
One-Pass Authenticated Key Establishment Protocol
on Bilinear Pairings for Wireless Sensor Networks

Manoj Ranjan Mishra1,Jayaprakash Kar2 and Banshidhar Majhi3

1 School of Computer Application
KIIT University, Bhubaneswar, India
2 Department of Information Systems

Faculty of Computing & Information Technology
King Abdulaziz University, Kingdom of Saudi Arabia
3 Department of Computer Science & Engineering
National Institute of Technology, Rourkela, India ⋆

Abstract. The article proposes one-pass authenticated key establishment protocol
in random oracles for Wireless Sensor Networks. Security of the protocol relies on
Computational Diffie-Hellman Problem on Bilinear Pairings. In one-pass key estab-
lishment protocol, the initiator computes a session key and a related message. The
key token is to be sent to the intended receiver using receiver’s public key and sender
secret key. From the received key token the receiver compute the session key, which is
the same as the one computed by the sender, using sender public key and receiver’s
secret key. Because of low communication overhead, the scheme is better suited for
Wireless Sensor Networks(WSNs) than the traditional key establishment protocol to
establish the session key between two adjacent nodes.

Keywords: Key establishment, bilinear pairings, Session key, Authentication, BDHP

1 Introduction

Pairing-Based Cryptography is an emerging area of cryptography that revolves around a
particular function with interesting properties. Pairings, such as the Weil pairing, were first
used in the context of cryptanalysis [1] to reduce the ECDLP into a discrete logarithm
problem in the finite field. The first use of pairings in cryptography is the work of Sakai
et al. [5] and Joux [21]. Both papers proposed pairings as the base for building complete
cryptosystems. Since then many protocols have been proposed that use pairings as the
underlying crypto primitives.

WSN systems are usually deployed in hostile environments where they encountered a
wide variety of malicious attacks. Information that is the cooked data collected within the
sensor network is valuable and should be kept confidential. In order to protect this trans-
mitted information or messages between any two adjacent sensor nodes key establishment
protocol and a mutual authentication are required for wireless sensor networks. Due to
nature restrictions like low power, less storage space, low computation ability and short
communication range of sensor nodes, most conventional protocols establish authenticated
multiple keys between any two adjacent sensor nodes by adopting a key pre-distribution ap-
proach. However, these techniques have vulnerability. With rapid growth of cryptographic
techniques, recent results show that Elliptic Curve Cryptography (ECC) is suitable for
resource-limited WSNs. Cryptosystem based on Elliptic Curve Cryptography are especially
interesting for sensor networks since they are more efficient in resource utilization than any
other public key techniques [6] [20]. Cryptographic Protocol based on bilinear pairing is very
interesting and emerging to modern cryptographic research community. Since the security
of the protocol more stronger than others. Pairing based cryptography has also allowed
many long-standing open problems to be solved in a well-designed way. The computational
capability of sensor nodes are limited, so traditional public-key cryptography in which the
computation of modular exponentiation is required, cannot be implemented on WSNs.

⋆ Corresponding author: Jayapraksh Kar,e-mail: jayaprakashkar@yahoo.com

2 Preliminaries

2.1 Bilinear Pairings

A bilinear pairing is a map between two groups. The two kind of bilinear pairings are Weil
and Tate pairings on elliptic curve. A bilinear pairing is defined as:
Let G1 and G2 be two cyclic groups of prime order q with identity element O. Let GT be a
multiplicative group of order q. Let G1 and G2 are additive group and G2 is a multiplicative
group. Let ê be a computable and non-degenerated bilinear map

ê : G1 ×G2 → GT

which satisfies the following properties:

– Bilinear: ê(aP, bQ) = ê(P,Q)ab, where P,Q ∈ G1 and a, b ∈ Z∗
q and for P,Q,R ∈

G1, ê(P +Q,R) = ê(P,R)ê(Q,R).

– Non-degenerate: If P is a generator of G1, then ê(P, P) is generator of G2. There
exists P,Q ∈ G1 such that ê(P,Q) ̸= 1G2

– Computability: There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈
G1.

We call such a bilinear map ê is an admissible bilinear pairing.

2.2 Pairing types

The properties of pairing depends on the selected groups G1,G2 and GT . Generally pairings
is of three types depending three basic groups.

– Type-1: Here G1 = G2.

– Type-2: Pairing where G1 ̸= G2, ∃ an efficiently computable homomorphism ϕ : G2 →
G1.

– Type-3:Pairing where G1 ̸= G2, @ an efficiently computable homomorphism ϕ : G2 → G1

3 Security Model

In 2006 LaMacchia, Lauter & Mityagin introduced a stronger security model for AKE pro-
tocols .The model is a weak corruption model, where the adversary is allowed to reveal
only the static private key of an entity through Long-Term Key Reveal. The protocol is
modeled as a collection of programs running at different entities e1, e2 . . . en with identities
IDi, IDj ∈ {ID1, ID2 . . . IDn}. Each entity is allowed to have different instances of running
the protocol, modeling the real time scenario of having multiple sessions open with different
partners. The adversary A performs polynomial bounded number of queries to the oracles
provided to A by B. Let us assume that, A can activate each user not more than m number
of times. Challenger B runs A as subroutine and selects IDi, IDj ∈ {ID1, ID2 . . . IDn} and
s ∈ {1, 2 . . .m} i.e oracle {

∏s
i,j}, where

∏s
i,j behaves as node i carrying out the protocol

with node j for the s times. If B selects the sth session activated at IDi with IDj as the
test session, then B guess will be correct. B sets the public key of KGC as aP . The com-
munications network is controlled by a PPT adversary A, which schedules and mediates all
sessions between the entities. It is also given the power of initiating fictitious entities by
obtaining private keys from the KGC for arbitrary identities. All the entities (including the
honest ones) are activated by A. Upon activation, the entities perform some computations as
per the received communication, update their internal state and complete the session. The
session identifier sid is assumed to be the concatenation of the messages exchanged between
two entities along with their identities. Two sessions are said to be matching sessions if their
sid’s are identical. Let msk be the master secret key used by the KGC to issue private keys
to the users. A selects identities of the honest entities and let them obtain private keys for
the identities from the KGC. It is allowed to obtain private keys for any arbitrary identity
of its choice. A run the following queries:

– Send: In this query, a unique message m is to be send to IDu that comes from IDv. The
result will submit to A. If m is null message(i.e m = ϕ), the queries active the entity
IDu as initiator otherwise its role is considered as responder. Thus the session sid
is defined as the tuples <IDu, IDv,m, role>, where role ∈ {initiator, responder}

– Reveal(sid): The session key sid generated by the challenger B in the session sid returns
to A.

– Long-term Key Reveal(IDu): In this query, the challenger B takes IDu and returns
the Long-term Private key.

– Ephemeral Key Reveal(sid): The challenger B returns the ephemeral private key used
in the incomplete session sid to A. This may includes all sensitive session state informa-
tion used by the entity IDu in sid. It is assumed that, when the session is completed,
the session state information is erased from the memory of the entity.

– Extract(IDu): The challenger B takes IDu returns the private key to A.

The adversary A issues a Test query to a clean session sid as follows:

1. Test(sid): Here the adversary A begins by running the oracle
∏s

u,v and asks a single
new query Test on the session sid. To answer the query the oracle flips a fair coin
b ∈ {0, 1} and returns the session key in the session sid to A if =

¯
0 or a random value if

b = 1. Finally it terminates the game if he guesses the correct value b′ which is different
from the random value. The adversary A wins the game if b′ = b and selected test
session is clean.

2. clean(sid): Let sid be a session completed at the entity IDu and let sid∗ be the
matching session at IDv. The long-term secret keys IDu and IDv are denoted by SKu

and SKv respectively. Let ESKu
and ESKv

be the ephemeral secret keys used in sid and
sid∗ respectively. A session sidis said not to be clean if one of the following conditions
holds:
– IDu or IDv is an adversary controlled party (whose private keys are obtained by

Extract queries).
– A reveals the master secret key msk of the KGC
– A reveals the session key held in sid or sid∗ (if there exists such a sid∗).
– A matching session sid∗ exists and A reveals SKu and ESKu or SKv and ESKv .
– A matching session sid does not exist and A reveals SKu and ESKu or SKv.

In all other cases the session is said to be clean.

Definition 1. The advantage of the adversary A in the experiment of the protocol π is
defined as

Advπ(A) = Pr[Suc]− 1
2

An one-pass authenticated protocol pi is said to be secure under the defined model, if
there does not exist PPT adversary that has no negligible advantage to distinguish the
real session key from a random bit string. i.e

Advπ(A) = ϵ(k) ≤ k−c ∀ k > kc, c > 0

4 Proposed One-Pass Protocol

Consider two arbitrary nodes i and j would like to share session keys to establish secure
communication. Node i has computed long-term private and public key as Si = s · Qi.
Similarly node j has computed his long-term private and public key as Sj = λj · Qj . The
protocol comprises the following three polynomial time solvable (PPT) algorithms.

– Setup : Given security parameters k, the KGC chooses groups G and GT of prime
order q. A generator P of G, a bilinear map ê : G × G → GT and collision resistant
hash function H1 : {0, 1}∗ → G, H2 : G×{0, 1, }∗ → F∗

q , H3 : G→ F∗
q . A key derivation

function F : GT → {0, 1}k. Where |k| is the length of the key strings. It chooses a
master-key s ∈ F∗

q and computes Ppub = sP . The KGC publishes the system public
parameters params = <G,GT , ê, q, p, Ppub,H1,H2,H3>.

– Extract : KGC takes the input the identities IDi and IDj of node i and j respectively
and runs the algorithm and Computes the private keys as Si = s ·Qi and Sj = s ·Qj

of the node i and j respectively. (Where Public key of node i and j are Qi and Qj

respectively. Qi = H1(IDi) and Qj = H1(IDj).

– Protocol: The protocol involves by considering two arbitrary nodes i and j. Follows
the following steps
• Node i chooses randomly λ ∈ Z∗

q and computes U = λ ·Qi.
• Computes H2(U, IDi∥IDj) = Γ and h = H3(Γ).
• Computes SKij = ê((λ+ h)Si, Qj)
• Computes V = λ · Γ .
• Sends the pair of elements (U, V) to Node j.
• After received, Node j computes Γ = H2(U, IDi∥IDj), h = H3(Γ) and W = s ·Γ .
• Verify ê(U,W)

?
= ê(Si, V) and computes SKji = ê(U + hQi, Sj)

4.1 Proof of Correctness

ê((λ+ h)Si, Qj) = ê(Si, Qj)
(λ+h)

= ê(Qi, Qj)
s(λ+h)

ê(U + hQi, Sj) = ê(λQi + hQi, Sj)
= ê(Qi, Sj)

(λ+h)

= ê(Qi, Qj)
s(λ+h)

Consider the verification equation ê(U,W) = ê(Si, V) and check the equality as
ê(U,W) = ê(λQi, sQ)

= ê(Qi, Q)λs

ê(Si, V) = ê(Qi, Q)λs.

1. Setup : Given security parameters k, the KGC chooses groups G1 and G2 of prime order q.
A generator P of G, a bilinear map ê : G×G→ GT and collision resistant hash function
H1 : {0, 1}∗ → G, H2 : G× {0, 1, }∗ → F∗

q , H3 : G→ F∗
q .

It chooses a master-key s ∈ F∗
q and computes Ppub = sP .

The KGC publishes the system public parameters params = <G,GT , ê, q, p, Ppub,H1,H2,H3>.
2. Extract : KGC takes the input the identities IDi and IDj of node i and j respectively

and runs the algorithm and Computes the private keys as Si = s ·Qi and Sj = s ·Qj

of the node i and j respectively. Qi = H1(IDi) and Qj = H1(IDj).
(Where Public key of node i and j are Qi and Qj respectively.

3. Protocol: The protocol involves by considering two arbitrary nodes i and j
Node i Node j

Chooses randomly λ ∈ Z∗
q and computes U = λ ·Qi.

Computes H2(U, IDi∥IDj) = Γ and h = H3(Γ).
SKij = ê((λ+ h)Si, Qj)
Computes V = λ · Γ .

(U, V)

-
Computes Γ = H2(U, IDi∥IDj), h = H3(Q)
Computes W = s · Γ
and Verify ê(U,W)

?
= (̂Si, V).

Computes SKji = ê(U + hQi, Sj)

Fig. 1. Proposed One-Pass Protocol

5 Security Analysis

This section describes the security analysis and prove that the scheme is provably secure
win random oracle model.

Theorem 1 In the random oracle model, the proposed one-pass protocol is secure, if the
adversary A can computes and distinguish the real session key from a given random oracle
during the game with a non-negligible advantage and run Keygen queries, Send, Reveal,
Extract, Ephemeral Key Reveal and Test queries; then there exists a challenger B that
can solve an instances of Bilinear Diffie-Hellman problem with a non-negligible advantage.

Proof:

– Setup: The Challenger B receives a random instance (P, aP, bP, cP of the Bilinear Diffie-
Hellman problem. His goal is to compute ê(P, P)abc. B will run A as a subroutine and
act as A’s challenger in the game. B needs to maintain lists L1, L2 and L3 that are initial
empty and are used to keep track of answers to queries asked by A to oracles H1,H2 and
H3 respectively. Consider there are n number of users with identities ID1, ID2 . . . IDn

are participating in the protocol. Let us assume that, A can activate each user not more
than m number of times. B selects IDi, IDj ∈ {ID1, ID2 . . . IDn} and s ∈ {1, 2 . . .m}
i.e oracle {

∏s
i,j}, where

∏s
i,j behaves as node i carrying out the protocol with node j

for the s times. If B selects the sth session activated at IDi with IDj as the test session,
then B guess will be correct. B sets the public key of KGC as aP . B run the queries of
A and answers the followings:

Oracle Simulation:

1. H1-Oracle: At the beginning of the game, For H1-queries the list L1 is empty. B
gives A the system parameters with Ppub = cP (c is unknown to B and plays
the role of the KGC’s master-key). Then B chooses two distinct random numbers
i, j ∈ {1 . . . qH1}. A asks a polynomial bounded number of H1 requests on identities
of his choice. At the ith H1 request, B answers by H1(IDi) = aP . At the jth, he
answers byH1(IDj) = bP . Since aP and bP belong to a random instance of the BDH
problem,A’s view will not be modified by these changes. Hence, the private keys SIDi

and SIDj (which are not computable by B) are respectively acP and bcP . Thus the
solution ê(P, P)abc of the BDH problem is given by ê(QIDi , SIDj) = ê(SIDi , QIDj).
For requests H1(IDk) with k ̸= i, j, B chooses bk ←R F∗

q , adds the pair (IDk, bk) in
list L1 and answers H1(IDk) = bkP . Further on input IDi ∈ {0, 1}∗, B first checks
the L1-list <IDi, Xi, qi, xi, if IDi = IDB>, selects new random γi ←R F∗

q , sets
Xi = b · P, qi = γi, add this tuple <IDi, Xi, qi, ∗> to the L0-list and returns qi.
Otherwise, B selects a new random γi ←R F∗

q , xi ←R F∗
q , sets Xi = xi · P, qi = γi,

add this tuple <IDi, Xi, qi, xi> to the L1-list and returns qi. B starts with empty
list L1. It takes the input IDu and checks if there is entry for it in L1. If exists,
then returns the stored Qu to A. Otherwise, it chooses a value ψu ∈ F∗

q randomly
and computes ψu · P . It returns it to A. The entry <IDu, ψu, Qu> includes in the
list L1. If u = j, the value bP from its input is returned and entry <IDu,⊥, bP>
is added to the list.

2. H2-Oracle: On input (U, IDi∥IDj), B first checks the L2-List, whether the tuple
<IDi, IDj , U,Q> in the L2-List, B returns Γ , otherwise B chooses a new random
Γ ∈ G, adds Γ to the L2-list and return Γ .

3. H3-Oracle: On input the element Γ , B first checks the L3-List, whether the tuple
<Γ, h> in the L3-List, B returns h, otherwise B chooses a new random h ←R F∗

q ,
includes h to the L3-list and return h.

4. Keygen-Oracle: When A makes a Keygen query with IDi as the input, B checks
the L1-List to verify whether or not there is an entry for IDi. If the L1-List does
not contain an entry for IDi, return ⊥. Otherwise, if IDi = IDB, B recovers
the tuple <IDi, Xi, qi, xi> from the L0-List and returns <Xi, qi, ∗, ∗>, if IDi ̸=
{IDi}i= 1...n, B recovers the tuple <IDi, Xi, qi, xi> from the L1-List and returns
<Xi, qi, SIDi , di>, where SIDi = xi(aP) = a(xiP) = aXi and di ←R F∗

q is
randomly selected.

5. Send-Oracle: A makes a Send(IDu, IDv,m) query base on the observation to the
session sid:

(a) The node u with IDu originates m = µ. If u = ı, v = j with sth session
between them, B randomly selects γ ∈ F∗

q and returns Xs = λγ · (cP). If u = i,
B chooses ηt, hj,t ∈ F∗

q computes Xj,t = ηtP − hj,tQj and returns hj,t by
running H2 corresponds to the query (Xj,t, IDj∥IDv), B stores ηt in the list L2

for session sid. Similarly for other session between IDi and IDj , B chooses
(b) The role of IDi is responder (m ̸= µ). B accepts the session and marks it as

completed.

6. Reveal(sid)-Query: Let the s-session between the node IDi and IDj , B aborts
the simulation. Let the session is at IDj , hj,t = H2(Xj,t, IDj∥IDv). B retrieves

ηt and returns F(ê(ηt(aP,Qv)) = F(ê(ηtP − hj,tQj + hj,tQj , Qv))
a = F(ê(Xj,t +

hj,tQj , Qv))
a. In other cases the session key with its knowledge of static and ephemeral

private keys.
7. Extract/Long-Term Key Reveal(sid)-Query: B first checks to see if there is an

entry corresponding to IDu in L1. On no match, it makes a H1 query with the
input IDu. It retrieves the value ψu from L1 and returns ψu(xP). Note that an
Extract or Long- Term Key Reveal query on the input IDj does not have to be
simulated by B. On such a query B aborts its execution.

8. Ephemeral Key reveal-Query: If this is the sth session between IDi and IDj , B
outputs fail. For all the sessions at IDj , the Ephemeral Key Reveal is not handled.
In all other cases, B returns the corresponding ephemeral private key it has chosen
while answering the Send queries.

9. Test(sid)-Query:If this is not the sth session between IDi and IDj , B outputs fail.
sid is the anticipated session but if it is not clean then B aborts its simulation.
Otherwise, B has to return the session key held in the session sid or a random value
from the session key distribution after tossing a coin. However, as shown below B
cannot compute the real session key, which would be of form:

SK = F(ê(Zi,s + hi,sQi, Qj)
a)

= F(ê(λiγ(cP) + hi,sλiP, bP)
a)

= F(ê((γc+ hi,s)λiP, bP)
a)

= F(ê(aP, bP)(γc+hi,s)λi

It is required to solve BDH problem with instances <aP, bP, cλiγP>.

Table 1. Security Comparison

∗Scheme IKA PFS KKS UKS KcI LoI

Yuan Wang(Protocol-I) [15]
√ √ √

× × ×
Yuan Wang(Protocol-II) [15]

√
×

√
× × ×

Gorantla et al. [4]
√ √ √

×
√

×
Konstantinos Chalkias et al. [14]

√
×

√
× × ×

Proposed Protocol
√ √ √ √ √ √

∗ IKA : Implicit Key Authentication, PFS : Perfect forward secrecy
KKS : Known Key Secrecy, UKS : Unknown Key Share
KcI : Key-compromise Impersonation, LoI : Loss of Information

Table 2. Comparison of Computational Cost

Sender Receiver

Pairing Mul(G) Pairing Mul(G)

Yuan Wang(Protocol-I) [15] 2 1 2 1

Yuan Wang(Protocol-II) [15] 2 1 2 2

Gorantla et al. [4] 1 2 1 1

Proposed Protocol 1 2 1 1

6 Implementation issues

We can follow the similar technique used in [13] to implement the protocol in the single-
hop setting in which each sensor node can establish the session key. We assume that the
system public parameters and the master secret key are generated by the base station and
embedded on each sensor node during the deployment. We assume that the base station is

powerful enough to perform computationally intensive cryptographic operations like pairing,
hashing etc , and the sensor nodes, on the other hand, have limited resources in terms of
computation, memory and battery power. We can use the sensor nodes MicaZ 3 in the
implementation . The nodes are developed by Crossbow Technology. Its RF transceiver
complies with IEEE 802.15.4/ZigBee, and the 8-bit microcontroller is Atmel ATmega128L,
a major energy consumer. We used a PC of latest configuration as a base station. The
program can be developed in nesC, C and Java. The base operating system for the MicaZ
platform is TinyOS 2.0.

Let us consider n no of sensor nodes as sn1, sn2 . . . snn with identity ID1, ID2 . . . IDn.
The system parameters (G1,G2, q, ê, P, Ppub,H0,H1) is generated by the base station and
all parameters will be embedded on each sensor node. One of the node will computes (U, V)
and sends to its adjacent nodes. After receiving, the nodes will pass though the verification
equation described in the protocol and computes the session key.

6.1 Pairing Algorithms

The most efficiently computable pairings are Weil and Tate pairing on elliptic curve. Tate
pairing is more efficient than the Weil pairing. We consider Type-1 pairing on super singular
elliptic curve in our proposed protocol. Tate pairing is the bilinear mapping ê(P,Q), where
P and Q are two arbitrary linearly independent points on an elliptic curve E(Fk

q), evaluates
as an element of extension field Fqk . If P is of prime order r, then the pairing is evaluated
as an order of r. We can apply algorithm-1 to compute the Tate pairing for implementation
in more efficient way in term of memory space, bandwidth and proceesing speed.

We consider the following elements for implementation of pairing

– As we have discussed Type-1 pairings is more suitable on super singular curves, these
curves can be divided into three sub-classes curves over binary fields as q = 2m with
k = 4, curves over field of large prime characteristics 3 i.e q = 3m with k = 6 and curves
over field of large prime characteristics q = p, p > 3 with k = 2. The most suitable
curve for implementation on 8-bit processor is curves over filed of prime characteristics
is k = 4.

– The binary field F2271 can be chosen to achieve the security.
– Super singular curve is

y2 + y = x3 + x (1)

The number of points on the curves is 2271 + 2136 + 1 = 487805.r. Where r is a large
prime.

The following table summarizes the cost of ηT (P,Q) on y2 + y = x3 + x.

Table 3. cost of ηT (P,Q) on y2 + y = x3 + x

Execution |Mul| |Sqrs| |Sqrt|
Main loop 1904 544 544

Final loop 114 139 0

7 Conclusion

Here we have proposed a novel construction of one-pass key establishment protocol for
WSNs which have the memory space required for each node is fixed. Also here the sensor
node can establish secure communications with other adjacent nodes. The protocol is se-
cure against perfect forward key secrecy and modification attack. Security of the proposed
protocol relays on Bilinear Diffie-Hellman Problem. It achieves the security goals Known Key

secrecy,perfect forward secrecy, unknown key share, key compromise impersonation

and key control.

Algorithm 1: Computation of ηT (P,Q) on y2 + y = x3 + x+ b curve over F2m

Input P,Q
Output ηT (P,Q)
P ← (xP , yP), Q = (xQ, yQ)
θ ← xP + 1
σ1 ← θ · (xP + xQ + 1) + yP + yQ + 1 + (θ + xQ)u+ v
for i = 1 to (m+ 1)/2 do

θ ← xP , xP ←
√
xP , yP ←

√
yP

σ2 = θ · (xP + xQ) + yP + yQ + xP + (θ + xQ)u+ v
σ1 ← σ1 · σ2

xQ ← x2
Q, yQ ← y2

Q

end for
return σ

(22m−1)(2m−2(m+1)/2+1)

1

References

1. A. Menzes, T. Okamoto, and S. Vanstone Reducing elliptic curve logarithms to logarithms in
a finite field, IEEE Transactions on Information Theory, 39, pp. 1639–1646, 1993.

2. H. Krawczyk HMQV: A high-performance secure Diffie-Hellman protocol, in Proceeding of
Advances in Cryptology - Crypto 05, LNCS 3621, pp. 546-566, Springer-Verlag, 2005.

3. K. Lauter, and A. Mityagin Security Analysis of KEA Authenticated Key Exchange Protocol,
in Proceeding of Public Key Cryptography - PKC-06, LNCS 3958, pp. 378-394, Springer Verlag,
2006.

4. M.Choudury Gorantla, Colin Boyd and Juan Manuel Gonzalez Nieto ID-based One-pass Au-
thenticated Key Establishment, in proceeding of Australian Information Security Conference
(AISC2008), Wollongong, Australia, January 2008. Con- ferences in Research and Practice in
Information Technology (CRPIT), Vol. 81, 2008.

5. R. Sakai, K. Ohgishi, and M. Kasahara Cryptosystems based on pairing. Symposium on Cryp-
tography and Information Security, Okinawa, Japan,2000.

6. D. Hankerson, A. Menezes, and S. Vanstone Guide to Elliptic Curve Cryptography, Springer,
2004.

7. V.S. Miller Use of elliptic curves in cryptography, in: Proceedings of the Advances in Cryptology
- Crypto’85, New York, USA, 1985, pp. 417-426.

8. M. Bellare and P. Rogaway Entity Authentication and Key Distribution. In proceedings of
Crypto 1993, LNCS 773, pp. 231-249, Springer-Verlag, 1994.

9. M. Bellare and P. Rogaway Provably Secure Session Key Distribution: The Three-party Case.
In proceedings of STOC 1995, pp. 57-66, ACM Press, 1995.

10. M. Bellare, D. Pointcheval, and P. Rogaway Authenticated Key Exchange Secure Against
Dictionary Attacks. In proceedings of Eurocrypt 2000, LNCS 1807, pp. 139-155, Springer-
Verlag, 2000

11. N. Koblitz Elliptic curve cryptosystem, Mathematics of Computation 48 (1987), 203-209.
12. N. Koblitz. A course in Number Theory and Cryptography ,2nd edition Springer-Verlag-1994
13. Joseph K. Liu, Joonsang Baek, Jianying Zhou, Yanjiang Yang and Jun Wen Wong Efficient

Online/Offline Identity-Based Signature for Wireless Sensor Network, in IACR Arcieve ePrint-
2010/03.

14. Konstantinos Chalkias, Spyros T. Halkidis, Dimitrios Hristu-Varsakelis, George Stephanides,
and Anastasios Alexiadis A Provably Secure One-Pass Two-Party Key Establishment Protocol,
Information Security and Cryptology, Lecture Notes in Computer Science Volume 4990, 2008,
pp 108-122, 2008

15. Yuan Wang, Duncan S. Wong, and Liusheng Huang One-Pass Key Establishment Model and
Protocols for Wireless Roaming with User Anonymity, International Journal of Network Secu-
rity, Vol.16, No.2, PP.129-142, Mar. 2014

16. K. H Rosen ”Elementary Number Theory in Science and Communication”, 2nd ed., Springer-
Verlag, Berlin, 1986.

17. A. Menezes, P. C Van Oorschot and S. A Vanstone Handbook of applied cryptography. CRC
Press, 1997.

18. J.Kar and B.Majhi An Efficient Password Security of Three Party Key Exchange Protocol
based on ECDLP” 12th International Conference on Information Technology 2009 (ICIT 2009),
Bhubaneswar, India, Tata McGrow Hill Education Private Limited, pp75-78, 2009.

19. J.Kar and B.Majhi An Efficient Password Security of Multiparty Key Exchange Protocol based
on ECDLP” International Journal of Computer Science and Security (IJCSS) , Malyasia, Vol.3
(5), pp 405-413, Nov 2009.

20. J.Kar and B. Majhi A Secure Two-Party Identity Based Key Exchange Protocol based on
Elliptic Curve Discrete Logarithm Problem”, Journal of Information Assurance and Security,
USA Vol-5(1), pp 473-482, 2009.

21. A. Joux A one round protocol for tripartite Diffie-Hellman., Journal of Cryptology, 17 (2004),
pp. 263–276. Proceedings of ANTS-IV, 2000.

22. Wang.Y Efficient Identity-Based and Authenticated Key Agreement Protocol, Cryptology
ePrint Archive, Report 2005/108.

23. Aumann Y.and Rabin M. Authentication, enhanced security and error correcting
codes,Advances in Cryptology - Crypto’98, LNCS, 1462, 299-303.

