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Abstract. Modular multiplication of large integers is a performance-
critical arithmetic operation of many public-key cryptosystems such as
RSA, DSA, Diffie-Hellman (DH) and their elliptic curve-based variants
ECDSA and ECDH. The computational cost of modular multiplication
and related operations (e.g. exponentiation) poses a practical challenge
to the widespread deployment of public-key cryptography, especially on
embedded devices equipped with 8-bit processors (smart cards, wireless
sensor nodes, etc.). In this paper, we describe basic software techniques
to improve the performance of Montgomery modular multiplication on
8-bit AVR-based microcontrollers. First, we present a new variant of the
widely-used hybrid method for multiple-precision multiplication that is
10.6% faster than the original hybrid technique of Gura et al. Then, we
discuss different hybrid Montgomery multiplication algorithms, includ-
ing Hybrid Finely Integrated Product Scanning (HFIPS), and introduce
a novel approach for Montgomery multiplication, which we call Hybrid
Separated Product Scanning (HSPS). Finally, we show how to perform
the modular subtraction of Montgomery reduction in a regular fashion
without execution of conditional statements so as to counteract Simple
Power Analysis (SPA) attacks. Our AVR implementation of the HFIPS
and HSPS method outperforms the Montgomery multiplication of the
MIRACL Crypto SDK by up to 21.58% and 14.24%, respectively, and is
twice as fast as the modular multiplication of the TinyECC library.

Keywords: AVR architecture, multi-precision arithmetic, hybrid multi-
plication, modular reduction, SPA countermeasure.

1 Introduction

Long integer modular arithmetic, in particular modular multiplication, is at the
heart of many practical public-key cryptosystems, including “traditional” ones
that operate in a large ring or group (e.g. RSA [23], DSA [22], Diffie-Hellman
[7]), as well as elliptic curve schemes (e.g. ECDSA [22], ECDH [14]) if they use
a prime field Fp as underlying algebraic structure. The major operation of the
former class of cryptosystems is exponentiation in either Zn or Z∗p, which can be
carried out through modular multiplications and modular squarings [9]. On the
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other hand, elliptic curve schemes perform scalar multiplication in an additive
group, an operation that in turn is composed of additions, multiplications, and
inversions in the underlying field [14]. However, most software implementations
use projective coordinates to represent points on the curve, thereby trading in-
versions for multiplications in Fp to reduce the overall execution time. In this
case, the performance of a scalar multiplication is primarily determined by the
efficiency of the multiplication in the prime field Fp. Modular multiplication is
also a performance-critical arithmetic operation of pairing-based cryptosystems
(e.g. identity-based encryption, short signature schemes) [3].

It is common practice in Elliptic Curve Cryptography (ECC) to use primes
of a “special” form so as to facilitate the modular reduction [14]. A well-known
example are pseudo-Mersenne primes, i.e. primes that are slightly smaller than
a power of two and can be written as p = 2n − c where c is typically chosen to
fit into a single register of the target processor. The computational complexity
of reduction modulo such primes grows linearly with their length, whereas the
reduction operation for general primes has quadratic complexity [14]. A second
example of primes that allow one to perform a reduction in linear time are the
so-called generalized-Mersenne primes, which are standardized by the National
Institute of Standards and Technology (NIST) [22]. Software implementations
of ECC often follow a dual approach and support both fast modular reduction
techniques for a small set of special primes (e.g. the NIST primes) and a generic
reduction routine for “arbitrary” primes. Many cryptographic libraries, such as
TinyECC [18] and OpenSSL, take this approach to combine high performance
with high flexibility. Therefore, generic modular multiplication techniques, like
those introduced by Barrett [4] and Montgomery [21] roughly 30 years ago, are
not only important for RSA but also for ECC.

Formally, a modular multiplication A · B mod M involves multiplying two
n-bit operands A and B, yielding a 2n-bit product P = A · B, followed by the
reduction of P modulo M to get a final result in the range of [0,M − 1]. The
latter operation, i.e. the reduction of P with respect to a given modulus M , has
a major impact on the execution time of a modular multiplication. A straight-
forward way to obtain the residue P mod M is to divide P by M and find the
remainder of this division. However, performing integer division in software is
extremely expensive for large operands, which makes this approach unpractical
for cryptographic applications. In 1985, Peter Montgomery [21] introduced an
efficient (and nowadays widely-used) technique to accomplish a modular reduc-
tion without trial division. The basic idea is to replace the modular reduction
P mod M by a computation of the form P · 2−n mod M (where n denotes the
bitlength of M), which is much cheaper than computing the actual residue via
division. In general, when implemented in software, the Montgomery reduction
of a 2n-bit product P with respect to an n-bit modulus M is just slightly more
costly than the multiplication of two n-bit operands [10].

The efficient implementation of multiplication, reduction and other compu-
tation-intensive arithmetic operations is particularly challenging for embedded
processors with limited resources. The root of the problem is the length of the
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operands (e.g. 160 bits for an elliptic curve cryptosystem, 1024 bits in the case
of RSA), which exceeds the word-size of a small 8 or 16-bit processor by up to
two orders of magnitude. Recent research in the area of long-integer arithmetic
for such processors focused on the 8-bit AVR architecture [1] (e.g. ATmega128
[2]) as target platform. In 2004, Gura et al published a landmark paper [13] on
optimizing modular arithmetic for AVR processors in which they introduce the
idea of hybrid multiplication. By exploiting the large register file to store (parts
of) the operands, the hybrid method allows for a considerable reduction of the
number of load instructions compared to a conventional (i.e. column-wise) im-
plementation of multiple-precision multiplication [6, 13]. Gura et al reported an
execution time of 3106 clock cycles for a (160 × 160)-bit multiplication on the
ATmega128, a result that was subsequently further improved by Uhsadel et al
(2881 cycles [27]), Liu et al (2865 cycles [19]), Zhang et al (2845 cycles [32]), as
well as Scott et al (2651 cycles with “unrolled” loops [24]).

In this paper, we continue the line of research described above and advance
the state-of-the-art in efficient modular arithmetic for 8-bit AVR processors in
three directions. First, we introduce a new variant of the hybrid multiplication
technique that is roughly 10% faster than Gura et al’s original hybrid method
[13]. Our hybrid technique is similar to the one of Zhang et al [32], but benefits
from better register allocation and reduced loop overhead (i.e. improved initial-
ization of pointers and more efficient testing of branch conditions). Thanks to
our sophisticated register allocation, only 30 (out of 32) AVR working registers
are actually occupied during execution of a hybrid multiplication, which allows
for easy integration of Montgomery reduction1. The second contribution of this
paper is a comprehensive performance analysis and comparison of six methods
for software implementation of Montgomery multiplication; five are described in
[17] and the sixth variant is from [19]. Our results shed some new light on the
relative performance of the different Montgomery multiplication methods since
they contradict the findings of the current literature, e.g. [17]. Finally, as third
contribution, we describe how to perform the final subtraction of M (which is
required when a Montgomery product is not fully reduced) in a regular fashion
so as to thwart side-channel attacks [20]. Our approach tolerates incompletely-
reduced operands and ensures that always the same sequence of instructions is
executed, regardless of the actual value of the Montgomery product.

2 Montgomery Modular Multiplication

Montgomery multiplication (named after Peter Montgomery) was originally in-
troduced in 1985 [21] and has since then become one of the most-widely used
techniques for high-speed implementation of modular multiplication [8]. In the

1 The integration of Montgomery reduction into hybrid multiplication (using e.g. the
so-called FIOS or FIPS method [17]) can significantly increase the register pressure
since two registers are necessary to accommodate the 16-bit pointer to the modulus
M . We designed our hybrid multiplication to take this into account by leaving two
registers for M , which helps to prevent register spills in the FIPS inner loop.
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Algorithm 1. Calculation of the Montgomery product

Input: An odd n-bit modulus M , Montgomery radix R = 2n, two operands A,B in
the range [0,M − 1], and pre-computed constant M ′ = −M−1 mod R

Output: Montgomery product Z = MonPro(A,B) = A ·B ·R−1 mod M
1: T ← A ·B
2: Q← T ·M ′ mod R
3: Z ← (T + Q ·M)/R
4: if Z ≥M then Z ← Z −M end if
5: return Z

following, we use M to denote an odd modulus consisting of n bits and A,B to
denote two residues modulo M , i.e. 0 ≤ A,B < M . Rather than computing the
residue of A · B mod M directly, Montgomery’s algorithm returns the so-called
Montgomery product of A and B as result, which is defined as follows.

MonPro(A,B) = A ·B ·R−1 mod M (1)

The factor R in Equation (1) is often referred to as Montgomery radix and can
be any integer that is bigger than M and relatively prime to it, i.e. R needs to
satisfy gcd (N,R) = 1. However, for reasons of implementation efficiency, R is
in general a power of two, e.g. R = 2n. The central idea of Montgomery multi-
plication is to replace the reduction modulo M (which would normally require
a costly division by M) by a division by R and a reduction mod R, which are
cheap operations when R is a power of two. More precisely, a division by 2n is
merely an n-bit right-shift operation, while a reduction modulo 2n requires the
truncation of all high-order bits above the n-th position. Algorithm 1 specifies
the computation of the Montgomery product in detail. In addition to the three
operands A, B, and M , the algorithm needs M ′ as input, which is the inverse
of −M (or, more precisely, the inverse of R −M) modulo R. However, M ′ can
be pre-computed (using e.g. the Euclidean algorithm as described in [17]) since
it depends only on M and R, i.e. M ′ is fixed for a given M .

Based on Algorithm 1, the Montgomery product A ·B ·R−1 mod M can be
obtained as follows. First, the n-bit operand A is multiplied by n-bit operand
B, giving a 2n-bit product T . Then, in line 2, the quotient Q = − T

M mod R is
calculated, which is simply a multiplication of the low-order n bits of T by the
pre-computed constant M ′ = −M−1 mod R [8]. Note that we actually need to
calculate only the lower half (i.e. the n least significant bits) of T ·M ′ because
our Montgomery radix R is 2n. In line 3, a multiplication and a division by R is
performed; the latter is just an n-bit right-shift since R = 2n. Thus, we have to
calculate only the upper half of the product Q ·M . The n least significant bits
of T + Q ·M are 0, which means the division by R (i.e. the n-bit right-shift) in
line 3 does not destroy any information. The result Z obtained so far may be
not fully reduced (i.e. Z may not be the least non-negative residue modulo M)
so that a “final subtraction” of M becomes necessary (line 4). In summary, the
computational cost of Algorithm 1 amounts to one conventional multiplication
of n-bit operands (line 1) and two “half” multiplications where only either the
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lower part (line 2) or the upper part (line 3) of the product is really needed. As
a consequence, computing the Montgomery product is just slightly more costly
than two conventional multiplications.

Software implementations of Algorithm 1 generally store the large integers
A, B, and M in arrays of single-precision words (i.e. arrays of unsigned int in
C and similar programming languages). Assuming a processor with a word-size
of w bits, an n-bit integer X consists of s = dn/we single-precision (i.e. w-bit)
words. Throughout this paper, we will use uppercase letters to represent large
integers, whereas lowercase letters, usually with a numerical index, will denote
individual w-bit words. The most and least significant word of an integer X are
xs−1 and x0, respectively, i.e. we have X = (xs−1, . . . , x1, x0). There exist sev-
eral implementation options and optimization techniques to efficiently perform
a Montgomery multiplication in software; they can be categorized according to
the order in which the words of the operands (resp. product) are accessed and
whether multiplication and modular reduction are carried out separately or in
an integrated fashion (see e.g. [17] for details). In brief, when using the so-called
operand scanning method, the words of the operands are loaded sequentially, in
ascending order, starting with the least significant word. On the other hand, the
main characteristic of the product scanning technique is that each word of the
result is stored (i.e. written to memory) only once, which happens in ascending
order [6]. Both methods can be used to implement Montgomery multiplication
in either a separated way (i.e. the modular reduction is accomplished after the
multiplication) or an integrated way by alternating multiplication and reduction
steps. In the latter case, we can further distinguish between a coarse and a fine
integration of multiplication and modular reduction. Combinations of all these
techniques allow for a multitude of algorithms for calculating the Montgomery
product, six of which we briefly describe in the following subsections.

2.1 Separated Operand Scanning (SOS)

In Koç et al’s original description of the SOS method, both the multiplication
and the reduction are carried out according to the operand-scanning technique
[17]. The inner loop of the multiplication (and also that of the reduction) per-
forms operations of the form (u, v) ← a · b + c + d, whereby a, b, c, and d are
single-precision integers (i.e. w-bit words) and (u, v) denotes a double-precision
(i.e. 2w-bit) quantity. Each execution of this inner loop on a general-purpose
RISC processor, e.g. the ATmega128, involves a mul and four add (resp. adc)
instructions2. Assuming s-word operands, the operand-scanning multiplication
of the SOS method executes s2 mul, 4s2 add (or adc), 2s2 + s load, as well as
s2 + s store instructions (see Algorithm 1 in [10] for a detailed analysis). The
original operand-scanning approach for Montgomery reduction as described in

2 Note that we count the number of add instructions (in the same way as [10]), while
Koç et al [17] assess the number of add operations. Adding a single-precision word
to a double-precision quantity (u, v) counts for one add operation, but requires two
add instructions, one of which is actually an adc (add-with-carry).
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Algorithm 2. Montgomery reduction (operand scanning form)

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), operand P = (p2s−1, . . . , p1, p0)
with P < 2M − 1, and pre-computed constant m′0 = −m−1

0 mod 2w

Output: Montgomery residue Z = P · 2−n mod M
1: t← 0
2: for i from 0 by 1 to s− 1 do
3: u← 0
4: q ← pi ·m′0 mod 2w

5: for j from 0 by 1 to s− 1 do
6: (u, v)← mj · q + pi+j + u
7: pi+j ← v
8: end for
9: (u, v)← pi+s + u + t

10: pi+s ← v
11: t← u
12: end for
13: for j from 0 by 1 to s− 1 do
14: zj ← pj+s

15: end for
16: zs ← t
17: if Z ≥M then Z ← Z −M end if

Section 4 of [17] employs a special ADD function to propagate a carry bit up to
the most significant word. Our implementation simply holds the carry bit in an
extra register t and adds it in the next iteration of the outer loop as shown in
Algorithm 2. In this way, the operand-scanning form of Montgomery reduction
consists of s2 + s mul, 4s2 + 2s add or adc, 2s2 + 2s + 1 load, and s2 + 2s + 1
store instructions, which means the SOS method (excluding final subtraction)
needs to execute 2s2 + s mul, 8s2 + 2s add (resp. adc), 4s2 + 3s + 1 load, and
2s2 + 3s + 1 store instructions altogether.

2.2 Finely Integrated Product Scanning (FIPS)

The FIPS method (Algorithm 1 in [11]), originally introduced in [8], performs
multiplication and reduction steps in a “finely” interleaved fashion in the same
inner loop. From an algorithmic viewpoint, the FIPS technique consists of two
nested loops; both inner loops compute (parts of) the product A ·B and then
add (parts of) the product Q ·M to it. After the first inner loop, a word of the
quotient Q is calculated with help of the least-significant word of M ′ (i.e. the
pre-computed constant m′0 = −m−10 mod 2w [17]) and temporarily stored in the
array of the final result. The least-significant word of the intermediate sum ob-
tained at the end of the second inner loop is always zero, which means it can be
right-shifted by w bits without “destroying” any information. In each iteration
of the second outer loop, a word of the result (i.e. the Montgomery product) is
obtained and written to memory. Note that this result consists of s + 1 words
(whereby the MSW is either 0 or 1) since it may be incompletely reduced.
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In each iteration of one of the inner loops, two multiply-accumulate (MAC)
operations of the form (t, u, v) ← (t, u, v) + a · b are carried out, i.e. two words
are multiplied and the double-precision product is added to a cumulative sum
held in the three registers v, u and t. Note that Koç et al [17] employ a special
ADD function to process carries (similar to the SOS method), but we avoid this
by using three registers to hold the cumulative sum. The inner-loop operation
of our FIPS method is identical to that of the product-scanning multiplication
[14] and needs one mul and three add instructions. In total, the FIPS method
requires 2s2 + s mul, 6s2 add/adc, 4s2 − s load, and 2s + 1 store instructions
altogether (excluding final subtraction) [10].

2.3 Coarsely Integrated Operand Scanning (CIOS)

Instead of computing the complete multiplication first and doing the reduction
afterwards (like in Section 2.1), the CIOS method performs multiplication and
reduction in an interleaved fashion, similar to Section 2.2. Algorithm 4 in [10]
describes the CIOS method in detail; it consists of an outer loop that contains
two inner loops. The first inner loop calculates parts of the product A ·B and
stores the intermediate result in an array in RAM. After the first inner loop, a
word of the quotient Q is determined, which is subsequently used in the second
inner loop to get a multiple of M to be added to the intermediate result. This
addition zeroes out the least significant word of the intermediate result and so
contributes to the modular reduction. A w-bit right-shift operation is implicit-
ly performed in the second inner loop through indexing, i.e. by writing a word
with index i to the (i− 1)-th position in the target array. The two inner loops
execute exactly the same operation as the SOS method, namely a computation
of the form (u, v) ← a · b + c + d. We eventually obtain a result that consists
of s + 1 words (with the most-significant word being either 0 or 1), which means
a final subtraction of M may be necessary to get a fully reduced result [17]. In
total, the CIOS method requires 2s2 + s mul, 8s2 + 4s add, 4s2 + 5s load, and
2s2 + 3s store instructions (see [10] for further details3).

2.4 Coarsely Integrated Hybrid Scanning (CIHS)

This method, introduced in [17, Section 8], is related to both the SOS and the
CIOS approach sketched before. It is called “hybrid scanning” method because
it mixes operand scanning and product scanning for multiplication, while the
reduction operation is accomplished solely in operand-scanning form. The CIHS
method consists of two outer loops and three inner loops. The first outer loop
computes a part of the product A · B, while the second outer loop contributes
to the reduction operation and the rest of the multiplication. Furthermore, the
second outer loop shifts the intermediate result one word (i.e. by w bits) to the
right in each iteration. The “splitting” of the multiplication is possible since, in

3 Note that the number of add (resp. adc) instructions for the CIOS method specified
in Table 4 of [10] is wrong; the correct number is 8s2 + 4s for s-word operands.
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the course of Montgomery modular reduction, the variable m computed at the
beginning of the second outer loop only depends on t0. The operation executed
by the first two inner loops is exactly the same as that of the SOS and CIOS
method, respectively. However, the third inner loop is slightly simpler because
it performs an operation of the form (u, v) ← a · b + c, each execution of which
costs one mul and two add (resp. adc) instructions. Putting it all together, the
CIHS method requires 2s2 + s mul, 9s2 + 5s add/adc, 11s2/2 + 7s/2 load, as
well as 3s2 + 2s store instructions (excluding the final subtraction).

2.5 Finely Integrated Operand Scanning (FIOS)

The last operand-scanning variant of Montgomery multiplication we discuss in
this paper is the Finely Integrated Operand Scanning (FIOS) method, given in
[12, Algorithm 1]. Compared to the four methods outlined before, the structure
of this algorithm is very simple as it comprises just an outer loop with a single
inner loop. The inner loop of the FIOS variant described in [12] executes two
operations of the form (u, v) ← a · b + c + d, one contributes to the calculation
of the product of A and B, and the other to the Montgomery reduction of this
product. Similar to the CIOS method, the quality of the implementation of the
inner-loop operation has a major impact on the algorithm’s overall execution
time. In summary, the FIOS method of Montgomery multiplication requires to
perform 2s2 + s mul, 8s2 add, 3s2 + 4s load, and s2 + s store instructions.

2.6 Separated Product Scanning (SPS)

The Montgomery multiplication methods sketched in the previous five subsec-
tions were first described and analyzed by Koç et al [17]. In this subsection, we
present a sixth method, which we call Separated Product Scanning (SPS). The
SPS method separates multiplication steps and reduction steps (similar to the
SOS method), i.e. the Montgomery reduction is carried out as a self-contained
operation after the multiplication. As its name suggests, the SPS technique is
based on the product scanning approach for multiplication (see Algorithm 2 in
[10]) and then uses the product-scanning form of Montgomery reduction shown
in Algorithm 3. More details on this product-scanning based Montgomery re-
duction can be found in [10, 19]. The SPS method was originally introduced in
[19] as a product-scanning variant of the SOS technique, but we feel that the
name “Separated Product Scanning” better denotes the characteristics of this
method. As per [10], a product-scanning multiplication of two s-word operands
consists of s2 mul, 3s2 add, 2s2 load, and 2s store instructions. Algorithm 3
requires s2 + s mul, 3s2 + 6s add, 2s2 + 2s load, and 2s + 1 store instructions
[10], which amounts to 2s2 + s mul, 6s2 + 6s add (or adc), 4s2 + 2s load, and
4s + 1 store instructions for the complete SPS method.

2.7 Analysis and Comparison

Table 1 summarizes and compares the base instruction counts of all six Mont-
gomery multiplication techniques considered in this section. The two variants
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Algorithm 3. Montgomery reduction (product scanning form) [10, Algorithm 5]

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), a product P in the range of
[0, 2M − 2], pre-computed constant m′0 = −m−1

0 mod 2w

Output: Montgomery residue Z = P · 2−n mod M
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v)← (t, u, v) + zj ·mi−j

5: end for
6: (t, u, v)← (t, u, v) + pi
7: zi ← v ·m′0 mod 2w

8: (t, u, v)← (t, u, v) + zi ·m0

9: v ← u, u← t, t← 0
10: end for
11: for i from s by 1 to 2s− 2 do
12: for j from i− s + 1 by 1 to s− 1 do
13: (t, u, v)← (t, u, v) + zj ·mi−j

14: end for
15: (t, u, v)← (t, u, v) + pi
16: zi−s ← v
17: v ← u, u← t, t← 0
18: end for
19: (t, u, v)← (t, u, v) + p2s−1

20: zs−1 ← v, zs ← u
21: if Z ≥M then Z ← Z −M end if

Table 1. Comparison of base instructions for Multiplication modular multiplications
(excluding final subtraction)

Algorithm # mul # add # load # store

FIPS 2s2 + s 6s2 4s2 − s 2s + 1

SPS 2s2 + s 6s2 + 6s 4s2 + 2s 4s + 1

CIOS 2s2 + s 8s2 + 4s 4s2 + 5s 2s2 + 3s

SOS 2s2 + s 8s2 + 2s 4s2 + 3s + 1 2s2 + 3s + 1

CIHS 2s2 + s 9s2 + 5s 11s2/2 + 7s/2 3s2 + 2s

FIOS 2s2 + s 8s2 3s2 + 4s s2 + s

based on the product-scanning method (i.e. FIPS and SPS) execute multiply-
accumulate operations of the form (t, u, v)← (t, u, v) + a · b in the inner loops
[10], whereby each operation involves three add or adc instructions to add the
product a · b to a cumulative sum. Consequently, the FIPS and SPS technique
execute three add (resp. adc) per one mul instruction. On the other hand, the
operand-scanning variants feature a common inner-loop operation of the form
(u, v)← a · b + c + d, which costs four add/adc per mul instruction. A second
major difference between the product-scanning variants and their counterparts
based on the operand-scanning technique is the number of store instructions
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as shown in the last column of Table 1. The former execute store instructions
solely in the outer loops, whereas the latter perform stores in the inner loop(s)
[10]. Therefore, the number of store instructions carried out by FIPS and SPS
increases linearly with the number of words. The operand-scanning variants, on
the other hand, exhibit a quadratic growth of the number of stores.

Our analysis of the base instructions indicates a clear advantage of the two
product-scanning methods, which will be confirmed by implementation results
in Section 4. However, our analysis is not in agreement with that of Koç et al
[17], who clearly identified the CIOS method as the most efficient one on basis
of both their theoretical cost model and measured results. As stated in Section
2.1, this deviation can be explained by differences in the underlying cost model
since Koç et al consider the number of basic operations, whereas we count the
number of basic instructions as this is more accurate. Furthermore, Koç et al
use a special ADD function to propagate carries in their SOS, FIOS, and FIPS
method, which we do not need since we hold all carries in registers.

3 Our Implementation

In this section, we first introduce a novel variant of the hybrid multiplication
method, which saves 10.6% execution time compared to the original one from
[13]. Then, we combine our hybrid multiplication with Montgomery’s algorithm
to obtain different variants of a hybrid Montgomery multiplication. Finally, we
describe an efficient implementation of the conditional subtraction of M .

3.1 Optimized Hybrid Multiplication

A straightforward implementation of the product-scanning method processes a
single word of operand A and operand B at a time; therefore, in each iteration
of the inner loop, a word of each A and B is loaded from RAM, multiplied, and
added to a cumulative sum [6]. Gura et al [13] observed that the performance
of the product-scanning method can be significantly improved if several words
of the operands are processed in each iteration. This approach is, in essence, a
special form of loop unrolling and particularly efficient on processors featuring
a large number of registers. Taking the 8-bit AVR platform [1] as example, we
can easily process d = 4 (or even d = 5) bytes of the operands at a time, and
so reduce the number of loop iterations by a factor of d. In each iteration of the
inner loop, four bytes (i.e. 32 bits) of A and B are loaded from memory and
multiplied together to yield a 8-byte (i.e. 64-bit) result, which is then added to
a cumulative sum held in nine registers. Gura et al used the operand-scanning
approach for the 4-byte-by-4-byte (i.e. (32 × 32-bit)-bit) multiplications in the
inner loop as illustrated on the left of Figure 1. This multiplication technique is
referred to as “hybrid multiplication” because it combines product scanning in
the outer loop with operand scanning in the inner loop(s). The main advantage
of hybrid multiplication is a reduced number of load instructions compared to
the straightforward product-scanning method (see [13] for details).
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Fig. 1. Comparison of inner-loop operation for hybrid multiplication

In recent years, there have been several attempts to improve the inner-loop
operation of the hybrid method, taking the properties of the AVR architecture
into account4. For example, Liu et al re-arranged in [19] the order of the multi-
plications in the inner loop (depicted in the middle of Figure 1), which allowed
them to decrease the number of mov (resp. movw) instructions compared to the
original hybrid method. Scott et al [24] used so-called “carry catcher” registers
to limit the propagation of carries and totally unrolled the loops to achieve an
extra speed-up. Our implementation of the inner loop, shown on the right side
of Figure 1, is inspired by both Liu et al and Scott et al. Just like Liu et al, we
schedule the mul instructions in a special order with the goal of reducing the
computational cost of the inner loop. If we assume d = 4, the 16 byte products
are calculated as shown in Figure 1, whereby the execution time elapses from
top to bottom, i.e. a0 · b2 is the first byte product we generate and a3 · b2 the
last. Our variant of the inner-loop operation borrows the idea of catching carry
bits from [24], but we do not use separate registers for that purpose.

To simplify the explanation of our inner loop, we split the 16 byte-products
into four blocks, indicated by dashed boxes in Figure 1. At the beginning, four
bytes of operand B (labeled b0, b1, b2 and b3 in Figure 1) along with two bytes
of A (namely a0 and a1) are loaded from RAM. We first multiply a0 by b2 and
copy the 16-bit product to two temporary registers, t0 and t1, with help of the
movw instruction. The register t1 holds the “upper” (i.e. more significant) byte
of the product and t0 the “lower” byte. Next, we form the product a0 · b0 and
add it along with the content of t0 to the three accumulator registers r0, r1 and

4 A special “feature” of AVR is that the mul instruction modifies the carry flag, which
complicates the implementation of multi-precision multiplication.
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r2. A potential carry from this addition can be safely added into the tempora-
ry register t1 without overflowing it since the upper byte of the product of two
8-bit integers is always smaller than 255. Thereafter, we multiply a0 by b1, add
the resulting 16-bit product a0 · b1 to r1, r2, and propagate the carry from the
last addition to the temporary register t1. Again, it is not possible to overflow
t1, not even in the most extreme case where the operand bytes a0, b0, b1, and
b2 as well as the involved accumulator bytes r0, r1, and r2 have the maximum
value of 255. After computation of the last product of the first block (which is
a1 · b3), we add t1 and a1 · b3 to the three accumulator registers r3, r4, r5, and
finally propagate the carry bit from the last addition up to r8. In summary, the
processing of the first block in Figure 1 requires four mul, a movw, and a total
of 13 add or adc instructions, respectively.

The next two blocks are processed in essentially the same way as the first
block; the only actual difference is the loading of the remaining operand bytes
of A, namely a2 and a3, which is done during the second and third block, res-
pectively. Again, we use temporary register t1 to catch the carries generated in
the addition of the second and third byte-product of the respective block. The
loading of operand byte a2 is part of the second block and performed after the
multiplication of a0 by b3. Note that the byte a0 is not needed anymore once
a0 · b3 has been produced, which means we can load a2 into the register holding
a0. The operand byte a3 gets loaded after the multiplication of a1 by b2 in the
third block. At that time, the byte a1 is not needed anymore, and hence we can
load a3 into the same register, thereby overwriting a1. In summary, the second
and third block execute 12 and 11 add (or adc) instructions, respectively. The
number of mul and movw instructions are the same as for the first block.

The fourth block, in which the remaining four byte-products are generated
and added to the accumulator registers, differs a bit from the former three. We
first multiply a3 by b1 and move the resulting 16-bit product to the temporary
register pair t1, t0. Then, we compute the product a2 · b1, add its lower byte to
the accumulator register r3 and the upper byte to the two temporary registers
holding a3 · b1. The last addition does not produce a “carry out,” which means
this addition can not overflow the temporary register pair. Next in schedule is
the third product a3 · b0; it is processed in the same way as before and can also
not overflow the registers t1, t0. After finally multiplying a3 by b2, the tempo-
rary register t0 is added to r4, and a possible carry bit is added with t1 to the
product a2 · b3. The obtained sum is then added to the accumulator registers
r5, r6 and the carry from the last addition is propagated to r8. All in all, the
fourth block requires to execute 13 add (resp. adc) instructions, very similar to
the first block. The complete inner-loop operation for d = 4 consists of a total
of 46 add (or adc), 16 mul, eight ld (i.e. load), and four movw instructions. On
an ATmega128 processor [2], these instruction counts translate to an execution
time of 101 clock cycles per iteration of the inner loop (including update of the
loop-control variable and branch instruction). Another property of our loop is
its economic register usage; it occupies only 30 out of the 32 available registers
[1], which simplifies the implementation of Montgomery multiplication.
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Table 2. Comparison of instruction counts for 160-bit multi-precision multiplication
on the ATmega128 (without function call overhead)

Instruction type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

Classic Comba 1200 400 800 40 81 44 3805

Gura et al [13] 1360 400 167 40 355 197 3106

Uhsadel et al [27] 986 400 238 40 355 184 2881

Liu et al [19] 1194 400 200 40 212 179 2865

Zhang et al [32] 1092 400 200 20 202 271 2845

Our work (parameterised) 1213 400 200 40 100 185 2778

Hutter et al [15] (looped) 1252 400 92 66 41 276 2685

Scott et al [24] (unrolled) 1263 400 200 40 70 38 2651

Hutter et al [15] (unrolled) 1240 400 80 60 2 68 2395

Seo et al [25] (unrolled) 1240 400 70 60 n/a 56 2356

Seo et al [26] (unrolled) 1230 400 70 60 n/a 56 2346

3.2 Evaluation of our Optimized Hybrid Multiplication

Table 2 shows the instruction counts and total execution time (in clock cycles)
of our improved hybrid method for a (160 × 160)-bit multiplication on an AT-
mega128 processor [2]. We use (160 × 160)-bit multiplication as benchmark to
allow for a direct comparison with past work that targeted ECC. Note that the
instruction numbers in the columns labeled with add, ld, and mov also include
adc, ldd, and movw, respectively (i.e. we do not differentiate between add and
adc as they both require a single cycle on AVR processors). Our variant of the
hybrid method executes a (160 × 160)-bit multiplication in just 2778 cycles on
the ATmega128, which is approximately 10.6% faster than the original hybrid
method of Gura et al [13]. This saving in execution time is mainly due to the
fact that we have to carry out only 100 mov (resp. movw) instructions, whereas
Gura et al need 355 mov or movw instructions. Furthermore, our special sched-
uling of the multiplications in the inner loops reduces the number of add (and
adc) instructions, similar to the implementations described in [19] or [32]. The
hybrid multiplication technique of Uhsadel et al [27] requires 2881 cycles, even
though their implementation (as well as the one of Gura et al [13]) is based on
d = 5 for 160-bit operands instead of d = 4 as in our work.

In general, when analyzing different software libraries for multiple-precision
arithmetic, one has to distinguish three implementation options with respect to
the processing of loops: unrolled, looped, and parameterized. Loop unrolling is
well known to improve performance as it eliminates the loop overhead (such as
the updating of a loop counter or execution of a branch instruction) and allows
for some extra optimizations. For example, the first and last iteration of a loop
often differs from the middle iterations and can, therefore, be specifically tuned
when the loop is unrolled. The drawbacks of loop unrolling are large code size
(i.e. increased program memory) and poor flexibility (resp. scalability) since an
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Table 3. Comparison of code size (in bytes) of “conventional” multiplication (without
reduction) for operand lengths ranging from 160 to 1024 bits

Implementation 160 192 224 256 512 1024

Hutter et al [15] (looped) 1562 1866 1538 1766 1544 1572

Hutter et al [15] (unrolled) 3778 5436 7340 9558 37884 151044

Our work (parameterised) 514 514 514 514 514 514

unrolled implementation supports just a single operand length. At the opposite
end of the design space are parameterized implementations, which allow one to
pass the operand length as a parameter to a function call. Such parameterized
implementations are very flexible since one and the same function can process
operands of any size, but this flexibility comes at the expense of decreased per-
formance due to the fact that (full) loop unrolling and other optimizations are
not possible anymore. Somewhere in the middle between these two approaches
are looped implementations, which have “rolled” loops but still support only a
single operand length. Looped implementations outperform their parameterized
counterparts since they provide more avenues for optimization. Having a fixed
operand helps to improve the performance as the number of loop iterations is
constant and can therefore be “hard-coded.” Thus, it is not necessary to waste
a register for storing the operand length, which leaves more registers available
for the actual computation.

Even though our implementation of the hybrid method is parameterized, it
compares very well with looped and unrolled implementations. For example, the
looped version of Hutter et al’s operand caching technique [15] is just 93 cycles
faster than our work (2685 vs. 2778 cycles, see Table 2), even though their code
is optimized for 160-bit operands, while our implementation supports operands
of any length. However, this slight performance gain comes at the cost of three
times larger codes size, which can be seen from Table 3. Furthermore, one has
to consider that Hutter et al achieved their execution time of 2685 clock cycles
by using all 32 available registers5 of the ATmega128. The unrolled implemen-
tations from [15, 24–26], while being fast, suffer from a prohibitively large code
size, especially for operands exceeding 256 bits in size (see Table 3). Full loop
unrolling may be a viable optimization for ECC, but not for RSA.

3.3 Hybrid Montgomery Multiplication

Similar to the “ordinary” multiplication (without modular reduction), also the
six Montgomery multiplication techniques described in this paper can be made

5 Note that the fastest implementation of a conventional multiplication (i.e. a multi-
plication without reduction) does not necessarily lead to the fastest implementation
of Montgomery multiplication. Generic algorithms for modular multiplication have
three input operands (namely A, B, and M), which increases the register pressure
compared to an ordinary multiplication. Our variant of the hybrid method occupies
only 30 registers and, thus, allows for easy integration of Montgomery reduction.
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significantly faster by applying the hybrid method in order to take advantage
of the large register file of the AVR platform [1]. Processing several bytes of the
operands in each inner-loop iteration yields a performance gain by reducing the
number of loads/stores and loop overhead. By combining the hybrid technique
with the six Montgomery variants, we get six hybrid Montgomery multiplica-
tion methods, which we call hybrid SOS (HSOS), hybrid FIPS (HFIPS), hybrid
CIOS (HCIOS), hybrid CIHS (HCIHS), hybrid FIOS (HFIOS), and hybrid SPS
(HSPS). Our implementations of these six algorithms have in common that, in
each iteration of the inner loop, four bytes of the operands are loaded into the
register file and the total number of loop iterations is accordingly reduced by a
factor of four compared to the corresponding straightforward (i.e. non-hybrid)
Montgomery multiplication technique.

The hybrid product-scanning techniques, namely HFIPS and HSPS, execute
operations of the form (t, u, v)← (t, u, v) + a · b in the inner loops, whereby the
two operand words a and b consist of four bytes each. A total of nine registers
is necessary to hold the cumulative sum (t, u, v). Therefore, we can employ the
highly-optimized hybrid implementation of the inner-loop operation shown on
the right of Figure 1 and explained in detail in Section 3.1. Unlike HSPS, the
HFIPS method has to keep four pointers (namely the pointers to the arrays in
which the two operands A, B, the result Z, and the modulus M are stored) in
registers during the execution of the inner loop to reach top performance. The
inner-loop implementation from Subsection 3.1 is ideally suited for the HFIPS
method since it needs only 30 registers so that the remaining two registers can
be used to hold the pointer to M . The four hybrid Montgomery multiplication
methods based on operand-scanning (i.e. HSOS, HCIOS, HCIHS, and HFIOS)
have a slightly different inner loop due to the fact that they execute operations
of the form (u, v)← a · b + c + d and (u, v)← a · b + c. We implemented these
operations to process four bytes at once (i.e. per loop iteration) and optimized
them following exactly the same strategies as discussed in Section 3.1.

3.4 Regular Execution of Final Subtraction

As shown in Algorithm 1, the calculation of the Montgomery product may re-
quire a final subtraction of the modulus M to get a fully reduced result in the
range of [0,M − 1]. However, this final subtraction is not carried out when the
intermediate result after step 3 of Algorithm 1 is already smaller than M . It is
well known that such a conditional execution of a subtraction typically entails
observable differences in the power consumption profile, which can be exploited
to mount an SPA attack as described in [30] for RSA and in [29] for an elliptic
curve cryptosystem. Walter proposed in [28] a smart approach to eliminate the
final subtraction by using a larger Montgomery radix of e.g. R = 2n+2 instead
of R = 2n and adapting the Montgomery algorithm accordingly. However, this
approach requires to calculate the Montgomery product with longer operands
(since, as in our case, the operand length must be a multiple of 32), which can
severely degrade performance. To overcome this problem, we implemented the
final subtraction in an unconditional way by “zeroing out” the words mi of the
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Algorithm 4. Final subtraction without conditional statements

Input: (s + 1)-word Montgomery product Z = (zs, zs−1, . . . , z1, z0) with zs ∈ {0, 1}
and s-word modulus M = (ms−1, . . . ,m1,m0)

Output: Z = Z −M if zs = 1, otherwise, Z = Z − 0
1: mask ← −zs mod 2w {w is the bitlength of a word}
2: (ε, z0)← z0 − (mi & mask)
3: for i from 1 by 1 to s− 1 do
4: (ε, zi)← zi − (mi & mask)− ε
5: end for
6: return Z = (zs−1, . . . , z1, z0)

modulus M , if necessary, as shown in Algorithm 4. The notation in Algorithm
4 follows that of [14], i.e. the word-subtractions are carried out with help of an
“subtract with borrow” instruction whereby ε represents the borrow bit.

Based on the concept of incomplete modular arithmetic [31], we do not per-
form an exact comparison between Z and M , but rather use the value of the
most significant word zs of Z to determine whether Z is too big or not. More
precisely, we use zs to derive a mask that is either a zero word (if zs = 0) or an
“all 1” word (if zs = 1). As shown in line 1 of Algorithm 4, such a mask can be
simply generated by forming the two’s complement of zs. The mask is applied
to the bytes of M (i.e. each mi is logically ANDed with the mask) before they
are subtracted from the words zi using subtract-with-borrow instructions. In
this way, we either subtract the modulus M from product Z (if zs = 1) or we
subtract 0 (if zs = 0) so that Z remains the same. The final result may not be
the least non-negative residue, but is always in the range [0, 2n − 1] and hence
fits into s words. This incomplete reduction does not introduce any problems
in practice since the n-bit result, even if not fully reduced, can still be used as
operand in a subsequent Montgomery multiplication (see [31] for details).

4 Performance Evaluation and Comparison

We implemented the six hybrid Montgomery multiplication algorithms in AVR
assembly language and evaluated their performance for operands ranging from
160 to 1024 bits. Table 4 shows the simulated execution times we obtained on an
ATmega128 processor [2]; these figures include time for the unconditional final
subtraction introduced in Section 3.4. Our fastest method, HFIPS, only needs
6080 clock cycles to perform a full 160-bit Montgomery multiplication, which is
approximately 1.4 times faster than the slowest algorithm, namely HFIOS. All
obtained execution times are visualized on the left of Figure 2.

Besides the computational complexity of algorithms themselves, there are a
few other factors affecting the actual performance of the various multiplication
methods. For example, the overhead for controlling the loop or the cost to find
the correct start address of arrays also impact the execution time. Our results
indicate that the interleaved versions of hybrid Montgomery multiplication are
sightly faster than the separated versions, e.g. HFIPS outperforms HSPS, and
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Table 4. Execution time (in clock cycles) of six hybrid Montgomery multiplication
techniques for different operand lengths

Algorithm 160 192 224 256 512 768 1024

HFIPS 6080 8539 11420 14723 56339 124964 220596

HSPS 6648 9171 12110 15465 57281 125722 221044

HCIOS 7140 9983 13310 17121 65033 143922 253787

HSOS 7921 10956 14500 18553 69301 152626 268788

HCIHS 8127 11385 15197 19563 74435 164764 290549

HFIOS 8216 11660 15716 20384 79760 178315 316018

0k

5k

10k

15k

20k

25k

160 192 224 256

Operand length (bits)

E
x
e
c
u
ti
o
n
 t

im
e
 (

c
lo

c
k
 c

y
c
le

s
) HFIPS HSPS

HSOS HCIOS

HCIHS HFIOS

0k

5k

10k

15k

20k

25k

30k

35k

160 192 224 256

Operand length (bits)

E
x
e
c
u
ti
o
n
 t

im
e
 (

c
lo

c
k
 c

y
c
le

s
) TinyECC

MIRACL

This work

Fig. 2. Performance comparison of our six Montgomery algorithms (left) and compar-
ison or our HFIPS method with Miracl and TinyECC (right)

HCIOS is faster than HSOS. This is mainly because the interleaved versions, in
general, incur less overhead than the separated versions (i.e. reduced overhead
for controlling loops, handling pointers, and calculating start addresses).

The HCIHS and HFIOS method are the slowest of the six hybrid Montgo-
mery multiplication techniques shown in Table 4. The poor performance of the
HCIHS approach is primarily due to the overhead caused by frequent loadings
of operands into registers. On the other hand, HFIOS uses a lot of time for the
pointer arithmetic required to obtain the correct start address of the operands
at the beginning of a loop. Another disadvantage of this method is that it has to
handle six variables, namely aj , bi, mj , q, t, and zj , in the inner loop. Since the
hybrid multiplication of aj · bi occupies almost all of the 32 working registers, a
number of expensive push and pop operations are required to save pointers on
the stack. The cost of the stack operations in HFIOS is higher than cost of the
frequent operand loadings in HCIHS; thus, HFIOS is slower than HCIHS.

Table 5 compares our hybrid product-scanning methods, namely HSPS and
HFIPS, with the two popular cryptographic libraries TinyECC [18] and Miracl
[5] for operands ranging from 160 to 1024 bits in size. The right side of Figure
2 visualizes the execution times of TinyECC, Miracl, and HFIPS, which is the
fastest of our six implementations of Montgomery multiplication. To ensure a
fair comparison, we downloaded the source code of TinyECC and Miracl from
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Table 5. Montgomery Multiplication timings (in clock cycles) of TinyECC, Miracl,
and our implementation of the HSPS and HFIPS method

Implementation 160 192 224 256 512 1024

TinyECC [18] 14929 20060 25765 n/a n/a n/a

Miracl [5] 7753 10653 14033 17761 58806 221329

This work (HSPS) 6648 9171 12110 15465 57281 221044

This work (HFIPS) 6080 8539 11420 14723 56339 220596

the corresponding home pages, compiled them with AVR studio, and simulated
the execution times in a coherent fashion. Both our HFIPS and HSPS method
are more than twice as fast as the modular multiplication of TinyECC. On the
other hand, compared to the Montgomery multiplication of Miracl, our HFIPS
method saves 21.6%, 19.8%, 18.6%, 17.1% execution time for 160, 192, 224, and
256-bit operands, respectively. Note that the performance gap between HFIPS
and Miracl becomes smaller when the operand size grows above 256 bits since
Miracl employs the asymptotically faster Karatsuba technique [16] to speed up
multiplication when the operand length exceeds a certain threshold.

5 Conclusions

The contribution of this work is threefold. First, we presented a new approach to
implement hybrid multiplication, saving 10.6% execution time compared to the
original method of Gura et al (CHES 2004). This performance gain is achieved
by re-ordering the sequence of multiplications in the inner loop along with an
efficient way of catching carries, thereby reducing the total number of add and
mov (resp. movw) instructions. Another advantage of our hybrid technique is its
suitability to implement interleaved variants Montgomery multiplication since
it occupies only 30 registers of an AVR processor. Our second contribution is a
through analysis and comparison of six hybrid variants of Montgomery modu-
lar multiplication. Based on a more precise cost model along with some small
optimizations (e.g. elimination of the ADD function for carry propagation), we
conclude that the FIPS and SPS method reach the best performance, which is
contradicting previous results of Koç et al, who found the CIOS method to be
superior. A detailed benchmarking on an 8-bit ATmega128 processor confirms
our theoretical evaluation and shows that the hybrid FIPS technique requires
merely 6080 clock cycles to execute a 160-bit Montgomery multiplication. This
result sets a new speed record for modular multiplication on an 8-bit platform
and outperforms the Miracl library by more than 20%. Our implementation is
parameterized and very compact in terms of code size. The third contribution
of this paper is a simple yet efficient approach to perform the conditional final
subtraction in an unconditional way by “zeroing out” the words of the modulus
if the intermediate result is already smaller than 2n. This ensures that always
exactly the same sequence of instructions is executed, regardless of the actual
value of the operands, which helps to thwart certain side-channel attacks.
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