethora of functions

to be evaluated.

In our solution, we successfully combine ORAM techniques for the data retrieval with the

abilities offered by the compiler from [8] and we divise a protocol that contributes in the area of

Privacy Enhancing Technologies in the following ways:

1. Our scheme provides a tight integration between ORAM and secure two-party computation.

Doing so it offers delegated outsourced computations that maintain access pattern hiding.

2. With slight modifications, the proposed scheme can be turned into a typical ORAM: It offers

read/write indistinguishability and hides the access patters while requiring logarithmic storage

on the client side (who in our case is the investigator). That way our ORAM offers one new

important feature: the data owner is not needed to be constantly online.

1.1 Organization of the Paper

The rest of the paper is organized as follows: We give a brief overview of the related work on

Oblivious RAM and on secure two-party computation in Section 2. In Section 3 we describe the

necessary cryptographic principles, which we use in our solution. Our solution is described in detail

in Section 4. We finish with some concluding remarks and future work in Section 5.

2

Cloud ProxyClient Investigator

Authorization

Encrypted DataDa
ta

 U
pl

oa
d

Encrypted Data

Da
ta

 R
et

rie
va

l

O
RA

M
op

er
at

io
ns

Inputs for Yao's GC

Da
ta

 E
va

lu
at

io
n

Result
of STC

f

Fig. 1. After the initial upload of the encrypted data, oblivious computing on it using proxy-ORAM is
done by splitting the problem into two phases, the Data Retrieval and the Data Evaluation.

2 Related Work

2.1 Oblivious RAM

In [6], Goldreich and Ostrovsky give the first non-trivial solution to the problem of access pattern

hiding, called Oblivious RAM (ORAM). They consider a machine whose memory consists of N

blocks arranged pyramid-like in logN levels. Each level is represented as a hash table, consisting of

a level dependent number of fixed sized buckets: Level i holds 4i buckets. Each block is assigned to

one of the 4i buckets at this level, distributed by a hash function Hj
i , with i being the level and j

the so-called “epoch”, which is associated to the amount of times that this level has been emptied

into the next. Emptying one level to the next has to take place in regular intervals and must

maintain pattern obliviousness. This procedure is called a “reshuffle” and is the most expensive

operation with respect to communication and computational complexity. For a detailed description

we refer to [6,18,19,14,7].

In a high level overview the ORAM works as follows: Every block of data is identified by an

identifier id and for each one of them, the client uploads to the server a pair (Hj
i (id),Enc(data)),

where Enc is a semantically secure encryption function and Hj
i belongs to a family of hash functions

H : {0, 1}∗ → {0, 1}4i . Due to hash collisions, every bucket contains up to logN blocks. Specifically

in level i and at epoch j the 4i positions given by the hash function are split into up to 2i−1 real

elements which have been entered in the table during the previous reshuffle, 2i−1 “fake” elements

(whose purpose will become clear in the following) and 2i empty positions.

3

In a query for the block with identifier id and at epoch j, the client goes through every level of

the construction and retrieves a bucket from each, after consulting the hash function Hj
i at every

level i. From each bucket the client decrypts every block until he finds the block he was looking

for. After the block has been found, the client continues by requesting fake blocks. More precisely,

the client performs the following operations:

– All the buckets from the first level are downloaded and checked.

– Until the element is found, the client downloads from level i with i ∈ 1, . . . , logN the bucket

indicated by Hj
i (id)

– After the block has been found, the client continues downloading buckets from all the remaining

levels, but this time asking for “fake” buckets3, indicated by Hj
i .

Once the client retrieves the block he wanted, he re-encrypts data and uploads it to the first

level of the database, where the server stores it in Hk
1 (id), with k being the appropriate epoch at

level 1. After a certain amount of queries, some levels will become full. In order to avoid overflows,

a reshuffle is triggered.

It is then clear from the above discussion, that as long as an encryption scheme is used, that

produces unique ciphertexts of the same message, distinguishable only with a negligible advantage

from a computationally bounded adversary, the server will not be able to retrieve any information

about the queries just by looking at the access patterns.

Goldreich and Ostrovsky’s ORAM, which required a total of O((logN)2) items to be down-

loaded per query, was further improved by Williams et. al. in [19] where another approach is

followed: Although the database is structured in the same way as in [6], instead of using hashed

buckets, an encrypted Bloom Filter per level is used. A Bloom Filter is a randomized data struc-

ture that, given a set of elements S = (s1, . . . , sn) and a query for an element s, it returns true

with probability 1 if s ∈ S; if s /∈ S it returns false with probability p and true with probabil-

ity 1 − p. It is implemented as an array B of m bits, initialized to the 0-string together with a

total number of ξ hash functions, {hj}ξj=1 : {0, 1}∗ → [m], such that for every element s ∈ S

it holds that B[hj(s)] = 1 for every j = 1, . . . , ξ. In [19], the hash functions hj are defined as

{hj}ξj=1 : {0, 1}2i → [m], where i denotes the database level; the hash functions are keyed and

each bit of the BF is encrypted using a semantically secure encryption scheme. The query runs in

a similar way to the one in the Goldreich and Ostrovsky approach: The client goes through every

level of the database, first consulting the Bloom Filter for the current level to check whether the

element he queries for is on that level. If it is then he retrieves it directly; otherwise he retrieves

a fake element. Using this protocol, the client does not need to scan a bucket at every level and

therefore avoids one logN factor of the communication overhead. Recently in [10], the authors

revealed a flaw in most of the ORAM constructions, that under certain circumstances can lead to

access pattern distinguishability. This problem is mitigated in the construction of [19] as long as

the Bloom Filters are of superlogarithmic size.

The authors in [17] construct a novel and intuitive ORAM which is easy to implement and

therefore made the construction of a secure processor a reality in [12]. However the ORAM from [17]

3 These buckets have been placed on the level during the previous reshuffle.

4

maintains a stash with elements retrieved that cannot fit to the storage. This stash is updated

from one access to another and therefore in our multi-client environment can result in information

leakage.

2.2 Secure Two-Party Computation (STC)

In his seminal paper [20], Andrew Yao describes generic solutions to the problem of “secure func-

tion evaluation”. Later he suggests a concrete example of the methods he proposes, with his idea

of “garbled circuits”. Since then many attempts have been made, in order to make “secure compu-

tation” practical, as well as rigorously proving the “garbled circuits” solution secure. In Section 3,

we only give a brief overview of Yao’s solution and we refer to [11] for a detailed description as

well as a rigorous security proof assuming passive adversaries.

Although Yao’s solution is straighforward and easy to understand, implementing it is not an

easy task. The reason for this is that creating a Boolean circuit for a random functionality f is

anything but trivial. In the past years many frameworks like [9,1,2,13] have been developed in

order to provide efficient implementations of Yao’s solution. However these solutions are either

very limited in the functionalities that they can support, or need the circuits to be described in

languages such as VHDL, hindering that way their usage in mass scale applications. Under this

light the authors in [8] construct a compiler that given the description of a functionality in C,

produces a Boolean circuit, which then passes to the STC engine of [9], to handle the execution of

the STC protocol.

3 Building Blocks

In this section we briefly describe the cryptographic tools that we have employed in building our

solution.

Garbled Circuits. Based on the ideas described in [20], Yao’s garbled circuit solution proceeds

as follows: For two parties A and B to evaluate a function f(x, y) on their private inputs xA and xB

respectively, without revealing their inputs to the other party, B creates a Boolean circuit C, which

represents the function f and whose input wires represent the inputs of the respective parties. For

every gate he then assigns two random keys to each wire, encrypts the gate’s operation table and

permutes all the entries of the table. The resulting garbled circuit he sends to A, along with the

keys that correspond to B’s input values. A obtains the keys that correspond to his input values

using Oblivious Transfer and evaluates the garbled circuit iteratively going through every one of

its’ gates and decrypting all the entries of its operation table until he finds the only one that can

be correctly decrypted. After evaluating the whole circuit, A announces the result.

ElGamal key transformation. An important property of the ElGamal encryption scheme is

that for a given encryption of a message under a public key p1k from a cyclic group G of order q

5

and with generator g, one can change p1k to another key p2k 6= p1k (from the same group G and with

the same generator g) without the need of decrypting and then reencrypting with the new key.

This property is used in critical parts of our proxy-ORAM and we describe it here as “ElGamal

key transformation”: Let (c1, c2) with c1 = gr and c2 = mgra be the ElGamal encryption of a

message m ∈ Z∗p under the public key ga ∈ Z∗p with g ∈ Z∗p a group generator and a private key

a ∈ Z∗p for a random r ∈ Z∗p. Then by picking a random b ∈ Z∗p and multiplying c2 with grb we

end up with (c1, c
′
2) = (gr, gr(a+b)m) which is the ElGamal encryption of m under the public key

ga+b. Inverting this procedure (and thus turning back to the original (c1, c2)) knowing b is simply

done by multiplying c′2 with (grb)−1.

Bresson-Catalano-Pointcheval Encryption scheme. For a detailed description of the scheme

we refer to [4]. Here we describe in short the cryptosystem: For a security parameter κ, Setup(κ)

chooses a κ-bit safe-prime RSA modulus N = pq (i.e. p = 2p′+1, q = 2q′+1 for two distinct primes

p′, q′) and picks a random element g ∈ Z∗N2 of order pp′qq′, such that gp
′q′ mod N2 = 1 + kN ,

for k ∈ [1, N − 1]. The plaintext space is ZN and the algorithm outputs the public parameters

PP=(N, k, g).

The key generation algorithm, KeyGen(PP) picks a random element a ∈ Z∗N2 , computes h = ga

mod N2 and outputs h as the public key and a as the secret key. The encryption algorithm

B.Encpk(m), picks a random pad r ∈ ZN2 and outputs the ciphertext (A,B) = (gr mod N2, hr(1+

mN) mod N2. The decryption algorithm B.Dec(PP,sk)(A,B) outputs the plaintext as

m =
B/Aa − 1 mod N2

N
.

CvHP-Hashing. An important role in the way we represent the data in our construction is played

by the Chaum-van Heijst-Pfitzmann (CvHP) family of hash functions which was introduced in [5]:

Given two primes p and q such that p = 2p + 1, two elements α and β, α 6= β of order q (i.e.

αq ≡ 1 mod p) and such that the discrete log problem in 〈α〉 is difficult, the message m ∈ Z∗p is

“split” into m1 and m2 (m1,m2 ∈ Z∗q) and the hash function h : Z∗q × Z∗q 7→ Z∗p is computed on

m as h(m1,m2) = αm1βm2 . It is easy to see that this hash function is collision resistant, since

otherwise, there would exist (m1,m2) and (m3,m4) such that αm1βm2 = αm3βm4 mod p. Then

picking t = (m4 −m2)−1 we would have that α(m1−m3)t = β mod p. But this would mean that

one could easily compute logα β, which we have assumed to be hard.

4 Architecture

4.1 Overview and Initialization

In our scenario we assume that the client’s private data consists of a total number of N blocks. For

every block the client also creates a fake block which is sent to the cloud during the original upload

and is indistinguishable from a real block. To each block (real or fake) we assign an identifier id

which we use to form a tuple (c1, c2, c3, c4) called a packet which is the stored representation of a

6

block on the cloud. The packets are stored on the cloud in a pyramid-like structure consisting of

logN levels, with level i holding up to 2i+1 packets (real and fake). After the initial upload, the

client delegates to a third party (here called the investigator) the rights to perform computations

on his encrypted blocks. Every evaluation on the blocks is performed in two steps: the packet

retrieval and the actual evaluation on the retrieved blocks. Each step is performed between the

investigator and the cloud with the assistance of a second server, which we call the proxy. The

cloud is essentially an ORAM server that unlike classic ORAM constructions (like [6,19]) has the

additional property that the ORAM client does not need to be able to decrypt. Our ORAM is built

in the way proposed in [19], i.e. maintaining a Bloom Filter in every level, which indicates whether

a block is on that level or not. The Bloom Filter is held encrypted by the proxy server and is used

by the investigator in order to check if a given element is on a level or not. Building the Bloom

Filter is originally done in the upload phase and then in every reshuffle (detailed in 4.3) using a

CvHP hash function, that for an identifier id is calculated as BF (id) = gki3 g
id
4 mod b(l) where g3

and g4 are group generators of order q, ki is the i−th from a total of ξ keys for the CvHP hash

function and b(i) is the variable size of the Bloom Filter depending on the level i. The reshuffle

is run between the cloud and the proxy on encrypted data, whose underlying plaintexts are never

seen in the clear.

Before we go into more details about the data retrieval and evaluation, we first describe the

packet structure.

Packet Description Each packet is identified by its first element c1, which we call the packet’s

index. The elements c2 and c3 are ElGamal encrypted metadata, which are used to build the

Bloom Filter and the index (both described in section 4.3) in a manner that hides the access

patterns.

The data of the block itself is Bresson-Catalano-Pointcheval (BCP) encrypted (described in

Section 3) and is stored as the element c4 of the above defined tuple. The elements c2 and c3 are

built with the help of the unique identifier id, which is associated to every block: For two group

generators g2 and g4 of order q, the element c3 is the ElGamal encryption of gid4 and c2 is the

ElGamal encryption of gid2 . The index c1 at level l is the output of a CvHP hash function (as

described in Section 3)

index : Zq × Zq → Z∗p

such that

index(l, id) = g
K(r(l)||l||c)
1 gid2

where K : {0, 1}∗ → Zq is a cryptographic hash function, g1 is a group generator of order q, r is a

function that for the level l calculates its “epoch”, i.e. how many times it has been reshuffled and

c is a counter kept by the proxy and increased at every reshuffle done in the system. Practically,

in order to compute index(l, id), one needs to know g1, compute K(r(l)||l||c) and decrypt c2.

7

Summing up the above description, for a block of data data and identifier id, its corresponding

packet(index(l, id)) is the following tuple:

(c1, c2, c3, c4) =

(g
K(r(l)||l||c)
1 gid2 , E .Encpk(gid2), E .Encpk(gid4),B.Encppk(data))

where E .Encpk is ElGamal encryption under the public key pk, B.Encppk is the BCP encryption

under the public key ppk and K, r, g1, g2 and g4 are the variables and functions described earlier

(cf. Table 1).

ORAM Initialization In order for the client to initialize the system he does the following:

1. He generates (p1, q1, g1, g2) for the first CvHP hash (used for the packets’ index).

2. He generates (p2, q2, g3, g4) for the second CvHP hash (used for the Bloom Filter).

3. He generates an ElGamal encryption key pair (sk, pk), used for encrypting the metadata.

4. He Generates an ElGamal encryption key pair (bfsk, bfpk), used for encrypting the Bloom Filter

bits.

5. He generates a BCP encryption key pair (ssk, ppk), used for encrypting the blocks.

6. The client then sends g1, g3, sk, bfsk and ssk to the proxy server.

7. He sends g2, g4 to the investigator and

8. he sends bfpk to the cloud.

A complete listing of the parameters that each party knows can be found in Table 1.

8

Parameters Description client investigator cloud proxy

g1 group generator of order q1 used for index • • •

g2 group generator of order q1 used for index • •

g3 group generator of order q2 used for the Bloom Filter • •

g4 group generator of order q2 used for the Bloom Filter • •

sk ElGamal secret key for encrypted metadata • •

bfsk ElGamal secret key for encrypted bits • •

ssk BCP private key for encrypted blocks •

Table 1. Overview of the values known to the various parties

The client then encrypts the blocks and for each one of them creates the corresponding tuple

(as described earlier). He also creates as many fake ids as the number of blocks he has, along

with their corresponding packets. All the packets are uploaded and stored on the last level of the

cloud’s ORAM by the client, one by one and after this original upload, all levels are empty except

for the last one. A fake packet is uploaded randomly before or after a real packet. This procedure

ensures that the cloud cannot distinguish between a real and a fake packet and is described in

algorithm (1). The client also creates the Bloom Filter for the last level (only in this first upload)

and sends it encrypted to the proxy along with the fake indices.

9

Algorithm 1 Initialize ORAM(N , real ids, data)

Initialize a list L of size N

for j = 1 to N do

idfake
R← Z∗

p{Select the fake ids not allowing duplicates}
L← idfake

b
R← {0, 1}

if b == 0 then

ORAM-add packet(index(1, idj))

ORAM-add packet(index(1, idfake))

end if

ORAM-add packet(index(1, idfake))

ORAM-add packet(index(1, idj))

end for

Send L to the proxy

Having given an overview of our construction, the way the blocks are represented and stored

in our architecture as well as a description of the initialization phase of our scheme, we can now

go into details of the packet’s retrieval and evaluation.

4.2 Step 0: Authorization

The authorization of the investigator to access certain data of the client is done through standard

access control techniques that are enforced by the cloud. To simplify our exposition we will from

now on assume that these techniques are employed and will not go into details in this respect.

4.3 Step 1: Data Retrieval

Query The investigator’s query runs through all the levels and in each one he does the following:

1. The investigator sends gid+v4 to the proxy, for the packet corresponding to index id, that he is

interested in, blinded with a blinding value v.

2. The proxy calculates {gki3 gid+v4 }ξi=1 and sends them back to the investigator, along with

K(r(i)||i||c).
3. The investigator unblinds the received values and calculates them mod b(i), which are the

Bloom Filter positions that he should check. The (encrypted) Bloom Filter bits corresponding

to these positions he receives from the proxy, along with an index for a fake element idfake at

that level.

4. Running a similar protocol like the one described above, the investigator decrypts the Bloom

Filter bits received with the help of the cloud. If the value of every decrypted bit is 1, then

he asks from the cloud for packet(index(l, id)), whose index he can form, since earlier he was

given K(r(i)||i||c). Otherwise he asks for packet(index(l, idfake))

10

After the investigator has received the packet he was asking for, he selects randomly one of the

fake packets he retrieved during the query and reencrypts c2, c3, c4 of both packets (the real and

the fake). He sends the real and the selected fake packet to the cloud, who stores them in the first

level of the ORAM and sends the fake id, idfake to the proxy. A graphical overview of the query

phase can be found in Figures 2 and 3.

We note here the following:

1. In the case that a level is empty, the proxy informs the investigator and nothing is retrieved

from that level.

2. The proxy server keeps track of the fake ids and he sends one to the investigator from every

level. This fake id he then discards. However given the fact that during the original upload

of the elements, an equal amount of fake ids are set and that at the end of each query the

investigator puts back one fake id, the proxy server has always enough fake ids to provide to

the investigator, a fact that can be easily shown by induction; note here that the fake ids are

only marked as “usable” and “not usable”. Every time a fake from a specific level is used, it is

marked as “not usable” but once this level is pushed into the next, the fake ids are again marked

as “usable”, thus meaning that the total amount of the fake ids (and their corresponding fake

packets) only increases.

3. Given the above observations and the description of the query, one sees that at every given

moment there are at least two levels that contain elements (real and fake). Then the reencryp-

tion of the elements that are put back under a rerandomizable encryption scheme guarantees

hiding of the access patterns.

Investig
ator

Cloud

{g
kj

3 gx+v
4 }4

j=0

Proxy
Server

Requested packet

gid+v
4

If every unblinded decrypted

bit == 1 request packet(i, id) else request fake

Request bits on BF positions
from previous step

Encrypted bits on BF positions
and fake id

Fig. 2. Overview of the query for id at level i.

11

Investig
ator Cloud

Proxy
Server

idfake

packet(1, id), packet(1, idfake)
in random order

Fig. 3. Putting back the real and a fake packet, after retrieving the real packet.

Reshuffle Once a level is filled with elements, it has to be emptied to the next one. However in

order to maintain pattern obliviousness, the elements have to be obliviously reshuffled while they

are entered into the new level. Our construction is based on the idea of using Bloom Filters, first

proposed in [19], adjusted to the latest developments made by [10,3] and the role of the client from

[19] is now played by the proxy, who however must not see the elements that are being reshuffled.

The reshuffle consists of two different phases which are done in the following order: First a

Bloom Filter creation phase followed by an update phase, during which the the packets of the two

levels merge, leaving one of them empty. A graphical overview of the two phases can be found in

Figures 4 and 5 respectively.

Bloom Filter Creation:

1. The cloud merges the two levels and creates a new pair of ElGamal keys (sk′, pk′). For every

element in the new level, he performs an ElGamal key transformation as described in 3. The

resulting encrypted metadata Encpk·pk′(gindex4) he puts in a list L1 which he sends to the proxy

server.

2. The proxy forms the underlying Bloom Filter positions by multiplying the received elements

with Encpk·pk′(g
ki
3) for i = 1 . . . ξ and then removes the pk part from every one. The resulting

list he sends to the cloud.

3. The cloud initiates a Bloom Filter of size b(i) with values set to Enc(0). For every element of

the received list, the cloud decrypts the metadata (since now they are only encrypted under

the public key pk′) and sets the positions in the Bloom Filter modulo b(i) to Enc(1).

4. The resulting encrypted Bloom Filter, the cloud sends to the proxy.

Update:

1. The cloud creates a new pair of ElGamal keys (sk′, pk′) and for every packet in the new level,

he performs an ElGamal key transformation as described in 3. The resulting packets he puts

in a list L2 which he sends to the proxy server, along with the key pk · pk′.

12

2. The proxy forms the underlying new index by multiplying the received elements with

Encpk·pk′(g
K(r(i)||i||c+1)
1), increasing the counter, removes the pk part from the index of every

packet and permutes the list. The permuted list he sends to the cloud.

3. The cloud decrypts the index of every packet and removes the pk′ from the other coordinates

of every packet.

Cloud

Merge levels
i � 1 and i
create new

(pk0, sk0)

Proxy

{(E.Encpk·pk0(g
idj

4)}2i

j=1

Form BF positions and
remove pk

b(i) and
set positions to

E .Encpk(0)

Initiate a BF of size

{(E.Encpk0(g
K(r(j)||j||c)
3 g

idj

4)}2i⇠
j=1

decrypt using sk0

and set positions
mod b(i) to

E .Encpk(1)

New BF

Fig. 4. Overview of the Bloom Filter creation as described in 4.3.

4.4 Step 2: Computation on Encrypted Data

Let {B.Encppk(datai)}ki=1 be the packets that the investigator retrieved from the cloud, during

the first step. In order to evaluate a functionality f on these inputs, the investigator blinds the

encrypted data. He sends the blinded encrypted data and f ’s description to the proxy and sends

the blinding values to the cloud. The proxy decrypts the data and is left with blinded versions of

them. Using f ’s description the proxy creates the circuit. The latter and the cloud can now run

Yao’s “garbled circuits” using as inputs the values that they were given by the investigator: The

proxy uses the blinded decrypted values and the cloud uses the blinding values. The result is then

announced to the investigator.

In more detail the second step of our scheme runs as follows:

1. The investigator picks random values {ri}ki=1 and blinds the retrieved packets, thus sending

{B.Encppk(datai + ri)}ki=1 along with the functionality’s description to the proxy.

2. The blinding values {ri}ki=1 are sent by the investigator to the cloud.

13

Cloud Proxy

Merge levels
i � 1 and i
create new

(pk0, sk0)

update, rerandomize

{E.Encpk·pk0(g
K(r(j)||j||c)
1 g

idj

2),

E.Encpk·pk0(g
idj

2),

B.Encppk·ppk0(data)}2i

j=1

remove pk from

E.Encpk·pk0(g
(r(j)||j||c+1)
1 g

idj

2){E.Encpk0(g
K(r(j)||j||c+1)
1 g

idj

2),

E.Encpk·pk0(g
idj

2),

B.Encppk·ppk0(data)}2i

j=1

(ppk0, ssk0)

remove pk0, ppk0

Fig. 5. Overview of the level update in 4.3.

3. The proxy decrypts the blinded data and prepares the “garbled circuit” with the blinded

decrypted values, {datai + ri}ki=1 as his input. In order to prepare the circuit, the proxy uses

a compiler such as the one in [8].

4. The proxy and the cloud run Yao’s protocol and send the blinded result to the investigator.

4.5 Security

Since the evaluation is done using Yao’s “garbled circuit” solution, our security is based on the

semi honest adversarial model. We also need to assume that any two parties do not collude;

then in this setting our mechanism guarantees access pattern privacy: Any two access patterns

are indistinguishable, since the cloud retrieves one block from every level and at the end of the

query the investigator puts back on the cloud’s first level a fake block and the real block both

rerandomized. At the same time the proxy cannot distinguish between two different requests for

Bloom Filter bits since any one of those is done on blinded (with different blinding values) data.

5 Conclusion

In this paper we proposed a solution to the problem of delegated, privacy preserving computations

on outsourced, encrypted data. Our scheme combines fruitfully ORAM techniques with secure

two-party computation, thus allowing a wide applicability that can range from private genome

processing to cloud computing. In order to improve the scheme’s efficiency, one needs to think of

ways to lower the (in the worst case) high communication complexity between the cloud and the

proxy server.

14

References

1. Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A System for Secure Multi-Party

Computation. In Proceedings of the 15th ACM Conference on Computer and Communications Security,

CCS ’08, pages 17–21. ACM, 2008.

2. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast Privacy-Preserving

Computations. In Proceedings of the 13th European Symposium on Research in Computer Security:

Computer Security, ESORICS ’08, pages 192–206. Springer, 2008.

3. Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel

H. M. Smid, and Yihui Tang. On the false-positive rate of bloom filters. Inf. Process. Lett., 108(4):210–

213, 2008.

4. Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-key cryptosystem with a

double trapdoor decryption mechanism and its applications. In Chi-Sung Laih, editor, ASIACRYPT,

volume 2894 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

5. David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically strong undeniable sig-

natures, unconditionally secure for the signer. In Joan Feigenbaum, editor, CRYPTO, volume 576 of

Lecture Notes in Computer Science, pages 470–484. Springer, 1991.

6. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,

43(3):431–473, 1996.

7. Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Privacy-

preserving group data access via stateless oblivious ram simulation. In Rabani [15], pages 157–167.

8. Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure two-party computa-

tions in ansi c. In Yu et al. [21], pages 772–783.

9. Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using

garbled circuits. In USENIX Security Symposium. USENIX Association, 2011.

10. Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious ram

and a new balancing scheme. In Rabani [15], pages 143–156.

11. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.

J. Cryptology, 22(2):161–188, 2009.

12. Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz,

and Dawn Song. Phantom: practical oblivious computation in a secure processor. In Sadeghi et al.

[16], pages 311–324.

13. Lior Malka. Vmcrypt: modular software architecture for scalable secure computation. In Yan Chen,

George Danezis, and Vitaly Shmatikov, editors, ACM Conference on Computer and Communications

Security, pages 715–724. ACM, 2011.

14. Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Tal Rabin, editor, CRYPTO, volume

6223 of Lecture Notes in Computer Science, pages 502–519. Springer, 2010.

15. Yuval Rabani, editor. Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. SIAM, 2012.

16. Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013.

17. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and

Srinivas Devadas. Path oram: an extremely simple oblivious ram protocol. In Sadeghi et al. [16], pages

299–310.

15

18. Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: practical access

pattern privacy and correctness on untrusted storage. In Peng Ning, Paul F. Syverson, and Somesh

Jha, editors, ACM Conference on Computer and Communications Security, pages 139–148. ACM,

2008.

19. Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: a parallel oblivious file system. In Yu et al.

[21], pages 977–988.

20. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages

162–167. IEEE Computer Society, 1986.

21. Ting Yu, George Danezis, and Virgil D. Gligor, editors. the ACM Conference on Computer and

Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. ACM, 2012.

16

	Efficient Privacy-Preserving Big Data Processing through Proxy-Assisted ORAM(Extended Abstract)

