Cryptology ePrint Archive: Report 2014/011
Construction of New Families of MDS Diffusion Layers
S. M. Dehnavi and A. Mahmoodi Rishakani and M. R. Mirzaee Shamsabad and Hamidreza Maimani and Einollah Pasha
Abstract: Diffusion layers are crucial components of symmetric ciphers‎. ‎These components‎, ‎along with suitable Sboxes‎, ‎can make symmetric ciphers resistant against statistical attacks like linear and differential cryptanalysis‎. ‎Conventional ‎‎MDS diffusion layers, which are defined as matrices over finite fields, have been used in symmetric ciphers such as AES‎, ‎Twofish and SNOW‎. ‎In this paper‎, ‎we study linear, linearized and nonlinear MDS diffusion layers‎. We investigate linearized diffusion layers, ‎which are a generalization of conventional diffusion layers‎; t‎hese diffusion layers are used in symmetric ciphers like SMS4‎, ‎Loiss and ZUC‎. W‎e introduce some ‎new ‎families of linearized MDS diffusion layers ‎and as a consequence, ‎we ‎present a‎ ‎method ‎for ‎construction of ‎‎‎‎randomized linear ‎‎‎‎‎diffusion ‎layers over a finite field. Nonlinear MDS diffusion layers are introduced in Klimov's thesis; we investigate nonlinear MDS diffusion layers theoretically, and we present a new family of nonlinear MDS diffusion layers. We show that these nonlinear diffusion layers can be made randomized with a low ‎implementatio‎n cost. An important fact about linearized and nonlinear diffusion layers is that they are more resistant against algebraic attacks in comparison to conventional diffusion layers. A ‎special case of diffusion layers are ‎‎‎(0,1)‎-‎diffusion layers. This type of diffusion layers are used in symmetric ciphers like ARIA‎. ‎W‎e examine (0,1)‎-‎diffusion layers and prove a theorem about them‎. ‎At last‎, ‎we study linearized MDS diffusion layers of symmetric ciphers Loiss, SMS4 and ZUC‎, from the mathematical viewpoint.
Category / Keywords: secret-key cryptography / MDS, Linearized, Nonlinear, Diffusion Layer, Linerar Branch Number, Differential Branch Number
Date: received 5 Jan 2014, last revised 9 Dec 2014
Contact author: std_dehnavism at khu ac ir
Available format(s): PDF | BibTeX Citation
Note: none
Version: 20141209:201944 (All versions of this report)
Short URL: ia.cr/2014/011
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]