
Pseudonymous signatures for eID: efficient and strongly

secure dynamic domain-specific pseudonymous signatures

Julien Bringer1, Hervé Chabanne12, Roch Lescuyer1, Alain Patey

1Morpho, Issy-Les-Moulineaux, France
2Télécom ParisTech, Paris, France

Abstract

The notion of domain-specific pseudonymous
signatures (DSPS) has recently been introduced
for the private authentication of ID documents
by Bender et al. at the ISC’12 conference.
Thanks to this primitive, the ID document,
which embeds a chip with computational abili-
ties, is able to authenticate to a service provider
through a reader, and the resulting signatures
are anonymous, linkable inside the service and
unlinkable across services. In a subsequent work,
Bringer et al. proposed at the NSS’13 confer-
ence to enhance security and privacy of DSPS
through group signature techniques. In this
work, we improve on these proposals in three
ways. We note that using the full power of group
signatures is not needed for the construction of
DSPS, and we provide an optimized construc-
tion that achieves the same strong security and
privacy properties as the previous proposal of
Bringer et al. while being more efficient. We
also spot several imprecisions in previous formal-
izations and provide clean security definitions
for the dynamic and adaptive case. Finally, we
study the implementation of our protocol in a
chip and show that our solution is well-suited
for these limited environments.

1 Introduction

Recently, the German BSI agency introduced
several security mechanisms regarding the use
of identity tokens for authentication purposes
[14]. In such situations, a token for electronic
IDentification, Authentication and trust Ser-
vices (aka an eIDAS token) connects to a Ser-

A preliminary version of this work appeared in the
Proceedings of Financial Cryptography and Data Secu-
rity 2014 [11]. This is an extended version, including
new materials and proofs. Part of this work was done
while the fourth author was a PhD student at Morpho
and Télécom ParisTech.

vice Provider (SP) through a reader (for con-
creteness, one might see the eIDAS token as a
passport equipped with a chip). The security
mechanisms of [14] can be summarized as fol-
lows. First of all, during the PACE protocol
(Password Authenticated Connection Establish-
ment), the eIDAS token and the reader establish
a secure channel. Then, during the EAC proto-
col (Extended Access Control), the eIDAS token
and the service provider authenticate each other
through another secure channel. The reader
transfers the exchanged messages. At last, dur-
ing the (optional) RI protocol (Restricted Iden-
tification), the eIDAS token gives its pseudonym
for the service to the service provider. This
pseudonym enables the service provider to link
users inside its service. However, across the ser-
vices, users are still unlinkable. The latter prop-
erty is called cross-domain anonymity. Such
a property is interesting for many applications,
since it offers at the same time privacy for the
users and usability for the service provider, who
might want them to use an account to give them
more personal services (e.g., bank accounts, TV
subscriptions, etc.).

For authentication purposes, giving pseudo-
nyms is insufficient since the authenticity of the
pseudonym is not guaranteed. For this reason,
subsequent works [22, 6, 12] adopt a “signature
mode” for the use of pseudonyms. This ap-
proach has also been integrated in the latest de-
velopments of the eIDAS protocols [14]. Such
a signature mode between an eID token and a
service provider can be described as follows.

1. The service provider sends to the eID to-
ken the public key dpk of the service and a
message m.

2. The eID token computes a pseudonym nym
as a deterministic function of its secret key
usk and the public key dpk.

3. The eID token signs the message m with its

1

secret key usk and the pseudonym nym.

4. The eID token sends the signature σ and
the pseudonym nym to the service provider.

5. The service provider checks the signature
σ of the message m with respect to the
pseudonym nym and the domain key dpk.

The interest of pseudonymous signatures ex-
ceeds the RI protocol, which motivated their for-
mal study [6]. Such a privacy-preserving cryp-
tographic primitive, coupled with the possession
of an eID token, enable users to keep control on
the electronic use of their identities.

Our contributions. The work of [6] proposes an
efficient construction based on groups of prime
order (without pairings). Their construction re-
lies on a very strong hypothesis regarding the
tamperproofness of the token. In fact, recov-
ering two users’ secrets enables to compute the
key of the certification authority. To deal with
this concern, the authors of [12] propose to intro-
duce group signatures into this signature mode.
In addition to strong privacy properties, group
signatures provide collusion resistance even if
several users’ secrets do leak. The authors of
[12] claim that the security model of group sig-
natures gives a security model for DSPS, and,
in fact, leave imprecise the definition of the
DSPS security properties. Moreover, the model
of [6] only concerns the static case, and their
anonymity definition is flawed. So clean secu-
rity definitions for dynamic DSPS remain to be
supplied. Our first contribution is then a secu-
rity model for dynamic DSPS.

We also provide a new construction, which is
more efficient than the one of [12], while achiev-
ing the same strong security and privacy proper-
ties. Our construction highlights the fact that,
in some sense, using group signatures is “too
strong” for constructing DSPS signatures. Our
second contribution is then an efficient, proven
secure, dynamic DSPS with short signatures.

Finally, we focus on the use of our DSPS
scheme by an eID token with limited capabili-
ties. Our model includes the delegation of some
computations to the reader of the token, tak-
ing advantage of the computational power of the
reader. In this case, the eID token only performs
computation in a group of prime order and cheap
scalar operations. This is a valuable practical
advantage since existing chips might be used.
Our proposal avoids the need to deploy ad hoc
chips, which has an industrial cost.

Related notions. As a privacy-preserving cryp-
tographic primitive, domain-specific pseudony-

mous signatures share some properties with
other primitives. DSPS may appear as a re-
laxed version of group signatures, in which a user
is able to sign on behalf of a group, while be-
ing anonymous inside the group of the poten-
tial signers. More specifically, DSPS share some
similarities with group signatures with verifier
local revocation (VLR) [9] in the sense that, in
both primitives, the revocation is done on the
verifier’s side. However, group signatures are
always unlinkable, whereas DSPS achieve some
partial linkability. A parallel may be done be-
tween DSPS and the notion of cross-unlinkable
VLR group signatures [13], where users em-
ploy several group signatures for several domains
such that the signatures are unlinkable across
domains. Within a domain, the group signa-
tures are however unlinkable, which is not the
case for the context of DSPS. The difference
between DSPS and pseudonym systems [23] or
anonymous credential systems [16] is that DSPS
pseudonyms are deterministic whereas anony-
mous credentials pseudonyms must be unlink-
able. DSPS might be seen as anonymous creden-
tials without attributes and with scope-exclusive
pseudonyms [15], but with a somehow weaker
version of anonymity. In DSPS, the issuer is
always able to trace signatures. Moreover, we
explicitly address here the splitting of the sig-
nature process. Direct Anonymous Attestations
(DAA) [10] might be seen (following [7]) as a
group signature where (i) the user is split be-
tween a TPM and a host, (ii) signatures are
unlinkable but in specific cases and (iii) there
is no opening procedure. More precisely, the
partial linkability is achieved by the notion of
basename, a particular token present in all sig-
nature processes. Two signatures are linkable
if, and only if, they are issued with the same
basename. At a first sight, a DSPS scheme is a
DAA scheme where basenames are replaced by
domains, and where the underlying group sig-
nature is replaced by a VLR group signature.
Moreover, in the eID token use-case, the token-
reader pair might be seen as the TPM-host pair
of DAA scheme. However, the primitives remain
distinct. The determination of the pseudonyms
in DSPS is more restrictive than the usage of the
basename in DAA. As a consequence, in DSPS,
the issuer is allowed to revoke the users. To the
contrary, in DAA, a strong anonymity property
might hold even in front of a corrupted issuer
(cf. [7]). In addition, the host in DAA always
embeds the same chip, but a token is not linked
to a specific reader, and might authenticate in
front of several readers. These differences im-

2

pact the DSPS security notions, and allow for
different constructions.

Organization of the paper. We first define dy-
namic domain-specific pseudonymous signatures
in Section 2. Then, we present our efficient con-
struction of dynamic DSPS in Section 3. In
particular, we discuss some implementation con-
siderations and, among other things, analyse
the possibility to delegate some parts of sig-
nature computation from the eIDAS token to
the reader. In Section 4, we supply a secu-
rity model for dynamic DSPS, and discuss some
tricky points to formalize. Finally, we analyse
in Section 5 the security of our construction and
prove it secure in the random oracle model ac-
cording to the security definitions of Section 4,
before concluding in Section 6.

Notations. Given a non-empty finite set S, s←
S means that s is drawn uniformly at random
from S. Given a prime number p, we note Zp :=
{0, 1, . . . , p− 1} and Z∗p := Zp \ {0}.

2 Definition of domain-spe-
cific pseudonymous signa-
tures

Informally, a DSPS scheme is composed of pro-
cedures for generating parameters, keys (for
group, users and domains), pseudonyms, gener-
ating and verifying signatures, and blacklisting
users.

Definition 1 (DSPS) A dynamic domain-
specific pseudonymous signature scheme is given
by an issuing authority IA, a set of users U ,
a set of domains D, and the functionalities
{Setup, GroupKeyGen, DomainKeyGen, Join,
Issue, NymGen, Sign, Verify, Revoke} as de-
scribed below.

By convention, users are enumerated with index
i ∈ N and domains with index j ∈ N.

Global parameters. On input a security pa-
rameter λ, the Setup algorithm computes global
parameters param. A message space M is spec-
ified. The sets of user U and domains D are
initially empty.

param← Setup(1λ)

The global parameters param are implicitly gi-
ven to all algorithms, if not explicitly specified.

Group creation. On input the global parame-
ters param, the GroupKeyGen algorithm outputs
an asymmetric key pair (gpk, gsk).

(gpk, gsk)← GroupKeyGen(param)

Domain creation. On input the global pa-
rameters param and a domain j ∈ D, the
DomainKeyGen algorithm outputs a public key
dpkj for j.

dpkj ← DomainKeyGen(param, j)

Together with the generation of a public key,
an empty revocation list Lj associated to the
domain j is created.

User enrolment. The enrolment protocol in-
volves a user i ∈ U and the issuing authority IA.
Join takes as input the global parameters param
and a group public key gpk. Issue takes as input
the global parameters param and a group secret
key gsk. At the end of the protocol, the user i
gets a secret key uski and the issuing authority
IA keeps a revocation token rti.

uski ← Join(param, gpk, i)

↔ Issue(param, gpk, i, gsk)→ rti

Pseudonym generation. On input the global
parameters param, a group public key gpk, a
public key dpkj for a domain j ∈ D and a se-
cret key uski of a user i ∈ U , the deterministic
NymGen algorithm outputs a pseudonym nymij

for the user i usable within the domain j.

nymij ← NymGen(param, gpk, dpkj , uski)

Generation of signatures. On input the
global parameters param, a group public key gpk,
a public key dpkj of a domain j ∈ D, a user se-
cret key uski of a user i ∈ U , a pseudonym nymij

for the user i and the domain j and a message
m ∈ M, the Sign algorithm outputs a signa-
ture σ.

σ ← Sign(param, gpk, dpkj , uski, nymij ,m)

Interactive generation of signatures. Part
of the signature generation might be delegated
to an external entity. In this case, the Sign

procedure is split into three parts Delegate,
PreCompute and Finalize. On input the global
parameters param, a group public key gpk, a
public key dpkj of a domain j ∈ D, a user secret
key uski of a user i ∈ U , a pseudonym nymij

for the user i and the domain j and a message
m ∈M, the Delegate algorithm outputs a dele-
gation information del and keeps some auxiliary

3

information aux. On input the delegation infor-
mation del, the PreCompute algorithm outputs
a pre-computation pre. On input the auxiliary
information aux and the pre-computation pre,
the Finalize algorithm outputs a signature σ.

del, aux← Delegate(gpk, dpkj , uski, nymij ,m)

pre← PreCompute(gpk, del)

σ ← Finalize(gpk, aux, pre)

Verification of the signatures. On input
the global parameters param, a group public key
gpk, a public key dpkj of a domain j ∈ D, a
pseudonym nymij , a message m ∈ M, a sig-
nature σ and the revocation list Lj of the do-
main j, the Verify algorithm outputs a decision
d ∈ {0, 1}.

d← Verify(param, gpk, dpkj , nymij ,m, σ,Lj)

The fact that pseudonyms are deterministic im-
plies the existence of an implicit algorithm for
linking signatures. On input a domain pub-
lic key dpk and two triples (nym,m, σ) and
(nym′,m′, σ′), the Link algorithm outputs 1 if
nym = nym′ and outputs 0 otherwise.

Revocation. On input the global parameters
param, a group public key gpk, a revocation to-
ken rti of a user i ∈ U and a public key dpkj of
a domain j ∈ D, the Revoke algorithm outputs
the pseudonym nymij .

nymij ← Revoke(param, gpk, rti, dpkj)

A global revocation protocol for revoking the
user i everywhere is implicit here: it suffices for
the issuer to publish rti. Then all pseudonyms
will be computable from the past and future do-
mains’ public keys.

Correctness. As a first property to be satis-
fied by a DSPS scheme, honest and non-revoked
users should be accepted (signature correctness)
and the revocation of users prevents them to
produce accepted signatures (revocation correct-
ness). More formally, given global parame-
ters param, a DSPS scheme is correct if for
all (gpk, gsk) ← GroupKeyGen(1λ), all usk ←
Join(gpk) ↔ Issue(gpk, gsk) → rt, all dpk
← DomainKeyGen(gpk), all nym ← NymGen(gpk,
dpk, usk), all m ∈M, we have:

– Signature correctness:

1. for all σ ← Sign(gpk, dpk, usk, nym, m), we
have Verify(gpk, dpk, nym, m, σ, {}) = 1.

2. for all (del, aux) ← Delegate(gpk, dpk,
usk, nym, m), pre← PreCompute(gpk, del),

σ ← Finalize(gpk, aux, pre), we have
Verify(gpk, dpk, nym, m, σ, {}) = 1.

– Revocation correctness:

1. nym = nym′ where nym′ := Revoke(gpk, rt,
dpk).

3 An efficient construction
of dynamic DSPS

In this section, we present our construction for
a dynamic DSPS scheme.

Bilinear parings. Our construction makes use
of bilinear pairings. A bilinear environment is
given by a tuple (p,G1,G2,GT , e) where p is a
prime number, G1, G2 and GT are three groups
of order p (here in multiplicative notation) and
e is a bilinear and non-degenerate application
e : G1 × G2 → GT . The bi-linearity property
states that for all G ∈ G1, H ∈ G2, a, b ∈ Zp,
we have e(Ga, Hb) = e(G,H)ab = e(Gb, Ha).
The non-degeneracy property states that for all
G ∈ G1 \ {1G1}, H ∈ G2 \ {1G2}, e(G,H) 6=
1GT . Bilinear environments may be symmetric
if G1 = G2 or asymmetric if G1 6= G2.

Global parameters. We assume that some
bilinear groups G1, G2, GT of prime order p
equipped with a non-degenerate bilinear map
e : G1×G2 → GT and generatorsG1, H, U ∈ G1,
G2 ∈ G2 are publicly available to all partici-
pants. We assume that this pairing is of Type
III (according to the classification of [21]), mean-
ing that (i) G1 6= G2 and (ii) there is no effi-
ciently computable isomorphism between them
in both directions. In all the following, if not
stated explicitly, all algorithms are implicitly gi-
ven param = (p,G1,G2,GT , e,G1, H, U,G2) as
input. A hash function H : {0, 1}∗ → {0, 1}λ
is also given (modelled as a random oracle in
the security proofs), where λ is the security pa-
rameter that manages the bilinear environment
generation (we have |p| ≈ 2 ·λ). Messages in our
scheme are bit strings: M := {0, 1}∗.
Creation of the group. The GroupKeyGen al-
gorithm draws y ← Z∗p and returns the group
secret key gsk := y and the group public key
gpk := (Y1, Y2) := (Hy, (G2)y). The element
Y1 is only used when the signature process is
interactive. If no procedure of delegation is con-
sidered in some concrete use of the scheme, this
element can be dropped.

Creation of the domains. The DomainKeyGen
algorithm draws r ← Z∗p, and returns the do-
main public key dpk := D := (G1)r. Note that

4

the random r is not a private key associated to
dpk, and may be discarded. dpk is just a public
uniform random element in G1 that identifies a
given domain. It might be for instance the hash
of the domain’s data (the hash function is then
considered as a random oracle in the security
analysis). We assume that these domain keys
are honestly computed.

Enrolment of the users. Given a group se-
cret key gsk = y, a user secret key usk is a triple

(f,A, x) where A := (U ·Hf)
1

x+y for x← Zp\{y}
and f ← Z∗p. The corresponding revocation to-

ken is rt := (F, x) where F := Hf . The following
protocol allows the user to obtain a secret key
from the issuer (this procedure closely follows
the one from [18]).

1. [user] draw f ′ ← Z∗p; set C := Hf ′ ; compute
Π

2. [user] send C,Π

3. [issuer] receive C,Π; check Π

4. [issuer] draw x, f ′′ ← Zp

5. [issuer] set A := (U · C ·Hf ′′)
1

y+x

6. [issuer] send (f ′′, A, x)

7. [issuer] store rt := (C ·Hf ′′ , x)

8. [user] receive (f ′′, A, x)

9. [user] check whether

e(A, (G2)x · Y2) = e(U ·Hf+f ′ , G2)

10. [user] store usk := (f,A, x) where f := f ′+
f ′′

The proof Π is computed as

Π := PoK
{
〈f ′〉 : E = Ext-Commit(f ′) ∧

NIZKPEqDL(f ′, E, C,H)
}
,

where Ext-Commit is an extractable commit-
ment scheme and NIZKPEqDL (f , E, C, H) de-
notes a Non Interactive Zero Knowledge Proof
of Equality of the Discrete Logarithm f of C in
basis H with the value committed in E.

Generation of the pseudonyms. The NymGen
algorithm takes a domain public key dpk = D
and a user secret key usk = (f,A, x) as input,
and outputs the pseudonym of the user relatively
to domain D defined as nym := N := Hf ·Dx.

Generation of the signatures. The Sign

algorithm takes as input a group public key
gpk = (Y1, Y2), a domain public key dpk = D,
a user secret key usk = (f,A, x), a pseudonym
nym = N , and a message m, then performs the
following steps.

1. draw a, rf , rx, ra, rb, rd ← Z∗p

2. set T := A ·Ha

3. set R1 := Hrf ·Drx

4. set R2 := Nra ·H−rd ·D−rb

5. set R3 := e(T rx ·H−rf−rb · (Y1)−ra , G2)

6. set c := H(D,N, T,R1, R2, R3,m)

7. set sf := rf + c · f mod p,

sx := rx + c · x mod p,

sa := ra + c · a mod p,

sb := rb + c · a · x mod p, and

sd := rd + c · a · f mod p

8. return the signature σ := (T, c, ~s)

where ~s := (sx, sf , sa, sb, sd)

A proof of knowledge of a valid certifi-
cate. Following a classical way to construct sig-
natures, the signature of our scheme is obtained
by applying the Fiat-Shamir heuristic [20] to a
Σ-protocol [17] for proving knowledge of a valid
user certificate. For the sake of completeness,
we explicitly give this proof of knowledge in Ap-
pendix B.

Signature size. A pseudonym is a group ele-
ment and a signature σ := (T, c, ~s) is composed
of one element in G1, a challenge of size λ and
five scalars, which is particularly short for this
level of security. By comparison, a signature of
[12] lies in G1

4 × {0, 1}λ × Zp4. A short group
signature of [18] lies in G1

4 × {0, 1}λ × Zp4 as
well, which highlights the fact that we do not
need the whole power of group signatures here.

Signature generation with pre-computa-
tions. In step 5 of the signature generation
above, a pairing is computed. The user might
also pre-compute an element e(A,G2) from its
secret key, and elements e(H,G2), e(H,Y2) from
the group public key. The R3 element is then
computed as R3 :=

e(A,G2)rx · e(H,G2)a·rx−rf−rb · e(H,Y2)−ra .

As a result, a pairing is no longer necessary, at
a cost of a multi-exponentiation in GT .

5

Interactive process for the generation of
the signatures. When part of the signature
generation is delegated, the user takes as input a
group public key gpk = (Y1, Y2), a domain public
key dpk = D, a user secret key usk = (f,A, x),
a pseudonym nym = N , and a message m, then
engages the following protocol.

Delegate

1. [user] draw a, rf , rx, ra, rb ← Zp

2. [user] compute T := A ·Ha

3. [user] compute B := T rx ·H−rf−rb · (Y1)−ra

4. [user] send B

PreCompute

5. [delegatee] receive B

6. [delegatee] compute R3 := e(B,G2)

7. [delegatee] send R3

Finalize

8. [user] receive R3

9. [user] draw rd ← Zp

10. [user] set R1 := Hrf ·Drx

11. [user] set R2 := Nra ·H−rd ·D−rb

12. [user] set c := H(D,N, T,R1, R2, R3,m)

13. [user] set sf := rf + c · f mod p,

sx := rx + c · x mod p,

sa := ra + c · a mod p,

sb := rb + c · a · x mod p, and

sd := rd + c · a · f mod p

14. [user] return the signature σ := (T, c, ~s)
where ~s := (sx, sf , sa, sb, sd)

In the protocol above, the user only performs
scalar operations and exponentiations in the
group G1. As a result, there is no need to im-
plement pairing operations or exponentiations in
GT in the user side. This brings a piece of valu-
able advantages for a deployment with current
technology. We implemented our protocol on
a PC, using Barreto-Naehrig curves [1] at 128
bits of security. Following first estimations of
a partial implementation on a chip, the overall

signature and communication (including delega-
tion) between the reader and the passport cost
around 890ms, for equipment currently in use.

Verification of the signatures. A verifier
takes as input a group public key gpk = (Y1, Y2),
a domain public key dpk = D, a pseudonym
nym = N , a message m, a signature σ = (T, c, ~s)
where ~s := (sx, sf , sa, sb, sd), and a list L, and
proceeds as follows:

1. if N ∈ L, return 0

2. compute R1
′ := Hsf ·Dsx ·N−c

3. compute R2
′ := Nsa ·H−sd ·D−sb

4. compute R3
′ :=

e(T sx ·H−sf−sb ·U−c, G2) · e(H−sa ·T c, Y2)

5. compute c′ := H(D,N, T,R1
′, R2

′, R3
′,m)

6. if c′ = c return 1, otherwise return 0

Correctness of the verification. One might
check that a valid signature is always accepted
by the verification algorithm. Indeed, in that
case we have:

R1
′ = Hrf+c·f ·Drx+c·x ·H−c·f ·D−c·x

= Hrf ·Drx = R1

R2
′ = Hf ·(ra+c·a) ·Dx·(ra+c·a) ·H−rd−c·a·f

·D−rb−c·a·x

= Hf ·ra ·Dx·ra ·H−rd ·D−rb = R2

R3
′ = e(T rx+c·x ·H−rf−c·f−rb−c·a·x · U−c, G2)

· e(H−ra−c·a · T c, Y2)

= e(T rx ·H−rf−rb , G2) · e(H−ra , Y2)

· e(T c·x ·H−c·(f−a·x) · U−c, G2)

· e(H−c·a · T c, Y2)

= e(T rx ·H−rf−rb · (Y1)−ra , G2)

· e(T c·x ·H−c·(f−a·x) · U−c ·Ac·y, G2)

= R3 · e(Ac·(x+y) · (Hf · U)−c, G2)

= R3 · e((Hf · U)c · (Hf · U)−c, G2) = R3

Revocation. Given a revocation token rt =
(F, x) of some user and a domain key dpk = D,
the revocation procedure returns the pseudonym
nym := F ·Dx. The domain updates its revoca-
tion list L := L ∪ {nym}.

Efficiency of the revocation in DSPS. Since
a revocation list is a set of revoked pseudonyms
in DSPS, the revocation test is a simple mem-
bership test. In practice, this can be done very

6

efficiently. It is far more efficient than revoca-
tion in the VLR group signature constructions.
For instance, in [9], two pairings have to be com-
puted for each token in the revocation list.

4 DSPS Security properties

Besides correctness, a DSPS scheme should sat-
isfy the cross-domain anonymity, seclusiveness
and unforgeability properties to be secure. In-
formally, a DSPS scheme is cross-domain anony-
mous if signatures are unlinkable but within a
specific domain, seclusive if it is impossible to
exhibit a valid signature without involving a sin-
gle existing user, and unforgeable if nobody, in-
cluding corrupted authority and domains own-
ers, cannot sign on behalf of an honest user. The
remaining of this section is dedicated to the for-
malization of these notions.

4.1 Game-based security proofs

Security properties are modelled by games be-
tween a challenger and an adversary. Given an
adversary A, a game G and a bit b ∈ {0, 1}, we
denote AG ⇒ b the fact that the challenger play-
ing the game G outputs b after its interaction
with A. The following fundamental result about
game-based security proofs is given in [4].

Lemma 2 ([4]) Let G and G′ be two games,
identical until some internal flag bad is set to
true in game G. Then∣∣∣Pr

[
AG ⇒ 1

]
− Pr

[
AG
′
⇒ 1

]∣∣∣
≤ Pr

[
AG : bad = true

]
.

4.2 Oracles

The global variables used by the challenger dur-
ing a game are summarized in Table 1. Ora-
cles may be available to the adversary. Below
is given an informal description of each oracle.
Complete definitions are given Figures 4 and 5
in Appendix A.

adding users and domains (U, D). A may dy-
namically add users and domains, through
the U and D oracles.

corrupting users (C). A may corrupt users,
with a query to C. The challenger returns
the user’s secret key (as well as the pseudo-
nyms, but it may compute the pseudonyms
with the user’s key).

U set of honest users
C set of corrupted users
D set of domains
L domains’ revocation lists
S set of messages signed by the challenger
K lists of leaked pseudonyms
N set of (user, domain) pairs the adversary

may know the pseudonym

dpk table of domains’ public keys
usk table of users’ secret keys
nym table of the pseudonyms
rt table of revocation tokens
ro table for the random oracle

Table 1: Variables managed by the challenger

revoking users (R). A may ask for the revo-
cation of some users near some domains.

learning identities (N, I). A may ask for the
pseudonyms corresponding to a given (user,
domain) pair, with the oracle N. Given a
pseudonym and a domain, A may also ask
for the identity to which this pseudonym
belongs within the domain, thanks to the
oracle I.

pseudonyms leakage (L). A may collect pseu-
donyms without knowing the underlying
identities.

signatures (S, DelS, V). A may ask for signa-
tures on behalf of a given pseudonym for
messages of its choice. Moreover, when part
of the signature is delegated by a delegator
to a delegatee, it can interacts with an hon-
est delegator as a corrupted delegatee.

Since the verification of signatures involves
revocation lists, A is given an oracle V for
their verification.

Since the signatures are created and verified
under the pseudonyms, the adversary does
not ask for signatures on behalf of users. If
the adversary wants a signature from a par-
ticular user, it may first ask for this user’s
pseudonym, then asks the signature oracle
for a signature.

interactive issuing (StoI, StoU). A may in-
teract as a corrupted user in front of a hon-
est issuer (oracle StoI – Send to Issuer) or
as a corrupted issuer in front of a honest
user (oracle StoU – Send to User).

In the random oracle model, the adversary has
access to a random oracle HR for values in the
set R in addition to the oracles above; the set R
being specified by the parameters of the scheme.

7

challenge oracle LoR(b0, b1, i0, i1, j0, j1), game variables U ,D,N ,K, nym:

1. if i0 6∈ U or i1 6∈ U or j0 6∈ D or j1 6∈ D, return ⊥
2. if |{j ∈ {j0, j1} : (i0, j) ∈ N or (i1, j) ∈ N}| > 1, return ⊥

// step 2: there must be at most one domain where the users may be identified

3. if ((K[j0] ∪ K[j1]) ∩ {i0, i1} 6= ∅) and (∃j ∈ {j0, j1}: {i0, i1} 6⊆ K[j]), return ⊥
// step 3: leakage of pseudonyms together with dynamic creation of users and domains should not
help to trivially win

4. return {(j0, nym[ib0][j0]), (j1, nym[ib1][j1])}

cross-domain anonymity experiment ExperimentCDAparam(A)

1. initialisation: InitializeGame(); (gpk, gsk)← GroupKeyGen(param); b0 ← {0, 1}; b1 ← {0, 1};
2. oracles: O ← {U(gsk, ·), D(·), C(·), R(·, ·), N(·, ·), SM(·, ·, ·), DelSM(·, ·), I(·, ·), L(·), HR(·),

VM(·, ·, ·, ·), LoR(b0, b1, ·, ·, ·, ·)}
3. adversary phase: d← AO(param, gpk)

4. winning condition: return 1 if (d == (b0 == b1)), otherwise return 0

Figure 1: The cross-domain anonymity experiment

4.3 Cross-domain anonymity

Figure 1 describes the cross-domain anonymity
experiment. Informally, an adversary should not
be able to link users across domains. This prop-
erty is formalized by a challenge oracle: given
two domains, an adversary should not be able to
tell whether two pseudonyms belong to the same
user or not, even if it knows the underlying user
for one out of the two domains. Two bits are
picked by the challenger, one for each domain
queried to the challenge oracle. At the end of
the experiment, the adversary A returns a bit d
and the game returns 1 if (d == (b0 == b1))
(where (b0 == b1) equals 1 if the assertion is
true and 0 otherwise). We denote AdvCDA

param(A)
the advantage of the adversary, defined as:

AdvCDA
param(A)

def
=∣∣∣2 · Pr

[
AExperiment

CDA
param ⇒ 1

]
− 1
∣∣∣ .

Given a security parameter λ ∈ N, parameters
param ← Setup(1λ) and a polynomial t, we
say that a DSPS scheme achieves cross-domain-
anonymity if, for all A running in time less than
t(λ), the quantity AdvCDA

param(A) is negligible as a
function of λ.

Corruption of the issuer. Contrary to group
signatures (see [5]), the issuing authority IA is
not corrupted in this game. This assumption is
minimal since the IA may trace all honest users.
Hence we give the adversary the ability to inter-
act as a corrupted user with the honest issuer,
through the StoI oracle.

Discussion about anonymity. Since the
functionality is dynamic, there might be no
anonymity at all if we do not take care of the
formalization. For instance, an adversary might
ask for adding two domains, two users, i0, i1, ask
for their pseudonyms, add a user i2, and win
a challenge involving i0, i2 with non-negligible
probability. To avoid such an attack, the chal-
lenger maintains a list of the (user, domain)
pairs, for which the pseudonym might be known
from the adversary’s point of view. These lists
evolve in function of the adversary’s queries.
Thus, the challenger ensures that the pseudo-
nyms returned by the LoR oracle contain enough
uncertainty for at least one domain. Note that
the uncertainty is required for only one domain.
A user queried to the LoR might be known or
revoked in a domain: the adversary has to guess
whether the other pseudonym belongs to the
same user.

Cross-domain anonymity w.r.t. several
challenge calls. Let us assume that the stan-
dard notion of public key encryption and its se-
mantic security IND-CPA (aka INDistinguishabi-
lity under Chosen Plaintext Attack) is known to
the reader. A popular argument says that if a
public key encryption scheme is ε-IND-CPA se-
cure with a single call to the challenge oracle,
then it is ` · ε-IND-CPA secure with ` calls to the
challenge oracle. This argument does not work
in the case of DSPS. However, we can still man-
age to show that if a DSPS scheme is CDA secure
with a single call to the challenge oracle, then it
is still CDA secure with a polynomial call to the

8

seclusiveness experiment ExperimentSECparam(A)

1. initialisation: InitializeGame(); (gpk, gsk)← GroupKeyGen(param);

2. oracles: O ← {U(gsk, ·), StoI(gsk, ·, ·), D(·), C(·), R(·, ·), N(·, ·), I(·, ·), L(·), HR(·), SM(·, ·, ·),
DelSM(·, ·), VM(·, ·, ·, ·)}

3. adversary phase: (j∗, N∗,m∗, σ∗)← AO(param, gpk)

4. winning condition:

(a) if j∗ 6∈ D, return 0

(b) if Verify(gpk, dpk[j∗], N∗,m∗, σ∗, {nym[i][j∗]}i∈U∪C) = 1, return 1

(c) return 0

Figure 2: The seclusiveness experiment

challenge oracle. A proof of this fact is given in
Appendix C.

4.4 Seclusiveness

The Figure 2 describes the seclusiveness ex-
periment. Informally, only valid enrolled users
should be able to produce valid signatures. This
property is similar with the traceability property
of the group signatures [2, 5], where an adver-
sary should be unable to forge a valid signature
that cannot trace to a valid user. In the group
signature case, there is an opening algorithm,
which enables to check if a valid user produced
a given signature. However, there is no opening
here, so one might ask how to properly define
tracing users. Nevertheless, the management of
the revocation tokens allows to correctly phrase
the winning condition, as in VLR group signa-
tures [9], providing that we take into account
the presence of the pseudonyms. If at the end of
the game, the challenger blacklists all the users.
If the signature is valid, then the adversary has
won the game, as an analogue of “the opener
cannot conclude” in the group signature case.
We denote AdvSEC

param(A) the success probability
of the adversary in this experiment:

AdvSEC
param(A)

def
= Pr

[
AExperiment

SEC
param ⇒ 1

]
.

Given a security parameter λ ∈ N, parameters
param ← Setup(1λ) and a polynomial t, we say
that a DSPS scheme achieves seclusiveness if, for
all A running in time less than t(λ), the quantity
AdvSEC

param(A) is negligible as a function of λ.

4.5 Unforgeability

The Figure 3 describes the unforgeability exper-
iment. Nobody, including the issuer, should be
able to produce a valid signature in the name of

a honest user. We denote AdvUF
param(A) the suc-

cess probability of the adversary in this forgery
experiment:

AdvUF
param(A)

def
= Pr

[
AExperiment

UF
param ⇒ 1

]
.

Given a security parameter λ ∈ N, parameters
param ← Setup(1λ) and a polynomial t, we say
that a DSPS scheme achieves unforgeability if,
for all A running in time less than t(λ), the quan-
tity AdvUF

param(A) is negligible as a function of λ.

4.6 Comparisons with precedent
models

For sake of clarity, note that (nymi, dsnymij)
in [6] maps to (i, nymij) in our model.

The model of [6]. First of all, the model of [6]
is static. All users and domains are created at
the beginning of the games, while our security
games are all dynamic. Then, let us focus on
the cross-domain anonymity and show that their
definition is flawed. The adversary is given all
pseudonyms and all domain parameters. The
left-or-right challenge takes as input two pseu-
donyms for the same domain and a message and
outputs a signature on this message by one of
the corresponding users. A simple strategy to
win the game, independently of the construc-
tion, is to verify this signature using both pseu-
donyms: it will be valid for only one of them.
This observation motivates our choice for our
challenge output to be a pair of pseudonyms and
not a pair of signatures, since it is easy to verify
their correctness using the pseudonyms. More-
over, in their game, both pseudonyms queried
to the challenge oracle are in the same domain,
which does not fit the cross-domain anonymity,
while our challenge involving two different do-
mains does. Finally, the model of [6] does not

9

unforgeability experiment ExperimentUFparam(A)

1. initialisation: InitializeGame() (gpk, gsk)← GroupKeyGen(param);

2. oracles: O ← {StoU(·), D(·), C(·), R(·, ·), N(·, ·), I(·, ·), L(·), HR(·), SM(·, ·, ·), DelSM(·, ·),
VM(·, ·, ·, ·)}

3. adversary phase: (i∗, j∗,m∗, σ∗)← AO(param, gpk, gsk)

4. winning condition:

(a) if i∗ 6∈ U or j∗ 6∈ D or (i∗, j∗,m∗, σ∗) ∈ S, return 0

(b) if Verify(gpk, dpk[j∗], nym[i∗][j∗],m∗, σ∗, {}) = 1, return 1

(c) return 0

Figure 3: The unforgeability experiment

allow for collusions: the adversary can be given
at most one user secret key (indeed, with their
construction, using two users’ secret keys, one
can recover the issuing keys).

The model of [12]. The model of [12] is largely
inspired by the security model of VLR group sig-
natures. That is why it does not enough take
into account the specificities of DSPS. The chal-
lenge of the cross-domain anonymity game also
considers a single domain and outputs a signa-
ture (but it does not take as input the pseu-
donyms of the users, only identifiers, so it does
not inherit the security flaw of [6]). This model
lacks from a precise description of the oracles,
thus leaving looseness on what are the exact in-
puts and outputs. Our model is more precise
and separated from the model of group signa-
tures.

5 Security of our construc-
tion

This section begins by stating several hard prob-
lems in prime order and bilinear groups. Then
the construction from Section 3 is proven secure
according to the model of Section 4 under these
hard problems.

5.1 Hard problems

Discrete logarithm problem. Let G be a
cyclic group of prime order p and G a generator
of G. Given an adversary A, the success prob-
ability (or advantage) of A against the Discrete
Logarithm (DL) problem is defined as

AdvDL
G (A)

def
= Pr [a← Zp : A(Ga)⇒ a] .

We define AdvDL
G (t) = maxA{AdvDL

G (A)}, where
the maximum is taken over all adversaries run-
ning in time at most t.

Decisional Diffie-Hellman problem [19].
Let G be a cyclic group of prime order p and
G a generator of G. Given an adversary A, the
success probability (or advantage) of A against
the Decisional Diffie-Hellman (DDH) problem is
defined as

AdvDDH
G (A)

def
=∣∣∣Pr

[
a, b← Zp : A(Ga, Gb, Ga·b)⇒ 1

]
− Pr

[
a, b, c← Zp : A(Ga, Gb, Gc)⇒ 1

] ∣∣∣.
We define AdvDDH

G (t) = maxA{AdvDDH
G (A)},

where the maximum is taken over all adversaries
running in time at most t.

Strong Diffie-Hellman problem [8]. Let
G1,G2,GT be three cyclic groups of prime or-
der p, H1 (respectively H2) a generator of G1

(respectively G2), and e a non-degenerate bilin-
ear map e : G1 × G2 → GT . Let q ≥ 1. Given
an adversary A, the success probability (or ad-
vantage) of A against the Strong Diffie-Hellman
(SDH) problem is defined as

Advq-SDH
G1,G2

(A)
def
= Pr

[
a← Z∗p :

A((H1)a, (H2)a, (H1)(a
2), . . . , (H1)(a

q))

⇒ (c, (H1)1/(a+c)) ∈ Zp \ {−a} ×G1

]
.

We define Advq-SDH
G1,G2

(t) = maxA{Advq-SDH
G1,G2

(A)},
where the maximum is taken over all adversaries
running in time at most t.

5.2 Cross-domain anonymity

The cross-domain anonymity of our scheme is
proved by reduction to the decisional Diffie-

10

Hellman problem.

Theorem 3 Let A be an adversary against the
cross-domain anonymity of the pseudonymous
signature scheme, running in time at most t,
making at most qh random oracle queries, at
most qs signature queries, adding qu users and
qd domains. Then

AdvCDA
G1,G2

(A) ≤ qu · qd
2

·
(
qs · (qs + qh) + 1

p
+ AdvDDH

G1
(t)

)
.

Proof. We proceed with a sequence of games.

Game 0. Game G0 is ExperimentCDAparam(A) as gi-
ven Figure 1, with R := Zp and M := {0, 1}∗,
and where, in addition, G0 uniformly guesses a
user i ∈ [1, qu] and a domain j ∈ [1, qd], and
hopes that i and j are asked to the challenge or-
acle. Since no information about i and j is avail-
able from the adversary’s point of view, this hap-
pens with probability 4/(qu · qd). So we have:

Pr
[
AG0 ⇒ 1

]
=

4
qu·qd ·AdvCDA

G1,G2
(A) + 1

2
(1)

Game 1. In game G1, we change the way
the signature queries are handled. On input
a pseudonym N , a domain key D, a user key
(f,A, x), a message m, game G1 produces a sig-
nature as follows. y is the group secret key. In
the first phase, the following steps are carried
out:

1. finds i and j such that N = Ni:j

2. draw T ← G1; c ← {0, 1}λ; sf , sx, sa, sb ←
Zp

3. send B := T sx+y·c · U−c ·H−y·sa−sf−sb

In the second phase:

1. receive R3

2. draw sd ← Zp and set R1 := Hsf ·Dsx ·N−c
and R2 := Nsa ·H−sd ·D−sb

3. if H(D,N, T,R1, R2, R3,m) 6= ⊥, set bad to
true

4. program H(D,N, T,R1, R2, R3,m) := c

5. return σ := (T, c, sx, sf , sa, sb, sd)

Here bad is a flag, initially set to false. Games G0

and G1 are identical until bad is set to true. In

particular, there exists a such that T = A ·Ha,
and we have:

B = T sx+y·c · U−c ·H−y·sa−sf−sb

= T rx+c·x+y·c · U−c

·H−y·ra−y·a·c−rf−c·f−rb−c·a·x

= T rx ·Ac·x+y·c · U−c

·Ha·c·x+a·y·c−y·ra−y·a·c−rf−c·f−rb−c·a·x

= Ac·(y+x) · U−c ·H−c·f · T rx ·H−rf−rb

·H−y·ra

=
(
U ·Hf · U−1 ·H−f

)c
· T rx ·H−rf−rb · (Y1)−ra

= T rx ·H−rf−rb · (Y1)−ra ,

as required. Moreover, the simulation remains
valid even if the adversary gives an incorrect R3.
By Lemma 2, we have that:

Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Pr

[
AG1 : bad = true

]
≤ qs · (qs + qh)

p
(2)

where the last inequality follows from the fact
for each signature query, H has been previously
defined on at most qs + qh points, so that the
probability that bad is set to true is at most
(qs+qh)/p. This is because R2 is uniformly ran-
dom in G1 and independent from R3, whatever
the adversary’s choice for R3 is. The important
point here is that sd may be drawn after the
reception of R3.

Game 2. The difference between game G2 and
game G1 is in the way the parameters, the
group public key and the user secret keys are
computed. The game draws G1, F ← G1 \
{1G1

}; G2 ← G2 \ {1G2
}; β, y, f1, . . . fqu ←

Z∗p, x1, . . . , xqu ← Zp \ {y}, and sets U :=

F (y+x1)···(y+xqu), H := Uβ , Y1 := Hy, Y2 :=
(G2)y and Ai := F (1+β·fi)·

∏
n∈[1,qu]\{i}(y+xn) for

all i ∈ [1, qu]. G1, H, U and G2 are distributed
as in Game G1 (unless

∏
i∈[1,qu](y + xi) = 0

mod p, in which case the flag bad is set to true).
The keys are also identically distributed. For
instance, for user i, one can check that:

(Ai)
y+xi = F (y+x1)···(y+xqu)·(1+β·fi)

= U1+β·fi = U ·Hfi .

Hence, G1 and G2 are identical until bad is set
to true:

Pr
[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]
≤ 1

p
. (3)

11

Game 3. G3(G1,A,B,C) takes as input a genera-
tor G1 and three group elements A = (G1)a, B =
(G1)b and C = (G1)a·b such that a and b are uni-
form. The difference with game G2 is in the way
the pseudonyms and domain keys are computed.
Game G3 computes the keys and the pseudo-
nyms such that xi = a and dpkj = B. More
precisely, the game draws G2 ← G2 \ {1G2

};
α, β, y, f1, . . . fqu ← Z∗p, xi ← Zp \ {y}, and sets:

• U := (A · (G1)y)α·
∏
n∈[1,qu]\{i}(y+xn)

• H := Uβ

• Y1 := Hy

• Y2 := (G2)y

• Ai :=

(A · (G1)y)α·(1+β·fi)·
∏
n∈[1,qu]\{i,i}(y+xn)

• Ai := (G1)α·(1+β·fi)·
∏
n∈[1,qu]\{i}(y+xn)

• Ni:j := Hfi · C

• Ni:j := Hfi · Bxi

• Ni:j := Hfi · Arj

• Ni:j := Hfi · (G1)rj ·xi

for i 6= i, j 6= j. Note that xi is not used in the
signature oracle simulation (cf. game G1). If i
were asked to the corruption oracle, the simula-
tion would fail, but since i is asked to the chal-
lenge oracle (cf. game G0), it is not corrupted.
Game G2 and G3 are identically distributed since
a and b are uniformly random.

Pr
[
AG2 ⇒ 1

]
= Pr

[
AG3 ⇒ 1

]
. (4)

Game 4. The game G4(G1,A,B,C) is identical
to G3, except that it takes as input three uni-
formly distributed group elements A = (G1)a,
B = (G1)b and C = (G1)c. A distinguisher be-
tween G3 and G4 is a distinguisher for the DDH
problem in G1.

Pr
[
AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]
≤ AdvDDH

G1
(t).

(5)

Game 5. Let i0, i1, j0, j1 be the users and do-
mains asked to the challenge oracle. In game
G5, the only difference with game G4 is that
the challenge oracle returns the pseudonym of
the user i0 for a domain j ∈ {j0, j1}, for which
{(i0, j), (i1, j)} ∩ N = ∅. There exists at least
such a j, otherwise the challenge query is invalid,
by the condition on the setN in the challenge or-
acle definition. We have i ∈ {i0, i1}, j ∈ {j0, j1}.

Except the pseudonyms, no information about
the user’s secret key is available (in particular,
signatures are simulated without knowledge of
the secret keys – cf. game G1). Since G1, A, B
and C are independent uniform elements in G1,
all pseudonyms in the set {nym[i][j], nym[i][j],
nym[i][j], nym[i][j]} are independent and uni-
form. Moreover, this set of pseudonyms cannot
be discriminated by the leakage of pseudonyms,
thanks to the condition on the set K in the chal-
lenge oracle query. So the view of the adversary
is not affected.

Pr
[
AG4 ⇒ 1

]
= Pr

[
AG5 ⇒ 1

]
. (6)

Finally, in game G5, the view of A is independent
of one challenge bit among b0 and b1, so the
success probability of A is exactly 1/2.

Pr
[
AG5 ⇒ 1

]
=

1

2
. (7)

The theorem follows from Equations (1), (2),
(3), (4), (5), (6), and (7). ut

5.3 Seclusiveness

The seclusiveness of our DSPS scheme is proved
by reduction to the strong Diffie-Hellman prob-
lem.

Theorem 4 Let A be an adversary against the
seclusiveness of our DSPS scheme, running in
time at most t, making at most qh random oracle
queries and adding qu users. Then

AdvSEC
G1,G2

(A) ≤ qu + qh
p

+
√

2 · qu · qh ·Advqu-SDH
G1,G2

(2 · t+ qu2).

Proof. We proceed with a sequence of games.

Game 0. Game G0 is simply the security exper-
iment as described Figure 2. So we have:

Pr
[
AG0 ⇒ 1

]
= AdvSEC

G1,G2
(A). (8)

Game 1. Game G1 takes as input qu + 3 group
elements (H1, H2,F1,Q,F2, . . . ,Fqu) ∈ (G∗1 ×
G2)2× (G1)qu such that F1 = (H1)f , Q = (H2)f ,

F2 = (H1)(f
2), . . . , and Fqu = (H1)(f

(qu)), for
some uniform f ∈ Z∗p. For sake of reading,
let us set q := qu. G1 differs from G0 in the
way the parameters, the group key and the user
keys are generated. G1 picks k ← {1, . . . , q},
x1, . . . , xq ← Zp (such that all xi are distinct),
and s1, . . . , sq ← Zp; sets G2 := H2, Y1 :=

12

F1 · (H1)−xk and Y2 := Q · (H2)−xk . This im-
plicitly sets the group secret key y := f − xk.
For {x1, . . . , xq} ∈ Zp, let P , Pm and P−m for
m ∈ [1, q] be the following polynomials on Fp[X]:

• P :=
∏
n∈[1,q](X + xn − xk)

• Pm :=
∏
n∈[1,q]\{m}(X + xn − xk)

• P−m :=
∏
n∈[1,q]\{m,k}(X + xn − xk).

Note that we have P = X · Pk, Pm = X · P−m
if m 6= k, and Pk = P−k . Expanding P on f,
we get P (f) =

∑q
n=0 anf

n for some {an}qn=0 de-
pending on the xn. Game G1 is able to com-
pute (H1)P (f) from the input without the knowl-
edge of f. The same remark is equally true
for Pm and P−m . Game G1 picks α ← Zp,
β, δ ← Z∗p, sets U := (H1)β(α·P (f)−sk·Pk(f)),

H := (H1)β·Pk(f), and G1 := (H1)δ. If G1,
H, U , Y1, or F1 · (H1)−xk+xi (for some i ∈
[1, q]) equals 1G1

, or G2, or Y2 equals 1G2
,

game G1 restarts drawing random values. A is
given parameters (e,G1,G2,GT , e,G1, H, U,G2)
and group public key (Y1, Y2). Then game G1

computes user secret keys as follows. When A

asks for adding a new user i ∈ [1, q], G1 sets

Ai := (H1)β·(α·Pi(f)+P
−
i (f)·(si−sk)), and usk[i] :=

(si, Ai, xi). One can check that usk[i] is a valid
user secret key under (Y1, Y2):(
U ·Hsi

) 1
y+xi

=
(
(H1)β·(α·P (f)−sk·Pk(f))

· (H1)β·Pk(f)·si
) 1

f−xk+xi

= (H1)
(β·α·Pi(f)−β·sk·P−i (f)+β·si·P−i (f))· f+xi−xkf−xk+xi

= (H1)β·(α·Pi(f)+P
−
i (f)·(si−sk)) = Ai.

When the issuing process is interactive, the
game receives an element Hf ′ and a proof Π.
From Π, thanks to the extraction key, game G2

extracts f ′. Then it computes Ai as above, and
returns si−f ′ to the user. Parameters and keys
are distributed as in game G0, except that some
xi could take the same value in the specification
of the scheme. If the xi are uniformly picked,
this happens with negligible probability.

Pr
[
AG1 ⇒ 1

]
− Pr

[
AG0 ⇒ 1

]
≤ qu

p
. (9)

Solving a SDH challenge. Now, let B denote
the following reduction algorithm, whose aim is
to solve a SDH challenge (F1,Q,F2, . . . ,Fq) ∈
G1 × G2 × (G1)q−1 with respect to genera-
tors H1, H2. B runs A, simulating game G1

on inputs (H1, H2,F1,Q,F2, . . . ,Fq), until A re-
turns a forgery σ = (T, c, ~s) for some domain
D, pseudonym N and message m (assuming A

is successful; otherwise B aborts). Since the
forgery is valid, the random oracle was pro-
grammed as H(D,N, T,R1, R2, R3,m) := c.
B replays the same experiment. When A makes

the random oracle query corresponding to the
forgery, it sends a fresh random value c′. If A

returns a new forgery σ′ = (T ′, c′, ~s′) for the
same message m, then:

Hsf ·Dsx ·N−c = Hs′f ·Ds′x ·N−c
′

⇔

{
sf + c · f = s′f + c′ · f mod p and

sx + c · x = s′x + c′ · x mod p,

from which some x and f such that N = Hf ·Dx

can be retrieved (assuming c 6= c′). Moreover,
we have:

H−sd ·D−sb ·Nsa = H−s
′
d ·D−s

′
b ·Ns′a ,

from which we know (by substituting N = Hf ·
Dx) that (sd − s′d) = f · (sa − s′a) mod p and
(sb−s′b) = x ·(sa−s′a) mod p. Finally, we have:

e(T sx ·H−sf−sb ·U−c, G2) · e(H−sa ·T c, Y2) =

e(T s
′
x ·H−s

′
f−sb ·U−c

′
, G2) · e(H−s

′
a · T c

′
, Y2),

from which we know that sa + a · c = s′a + a · c′
mod p and e(T ·H−a, (G2)x ·Y2) = e(U ·Hf , G2).
B can then retrieve a and A = T ·H−a such that
A = (U ·Hf)

1
y+x . Assuming that A is successful,

there is no n ∈ [1, q], such that N = Hfn ·Dxn .
Hence:

(f, x) 6∈ {(f1, x1), . . . , (fq, xq)}. (10)

Let us now distinguish two cases (I) and (II).

(I). x ∈ {x1, . . . , xq}. If x 6= xk, B returns ⊥ and
aborts. Let us now assume that x = xk. We
have f 6= sk – since f = sk contradicts (10) –
and

(Ask · (Ak)−f)
1

sk−f

=
(
(H1)

sk·β·Pk(f)·(α·f−sk+f)· 1
f−xk+x

· (H1)−f ·β·α·Pk(f)
) 1
sk−f

= (H1)
sk·β·Pk(f)·(α·f−sk+f)· 1f ·

1
sk−f

· (H1)
−f ·β·α·f·Pk(f)· 1f ·

1
sk−f

= (H1)β·(α·P (f)−sk·Pk(f))· 1f

P vanishes in 0, but this is not the case for Pk.
Then by dividing β · (α · P (f) − sk · Pk(f)) by f
we get R and Q such that

13

C := R(0) = −β · sk ·

 q∏
n=1,n6=k

(xn − x)

 and

(Ask · (Ak)−f)
1

sk−f = (H1)
C
f +Q(f)

where C 6= 0. B computes

(H1)1/f := ((Ask · (Ak)−f)
1

sk−f · (H1)−Q(f))1/C ,

sets c := 0 and returns (0, (H1)1/f) as a solution
to the SDH challenge.

(II). x 6∈ {x1, . . . , xq}. This implies:

xn − x 6= 0 mod p for all n ∈ [1, q]. (11)

Let us now consider the quantity β ·Pk(f)·(α ·f+
f−sk) as a polynomial S in f. If we carry out the
Euclidean division of S by (f+x−xk), we get Q
and R such that S(f) = (f+x−xk) ·Q(f)+R(f).
Since (f + x − xk) is a first degree polynomial
X − (xk − x), we know that R(f) = S(xk − x),
so B can compute

C := R(f) = S(xk − x) = β· q∏
n=1,n6=k

(xn − x)

 · (α · (xk − x) + f − sk).

Since (f,A, x) is a valid user key, we have

A = (H1)
β·Pk(f)·(α·f−sk+f)· 1

f−xk+x

so A = (H1)
(f+x−xk)·Q(f)+R(f)

f−xk+x = (H1)
Q(f)+ C

f+x−xk .
B can compute (H1)Q(f) from the SDH chal-

lenge. If (f − sk) = α · (x−xk), B returns ⊥ and
aborts. If (f − sk) 6= α · (x − xk), then C 6= 0
by (11) and by the choice of β, so B computes

(H1)
1

f+x−xk =
(
A · (H1)−Q(f)

) 1
C , set c = x− xk,

and return (c, (H1)1/(f+c)) as a solution to the
SDH challenge.

This achieves the description of the reduction
B. Let us now consider its probability of suc-
cess and its running time. Let us denote ε the
probability Pr

[
AG1 ⇒ 1

]
and ε′ the probability

that B manages to extract a valid SDH solution
from the forge. From standard forking tech-
niques (cf. [3, Lemma 1]), we have that:

ε′ ≥ ε ·
(
ε

qh
+

1

p

)
. (12)

Then, let us denote ε′′ the probability that B

does not abort, once a secret key is extracted.
No information is available about k from A’s
point of view. As a result, in case (I), B suc-
ceeds with probability 1/qu; and in case (II),

B succeeds with probability at least 1 − 1/qu.
Hence, considering the more pessimistic case,
ε′ ≤ 2 · qu · ε′′. The running time of B is es-
sentially twice the running time of A (to extract
a SDH challenge) plus O(qu

2) operations in G1.
Therefore, we get:

Pr
[
AG1 ⇒ 1

]
≤ qh

p
+√

2 · qu · qh ·Advqu-SDH
G1,G2

(2 · t+ qu2), (13)

which concludes the proof. ut

5.4 Unforgeability

The unforgeability of our DSPS scheme is proved
by reduction to the discrete logarithm problem.

Theorem 5 Let A be an adversary against the
unforgeability of the pseudonymous signature
scheme, running in time at most t, making at
most qh random oracle queries, at most qs sig-
nature queries, and adding qu users. Then

AdvUF
G1,G2

(A) ≤ qu · (qs · (qs + qh) + qh)

p

+ qu ·
√
qh ·AdvDL

G1
(2 · t).

Proof. We proceed with a sequence of games.

Game 0. Game G0 is the security experiment as
described Figure 3 where, in addition, G0 uni-
formly guesses the user i ∈ [1, qu] returned by
the adversary, and fail if the guess is wrong. So
we have:

Pr
[
AG0 ⇒ 1

]
=

1

qu
·AdvUF

G1,G2
(A). (14)

Game 1. In game G1, the signature queries are
simulated as in Game G1 of Theorem 3. The
fact that the adversary knows the group secret
key has no effect on the simulation.

Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ qs · (qs + qh)

p
.

(15)

Game 2. The difference between game G2 and
game G1 is in the way the parameters, the
group public key and the user secret keys are
computed. The game draws G1, F ← G1 \
{1G1

}; G2 ← G2 \ {1G2
}; β, y, f1, . . . fqu ←

Z∗p, x1, . . . , xqu ← Zp \ {y}, and sets U :=

F (y+x1)···(y+xqu), H := Uβ , Y1 := Hy, Y2 :=
(G2)y, and Ai := F (1+β·fi)·

∏
n∈[1,qu]\{i}(y+xn) for

all i ∈ [1, qu]. When the game interacts with the

14

adversary as a corrupted issuer, the game sim-
ply sends a value Hf ′ , the corresponding proof,
receives (f ′′, A, x), and sets f = f ′+f ′′. G1, H,
U and G2 are distributed as in Game G1, and
we have:

Pr
[
AG1 ⇒ 1

]
= Pr

[
AG2 ⇒ 1

]
. (16)

Game 3. G3(F,A) takes as input two group
elements such that A = F a for some uniform
a ∈ Zp. The difference with game G2 is in
the way the secret key and the pseudonyms of
user i are computed. G2 sets A := F · Aβ
and nymij := A · (Dj)

xi . This implicitly sets
fi := a. If the user i was created through an
interactive process, the challenger simulates a
proof of equality (in the first round), and re-
ceives Ai from the corrupted issuer (in the sec-
ond round). In this case we have, Hfi = A ·Hf ′′

for some adversarially chosen f ′′. It implicitly
sets fi := a + f ′′ instead of fi := a. The signa-
ture oracle is not affected since the users’ secret
keys are no longer used in the simulation of the
signatures (cf. game G1). No information about
i leaks from the adversary’s point of view, unless
i is corrupted.

Pr
[
AG2 ⇒ 1

]
= Pr

[
AG3 ⇒ 1

]
. (17)

Solving a DL challenge. Now, let B denote the
following reduction algorithm, whose aim is to
solve a Discrete Logarithm challenge A ∈ G1

with respect to a generator F . B runs A, simu-
lating game G3(F,A), until A returns a forgery
σ = (T, c, ~s) for some domain D, and message
m (assuming A is successful; otherwise B aborts).
Since the forgery is valid, the random oracle was
programmed as H(D,N, T,R1, R2, R3,m) := c.
As in Theorem 4, B replays the same experi-
ment, and then sends a fresh random value c′

for the corresponding random oracle query. If
A returns a new forgery σ′ = (T ′, c′, ~s′) for the
same message m, then:

Hsf ·Dsx ·N−c = Hs′f ·Ds′x ·N−c
′

⇒ sf + c · f = s′f + c′ · f mod p,

from which f = a (or f = a + f ′′) can be re-
trieved, assuming that the adversary produces
a forge for the user i and assuming c 6= c′. Let
us denote ε the probability Pr

[
AG3 ⇒ 1

]
and ε′

the probability that B manages to extract a valid
DL solution from the forge. As in Theorem 4,
forking techniques [3, Lemma 1] allows to show
that:

Pr
[
AG3 ⇒ 1

]
≤ qh

p
+
√
qh ·AdvDL

G1
(2 · t). (18)

The theorem follows from Equations (14), (15),
(16), (17), and (18). ut

6 Conclusion

In this work, we study dynamic domain-specific
pseudonymous signatures, a recent privacy-pre-
serving primitive, which brings many interest-
ing applications. We supply clean definitions
for their security properties. We highlight the
fact that, in some sense, using the full power
of group signatures is somehow “too strong” for
constructing DSPS signatures. Following this
intuition, we provide a new, optimized, con-
struction that is more efficient than the one gi-
ven in [12], while achieving the same strong se-
curity and privacy properties. Moreover, moti-
vated by the main application of DSPS – the au-
thentication of eID tokens –, we study the inter-
actions between an entity, as a chip, embedding
a user’s secret key, and its reader. Taking advan-
tage of the computational power of the reader,
our DSPS scheme may be implemented on exist-
ing chips, without deploying dedicated hardware
or pairing implementations on the chip side.

A Definition of the oracles
in the security games

Figures 4 and 5 give the details of the oracles
available to the adversary in the security games
of Section 4.

B A proof of knowledge of a
valid certificate

The signature procedure of our scheme is ob-
tained from a proof of knowledge of a valid cer-
tificate. This proof is explicitly given Figure 6.
It is indeed a honest-verifier zero-knowledge
proof of knowledge, as shown by the following
lemmas.

Lemma 6 (Completeness) The protocol of
Figure 6 is complete.

Proof. By inspection, one can be convinced that
the protocol is complete. In particular, we have:

Hsf · dpksx · nym−c

= Hrf+c·f · dpkrx+c·x · (Hf · dpkx)−c

= Hrf+c·f−f ·c · dpkrx+c·x−x·c

= Hrf · dpkrx = R1

15

initialization InitializeGame()

U := {}; C := {}; D := {}; N := {}; S := {}; sig state := 0; L := ⊥; K := ⊥;

ro := ⊥; usk[i] := ⊥, rt[i] := ⊥, dpk[j] := ⊥, nym[i][j] := ⊥, for all i, j

users U(gsk, i), i ∈ N

1. if i ∈ U ∪ C, return ⊥; otherwise set U := U ∪ {i}; generate usk[i], rt[i] with gsk

2. set nym[i][j]← NymGen(gpk, dpk[j], usk[i]) for all j ∈ D; return ε

domains D(j), j ∈ N

1. if j ∈ D, return ⊥; otherwise set dpk[j]← DomainKeyGen(); for all i ∈ U ∪ C, do:

(a) if usk[i] 6= ⊥, set nym[i][j]← NymGen(gpk, dpk[j], usk[i])

(b) otherwise if rt[i] 6= ⊥, set nym[i][j]← Revoke(gpk, rt[i], dpk[j])

2. set D := D ∪ {j}; N := N ∪ {(i, j)}i∈C ; L[j]← {}; K[j]← {}; Check(j); return dpk[j]

corruption oracle C(i), i ∈ N

1. if i 6∈ U (or if i was queried to the LoR oracle), return ⊥
2. otherwise set U := U \ {i}; C := C ∪ {i}; N := N ∪ {(i, j)}j∈D; ∀j ∈ D: Check(j)

3. return (usk[i], rt[i]) // pseudonyms might be computed from usk[i]

revocation oracle R(i, j), i, j ∈ N

1. if i 6∈ U or j 6∈ D (or if i and j were queried together to the LoR oracle), return ⊥
2. otherwise set L[j] := L[j] ∪ {nym[i][j]}; N := N ∪ {(i, j)}; Check(j); return ε

nym oracle: N(i, j), i, j ∈ N

1. if i 6∈ U or j 6∈ D (or if i and j were queried together to the LoR oracle), return ⊥
2. otherwise set N := N ∪ {(i, j)}; Check(j); return nym[i][j]

identification oracle: I(N, j), N ∈ {0, 1}∗, j ∈ N

1. find i ∈ U such that N = nym[i][j]

2. if none is found or j 6∈ D (or if i and j were queried together to the LoR oracle), return ⊥
3. otherwise set N := N ∪ {(i, j)}; Check(j); and return i

nym leakage: L(j), j ∈ N

1. if j 6∈ D, return ⊥; otherwise set K[j] := K[j] ∪ U ; return {(j, nym[i][j])}i∈U
random oracle HR(string), string ∈ {0, 1}∗

1. if ro[string] 6= ⊥, return ro[string]

2. otherwise draw r ←R; set ro[string] := r; return r

Check(j) for j ∈ D is defined as: [if ∃i ∈ U : {i′ : (i′, j) ∈ N} \ U = {i}, then set N := N ∪ {(i, j)}; return (i, j)]
it ensures that the anonymity is not trivially broken by dynamic and adaptive identification

Figure 4: Oracles for the experiments – I

nymsa ·H−sd · dpk−sb

= (Hf · dpkx)ra+c·a ·H−rd−c·a·f

· dpk−rb−c·a·x

= (Hf · dpkx)ra ·Hf ·c·a−rd−c·a·f

· dpkx·c·a−rb−c·a·x

= (Hf · dpkx)ra ·H−rd · dpk−rb = R2

e(T ,G2)sx · e(H,G2)−sf−sb · e(H,Y2)−sa

·
[
e(G1, G2) · e(T, Y2)−1

]−c
= e(T rx ·H−rf−rb , G2)

· e((A ·Ha)c·x ·H−c·f−c·a·x ·G1
−c, G2)

· e(H−ra , Y2) · e(H−c·a · (A ·Ha)c, Y2)

= e(T rx ·H−rf−rb , G2) · e(H−ra , Y2)

· e(Ax ·H−f ·G1
−1, G2)c · e(A, Y2)c

= R3 · e(
(
G1 ·Hf

) 1
x+γ , G2

x ·G2
γ)c

· e(G1 ·Hf , G2)−c = R3

Lemma 7 (Zero-knowledge) The protocol of
Figure 6 is honest-verifier zero-knowledge.

Proof. For an honest verifier, the transcripts
T , (R1, R2, R3), c, (sf , sx, sa, sb, sd) can be
simulated in an indistinguishable way, without
knowing any valid certificate. We first simu-

16

signature oracle SM(N, j,m), N ∈ {0, 1}∗, j ∈ N, m ∈M

1. find a user i ∈ U such that N = nym[i][j] (return ⊥ if none is found)

2. compute σ ← Sign(gpk, dpk[j], usk[i], N,m); set S := S ∪ {(i, j,m, σ)}; return σ

signature oracle with delegation DelSM(in0, in1)

1. if sig state = 0

(a) parse in0 as (N, j,m) ∈ {0, 1}∗ × N×M; find i ∈ U such that N = nym[i][j]

(b) compute (del, aux)← Delegate(gpk, dpk[j], usk[i], N,m)

(c) set sig state := 1− sig state; store (i, j,m, aux); return del

2. if sig state = 1

(a) parse in1 as resp ∈ {0, 1}∗; retrieve (i, j,m, aux)

(b) σ ← Finalize(gpk, aux, resp)

(c) sig state := 1− sig state; S := S ∪ {(i, j,m, σ)}; return σ

verification VM(N, j,m, σ), N ∈ {0, 1}∗, j ∈ N, m ∈M, σ ∈ {0, 1}∗

1. if j 6∈ D, return ⊥; otherwise return Verify(gpk, dpk[j], N,m, σ,L[j])

interactive issuing with a corrupted issuer StoU(Min)

1. if Min is parsed as i ∈ N // the adversary asks for a session with a new user

(a) if i ∈ U ∪ C, return ⊥; otherwise initiate an issuing session on behalf of i

(b) compute a protocol first message Mout and keep the internal state as aux

2. otherwise if Min is parsed as (i, resp)

(a) retrieve the internal state aux of i and finalize usk[i] with internal state aux and response resp

(b) set U := U ∪ {i}; nym[i][j]← NymGen(gpk, dpk[j], usk[i]) for all j ∈ D

interactive issuing with a corrupted user StoI(gsk, i,Min)

1. the oracle simulates the issuer in front of a new user i 6∈ U ∪ C; it computes a response to the protocol
message Min thanks to the group secret key gsk, sends the response, and records a revocation token rt[i].
Then, it sets C := C ∪ {i}, N ∪ {(i, j)}j∈D, and nym[i][j]← Revoke(gpk, rt[i], dpk[j]) for all j ∈ D.

In the oracles for the interactive issuing, we assume for simplicity that the protocol contains two rounds, as in our
scheme.

Figure 5: Oracles for the experiments – II

late T , which can be done by picking T ← G1.
This element is indistinguishable from the out-
put of any prover since, given (p,G1,G2,GT , e),
G1, H ← G1 \ {1}, G2 ← G2 \ {1}, γ, f, r ← Zp,
x← Zp \ {−γ}, A :=

(
G1 ·Hf

) 1
γ+x , dpk := G1

r

and nym := Hf ·dpkx, the following distributions
∆ and ∆′ are the same.

∆ := {T | a← Zp ; T := A ·Ha}
∆′ := {T | T ← G1}

Then, we pick c ← {0, 1}λ and sf , sx, sa, sb,
sd ← Zp. The simulator computes (R1, R2, R3)
using the verification equations: R1 := Hsf ·
dpksx ·nym−c, R2 := nymsa ·H−sd ·dpk−sb , R3 :=
e(T sx ·H−sf−sb , G2) · e(H−sa , Y2) ·

[
e(G1, G2) ·

e(T, Y2)−1
]−c

. This second step does not assume
any knowledge about the data used to generate
usk, dpk, nym and T in the first step. So the

simulation of the second step is perfect. ut

Lemma 8 (Proof of knowledge) There ex-
ists an extractor for the protocol of Figure 6.

Proof. Let us assume that a prover is able
to give two valid responses ~s, ~s′ to two dif-
ferent challenges c, c′ given the same values
T, (R1, R2, R3). First, by dividing Hsf · dpksx =

R1 · nymc by Hs′f · dpks
′
x = R1 · nymc′ , we ob-

tain Hsf−s′f · dpksx−s
′
x = nymc−c′ . Since c 6= c′,

then c − c′ 6= 0 mod p, so c − c′ is invertible
modulo p. Hence f̃ := (sf − s′f)/(c − c′) and

x̃ := (sx−s′x)/(c−c′) such that nym = H f̃ ·dpkx̃.
Then by dividing nymsa · H−sd · dpk−sb = R2

by nyms′a · H−s′d · dpk−s
′
b = R2, we obtain

nymsa−s′a = Hsd−s′d · dpksb−s
′
b . Substituting

nym = H f̃ ·dpkx̃ gives that (sd−s′d) = f̃ ·(sa−s′a)
and (sb−s′b) = x̃·(sa−s′a) (which holds if H and

17

Parameters. (p,G1,G2,GT , e), G1, H ∈ G1, G2 ∈ G2.
Issuer. gsk := γ ∈ Zp, gpk := (Y1, Y2) := (Hγ , G2

γ).
Domain. r ∈ Zp, dpk := G1

r 6= 1G1
.

User. usk := (f,A, x), f ∈ Zp, x ∈ Zp \ {−γ}, A :=
(
G1 ·Hf

) 1
γ+x ∈ G1.

Pseudonym. nym := Hf · dpkx

a← Zp ; T := A ·Ha ; rf , rx, ra, rb, rd ← Zp
R1 := Hrf · dpkrx ; R2 := nymra ·H−rd · dpk−rb
R3 := Zrx · e(H,G2)a·rx−rf−rb · e(H,Y2)−ra

R1, R2, R3
−−−−−−−−−−−−−−−−−−−−−−−−−→

c← {0, 1}λ
c

←−−−−−−−−−−−−−−−−−−−−−−−−−
sf ← rf + c · f ; sx ← rx + c · x ; sa ← ra + c · a
sb ← rb + c · a · x ; sd ← rd + c · a · f

~s := (sf , sx, sa, sb, sd)
−−−−−−−−−−−−−−−−−−−−−−−−−→

Hsf · dpksx · nym−c ?
= R1

nymsa ·H−sd · dpk−sb ?
= R2

e(T,G2)sx · e(H,G2)−sf−sb · e(H,Y2)−sa ·
[
e(G1, G2) · e(T, Y2)−1

]−c ?
= R3

Scalar operations are carried out modulo p

Figure 6: A proof of knowledge of a valid certificate

dpk are generators of G1). Finally by dividing

e(T,G2)sx · e(H,G2)−sf−sb · e(H,Y2)−sa

= R3 ·
[
e(G1, G2) · e(T, Y2)−1

]c
by

e(T,G2)s
′
x · e(H,G2)−s

′
f−s

′
b · e(H,Y2)−s

′
a

= R3 ·
[
e(G1, G2) · e(T, Y2)−1

]c′
,

we obtain:

e(T,G2)sx−s
′
x · e(H,G2)−sf+s

′
f−sb+s

′
b

·e(H,Y2)−sa+s
′
a =

[
e(G1, G2)·e(T, Y2)−1

]c−c′
.

If we set ã := (sa − s′a)/(c − c′) and use the
previously obtained equality (sb−s′b) = x̃ · (sa−
s′a), we have:

e(T,G2
x̃) · e(H−f̃−ã·x̃, G2) · e(H−ã, Y2)

= e(G1, G2) · e(T, Y2)−1.

Thus e(T ·H−ã, G2
x̃ · Y2) = e(G1 ·H f̃ , G2). By

setting Ã := T ·H−ã, (f̃ , (Ã, x̃)) is a valid wit-
ness. ut

C Cross-domain anonymity
w.r.t. several challenge
calls

In this section, we show that, if a DSPS scheme
is cross-domain-anonymous with a single call to
the challenge oracle, then it is still cross-domain-
anonymous with a polynomial call to the chal-
lenge oracle.

Let us first begin by extending the definition
of the cross-domain anonymity experiment to al-
low ` queries to the challenge oracle. The only
difference with the experiment of Figure 1 is that
the following non-triviality conditions are added
in the LoR oracle.

4. If ∃(i, j) ∈ {i0, i1}× {j0, j1} such that (i, j) was
previously queried to the LoR oracle, return ⊥.

5. For b ∈ {0, 1}, let us define ī = i1−b (resp.
j̄ = j1−b) if i = ib (resp. j = jb). If
∃(i, j) ∈ {i0, i1} × {j0, j1}: ((i, j) ∈ N and (ei-
ther (i, j̄) ∈ N or (̄i, j̄) ∈ N)), return ⊥.

The condition (4.) states that different calls to
the oracle should not involve the same users. In-
deed the adversary can easily win if the sets of
queried users overlap.

The condition (5.) is due to the fact that we
allow the users in the challenge call not to be

18

anonymous in some domain, provided that they
are anonymous in the other domain. An adver-
sary would trivially win the game by guessing
both bits through this leakage, so the anonymity
is broken in one domain, it is always in the same
side – the right or the left – in the different left-
or-right calls.

We now state an intermediate result. With-
out loss of generality, we can assume that, if the
anonymity is broken in one domain, it is in the
left domain. To show this, we construct, from
any `-CDA adversary A, a `-CDA adversary A′

that achieves this property.

Lemma 9 Let A be a `-CDA adversary, running
in time at most t. There exists a `-CDA adver-
sary A′, running in nearly the same time, such
that, for all valid query (i0, i1, j0, j1) to LoR, in-
formation about the pseudonym for (i0, j1) nor
for (i1, j1) has leaked (through a call to the revo-
cation R, identification I or pseudonym N oracle,
or through a Check), and such that:

Adv`-CDAparam (A) ≤ 2 ·Adv`-CDAparam (A′).

Note: a valid query is a query such that the
conditions required by the oracle are fulfilled.
Proof. We construct A′ as a `-CDA challenger
for A, A′ having its own `-CDA challenger, say C.
Basically, A′ only transfers the messages between
A and C, except for the LoR oracle. We restrict
ourselves to the valid LoR queries; A′ simply re-
turns ⊥ for invalid queries.

First we ensure that, for each information A

might get about the pseudonym for a pair (i, j),
A′ knows the corresponding pseudonym. That is,
each time A calls the revocation oracle R(i, j), A′

transfers the query, and calls in addition N(i, j);
and each time Check returns a pair (i, j), A′ calls
N(i, j).

Let (i0, i1, j0, j1) be the first query from A to
its LoR oracle for which i0 or i1 is not anonymous
in j0 or j1; i.e., for which ∃(i, j) ∈ {i0, i1} ×
{j0, j1} such that (i, j) was involved in a call to
the revocation R, identification I, pseudonym N

oracle, or a leakage through Check.
If j == j0, then A already has the requested

property. Indeed, by condition (5.), users will
be anonymous in j1 in all future LoR calls. In
this case, A′ only transfers messages between A

and C during the whole game.
If j == j1, A′ makes a call (i0, i1, j1, j0)

to its challenger, and gets {(j1, nymib0 j1
), (j0,

nymib1 j0
)}. Since the pseudonym for the user

i is known in the domain j1, A′ can deduce b0.
Then it makes a guess, whether (b0 == b1) or

not. According to this guess, it computes the
response to the future LoR calls from A, possibly
with the help of its N oracle if needed.

At the end of the game, A′ returns A’s out-
put. The simulation of A′ is correct at least with
probability 1

2 . The lemma follows. ut

Theorem 10 Let A be an adversary against the
cross-domain anonymity of a pseudonymous sig-
nature scheme, running in time at most t. Then

Adv`-CDAparam (A) ≤ 2 · ` ·Adv1-CDA
param (t).

Proof. We proceed with a sequence of ` + 1
games. Game Gn, for n ∈ [0, `], is the `-CDA
game, except for the LoR oracle. The game Gn
maintains a counter c ∈ [1, `] for each call to
the LoR oracle. At the c-th call, if (n < c),
then the oracle LoR returns {(j0, nymib0 j0

), (j1,

nymib1 j1
)}, otherwise (i.e. if (n ≥ c)), it returns

{(j0, nymib0 j0
), (j1, nymib0 j1

)}. Game G0 is sim-
ply the `-CDA experiment, so we have:

Pr
[
AG0 ⇒ 1

]
=

Adv`-CDAparam (A) + 1

2
. (19)

In game G`, no information on b1 is available, so
we have:

Pr
[
AG` ⇒ 1

]
=

1

2
. (20)

From (19) and (20), we have:

Pr[AG0 ⇒ 1]− Pr[AG` ⇒ 1] =
1

2
·Adv`-CDAparam (A).

(21)

We now restrict ourselves to an adversary A for
which users in each left-or-right LoR call are
never identified in the right side of the call. Then
we apply Lemma 9.

We describe ` solvers Bn, for n ∈ [0, ` −
1], for the 1-CDA property. Bn runs A as `-
CDA challenger, and is itself a 1-CDA adver-
sary against its own challenger. B transfers
all queries from A to its own challenger, ex-
cept for the LoR oracle, in which case it pro-
ceeds as follows. Let c be a counter for the
queries. If (n < c), then Bn uses its own
oracle N to determine nymib0 j0

and nymib1 j1
,

and returns {(j0, nymib0 j0
), (j1, nymib1 j1

)}. If

(n > c), then Bn uses its own oracle N to
determine nymib0 j0

and nymib0 j1
, and returns

{(j0, nymib0 j0
), (j1, nymib0 j1

)}. If (c == n),

then Bn uses its own oracle N(ib0 , j0), trans-
fers A’s call (i0, i1, j0, j1) to its own LoR oracle,
gets the response {(j0, nym′), (j1, nym′′)}, and
returns {(j0, nymib0 j0

), (j1, nym
′′)}.

19

Bn calls the nym oracle N on some identities
before its call to the challenge oracle. This im-
plies some restrictions on the challenge, and Bn
might fail to comply with these restrictions if
it asks its challenge oracle for a disallowed iden-
tity. However, the calls originate from A. Bn only
transfers them. When A supplies some identities
to the challenge, these identities do not appear
in a future call, by condition (4.). In particu-
lar, they do not appear in the call that leads to
Bn’s challenge call. In addition, when (c == n),
Bn performs some identification (ib0 , j0) through
a call to N. Since A is a restricted adversary for
which users are always anonymous in j1, the LoR
call of Bn is safe.

Let now b0, b1 be the bits flipped by the chal-
lenger of Bn. Recall that b0, b1 are the bits
flipped by Bn. If b0 == b1, then Gn and Gn+1

are identical and Bn simulates this game for A.
Let us now assume that b0 6= b1. If b1 == b0,
then Bn simulates game Gn for A. If b1 == b1,
then Bn simulates game Gn+1 for A.

The running time of Bn is roughly the running
time of A. We conclude that, for all n ∈ [0, `−1],
we have:

Pr[AGn ⇒ 1]− Pr[AGn+1 ⇒ 1]

≤ 1

2
·Adv1-CDA

param (t). (22)

From (21) and (22) we get

Adv`-CDAparam (A) ≤ ` ·Adv1-CDA
param (t).

From Lemma 9, we get the theorem. ut

Acknowledgements

The authors would like to thanks the anony-
mous reviewers of the Financial Cryptography
and Data Security conference for their valuable
comments and suggestions to improve the qual-
ity of this work. The authors would also like to
thanks Jacques Traoré for useful feedbacks and
discussions about an earlier version of this work.
This work has been partially funded by the Eu-
ropean FP7 FIDELITY (SEC-2011-284862) and
EKSISTENZ (SEC-2013-607049) projects. The
opinions expressed in this document only repre-
sent the authors’ view. They reflect neither the
view of the European Commission nor the view
of their employer.

References

[1] Paulo Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Se-

lected Areas in Cryptography, SAC’05, LNCS
3897, pages 319–331. Springer, 2006.

[2] Mihir Bellare, Daniele Micciancio, and Bog-
dan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified require-
ments, and a construction based on general
assumptions. In Advances in Cryptology –
EUROCRYPT’03, LNCS 2656, pages 614–
629. Springer, 2003.

[3] Mihir Bellare and Gregory Neven. Multi-
signatures in the plain public-key model and
a general forking lemma. In ACM Conference
on Computer and Communications Security –
CCS’06, pages 390–399. ACM Press, 2006.

[4] Mihir Bellare and Phillip Rogaway. The secu-
rity of triple encryption and a framework for
code-based game-playing proofs. In Advances
in Cryptology, EUROCRYPT’06, LNCS 4004,
pages 409–426. Springer, 2006.

[5] Mihir Bellare, Haixia Shi, and Chong Zhang.
Foundations of group signatures: The case
of dynamic groups. In Topics in Cryptology
– CT-RSA’05, volume 3376 of LNCS, pages
136–153. Springer, 2005.

[6] Jens Bender, Özgür Dagdelen, Marc Fischlin,
and Dennis Kügler. Domain-specific pseudo-
nymous signatures for the German identity
card. In Information Security Conference –
ISC’12, volume 7483 of LNCS, pages 104–119.
Springer, 2012.

[7] David Bernhard, Georg Fuchsbauer, Essam
Ghadafi, Nigel P. Smart, and Bogdan Wa-
rinschi. Anonymous attestation with user-
controlled linkability. Int. J. Inf. Sec., 12
(3):219–249, 2013.

[8] Dan Boneh and Xavier Boyen. Short signa-
tures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology,
21(2):149–177, 2008.

[9] Dan Boneh and Hovav Shacham. Group sig-
natures with verifier-local revocation. In ACM
Conference on Computer and Communica-
tions Security – CCS’04, pages 168–177. ACM
Press, 2004.

[10] Ernest Brickell, Jan Camenisch, and Liqun
Chen. Direct anonymous attestation. In ACM
Conference on Computer and Communica-
tions Security – CCS’04, pages 132–145. ACM
Press, 2004.

[11] Julien Bringer, Hervé Chabanne, Roch Les-
cuyer, and Alain Patey. Efficient and strong-
ly secure dynamic domain-specific pseudony-
mous signatures for ID documents. In FC’14,
LNCS 8437, pages 255–272. Springer, 2014.

20

[12] Julien Bringer, Hervé Chabanne, and Alain
Patey. Collusion-resistant domain-specific
pseudonymous signatures. In Network and
System Security Conference, NSS’13, LNCS
7873, pages 649–655. Springer, 2013.

[13] Julien Bringer, Hervé Chabanne, and Alain
Patey. Cross-unlinkable hierarchical group si-
gnatures. In Public Key Infrastructures, Ser-
vices and Applications, EuroPKI’12, volume
7868 of LNCS, pages 161–177. Springer, 2013.

[14] Bundesamt für Sicherheit in der Informa-
tionstechnik (BSI). Advanced security mecha-
nisms for machine readable travel documents
and eIDAS token, part 2 – protocols for
electronic identification, authentication and
trust services (eIDAS), technical guideline
TR-03110-2, v2.20, February 2015.

[15] Jan Camenisch, Maria Dubovitskaya, Robert
Enderlein, Anja Lehmann, Gregory Neven,
Christian Paquin, Franz-Stefan Preiss. Con-
cepts and languages for privacy-preserving
attribute-based authentication. J. Inf. Sec.
Appl., 19(1):25–44, 2014.

[16] Jan Camenisch and Anna Lysyanskaya. Sig-
nature schemes and anonymous credentials
from bilinear maps. In Advances in Cryptology
– CRYPTO’04, volume 3152 of LNCS, pages
56–72. Springer, 2004.

[17] Ivan Damg̊ard. On Sigma-protocols v.2, 2010.

http://www.daimi.au.dk/~ivan/Sigma.pdf

consulted the 2015/09/01.

[18] Cécile Delerablée and David Pointcheval. Dy-
namic fully anonymous short group signa-
tures. In VIETCRYPT’06, volume 4341 of
LNCS, pages 193–210. Springer, 2006.

[19] Whitfield Diffie and Martin E. Hellman. New
directions in cryptography. IEEE Trans. on
Information Theory, 22(6):644–654, 1976.

[20] Amos Fiat and Adi Shamir. How to prove
yourself: Practical solutions to identification
and signature problems. In Advances in Cryp-
tology – CRYPTO’86, volume 263 of LNCS,
pages 186–194. Springer, 1987.

[21] Steven Galbraith, Kenneth Paterson, Nigel
Smart. Pairings for cryptographers. Discre-
te Applied Mathematics, 156(16):3113–3121,
2008.

[22] Miroslaw Kutylowski and Jun Shao. Signing
with multiple ID’s and a single key. In 38th
CCNC, pages 519–520. IEEE, 2011.

[23] Anna Lysyanskaya, Ronald Rivest, Amit Sa-
hai, and Stefan Wolf. Pseudonym systems.
In Selected Areas in Cryptography – SAC’99,
LNCS 1758, pages 184–199. Springer, 2000.

21

