
Using the Joint Distributions of a Cryptographic

Function in Side Channel Analysis

Yanis Linge1,2, Cécile Dumas1, and Sophie Lambert-Lacroix2

1 CEA-LETI/MINATEC, 17 rue des Martyrs,
38054 Grenoble Cedex 9, France

yanis.linge@emse.fr cecile.dumas@cea.fr
2 UJF-Grenoble 1 / CNRS / UPMF / TIMC-IMAG

UMR 5525, Grenoble, F-38041, France
Sophie.Lambert@imag.fr

Abstract The Side Channel Analysis is now a classic way to retrieve a
secret key in the smart-card world. Unfortunately, most of the ensuing
attacks require the plaintext or the ciphertext used by the embedded al-
gorithm. In this article, we present a new method for exploiting the leak-
age of a device without this constraint. Our attack is based on a study of
the leakage distribution of internal data of a cryptographic function and
can be performed not only at the beginning or the end of the algorithm,
but also at every instant that involves the secret key. This paper focuses
on the distribution study and the resulting attack. We also propose a
way to proceed in a noisy context using smart distances. We validate our
proposition by practical results on an AES128 software implemented on
a ATMega2561 and on the DPA contest v4 [28].

1 Introduction

The original work on Side Channel Analysis was done by Kocher in the early
90s [14]. He introduced two new attacks: the Simple Power Analysis (SPA) and
the Differential Power Analysis (DPA). In 2004, Brier et al. [4] formalized the
DPA and provided a statistical way to compare the leakage model and the
power traces thanks to the Pearson correlation factor. Today, side channel at-
tacks gather many methods to attack a device from its power consumption or
electromagnetic radiations, such as high order techniques in presence of a mask-
ing countermeasure [17,13,18], collision attacks [26,3,7], Algebraic Side Channel
Attacks [23,24,25], etc.

Side Channel Attacks are generally based on statistical properties and tend
to compare two random variable groups. The first one is represented by all the
points of the acquired traces, while the second one depends on the underlying
cryptographic function. For example, the Correlation Power Analysis (CPA) [4]
consists in the correlation between the device leakage at one instant and the
possible value of one intermediate data. For the attack achievement, this value
must be computable, i.e. it only depends on some few key bits and it is obtained

from the plaintext (or the ciphertext). When neither is known, the acquired trace
can not be connected to any cryptographic algorithm data.

The two random variable groups may only be studied independently. It was
interesting to us to assume that we do not have any prior knowledge of the plain-
text and the ciphertext. In fact, many smart-card applications use cryptographic
functions without outputting the plaintext and ciphertext. In this case no inter-
nal data can be guessed, even partially, and a classic attack like CPA is not
conceivable. Today, a cryptographic algorithm is implemented on a smart-card
in a secure way. Many methods exist for masking the data and restricting the
leakage [12,1,19,9,22]. However, it may happen for speed reason that counter-
measures are only present at the beginning and the end of the implementation,
but not in the middle. It is also possible that no protection is positioned precisely
because the plaintext and the ciphertext are not outputted by the chip. For ex-
ample, the GENERATE AC command of the EMV application [29] computes
an Application Cryptogram using the algorithm CBC-MAC. A usual way for
ensuring the security of this cryptographic scheme against Side Channel Anal-
ysis is to protect the first DES of the first block and the last DES of the final
Triple-DES.

Nevertheless, the acquired traces contain some leakage information and we
presume that it is correlated to the data computed by the device. A trace com-
prises many instants that reflect the chip activity during the algorithm execution.
Each instant may be considered as a real random variable. The variance of these
variables tells us that some instants are noisier or linked to the variation of the
input data.

Failing to associate one trace to its corresponding algorithm guessing value,
we can still study separately the various instants and the different algorithm
values that involve a part of the key. This forms the main idea of our proposition.
We propose to extract some properties from the algorithm and from the trace
and to compare them.

Section 2 presents theoretical aspects by considering the data variations in the
cryptographic algorithm. Section 3 discusses how to relate them to the acquired
signals and Section 4 provides the last needed tools. In Section 5, we develop the
complete attack. Experiments illustrate the attack’s efficiency and its interest in
Section 6 before the conclusion.

2 Study of the Variations in a Cryptographic Algorithm

An algorithm may be decomposed in small functions that mostly use a part of
the secret key.

We will denote by g one of these functions and by k⋆ the involved part of the
secret key, named subkey.

g : A×K −→ B
(a, k) 7−→ b = g(a, k)

We propose to study how the output b varies when the input a is uniformly
distributed in A. More precisely, we are interested in the leakage caused by a

and b. Let’s denote by L(z) the leakage induced by the handling of the data z,
as Rivain did in his thesis [20]. L(z) is comprised of the leakage function ϕ and
the leakage noise B.

We consider the random variables ϕ(a) and {ϕ(g(a, k))}k∈K and the joint
probability distributions {(ϕ(a), ϕ(g(a, k)))}k∈K . We denote for each subkey k
the joint probability distribution by S(g, k) = {pi,j|i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}}
where pi,j is the probability that ϕ(a) = i and ϕ(g(a, k)) = j.

For calculating the distribution of the subkey k, we compute ϕ(a) and ϕ(g(a, k))
for each a in A. Then by counting the occurrence of the values i = ϕ(a) and
j = ϕ(g(a, k)), we obtain the probability for (ϕ(a), ϕ(g(a, k))) to be equal to
(i, j).

As ϕ(g(a, k)) depends on k, each distribution also depends on the subkey
value k. If we get the distribution for an unknown subkey k⋆ and if each subkey
k matches with a unique distribution3, we are able to guess the value of k⋆ by
comparing the distributions; for example, if we consider that g is defined by:

g : {0, 1} × {0, 1} −→ {0, 1}
(a, k) 7−→ b = a⊕ k

and ϕ by:

ϕ : {0, 1} −→ {0, 1}
a 7−→ a

If k = 0, ϕ(a) = ϕ(g(a, k)). If k = 1, ϕ(a) = 1− ϕ(g(a, k)) mod 2.
The distributions S(g, 0) and S(g, 1) are drawn in Table 1. These two distribu-
tions are definitely different. So given any distribution, we are able to determine
what subkey k was used to produce it.

k = 0 k = 1
ϕ(a) 0 1

ϕ(b)
0 1/2 0
1 0 1/2

ϕ(a) 0 1
ϕ(b)
0 0 1/2
1 1/2 0

Table 1: Joint distribution of (a, b = a⊕ k) in Z/2Z

We have computed the theoretical distributions for several functions that in-
volve a part of the key, like the exclusive-or between bytes, the DES S-boxes [27]
and the AES SubBytes function [8]. All present some differences, even if the non
linear functions present more differences. As the distributions of a function do
not depend on a device, they may be pre-computed.

If the distributions are easily distinguished, that means the function g could
be a good choice for an attack. However, an attacker will face two problems.

3 This property is true for most cryptographic functions like DES S-boxes or AES
SubBytes.

First, he must be able to get a distribution that will be compared to the
theoretical ones, knowing he has access only to some traces. We suppose that he
can acquire many traces he wants and that the trace number is sufficient for a
uniform distribution of the input g function. This assumption is not restrictive
because the cryptographic functions generally try to achieve this property. For
obtaining a relevant distribution, the attacker needs also to locate the instants
corresponding to the handling of the variables a and b. As the traces contain some
information but also noise, he will only be able to estimate the frequency of the
couple (ϕ(a) = i, ϕ(b) = j) denoted fi,j . We name Sd = {fi,j|i ∈ {0, . . . , n}, j ∈
{0, . . . ,m}} the estimated distribution of the device. A solution for getting it is
proposed in the next section.

The second problem the attacker faces is the need for a method to compare
two distributions:

– S(g, k), which is theoretical. It is issued from the preliminary study and
depends on the function g and a key guess k.

– Sd, which is estimated. It is computed from the traces and related to the
device.

Section 4 examines the existing distances and selects the most promising ones
for comparing S(g, k) and Sd.

For the rest of this article, we consider that the function ϕ(z) represents the
Hamming weight of z, i.e. the number of 1 in binary representation. The function
g is composed of the AES operations: AddRoundKey followed by SubBytes, i.e.
the data a represents a state byte before the AddRoundKey and the data b a
state byte after the SubBytes. Notice that other ϕ models and other g functions
could be studied.

3 How to Estimate the Distribution of the Device

We suggest here a method to first identify the suitable instants and then estimate
the Hamming weight values that they represent. These instants, named points
of interest, are denoted by PoI.

To determine the most interesting instants of our traces, we used the variance.
The higher the variance, the more favorable the instant, because it represents
either the maximal variability of the noise or the maximal variability of some
data spend by the algorithm. Determining the PoI is an important part of our
proposal. In some other cases, the attacker may need more advanced techniques
like in [10,2,11], but this simple way is initially sufficient.

After selecting some PoI, we have to decide from their amplitude value what
the corresponding Hamming weight value is.

In [23], Renauld and Standaert used a Bayesian template described in [6]
to retrieve the Hamming weight of the targeted variables. Template attacks are
very efficient at obtaining a good approximation of the Hamming weight of the
data. However, they require complete access to a device similar to the targeted
one.

We suggest here a method that does not recognize the exact Hamming weight
value, but allows a reasonable estimation for a low time and memory complexity
by using the only traces of the targeted device. The estimation we present is
close to the value of the Hamming weight of the targeted data.

Let Y (t) be a set of M measured values corresponding to the same instant
t of M traces. We sort this set in an ascending order. As we suppose that the
data values of the cryptographic algorithm are uniform, this implies a particular
distribution of the Hamming weight values. If n is the maximal Hamming weight

value, among theM elements,
M × Cp

n

2n
elements have a Hamming weight p. The

elements of Y (t) are classified knowing this distribution. The maximal Hamming
weight value is assigned to the highest elements of the set Y (t) and the minimal
Hamming weight value to the smallest one.

For example, if 100 values represent the leakage of two bits, we associate the
Hamming weight of:

- 2 for the
100× C2

2

22
= 25 greater elements

- 1 for the
100× C1

2

22
= 50 following elements

- 0 to the
100× C0

2

22
= 25 smaller elements

Indeed, the way to classify the elements depends on the leakage quality. This
method is effective if the noise is low. So by reducing the noise, for example
thanks to the cumulant of order 4 [15], the estimation will be better. Using
this simple method, we obtain an approximation of the Hamming weight of the
targeted variable. Further, one error in the ranking generally gives a Hamming
weight close to the real one. Some total mistakes may occur and perturb the
estimated distribution. In this case, more traces will be necessary for obtaining
an estimated distribution close to the theoretical distribution corresponding to
the true key. We also can choose to sort the M elements in fewer groups by
reducing ϕ. For example, ϕ may represent the most significant bit, i.e. ϕ(z) = 0
if the higher significant bit is zero, 1 otherwise. This implies fewer errors, but the
function ϕ is less precise and the theoretical distributions will be more similar.
This technique has a low complexity in time and memory but only gives an
estimation. This method can be easily replaced by method based on clustering
and machine learning.

Since we have a way to approximate the Hamming weight of the input and
the output of the AES SubBytes, we can compute an estimated distribution Sd.
We need now explain how to compare two distributions.

4 How to Compare Two Distributions

To confront the theoretical distribution S(g, k) and an estimated distribution
Sd, the first idea is to use the well-known χ2 distance between them defined as:

χ2(S(g, k), Sd) =

i=n
∑

i=0

j=m
∑

j=0

δ(pi,j , fi,j) (1)

The distance between pi,j and fi,j is defined by:

δ(pi,j , fi,j) =

(pi,j−fi,j)
2

pi,j
, pi,j 6= 0

0 , pi,j = fi,j

∞ , pi,j = 0 6= fi,j

(2)

Unfortunately, this distance does not allow errors in the estimated distribu-
tion Sd. Indeed, a theoretical distribution generally presents a lot of zero values
pi,j , so a small mistake in the estimated Hamming weight can cause a non-zero
value for the corresponding fi,j. Thus the distance between Sd and S(g, k⋆) will
be infinite with only one error.

So we need to find another distance. In [5], Cha proposes a comprehensive
study of different distances between two distributions. We have tested all the 65
distances presented in this article by using the theoretical distributions based on
the Hamming weight leakage and the AES SubBytes function.

When trying to match a distribution that is well estimated to the theoretical
ones, most distances give similar results and return the good subkey with few
samples. But if the device distribution is not well estimated because of the pres-
ence of errors for some samples, some distances give better results than others.
We simulated 50% erroneous samples4 to obtain biased device distributions and
tried all the distances to compare each estimated distribution to the theoritical
ones. We kept the four following best distances, that are those that on average
lead to a successful attack.

– The distance based on the Inner Product defined by:

dIP (S(g, k), Sd) = 1−

i=n
∑

i=0

j=m
∑

j=0

pi,j .fi,j (3)

– The distance based on the Harmonic Mean defined by:

dHM (S(g, k), Sd) =

{

1− 2.
∑i=n

i=0

∑j=m
j=0

pi,j .fi,j
pi,j+fi,j

, pi,j + fi,j 6= 0

0 , pi,j + fi,j = 0
(4)

4 An erroneous sample is obtained by adding a white noise to the true value.

– The χ2 Pearson distance

dχ2

P
(S(g, k), Sd) =

∑i=n

i=0

∑j=m

j=0
(pi,j−fi,j)

2

fi,j
, fi,j 6= 0

0 , fi,j = pi,j

∞ , fi,j = 0 6= pi,j

(5)

– The distance of Kullback-Leiber

dKL(S(g, k), Sd) =

{

∑i=n

i=0

∑j=m

j=0 pi,j .ln(
pi,j

fi,j
) , fi,j 6= 0

0 , fi,j = 0
(6)

With the study of the distributions of two variables related to the crypto-
graphic algorithm, the method presented in Section 3 for estimating an equivalent
distribution related to the device and the distances introduced here, we are now
able to establish an attack in order to retrieve the subkey k⋆.

5 The Proposed Attack

Our attack consists of four phases. First, we get the pre-computed theoretical
distributions that are not device dependent. This part is described in Algo-
rithm 1.

Algorithm 1 Computation of the theoretical distributions.

1: procedure Computation of S(g, k)(g : K × A→ B , N = |K|)
2: for k ∈ K do

3: S(g, k)← 0 ⊲ S(g, k) ∈ {0 . . . n} × {0 . . .m}
4: for a ∈ A do

5: S(g, k)(ϕ(a), ϕ(g(a, k)))← S(g, k)(ϕ(a), ϕ(g(a, k))) + 1

|A|

6: end for

7: end for

8: return S(g, k)
9: end procedure

In the second step, we detect some PoI thanks to the variance criteria.
We denote the found PoI by ta ∈ Ta for the input of our function g and by
tb ∈ Tb for the output. The third step consists of extracting the estimated
Hamming weights of each Y (ta) and each Y (tb) and computing several estimated
distributions Sd(ta, tb) for each ta ∈ Ta and tb ∈ Tb with the method described
in Section 3. Finally, we compute all the distances between the theoretical
distributions and the different estimated distributions. The secret subkey for the
couple of PoI (ta, tb) will be given by:

k⋆ = argmin
k∈K

(d(S(g, k), Sd(ta, tb)))

Algorithm 2 Our proposal Attack

1: procedure Attack(M estimated Hamming weight pairs (ai, bi))
2: g : K × A→ B , N = |K|
3: for k ∈ K do

4: S(g, k)← 0 ⊲ S(g, k) ∈ {0 . . . n} × {0 . . .m}
5: for a ∈ A do ⊲ Compute the theoretical distributions
6: S(g, k)(ϕ(a), ϕ(g(a, k)))← S(g, k)(ϕ(a), ϕ(g(a, k))) + 1

|A|

7: end for

8: end for

9: Sd ← 0 ⊲ Sd ∈ {0 . . . n} x {0 . . .m}
10: for i from 0 to M − 1 do ⊲ Compute the estimated distribution
11: Sd(ai, bi)← Sd(ai, bi) +

1

M

12: end for

13: key ← 0
14: for k ∈ K do ⊲ Compare the estimated distribution to the theoretical

distributions
15: if d(S(g, k), Sd) < d(S(g, key), Sd) then
16: key ← k

17: end if

18: end for

19: return key

20: end procedure

We name the number of samples M , the number of possible keys N = |K|. We
describe our attack in Algorithm 2.

Our algorithm complexity is:

- First step: one multiplication and N · |A| additions for the computation of
the theoretical distributions.

- Second step: one multiplication and M additions for the computation of the
estimated distribution.

- Third step: N · n ·m multiplications and 1 +N · n ·m additions to compute
N distances based on the Inner Product.

We notice that the complexity of the attack is low. The first step is performed
once and for all. The cost of the attack depends on the sample number for the
second step and on the key number for the last step.

6 Experimentations

6.1 Unprotected software implementation on ATMega2561

To validate our Hamming weight estimation and our attack, we have targeted a
software AES on an ATMega2561. For this implementation, the internal repre-
sentation of the data is based on eight bits. The system is not very vulnerable
and the acquiered traces are a bit noisy since SPA is not practical and CPA
succeeds from 800 traces.

First, we need to ensure that our methodology for estimating the Hamming
weight gives good results. We have acquired 1,000 samples on our device. The
different AES steps can be distinguished on the traces (see Figure 1). We consider
the nine instants with a variance greater than 10 times the average variance (see
Figure 2 that is synchronized with Figure 1.).

As some PoI are poorly located regarding the region of the trace identified
as the function AddRoundKey followed by SubBytes, we are able to identify
some unusable PoI. For example, one of the PoI is localized at the beginning
of the trace. Four PoI are situated in the SubBytes (SB) region and may there-
fore correspond to the input of the targeted function. The four remaining PoI

are positioned in the MixColumn (MC) region and may be associated with the
output of the SubBytes function.

Figure 1: Electromagnetic emanation signal from an ATMega2561 during the
execution of the first round of an AES128 software implementation.

Figure 2: Variance obtained for 1,000 electromagnetic emanation signals from
an ATMega2561 during the execution of the first round of an AES128 software
implementation.

For validating the Hamming weight estimation method we compare the es-
timated values to the theoretical ones. Table 2 (resp. Table 3) presents the per-

centage of good Hamming weight estimations for the four PoI in the SubBytes
region (resp. in the MixColumn region) for all the state bytes.

PoI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SB region : 0 24% 21% 28% 18% 78% 22% 24% 29% 23% 24% 29% 24% 23% 21% 24% 25%
SB region : 1 21% 19% 20% 27% 24% 21% 25% 24% 26% 21% 29% 22% 24% 24% 28% 23%
SB region : 2 25% 24% 21% 27% 22% 29% 81% 26% 31% 21% 24% 28% 27% 29% 26% 24%
SB region : 3 22% 23% 24% 68% 21% 27% 23% 25% 23% 31% 25% 21% 23% 25% 21% 22%

Table 2: Percentage of good Hamming weight estimations for the input of the
targeted function for all the state bytes.

PoI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MC region : 0 18% 21% 25% 27% 22% 24% 27% 29% 23% 22% 28% 20% 23% 21% 28% 29%
MC region : 1 25% 24% 21% 27% 22% 29% 73% 26% 31% 21% 24% 28% 27% 29% 26% 24%
MC region : 2 23% 25% 28% 75% 25% 25% 24% 28% 21% 24% 21% 24% 22% 24% 29% 23%
MC region : 3 24% 21% 28% 18% 64% 22% 24% 29% 23% 24% 29% 24% 23% 21% 24% 25%

Table 3: Percentage of good Hamming weight estimations for the output of the
targeted function for all the state bytes.

As the implementation handles byte by byte, one PoI corresponds to, at
most, one state byte. So the estimator shall associate many correct Hamming
weight values to, at most, one state byte. For the other state bytes, the number
of correct Hamming weight values is close to a random estimation. For example,
we can remark that the first PoI in SubBytes region shall represent the state
byte 4 before AddroundKey. Thus the estimator gives us a good approximation
of six bytes, each one corresponding to one PoI.

We conclude that our estimator gives good results, at least for the trace
instants where the variance is high. Thus an attacker could directly use the
variance criteria and the identification of the trace blocks to choose the PoI. Of
course, he does not have the means to verify the estimation method because he
does not know the key value.

Finally, we have to validate the proposed attack. Luckily, the chosen PoI

give Hamming weight values that correspond to the same state byte before and
after the targeted function. So we expect to find the bytes 3, 4 and 6 of the
subkey. Four PoI have been considered by region, so 4 × 4 = 16 pairs (ta, tb)
have to be tested. The whole attack has been performed in a few seconds. In
Table 4, we present the results of our attack for all pairs regarding the distance
of the Inner Product. The pairs are sorted by the minimal distance to the true
theoritical distribution. As only four PoI are selected in each region, we keep
the four subkeys with a lower distance. As expected, we retrieve three bytes of
the key and a wrong one.

PoI in SB region PoI in MC region Byte value Distance True?

2 1 54 0.0036051 X

3 2 31 0.0036711 X

0 3 61 0.0037023 X

3 3 224 0.0037423 X

0 0 200 0.0037556 X

2 3 234 0.0037823 X

2 0 39 0.0037883 X

1 3 154 0.0037976 X

3 0 55 0.0037986 X

0 2 216 0.0038011 X

1 1 159 0.0038514 X

2 2 206 0.0038786 X

1 2 21 0.0038983 X

3 1 218 0.0039113 X

0 1 257 0.0039115 X

1 0 197 0.0039612 X

Table 4: Attack results for the 4× 4 chosen PoI.

It is important to notice that every recorded key byte reduces the crypto-
graphic security. Here an attacker must still guess the position of the recovered
bytes and the missing bytes, knowing that he may get a wrong byte. So he would
like to retrieve more key bytes. For that we propose to get more PoI by consider-
ing for each region the 50 instants with the highest variance. As the PoI number
rises, the time required for the attack increases too. We need a few minutes to
obtain the results showed in Table 5 where the 16 first ones are ranked regarding
the distance based on the Inner Product. Ten key bytes are the real ones so we
have still 10! · 26·8 ≈ 270 keys to test. This number may seem huge, but it is
possible to perform again our attack at another round and then combine the
results.

PoI in SB region PoI in MC region Byte value Distance True?

8 23 31 0.035180 X

42 18 23 0.035773 X

33 45 54 0.035813 X

1 8 228 0.035867 X

16 49 191 0.035941 X

12 38 138 0.035977 X

11 21 61 0.035996 X

48 20 224 0.036023 X

5 19 61 0.036023 X

28 12 207 0.036051 X

13 33 25 0.036094 X

21 42 39 0.036121 X

9 34 197 0.036137 X

25 47 198 0.036137 X

38 15 109 0.036187 X

17 31 145 0.036203 X

Table 5: The top 16 attack results for the 50 PoI with the higher variance for
each region.

We have also performed the attack by using the other distances of Cha’s
article [5]. This leads to worse results and validates the choice of the Inner
Product distance.

The targeted implementation is eight bits, but it is also possible to attack
a 16-bit implementation. This implies computing more distributions that are
larger, but their computation can be performed in less than a half hour.

More, if the implementation provides a data masking countermeasure, our
proposal can still be effective by targeting the AddRoundKey operation instead
of the SubBytes.

6.2 DPAContest V4 [28]

In the 2013 summer, the DPA contest version 4 [28] has been released. It provides
100,000 samples corresponding to the first round and the beginning of the second
round of an AES-256 software. So we focus only the first subkey.

The proposed implementation is protected by using a countermeasure called
RSM [21]. The RSM is a masking countermeasure that uses an unique 16-byte
mask that is randomly rotated by an offset between 0 and 15 at each execution.
So the AES is computed with 16 different random masks. First we have classed
the traces obtained by the same mask offset thanks to a pattern detection by
autocorrelation. This classification does not need to be very accurate because
our methodology is resilient to distribution errors. Then we only consider one
class of traces: about six thousand samples corresponding to the computation
with a same, but unknown, mask offset j.

The SubBytes function in the AES is replaced by sixteen masked sboxes:

SB(X ⊕Mi+j mod 16 ⊕K)⊕Mi+1+j mod 16

where M0 . . .M15 are the bytes of the mask and i is the sbox number. As the
value of the 16-byte mask is known, this function contains two unknowns values:
the secret byte subkey K and also the value i+ j.

We decide to retrieve these two values together by using our method. If the
offset j is fixed, the knowledge of i + j is an advantage as it gives the relative
position between the finding bytes. This hugely reduces the number of remaining
keys in the exhaustive search.

As previously we have selected 1,000 PoI by using the variance. But this
time we use four distances:

– Inner Product
– Harmonic mean
– Pearson χ2

– Kullback-Leiber

These four distances will give different results, but we expect that the good
key byte will has a good rank for each distance. The idea is to compute the
top 16 attack results for each distance and each pair of PoI. Then we keep only
the results for each pair that appear for all distances. Finally the first 16 most
frequent values are proposed for the subkey. We found 7 ordered bytes of the
secret subkey. It is important to notice that here we only have 7 · 29·8 ≈ 275

remaining subkeys.
We have applied the same attack on another class of traces by considering

the other offset values and compared the different results. The same bytes of the
subkey have been obtained. More secret key bytes could be retrieved with the
acquisition of the AES next rounds.

7 Conclusion

We propose a promising Side Channel Attack based on the joint distributions of
a cryptographic function. The great advantage is that it is not necessary to know
the plaintext or the ciphertext. First, we have investigated the way the internal
data varies between them and noticed that the joint distribution of two data
sets highly depends on the secret key used by the algorithm. In parallel, we have
proposed to deduce the real joint distribution from the acquired traces thanks
to a simple Hamming weight estimator based on the statistical variance and the
particular repartition of random variables. In order to compare this estimated
distribution with the theoretical ones, we have tried several distances and chosen
the more favorable to build an attack. In the ideal case where the Hamming
weight estimation is always correct, our proposed attack is very effective and the
true key is found with fewer than 30 samples. In the real world, the acquired
signals are noisy and the estimator is not perfect. But, with more samples the
attack still remains successful, even with 50% of estimation error.

Indeed, we have validated both the estimation method and the key recovery
by applying our attack on two sets of acquisition. The first one contains 1,000
traces issued from an AES128 software implementation into an ATMega2561.
The results show that 10 disordered key bytes can be retrieved without any
knowledge of the plaintext or the ciphertext. The second one comes from the
DPA contest v4. Here we found 7 ordered bytes of the key.

The software context is well adapted to estimate the joint distribution of two
internal data sets because few bits are processed at the same time. Attacking
a hardware implementation in this manner remains a challenge, as it involves
a huge bit number. This represents an easy way to protect a cryptographic
algorithm. However, our attack may be also relevant for non-cryptographic op-
erations like masking or reverse engineering.

References

1. M.L. Akkar, C. Giraud. An Implementation of DES and AES secure against some
attacks. CHES 2001, LNCS vol. 2162 pp. 309–318, 2001.

2. C. Archambeau, E. Peeters, F.-X. Standaert, J.-J. Quisquater. Template Attacks
in Principal Subspaces. CHES 2006, LNCS, vol. 4249, pp. 1-14, 2006.

3. A. Bogdanov. Improved Side-Channel Collision Attacks on AES. SAC 2007, LNCS,
vol. 4876, pp. 84-95, 2007.

4. E. Brier, C. Clavier, F.Olivier. Correlation power analysis with a leakage model.
CHES 2004, LNCS, vol. 3156, pp. 16-29, 2004.

5. S.-H. Cha. (2007) Comprehensive survey on distance/similarity measures between
probability density functions. International Journal of Mathematical Models and
Methods in Applied Science, 1 (4), 300–307, 2007.

6. S. Chari, J. Rao, P.Rohatgi. Template Attack. CHES 2002, LNCS, vol. 2523, pp.
13-28, 2002.

7. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, V. Verneuil. Improved Collision-
Correlation Power Analysis on First Order Protected AES CHES 2011, LNCS, vol
6917, pp 49-62, 2011.

8. J. Daemen, V. Rijmen. AES proposal: Rijndael, 1998.
9. B. Debraize. Efficient and Provably Secure Methods for Switching from Arithmetic

to Boolean Masking. CHES’12, LNCS, vol. 7428, pp. 107–121, 2012.
10. B. Gierlichs, L. Batina, P. Tuyls, B. Preneel. Mutual Information Analysis - A

Generic Side-Channel Distinguisher. CHES 2008, LNCS, vol. 5154, pp. 426-442,
2008.

11. B. Gierlichs, K. Lemke-Rust, C. Paar. Templates vs. stochastic methods. CHES
2006, LNCS, vol. 4249, pp. 15-29, 2006.

12. L. Goubin, J. Patarin. DES and Differential Power Analysis - The duplication
method. CHES ’99 LNCS vol. 1717, pp. 158-172, 1999.

13. M. Joye, P. Paillier, B. Schoenmakers. On Second-Order Differential Power Anal-
ysis. CHES 2005, LNCS vol. 3659, pp. 293–308, 2005.

14. P.C. Kocher, J. Jaffe, B. Jun. Differential power analysis. CRYPTO, pp. 388-397,
1999.

15. T.-H. Le, J. Clédière, C. Servière, J.-L. Lacoume. Noise reduction in side channel
attack using fourth-order cumulant. IEEE Transactions on Information Forensics
and Security, vol. 2, no. 4, pp. 710–720, 2007.

16. S. Mangard, E. Oswald, T. Popp. Power Analysis Attack - Revealing the Secret of
Smart Cards. Springer, 2007.

17. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. CHES 2000 LNCS vol. 1965, pp. 238-251, 2000.

18. E. Oswald, S. Mangard, C. Herbst, S. Tillich. Practical Second-Order DPA Attacks
for Masked Smart Card Implementations of Block Ciphers. CT-RSA 2006 LNCS
vol. 3860, pp. 192–207, 2006.

19. E. Oswald, S. Mangard, N. Pramstaller. Secure and Efficient Masking of
AES - A Mission Impossible? Cryptology ePrint Archive, Report 2004/134,
http://eprint.iacr.org/2004/134.

20. M. Rivain. On the Physical Security of Cryptographic Implementations. PhD thesis,
University of Luxembourg, 2009.

21. M. Nassar, Y. Souissi, S. Guilley, J.-L. Danger. RSM: A small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. DATE 2012,
pp 1173-1178, 2012.

22. M. Rivain, E. Prouff, J. Doget. Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. CHES 2009, LNCS, vol. 5747, pp. 171–188,
2009.

23. M. Renauld , F-X.Standaert. Algebraic Side-Channel Attacks. Cryptology ePrint
Archive, report 2009/279, http://eprint.iacr.org/2009/279.

24. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon. Algebraic Side-Channel At-
tacks on the AES: Why Time also Matters in Differential Power Analysis. CHES
2009, LNCS, vol. 5746, pp. 97-111, 2009.

25. M. Saied Emam Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter Im-
proved Algebraic Side-Channel Attack on AES Cryptology ePrint Archive, report
2012/084, http://eprint.iacr.org/2012/084.

26. K. Schramm, T.J. Wollinger, C. Paar. A new class of collision attacks and its
application to Des. FSE’03, LNCS, vol. 2887, pp. 206-222, 2003.

27. Federal Information Processing. Data Encryption Standard. Standards Publication
46-1 National Technical Information Service, U.S. Dept. of Commerce, 1977.

28. DPA contest v4. http://www.dpacontest.org/v4/
29. EMVCo EMV Integrated Circuit Card Specifications for Payment Systems, Book

2, Security and Key Management, Version 4.3, November 2011.

