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Abstract. In this paper we study the security of hash functions SM3 and BLAKE-256 against boomerang attack. SM3

is designed by X. Wang et al. and published by Chinese Commercial Cryptography Administration Office for the use

of electronic certification service system in China. BLAKE is one of the five finalists of the NIST SHA-3 competition

submitted by J.-P. Aumasson et al. For SM3, we present boomerang distinguishers for the compression function reduced

to 34/35/36/37 steps out of 64 steps, with time complexities 231.4, 233.6, 273.4 and 2192 respectively. Then we show some

incompatible problems existed in the previous boomerang attacks on SM3. Meanwhile, we launch boomerang attacks

on up to 7 and 8 rounds keyed permutation of BLAKE-256 which are the first valid 7-round and 8-round boomerangs

for BLAKE-256. Especially, since our distinguishers on 34/35-step compression function of SM3 and 7-round keyed

permutation of BLAKE-256 are practical, we are able to obtain boomerang quartets of these attacks. As far as we

know, these are the best results against round-reduced SM3 and BLAKE-256.

Key words: SHA-3 competition, hash function, BLAKE, SM3, boomerang attack, cryptanalysis.

1 Introduction

Cryptographic hash functions play an important role in the modern cryptology. In recent years, the cryptanalysis of hash

functions has become an important topic within the cryptographic community, and the significant advances of hash function

research have a formative influence on the field of hash functions. Since many well-known hash functions including MD5

and SHA-1 were broken by X. Wang et al. in 2005 [1,2], NIST proposed the transition from SHA-1 to SHA-2 family, and
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many companies and organizations were also migrating to SHA-2. Furthermore, in 2007 NIST started a hash function

competition to develop a new hash standard SHA-3 [3] to complement the older SHA-1 and SHA-2. Then five SHA-3

candidate algorithms, including BLAKE, Grøstl, JH, Keccak, and Skein, were selected to advance to the final in 2010, and

the competition ended in 2012 when NIST announced that Keccak would be the new SHA-3 hash algorithm. During the

ongoing evaluation of these hash functions, researchers not only consider the three classical security requirements of hash

function (preimage resistance, 2nd preimage resistance and collision resistance), but also regard near-collision, rebound

distinguisher, differential distinguisher, boomerang distinguisher, etc. Whenever a hash function behaves differently from

the one expected of a random function, its security is considered to be suspect. Therefore, many attack results in such

framework are proposed recently. Especially, the idea of boomerang attack leads to many new and useful results on hash

functions. In 2011, the boomerang attack was independently applied to hash functions BLAKE-32 by A. Biryukov et al. [4]

and SHA-256 by M. Lamberger and F. Mendel [5]. Then the boomerang attack on SHA-256 was improved in [6]. Later the

large potential of boomerang attack on hash functions has been demonstrated by more and more results including attacks

on SIMD-512 [7], HAVAL [8], RIPEMD [9], HAS-160 [10] and Skein [11,12].

SM3 [13] is the Chinese cryptographic hash function standard which is designed by X. Wang et al., and its design

builds on the Merkle-Damg̊ard construction. It is very similar to the MD4 family of hash functions and in particular to

SHA-2, but introduces some additional strengthening features, such as a more complex step function and stronger message

dependency than SHA-256. BLAKE [14] is a HAIFA iteration mode hash function family submitted to the NIST hash

function competition by J.-P. Aumasson et al. It is based on ChaCha stream cipher [15], but a permuted copy of the input

block XORed with some round constants is added before each ChaCha round. BLAKE is chosen as one of the five finalists

of the SHA-3 competition, which now mainly consists of two valid variants BLAKE-256 and BLAKE-512. In this work, we

present several boomerang attacks on round-reduced SM3 and BLAKE-256.

Related Work. In the last few years, the amount of cryptanalytic results on SM3 is much lower than other hash function

standards. In [16], J. Zou et al. presented the first preimage attacks on SM3 reduced to 30 steps out of 64 steps starting

from step 6, and 28 steps starting from step 0. At SAC 2012, A. Kircanski et al. [17] applied the boomerang attack

to SM3 compression function for 32/33/34/35 steps, and gave examples of zero-sum quartets for 32-step and 33-step

distinguishers. They also exposed a side-rotational property of SM3-XOR function and gave a slide-rotational pair for SM3-

XOR compression function. The incompatibility between the differential characteristics of 33/34/35-step distinguishers are

found and shown later. Then G. Wang and Y. Shen [18] proposed preimage attacks on SM3 reduced to 29/30 steps and

pseudo-preimage attacks reduced to 31/32 steps, with lower complexities than [16] and all from the first step (step 0),

and they also converted those (pseudo) preimage attacks into pseudo-collision attacks on 29/30/31/32-step SM3 for the

first time. Meanwhile, F. Mendel et al. [19] provided the first security analysis of step-reduced SM3 regarding its collision

resistance, and presented a collision attack for 20 steps and a free-start collision attack for 24 steps of SM3, both with

practical complexity. The above are all the previous results that we are aware of on the analysis of SM3.

As for BLAKE-256, in [20] J. Li and L. Xu presented free-start collision and (free-start) (2nd) preimage attacks on 2.5

rounds compression function of BLAKE-32 (BLAKE-32 with 10 rounds submitted in 2008 is the original version of the
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final BLAKE-256 with 14 rounds proposed in 2010). Then L. Wang et al. [21] announced 4/4.5-round free-start preimage

attacks on compression function of BLAKE-32. J.-P. Aumasson et al. [22] gave near collisions on 4-round compression

function and impossible differential for 5-round keyed permutation of BLAKE-32. Then B. Su et al. [23] proposed near

collision attack on 4-round compression function of BLAKE-32 with lower complexity than [22]. At FSE 2011, A. Biryukov

et al. [4] presented boomerang attacks on 7 round-reduced compression function and 8 round-reduced keyed permutation of

BLAKE-32, and a boomerang quartet of distinguisher on 6 round-reduced keyed permutation was also given, however, there

are some incompatible problems in [4] later pointed out by G. Leurent in [24]. In [25] O. Dunkelman and D. Khovratovich

presented differential distinguisher for the keyed permutation of BLAKE-256 reduced to 6 middle rounds.

Our Contribution. In this work, we study the security of hash functions SM3 and BLAKE-256, and show the application

of boomerang attack to round-reduced compression function of SM3 and keyed permutation of BLAKE-256. First, we

build boomerang distinguishers for SM3 compression function on up to 34 and 35 steps with practical complexities, and

examples of boomerang quartets are also given. Moreover, the distinguishers can be extended to attacks on 36 and 37 steps

of SM3. Then we show some incompatible problems existed in the differential characteristics used in the previous work

[17]. Furthermore, we present the first valid boomerang distinguishers on up to 7 and 8 round-reduced keyed permutation

of BLAKE-256. We are able to find boomerang quartets of our distinguisher on 7 round-reduced keyed permutation of

BLAKE-256, which are one more round than the previous practical example [4].

Among all attacks, our analysis of SM3 and BLAKE-256 penetrates the most number of rounds. The summary of

previous results and ours are given in Table 1.

Outline. The structure of the paper is as follows. In Section 2, we give a short description of hash functions SM3 and

BLAKE-256. Section 3 briefly overviews the boomerang attack. In Section 4, we present the differential characteristics

and build boomerang distinguishers for step-reduced SM3 compression function. The boomerang distinguishers for round-

reduced keyed permutation of BLAKE-256 are proposed in Section 5. Finally, we conclude our paper in Section 6.

2 Description of Hash Functions SM3 and BLAKE-256

2.1 SM3 Hash Function

SM3 is an iterated hash function that processes 512-bit input message blocks and produces a 256-bit hash value. It basically

consists of two parts: the message expansion and the state update transformation. A detailed description of SM3 hash

function is given in [13].
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Table 1. Summary of the attacks on SM3 and BLAKE-256

hash function attack type target rounds time source

preimage attack HF 28 2241.5
[16]

preimage attack HF 30 2249

preimage attack HF 29 2245

[18]

preimage attack HF 30 2251.1

pseudo-preimage attack HF 31 2245

SM3 pseudo-preimage attack HF 32 2251.1

pseudo-collision HF 29 2122

pseudo-collision HF 30 2125.1

pseudo-collision HF 31 2122

pseudo-collision HF 32 2125.1

collision attack HF 20 practical
[19]

free-start collision CF 24 practical
boomerang distinguisher CF 32 214.4

[17]
boomerang distinguisher CF 33∗ 232.4

boomerang distinguisher CF 34∗ 253.1

boomerang distinguisher CF 35∗ 2117.1

boomerang distinguisher CF 34 231.4

Sect.4
boomerang distinguisher CF 35 233.6

boomerang distinguisher CF 36 273.4

boomerang distinguisher CF 37 2192

free-start collision CF 2.5 2112

[20]free-start (2nd) preimage CF 2.5 2224

(2nd) preimage CF 2.5 2241

free-start preimage CF 4 2224
[21]

free-start preimage CF 4.5 2252

impossible differential KP 5 —
[22]

near collision CF 4 256

near collision CF 4 221 [23]
BLAKE-256 differential distinguisher KP 6 2456 [25]

boomerang distinguisher CF 6 2102

[4]

boomerang distinguisher CF 6.5∗ 2184

boomerang distinguisher CF 7∗ 2232

boomerang distinguisher KP 6 211.75

boomerang distinguisher KP 7∗ 2122

boomerang distinguisher KP 8∗ 2242

boomerang distinguisher KP 7 237
Sect.5

boomerang distinguisher KP 8 2200

∗: the attack has some incompatible problems.

4



Message Expansion. The message expansion of SM3 splits the 512-bit message block into 16 words mi (0 ≤ i ≤ 15), and

expands them into 68 expanded message words wi (0 ≤ i ≤ 67) and 64 expanded message words w′i (0 ≤ i ≤ 63) as follows:

wi =

mi, 0 ≤ i ≤ 15,

P1(wi−16 ⊕ wi−9 ⊕ (wi−3 ≪ 15))⊕ (wi−13 ≪ 7)⊕ wi−6, 16 ≤ i ≤ 67,

w′i = wi ⊕ wi+4, 0 ≤ i ≤ 63.

The function P1(X) is given by

P1(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23).

State Update Transformation. The state update transformation starts from a (fixed) initial value IV = (A0, B0, C0,

D0, E0, F0, G0, H0) of 8 32-bit words and updates them in 64 steps. In each step the two 32-bit words wi and w′i are used

to update the state variables Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi as follows:

SS1i = ((Ai ≪ 12) + Ei + (Ti ≪ i)) ≪ 7,

SS2i = SS1i ⊕ (Ai ≪ 12),

TT1i = FFi(Ai, Bi, Ci) +Di + SS2i + w′i,

TT2i = GGi(Ei, Fi, Gi) +Hi + SS1i + wi,

Ai+1 = TT1i,

Bi+1 = Ai,

Ci+1 = Bi ≪ 9,

Di+1 = Ci,

Ei+1 = P0(TT2i),

Fi+1 = Ei,

Gi+1 = Fi ≪ 19,

Hi+1 = Gi.

The step constants are Ti = 0x79cc4519 for i ∈ {0, . . . , 15} and Ti = 0x7a879d8a for i ∈ {16, . . . , 63}. The bitwise boolean

functions FF (X,Y, Z) and GG(X,Y, Z) used in each step are defined as follows:

FFi(X,Y, Z) =

X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,

(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ i ≤ 63,

GGi(X,Y, Z) =

X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,

(X ∧ Y ) ∨ (¬X ∧ Z), 16 ≤ i ≤ 63.
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The linear function P0(X) is defined as follows:

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17).

After the last step of the state update transformation, the initial values are added to the output values of the last step.

The result is the final hash value or the initial value for the next message block.

2.2 BLAKE-256 Hash Function

The hash function BLAKE-256 operates on 32-bit words and returns a 32-byte hash value. Its compression function processes

a state of 16 32-bit words represented as 4×4 matrix, and consists of three steps: Initialization, 14 iterations of Rounds and

Finalization.

Initialization. In the Initialization procedure, the state is filled with a chaining value h = h0, . . . , h7, a salt s = s0, . . . , s3,

constants c0, . . . , c7, and a counter t = t0, t1 as follows:



v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


←



h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7


.

Round function. Once the state v = (v0, . . . , v15) is initialized, the compression function iterates a series of 14 rounds.

Each round is a transformation of the state v that computes

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15),

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14),
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where Gi(a, b, c, d) at round r is described with the following steps:

a = a+ b+ (mσr(2i) ⊕ cσr(2i+1)),

d = (d⊕ a) ≫ 16,

c = c+ d,

b = (b⊕ c) ≫ 12,

a = a+ b+ (mσr(2i+1) ⊕ cσr(2i)),

d = (d⊕ a) ≫ 8,

c = c+ d,

b = (b⊕ c) ≫ 7,

here σr belongs to the set of permutations as defined in Table 2. At round r > 9, the permutation used is σrmod10 (for

example, in the last round r = 13, the permutation σ13mod10 = σ3 is used).

Table 2. Permutations of {0, . . . , 15} used by the BLAKE functions

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Finalization. After the rounds sequence, the new chaining value h′ = h′0, . . . , h
′
7 is extracted from the state v = v0, . . . , v15

with the initial chaining value h = h0, . . . , h7 and the salt s = s0, . . . , s3 as follows:

h′0 = h0 ⊕ s0 ⊕ v0 ⊕ v8,

h′1 = h1 ⊕ s1 ⊕ v1 ⊕ v9,

h′2 = h2 ⊕ s2 ⊕ v2 ⊕ v10,

h′3 = h3 ⊕ s3 ⊕ v3 ⊕ v11,

h′4 = h4 ⊕ s0 ⊕ v4 ⊕ v12,

h′5 = h5 ⊕ s1 ⊕ v5 ⊕ v13,

h′6 = h6 ⊕ s2 ⊕ v6 ⊕ v14,

h′7 = h7 ⊕ s3 ⊕ v7 ⊕ v15.
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3 The Boomerang Attack

The boomerang attack was introduced by D. Wagner in 1999 [26] as a tool for the cryptanalysis of block cipher. It is an

adaptive chosen plaintext and ciphertext attack utilizing differential cryptanalysis. The cipher is treated as a cascade of

two sub-ciphers, where a short differential is used in each of these sub-ciphers. These differentials are combined to exploit

an adaptive chosen plaintext and ciphertext property of the cipher that has high probability. Then J. Kelsey et al. [27]

further developed it into a chosen plaintext attack called the amplified boomerang attack, and later it was developed by E.

Biham et al. [28] into the rectangle attack. Then E. Biham et al. [29] combined the boomerang (and the rectangle) attack

with related-key differentials and proposed the related-key boomerang and rectangle attacks, which use the related-key

differentials instead of the single-key differentials.

We mainly review the known-related-key boomerang attack [6] which can be used to distinguish a given permutation

from a random oracle. Applying the known-related-key boomerang attack to the compression function in the MMO mode,

i.e, CF (M,K) = E(M,K)+M that can be decomposed into two sub-functions with CF = CF1◦CF0, we usually start from

the middle steps (refer to [6,11]) as we can use message modification technique [2] to significantly improve the complexity

of attack. This is the main reason why we can penetrate so many more rounds, and it also makes the boomerangs on cipher

and on hash function different. We have a backward differential characteristic (β, βk)→ α with probability p for CF−10 , and

another forward differential characteristic (γ, γk)→ δ with probability q for CF1. Then the known-related-key boomerang

attack can be constructed using these two differentials as follows:

– Randomly choose values for the message X1 and the key K1, compute X2 = X1 ⊕ β, X3 = X1 ⊕ γ, X4 = X3 ⊕ β, and

K2 = K1 ⊕ βk, K3 = K1 ⊕ γk, K4 = K3 ⊕ βk.

– Compute backward from (Xi,Ki) using CF−10 to obtain Pi (i = 1, 2, 3, 4).

– Compute forward from (Xi,Ki) using CF1 to obtain Ci (i = 1, 2, 3, 4).

– Check whether P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ.

We can deduce that P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ hold with probability at least p2 in the

backward direction and q2 in the forward direction. Hence, the attack succeeds with probability p2q2 when assuming that

the differentials are independent.

For an n-bit random function, there exist three types of boomerang distinguishers according to the input and output

differences (refer to [6,11,12]).

– Type I: A quartet satisfies P2 ⊕ P1 = P4 ⊕ P3 = α and C3 ⊕ C1 = C4 ⊕ C2 = δ for fixed differences α and δ. In this

case, the generic complexity is 2n.

– Type II: Only C3⊕C1 = C4⊕C2 is satisfied (This property is also called zero-sum or second-order differential collision).

In this case, the complexity for obtaining such a quartet is 2n/3 by using D. Wagner’s generalized birthday attack [30].

– Type III: A quartet satisfies P2 ⊕ P1 = P4 ⊕ P3 and C3 ⊕C1 = C4 ⊕C2. In this case, the best known attack still takes

time 2n/2.
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4 The Boomerang Attacks on SM3

In this section, we present the boomerang attacks on the SM3 compression function reduced to 34 and 35 steps with practical

examples of boomerang quartets, and then extend the attacks to 36 and 37 steps. Firstly, we have to find the differential

characteristics used in the attack to distinguish the target compression function from random functions. Secondly, we derive

the sufficient conditions in the middle steps, and fulfill these conditions by using message modification technique. Finally,

we evaluate the complexities of our attacks and search for examples of right quartets.

4.1 Step-Reduced Differential Characteristics

We give two differential characteristics which are used to attack 34-step SM3 compression function and build boomerang

distinguisher, where the top differential characteristic is from step 15 to step 0, and the bottom one is from step 16 to step

33. Note that we will use the XOR difference ∆a = a⊕ a′. Let ∆a: i for 1 ≤ i ≤ 32 denote that the i-th bit of a is different

from the i-th bit of a′, and all the other bits of a and a′ are the same.

We start from the middle states of the distinguisher quartet (V1, V2, V3, V4), and for the top characteristic, the differences

of the message words wi and the chaining variables A16 to H16 are chosen as follows:

– ∆w2: 32 (the MSB difference), ∆wi = 0 (0 ≤ i ≤ 15, i 6= 2), if we choose the message words with such differences, we

will find that 13 steps (step 13 to 1) are passed with probability 1. This is significant for us to get the high probability

differential characteristic.

– ∆A16: 2, 3, 10, 12, 15, 19, 23, 27, 32, ∆B16: 15, 23, 32, ∆E16: 2, 4, 10, 11, 19, 27, 28, these differences are decided by the

differences of the message words above. We can easily get the differences of the message words ∆w0–∆w15, ∆w′0–∆w′15

in the top characteristic from above: ∆w2: 32, ∆w′2: 32, ∆w′14: 15, 23, 32, and all the other message words differences

are zero. Then we directly derive the differences of the chaining variables with some sufficient conditions.

For the bottom characteristic, we select the differences as follows:

– ∆w20: 20 (the 20-th bit difference), ∆wi = 0 (21 ≤ i ≤ 35), so we can pass 11 steps (step 21 to 31) for free similarly.

– ∆C16: 9, 16, 18, 23, 25, 26, 30, 31, ∆D16: 11, 20, ∆G16: 9, 16, 18, 24, 25, 26, 30, 32, ∆H16: 1, 3, 4, 10, 12, 19, 20, 28, according

to the differences of the message words above, also considering the compatibility with the top characteristic in the middle

steps which cannot contain any contradiction, the differences of chaining variables in bottom characteristic are derived

with some sufficient conditions. For example, to cancel the 9-th and 10-th bit differences of w′17, we choose the difference

in D17 only on bit 9 but not on bits 9 and 10, because if we have a difference in D17 on bit 10, then in step 16 the

condition A16,10 = B16,10 (note that C16 = D17) cannot be satisfied in the other side (V2, V4).

In Table 3 and Table 4 the differential characteristics for both forward and backward directions are shown. Furthermore,

the conditions and probabilities for each step of the differential characteristics are given.

4.2 Message Modification for the Middle Steps

Here we use the message modification technique to modify the chaining values and message words to satisfy the conditions

of the middle steps to improve the complexity of our attack.
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In the top differential characteristic, there are 16 sufficient conditions from step 15 to step 14, which can be satisfied

both in two sides (V1, V2) and (V3, V4) by modifying A16, B16 and F16. Therefore, the conditions of this part (steps 15 to

14) can hold with probability 1.

Similarly, 59 conditions in total from step 16 to step 20 in the bottom differential characteristic need to be fulfilled in

each side. We can make all these conditions hold in one side (V1, V3) by the message modification. Furthermore, part of

the conditions in the other side (V2, V4) can be fulfilled, and 14 conditions including SS117,30 = A17,11, SS117,8 = E17,1,

w′17,8 6= SS217,8, D17,23 = SS217,23 6= w′17,24, D17,30 = SS217,30 = D17,31, w17,8 6= SS117,8, H17,30 6= SS117,30, A18,11 =

C18,11, E18,1 = 0, A19,20 = B19,20, E19,20 = 1, and H20,20 6= w20,20 are satisfied randomly. As a result, all the conditions of

steps 16 to 20 in the bottom differential characteristic hold in both two sides with probability at least 2−14, rather than

the much lower average probability 2−2×59 = 2−118.

4.3 Complexity of the Attack

After message modification, the boomerang distinguisher in the middle steps (14 to 20) holds with a much higher probability

2−14. Meanwhile, the probability of steps 13 to 0 in top characteristic is 2−2, and for steps 21 to 33 in bottom characteristic

is 2−(3+14) = 2−17. Since all conditions need to be fulfilled in both two sides, the boomerang distinguisher holds with

probability 2−2×2 = 2−4 in steps 13 to 0 and 2−2×17 = 2−34 in steps 21 to 33. So the complexity of the 34-step boomerang

distinguisher is 214 + 24+34 ≈ 238.

If we only obtain a zero-sum distinguisher, i.e. P1⊕P2 = P3⊕P4 and C1⊕C3 = C2⊕C4, for each non-zero difference bit in

∆P (∆C), there is a probability about 1/3 that the carry extension in (P1, P2)((C1, C3)) is the same as in (P3, P4)((C2, C4))

[11,12]. Let n denote the number of non-zero difference bits in ∆P (∆C), the probability is deduced as follows: assume that

n = 1, then averagely there is 1 condition, and the probability is 2−1 for one side and 2−2×1 = 2−2 for both two sides;

assume that n = 2, then averagely there are 2 conditions, and the probability is 2−2 for one side and 2−2×2 = 2−4 for both

two sides. The same procedure can be easily adapted to more possible values of n: n = 3, the probability is 2−3 for one side

and 2−6 for both two sides; n = 4, 2−4 for one side and 2−8 for both two sides; . . . . If we only consider P1 ⊕ P2 = P3 ⊕ P4

(C1⊕C3 = C2⊕C4), the probability is the sum of all above probabilities: 2−2+2−4+2−6+2−8+ · · · ≈ 2−2/(1−2−2) = 1/3.

Hence, the boomerang distinguisher holds with probability 3−2 in step 0 and 3−14 in step 33. Meanwhile, the boomerang

distinguisher holds with probability 2−14 in steps 14 to 20 after message modification, with probability 1 in steps 13 to 1,

and 2−2×3 = 2−6 in steps 21 to 32. As a result, the complexity can be reduced to 214 + 26 × 32+14 ≈ 214 + 231.4 ≈ 231.4.

Due to the low complexity, our distinguisher on up to 34-step compression function of SM3 is practical, and we are able

to find boomerang quartets on a PC quickly. We give an example of 34-step boomerang distinguisher in Table 5.

4.4 Attacks on 35/36/37-Step SM3 Compression Function

35-Step Attack (Steps 0-34). Using the same top differential characteristic shown in Table 3, we add one more step

as the new 16-th step in the bottom differential characteristic as illustrated in Table 6 to mount a 35-step attack. So the

step where the single bit difference has been set in the message word wi in the bottom differential characteristic should

slip to step 21. Now we look at the choice of differences in bottom differential characteristic, if we still use the same bit
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difference on bit 20 in w21, some contradictions will emerge, and through theoretical derivation and program tests we

find that only the 24-th bit difference in w21 is applicable and compatible between the two differential characteristics. We

fulfill all conditions in the side (V1, V2) and part of conditions (12 conditions) in the other side (V3, V4) in steps 15 to

14 of the top differential characteristic, and all conditions in the side (V1, V3) in steps 16 to 21 of the bottom differential

characteristic. The remaining conditions in middle steps (14 to 21) have not been dealt with. So in theory the boomerang

distinguisher in the middle steps holds with probability 2−46. However, according to our experiments, on average, only about

32 conditions in the middle steps have not been fulfilled. As a result, the complexity of 35-step boomerang distinguisher is

about 232 + 22×3 × 32+15 ≈ 232 + 233 ≈ 233.6, and the practical example of 35-step boomerang distinguisher quartet can be

found on a PC, see Table 7.

36-Step Attack (Steps 0-35). The 36-step attack is obtained with the same differential characteristics as 35-step attack

by adding one step in the top differential characteristic as the new first step (see Table 8), where the top differential

characteristic is from step 16 to step 0 and the bottom one is from step 17 to step 35. In order to keep the probability

of connection part between the top and bottom differential characteristics unchanged, we change the differences of the

top differential characteristic slightly: ∆w0 : 4, 5, 7, 12, 20, 21, 22, 28, 30, ∆w3 : 32, ∆wi = 0 (0 ≤ i ≤ 15, i 6= 0, 3), ∆A17 :

2, 3, 10, 12, 15, 19, 23, 27, 32, ∆B17 : 15, 23, 32, ∆E17 : 2, 4, 10, 11, 19, 27, 28, see Table 8. The complexity of the 36-step attack

is about 232 + 22×(2+3) × 325+15 ≈ 232 + 273.4 ≈ 273.4.

37-Step Attack (Steps 0-36). Extending the 36-step boomerang distinguisher for one step at the end of the bottom differ-

ential characteristic (see Table 9), we get a 37-step boomerang attack on SM3 with a complexity of 232+22×(2+3+25+15+51) =

232 + 2192 ≈ 2192.

Note that the boomerang distinguishers on higher number of steps are obtained by extending more steps after the

boomerangs on lower number of steps, which in turn have been proven to be correct by providing examples of quartets.

Thus these theoretical attacks on the high step boomerangs are also correct and do not have any incompatibilities.

Remark: For the 34/35/36-step attacks on SM3, we use the Type III boomerang distinguisher (see Sect. 3), and the

complexity for the best algorithm is 2128; for the 37-step attack on SM3, we use the Type I boomerang distinguisher, and

the generic complexity is about 2256.

4.5 The Incompatibility of Previous Boomerang Attacks on SM3

In [17], boomerang distinguisher for SM3 compression function reduced to 33 steps and the corresponding example of

zero-sum quartet were given. However, we find that the proposed example of quartet is not consistent with the differential

characteristics shown in that paper. According to the differences of the given example, it is supposed to be generated by

adding one step after their 32-step distinguisher. Then we study the given 33-step boomerang distinguisher in [17] and find

some contradictions between the two differential characteristics.

For the differences in step 20 in the bottom differential characteristic, it is easy to deduce that D20,28 = C19,28 = B18,19 =

A17,19 = TT116,19 = D16,19, so the condition D20,28 6= w′20,28 in step 20 can be rewritten as D16,19 6= w′20,28. From the top
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differential characteristic, we get that ∆D16 = 0 (so ∆D16,19 = 0), ∆w′20,28 = 1 (according to the message expansion), so the

condition D20,28 6= w′20,28 in step 20 cannot be satisfied in the other side (V2, V4) for the bottom differential characteristic.

Hence, the 33-step boomerang distinguisher in [17] cannot work in fact. Since their 34-step and 35-step distinguishers are

constructed by adding one and two steps after the 33-step distinguisher, those two attacks cannot work either. We can

correct the bottom differential characteristic by simply changing the single bit difference of message word w20 from bit 28

to 20.

5 The Boomerang Attacks on BLAKE-256

Similar to above, there are also incompatible problems in previous boomerang attacks on BLAKE-256 [4], and the detailed

contradictions are shown in [24]. In this section, we give two alternative differential characteristics, and the first valid 7-round

and 8-round boomerang attacks on keyed permutation of BLAKE-256 are mounted. Note that the keyed permutation of

BLAKE-256 can be seen as the internal cipher of BLAKE-256, which excludes the Initialization and Finalization procedures.

7-Round Boomerang Attack on Keyed Permutation of BLAKE-256. Through comparing the probabilities of

differential characteristics, we carefully choose the middle round where two differential characteristics are combined, which

is round 6.5, to build the 7-round boomerang distinguisher for keyed permutation of BLAKE-256. We use two 3.5-round

differential characteristics with highest probabilities than others, i.e. the top differential characteristic is from round 3 to

round 6.5 and the bottom one is from round 6.5 to round 10. The differences of message words and chaining variables are

selected as follows:

– ∆m5: 21 for the top characteristic,

– ∆m11: 32 for the bottom characteristic,

– Then set the differences of chaining variables which are basically decided by the differences of message words.

Table 10 gives the top and bottom differential characteristics used for 7-round boomerang attack on BLAKE-256.

Similar to the attacks on SM3, message modification technique is used to fulfill the conditions of middle rounds to

improve our attack. By modifying chaining variables vi (i=0, . . . , 15) of round 6.5 and message words mi (i=0, . . . , 15),

29 conditions in G0 ∼ G3 of round 6, 40 conditions in G4 ∼ G7 of round 6, 2 conditions in round 5 and 2 conditions in

round 7 can be satisfied in both two sides. After message modification, the conditions of this part (rounds 4 to 7) can

hold with probability at least 2−2×(1+4) = 2−10. As a result, the boomerang distinguisher on 7 rounds keyed permutation

of BLAKE-256 has the complexity 210 × 316+1 ≈ 210 × 227 = 237. Due to the practical complexity, we can obtain the

boomerang quartet which is one more round than the previous best result [4]. See Table 11.

8-Round Boomerang Attack on Keyed Permutation of BLAKE-256. As shown in Table 10, we just extend the

differential characteristics used in 7-round attack for additional half round both in forward and backward directions, and

obtain a 8-round boomerang distinguisher for keyed permutation of BLAKE-256 with complexity 22×(54+16+1+4+1+24) =

2200.
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Remark: Similar to attacks on SM3, we use the Type III boomerang distinguisher for the 7-round attack on BLAKE-

256, and Type I boomerang distinguisher for the 8-round attack on BLAKE-256.

6 Conclusion

This paper presents boomerang attacks on Chinese cryptographic hash function standard SM3 and the NIST SHA-3 finalist

BLAKE-256. We propose boomerang distinguishers for the compression function of SM3 reduced to 34/35/36/37 steps out

of 64 steps, and give examples of boomerang distinguishers on up to 34-step and 35-step SM3. Besides, we point out and

correct the incompatible problems existed in the previous attacks on SM3. Then we present boomerang distinguishers on

7 and 8 round-reduced keyed permutation of BLAKE-256 out of 14 rounds, which are the first valid boomerang results on

7-round and 8-round keyed permutation of BLAKE-256. Also, we give a boomerang quartet of the distinguisher on 7-round

keyed permutation of BLAKE-256 for the first time. All these results are the best as far as we know.
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19. Mendel, F., Nad, T., Schläffer, M.: 'Finding Collisions for Round-Reduced SM3'. Proc. CT-RSA 2013, San Francisco, CA, USA,

February 2013, pp. 174–188

20. Li, J., Xu, L.: 'Attacks on Round-Reduced BLAKE', http://eprint.iacr.org/2009/238.pdf, May 2009

21. Wang, L., Ohta, K., Sakiyama, K.: 'Free-Start Preimages of Round-Reduced BLAKE Compression Function'. Rump Session on

ASIACRYPT 2009, Tokyo, Japan, December 2009

22. Aumasson, J.-P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: 'Differential and Invertibility Properties of BLAKE'. Proc.

FSE 2010, Seoul, Korea, February 2010, pp. 318–332

23. Su, B., Wu, W., Wu, S., Dong, L.: 'Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE'. Proc.

CANS 2010, Kuala Lumpur, Malaysia, December 2010, pp. 124–139

24. Leurent, G.: 'ARXtools: A Toolkit for ARX Analysis'. The Third SHA-3 Candidate Conference, Washington, DC, USA, March

2012

25. Dunkelman, O., Khovratovich, D.: 'Iterative Differentials, Symmetries, and Message Modification in BLAKE-256'. ECRYPT II

Hash Workshop, Tallinn, Estonia, May 2011

26. Wagner, D.: 'The Boomerang Attack'. Proc. FSE 1999, Rome, Italy, March 1999, pp. 156–170

27. Kelsey, J., Kohno, T., Schneier, B.: 'Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent'. Proc. FSE

2000, New York, NY, USA, April 2000, pp. 75–93

28. Biham, E., Dunkelman, O., Keller, N.: 'The Rectangle Attack – Rectangling the Serpent'. Proc. EUROCRYPT 2001, Innsbruck,

Austria, May 2001, pp. 340–357

29. Biham, E., Dunkelman, O., Keller, N.: 'Related-Key Boomerang and Rectangle Attacks'. Proc. EUROCRYPT 2005, Aarhus,

Denmark, May 2005, pp. 507–525

30. Wagner, D.: 'A Generalized Birthday Problem'. Proc. CRYPTO 2002, Santa Barbara, California, USA, August 2002, pp. 288–303

14



A Differential Characteristics for Boomerangs and Examples of Boomerang Quartets for

SM3 and BLAKE-256

Table 3. Differential characteristic for steps 0-15 used in the boomerang attack on 34-step CF of SM3

i chaining variables message conditions prob

0 B0 : 23 (A0 ⊕B0 ⊕ C0)23 6= D0,23, 2−2

C0 : 32 (E0 ⊕ F0 ⊕G0)13 6= H0,13,
D0 : 23, 32
F0 : 13
G0 : 32
H0 : 13, 32

1 C1 : 32 1
D1 : 32
G1 : 32
H1 : 32

2 D2 : 32 w2 : 32 1
H2 : 32 w′2 : 32

3 1
...

...
...

...
...

14 w′14 : 15, 23, 32 TT114,i = w′14,i(i = 15, 23), 2−2

15 A15 : 15, 23, 32 SS115,(2,10,19) = A15,(15,23,32), 2−14

TT115,i = (A15 ⊕B15 ⊕ C15)i(i = 15, 23),
TT115,i = SS215,i(i = 2, 3, 10, 12, 19, 27),
TT215,i = SS115,i(i = 2, 10, 19).

16 A16 : 2, 3, 10, 12, 15, —
19, 23, 27, 32

B16 : 15, 23, 32
E16 : 2, 4, 10, 11, 19,

27, 28
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Table 4. Differential characteristic for steps 16-33 used in the boomerang attack on 34-step CF of SM3

i chaining variables message conditions prob

16 C16 : 9, 16, 18, 23, 25, 26, 30, w′16 : 20 A16,i = B16,i(i = 9, 16, 18, 23, 25, 26, 30, 31), 2−27

31 D16,20 6= w′16,20, TT116,11 = D16,11,
D16 : 11, 20 E16,i = 1(i = 9, 16, 24, 25, 26, 30, 32), E16,18 = 0,
G16 : 9, 16, 18, 24, 25, 26, 30, TT216,i = H16,i(i = 1, 3, 4, 10, 12, 19, 20, 28),

32 TT216,18 = G16,18,
H16 : 1, 3, 4, 10, 12, 19, 20, 28

17 A17 : 11 w17 : 8, 9, 10, SS117,30 = A17,11, SS117,8 = E17,1, 2−26

D17 : 9, 16, 18, 23, 25, 26, 30, 16, 18, 24, B17,11 = C17,11, w
′
17,8 6= SS217,8,

31 25, 27, 32 D17,9 = w′17,9 6= w′17,10, D17,i 6= w′17,i(i = 16, 18),
E17 : 1 w′17 : 8, 9, 10, D17,23 = SS217,23 6= w′17,24,
H17 : 9, 16, 18, 24, 25, 26, 30, 16, 18, 24, D17,25 = w′17,25 = D17,26 6= w′17,27,

32 25, 27, 32 D17,30 = SS217,30 = D17,31,
F17,1 = G17,1, w17,8 6= SS117,8,
H17,9 = w17,9 6= w17,10,
H17,i 6= w17,i(i = 16, 18, 24),
H17,25 = w17,25 = H17,26 6= w17,27,
H17,30 6= SS117,30,

18 B18 : 11 A18,11 = C18,11, 2−2

F18 : 1 E18,1 = 0,
19 C19 : 20 A19,20 = B19,20, 2−2

G19 : 20 E19,20 = 1,
20 D20 : 20 w20 : 20 D20,20 6= w′20,20, 2−2

H20 : 20 w′20 : 20 H20,20 6= w20,20,
21 1
...

...
...

...
...

32 w′32 : 3, 11, 20 TT132,i = w′32,i(i = 3, 11, 20), 2−3

33 A33 : 3, 11, 20 SS133,(22,30,7) = A33,(3,11,20), 2−14

B33,i = C33,i(i = 3, 11, 20),
TT133,i = SS233,i(i = 7, 15, 22, 23, 30),
TT233,i = SS133,i(i = 7, 22, 30).

34 A34 : 7, 15, 22, 23, 30, 32 —
B34 : 3, 11, 20
E34 : 7, 15, 16, 22, 24, 30, 31

Table 5. Example of a boomerang quartet for 34-step CF of SM3. Pi, Ci and Mi respectively denote the chaining variables
of step 0, 33 and message words.

P1 8e328bf1 540ba9e5 026995ca d1271808 8afc4d19 95bddaa7 a56d9207 a2c44d1c
P2 8e328bf1 544ba9e5 826995ca 51671808 8afc4d19 95bdcaa7 256d9207 22c43d1c
P3 11ee1c76 ee57de46 54838689 0665bf71 df61a977 5f4c46e9 d42981b4 c15ec4f8
P4 11ee1c76 ee17de46 d4838689 8625bf71 df61a977 5f4c56e9 542981b4 415eb4f8

M1 d7a6bd34 66fa6efa 78ce08a1 9a585055 94c8bc0b 3b679ebd 3910da41 f0e82d8a
d5f41b80 64f0041d 947bccb4 4344d2ed bcc94a67 6b5f97ff 79000306 16233872

M2 d7a6bd34 66fa6efa f8ce08a1 9a585055 94c8bc0b 3b679ebd 3910da41 f0e82d8a
d5f41b80 64f0041d 947bccb4 4344d2ed bcc94a67 6b5f97ff 79000306 16233872

M3 d7acbd36 26fbaefa 50ce00a1 1fdad3d5 94c2b90e 333fb685 3918da41 70e8ad8c
d5f49b80 64f0041d 9570c9b3 c3c4d3ed bcc94a67 6b5797ff f9008304 16233872

M4 d7acbd36 26fbaefa d0ce00a1 1fdad3d5 94c2b90e 333fb685 3918da41 70e8ad8c
d5f49b80 64f0041d 9570c9b3 c3c4d3ed bcc94a67 6b5797ff f9008304 16233872

C1 5cc18f78 adf682b8 837bc39c 1550ef7d 5e6d092c b95a7f10 0fdde16d 3dc6bf65
C2 35437883 a37697ca 94fa71b5 169e842d 07d1f375 e5e58686 e97b5e86 72b07d54
C3 bcd1cfbd adee86bc 837bc39c 1550ef7d fecc48ec b95a7f10 0fdde16d 3dc6bf65
C4 d5533846 a36e93ce 94fa71b5 169e842d a770b2b5 e5e58686 e97b5e86 72b07d54
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Table 6. Differential characteristic for steps 16-34 used in the boomerang attack on 35-step CF of SM3

i chaining variables message conditions prob

16 B16 : 4, 5, 11, 13, 18, 20, 21, 25, A16,i = B16,i(i = 15, 22, 23), 2−27

26 A16,i = C16,i

C16 : 15, 22, 23 (i = 4, 5, 11, 13, 18, 20, 21, 25, 26),
F16 : 1, 3, 9, 12, 15, 17, 26 E16,i = 0(i = 1, 3, 9, 12, 15, 17, 26),
G16 : 5, 7, 8, 14, 16, 23, 24, 32 E16,i = 1(i = 5, 7, 8, 14, 16, 23, 24, 32),

17 C17 : 2, 3, 13, 14, 20, 22, 27, 29, w′17 : 24 A17,i = B17,i(i = 2, 3, 13, 14, 20, 27, 29, 30), 2−28

30 A17,22 6= B17,22, TT117,15 = D17,15,
D17 : 15, 22, 23 C17,22 = D17,22 = D17,23 6= w′17,24,
G17 : 2, 4, 13, 20, 22, 28, 31 E17,i = 1(i = 2, 4, 13, 20, 28, 31),
H17 : 5, 7, 8, 14, 16, 23, 24, 32 E17,22 = 0, TT217,22 = G17,22,

TT217,i = H17,i(i = 5, 7, 8, 14, 16, 23, 24),
18 A18 : 15 w18 : 4, 12, 13, SS118,2 = A18,15, SS118,12 = E18,5, 2−27

D18 : 2, 3, 13, 14, 20, 22, 27, 29, 14, 20, 22, D18,2 = SS218,2 = D18,3 6= w′18,4,
30 28, 29, 31 SS218,12 6= w′18,12,

E18 : 5 w′18 : 4, 12, 13, D18,i 6= w′18,i(i = 13, 14, 20, 22),
H18 : 2, 4, 13, 20, 22, 28, 31 14, 20, 22, D18,27 = SS218,27 6= w′18,28,

28, 29, 31 D18,29 = w′18,29 = D18,30 6= w′18,31,
B18,15 = C18,15, SS118,12 6= w18,12,
H18,i 6= w18,i(i = 4, 20, 22, 31),
H18,i = w18,i 6= w18,i+1(i = 13, 28),
H18,2 6= SS118,2, F18,5 = G18,5,

19 B19 : 15 A19,15 = C19,15, 2−2

F19 : 5 E19,5 = 0,
20 C20 : 24 A20,24 = B20,24, 2−2

G20 : 24 E20,24 = 1,
21 D21 : 24 w21 : 24 D21,24 6= w′21,24, 2−2

H21 : 24 w′21 : 24 H21,24 6= w21,24,
22 1
...

...
...

...
...

33 w′33 : 7, 15, 24 TT133,i = w′33,i(i = 7, 15, 24), 2−3

34 A34 : 7, 15, 24 SS134,(26,2,11) = A34,(7,15,24), 2−15

B34,i = C34,i(i = 7, 15, 24),
TT134,i = SS234,i
(i = 2, 4, 11, 19, 26, 27),
TT234,i = SS134,i(i = 2, 11, 26).

35 A35 : 2, 4, 11, 19, 26, 27 —
B35 : 7, 15, 24
E35 : 2, 3, 11, 19, 20, 26, 28
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Table 7. Example of a boomerang quartet for 35-step CF of SM3

P1 7f57e38d 801906df caf2cf8c 42c58fba 9feec59b ef5ab3fc d261869c 892ca15c
P2 7f57e38d 805906df 4af2cf8c c2858fba 9feec59b ef5aa3fc 5261869c 092cb15c
P3 0188f80d 5d3b7666 9f941688 fc411326 3a674355 2c6075fb 85a38600 892e081b
P4 0188f80d 5d7b7666 1f941688 7c011326 3a674355 2c6065fb 05a38600 092e181b

M1 f5bc88b9 af543ad9 f5068596 beaebbf0 9984c067 ed6e551a 7973166d cef6b36f
c6978096 fdba14b7 2872ffba 2cf314e6 750499b3 4ceb9f22 bd2d99db 71cc928b

M2 f5bc88b9 af543ad9 75068596 beaebbf0 9984c067 ed6e551a 7973166d cef6b36f
c6978096 fdba14b7 2872ffba 2cf314e6 750499b3 4ceb9f22 bd2d99db 71cc928b

M3 75bc89b9 aff43af9 f51a8592 3eae3bf2 c1acf86f edce054a fcf195ed ce76b36f
c69f80fe fdb214b7 2872ffba 3c434496 7d0489bb 4ceb9f22 bdad99db 71c492a3

M4 75bc89b9 aff43af9 751a8592 3eae3bf2 c1acf86f edce054a fcf195ed ce76b36f
c69f80fe fdb214b7 2872ffba 3c434496 7d0489bb 4ceb9f22 bdad99db 71c492a3

C1 ecda4c19 39e58fb5 8fbc81e3 75eec099 655e3f8b f4273d52 94532c77 6967f472
C2 93ffb93f e7e2ffb3 447c0e9f b8ff8f6c 37a12b0a ca38d92c 7eb36c56 899e0baf
C3 f2de485f 3965cff5 8fbc81e3 75eec099 6f523b8d f4273d52 94532c77 6967f472
C4 8dfbbd79 e762bff3 447c0e9f b8ff8f6c 3dad2f0c ca38d92c 7eb36c56 899e0baf

Table 8. Differential characteristic for steps 0-16 used in the boomerang attacks on 36/37-step CF of SM3

i chaining variables message conditions prob

0 A0 : 23 w0 : 4, 5, 7, 12, SS10,10 = A0,23, SS10,20 = E0,13, 2−25

B0 : 23 20, 21, 22, D0,23 6= (A0 ⊕B0 ⊕ C0)23,
C0 : 23, 32 28, 30 D0,i 6= SS20,i(i = 3, 10),
D0 : 3, 4, 5, 7, 10, 12, 21, 22, w′0 : 4, 5, 7, 12, D0,i 6= w′0,i(i = 4, 5, 7, 12, 21, 22, 28, 30),

23, 28, 30, 32 20, 21, 22, SS20,20 6= w′0,20,
E0 : 13 28, 30 H0,13 6= (E0 ⊕ F0 ⊕G0)13,
F0 : 13 H0,i 6= w0,i(i = 4, 5, 7, 12, 21, 22, 28, 30),
G0 : 13, 32 H0,10 6= SS10,10, SS10,20 6= w0,20,
H0 : 4, 5, 7, 10, 12, 13, 21,

22, 28, 30, 32
1 B1 : 23 (A1 ⊕B1 ⊕ C1)23 6= D1,23, 2−2

C1 : 32 (E1 ⊕ F1 ⊕G1)13 6= H1,13,
D1 : 23, 32
F1 : 13
G1 : 32
H1 : 13, 32

2 C2 : 32 1
D2 : 32
G2 : 32
H2 : 32

3 D3 : 32 w3 : 32 1
H3 : 32 w′3 : 32

4 1
...

...
...

...
...

15 w′15 : 15, 23, 32 TT115,i = w′15,i(i = 15, 23), 2−2

16 A16 : 15, 23, 32 SS116,(2,10,19) = A16,(15,23,32), 2−17

B16,i 6= C16,i(i = 15, 23, 32),
TT116,i = A16,i(i = 15, 23),
TT116,i = SS216,i(i = 2, 3, 10, 12, 19, 27),
TT216,i = SS116,i(i = 2, 10, 19),

17 A17 : 2, 3, 10, 12, 15, 19, 23, —
27, 32

B17 : 15, 23, 32
E17 : 2, 4, 10, 11, 19, 27, 28
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Table 9. Differential characteristic for steps 17-36 used in the boomerang attack on 37-step CF of SM3

i chaining variables message conditions prob

17 B17 : 4, 5, 11, 13, 18, 20, 21, 25, 26 A17,i = B17,i(i = 15, 22, 23), 2−27

C17 : 15, 22, 23 A17,i = C17,i(i = 4, 5, 11, 13, 18, 20, 21, 25, 26),
F17 : 1, 3, 9, 12, 15, 17, 26 E17,i = 0(i = 1, 3, 9, 12, 15, 17, 26),
G17 : 5, 7, 8, 14, 16, 23, 24, 32 E17,i = 1(i = 5, 7, 8, 14, 16, 23, 24, 32),

18 C18 : 2, 3, 13, 14, 20, 22, 27, 29, 30 w′18 : 24 A18,i = B18,i(i = 2, 3, 13, 14, 20, 27, 29, 30), 2−28

D18 : 15, 22, 23 A18,22 6= B18,22, TT118,15 = D18,15,
G18 : 2, 4, 13, 20, 22, 28, 31 C18,22 = D18,22 = D18,23 6= w′18,24,
H18 : 5, 7, 8, 14, 16, 23, 24, 32 E18,i = 1(i = 2, 4, 13, 20, 28, 31), E18,22 = 0,

TT218,i = H18,i(i = 5, 7, 8, 14, 16, 23, 24),
TT218,22 = G18,22,

19 A19 : 15 w19 : 4, 12, 13, SS119,2 = A19,15, SS119,12 = E19,5, 2−27

D19 : 2, 3, 13, 14, 20, 22, 27, 29, 30 14, 20, 22, D19,2 = SS219,2 = D19,3 6= w′19,4,
E19 : 5 28, 29, 31 SS219,12 6= w′19,12, D19,i 6= w′19,i(i = 13, 14, 20, 22),
H19 : 2, 4, 13, 20, 22, 28, 31 w′19 : 4, 12, 13, D19,27 = SS219,27 6= w′19,28,

14, 20, 22, D19,29 = w′19,29 = D19,30 6= w′19,31,
28, 29, 31 B19,15 = C19,15, SS119,12 6= w19,12,

H19,i 6= w19,i(i = 4, 20, 22, 31),
H19,i = w19,i 6= w19,i+1(i = 13, 28),
H19,2 6= SS119,2, F19,5 = G19,5,

20 B20 : 15 A20,15 = C20,15, 2−2

F20 : 5 E20,5 = 0,
21 C21 : 24 A21,24 = B21,24, 2−2

G21 : 24 E21,24 = 1,
22 D22 : 24 w22 : 24 D22,24 6= w′22,24, 2−2

H22 : 24 w′22 : 24 H22,24 6= w22,24,
23 1
...

...
...

...
...

34 w′34 : 7, 15, 24 TT134,i = w′34,i(i = 7, 15, 24), 2−3

35 A35 : 7, 15, 24 SS135,(26,2,11) = A35,(7,15,24), 2−15

B35,i = C35,i(i = 7, 15, 24),
TT135,i = SS235,i(i = 2, 4, 11, 19, 26, 27),
TT235,i = SS135,i(i = 2, 11, 26),

36 A36 : 2, 4, 11, 19, 26, 27 SS136,9 6= E36,2 6= E36,3, 2−51

B36 : 7, 15, 24 SS136,26 6= E36,19 6= E36,20,
E36 : 2, 3, 11, 19, 20, 26, 28 SS136,(18,1,3) = E36,(11,26,28),

SS136,(21,23,30,6,13,14) = A36,(2,4,11,19,26,27),
C36,i = B36,i(i = 2, 4, 11, 19, 27), C36,26 6= B36,26,
C36,i = A36,i(i = 15, 24), C36,7 6= A36,7,
SS236,7 6= B36,7, SS236,26 6= A36,26,
TT136,i = SS236,i(i = 1, 3, 9, 13, 16, 18, 21, 30, 31),
F36,i = G36,i(i = 2, 11, 19, 20, 28),
F36,i 6= G36,i(i = 3, 26),
SS136,i 6= ((E36 ∧ F36) ∨ (¬E36 ∧G36))i(i = 3, 26),
TT236,i = SS136,i(i = 1, 6, 9, 13, 14, 18, 21, 23, 30).

37 A37 : 1, 3, 9, 13, 16, 18, 21, 30, 31 —
B37 : 2, 4, 11, 19, 26, 27
C37 : 1, 16, 24
E37 : 1, 3, 7, 8, 9, 10, 13, 14, 18, 21,

22, 23, 26, 27, 30, 31, 32
F37 : 2, 3, 11, 19, 20, 26, 28
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Table 10. Differential characteristics used in the boomerang attacks on 7 and 8 rounds of KP of BLAKE-256

message m5 : 21

i chaining variables prob
2.5 v0 : 5 2−54

v1 : 1, 13, 29
v2 : 1, 9, 17, 20, 25, 28
v3 : 1, 8, 12, 24, 28
v4 : 8, 24
v5 : 21
v6 : 1, 13, 21, 29
v7 : 1, 5, 8, 9, 13, 17, 20, 21, 25, 29
v8 : 5, 13, 21, 29
v9 : 1
v10 : 5, 29
v11 : 5, 13, 29
v12 : 5
v13 : 5, 8, 13, 21, 28, 29
v14 : 1, 12, 17, 28
v15 : 13

3 v0 : 5, 21 2−16

v3 : 1
v4 : 5, 21
v7 : 1, 21
v8 : 5, 13, 21, 29
v11 : 21
v12 : 13, 29
v15 : 21

4 v1 : 21 2−1

5 2−2

6 v1 : 21 2−29

v6 : 6
v11 : 13
v12 : 13

6.5 v0 : 17, 21 —
v1 : 21, 25
v2 : 6, 10, 26
v3 : 1
v4 : 2, 6, 10, 14, 22
v5 : 6, 10, 18, 22, 30
v6 : 3, 7, 11, 15, 19, 23, 27
v7 : 6, 18, 26
v8 : 9, 13, 21, 29
v9 : 5, 13, 17, 29
v10 : 2, 14, 18, 22, 30
v11 : 13, 25
v12 : 9, 13, 21
v13 : 13, 17, 29
v14 : 2, 14, 18, 30
v15 : 25

message m11 : 32

i chaining variables prob
6.5 v0 : 3, 7, 19, 23, 32 2−40

v1 : 16, 32
v2 : 8, 12, 24, 32
v3 : 4, 7, 12, 16, 20, 28, 31
v4 : 4, 8, 12, 19, 20, 24, 28, 31
v5 : 3, 12, 19, 32
v7 : 8, 12, 24, 32
v8 : 8, 16, 24, 32
v10 : 12
v11 : 16, 32
v13 : 32
v14 : 7, 16, 19
v15 : 7, 12, 16, 23, 28

7 v0 : 12, 32 2−6

v1 : 16, 32
v2 : 32
v4 : 12, 32
v5 : 16, 32
v8 : 32
v9 : 8, 16, 24, 32
v10 : 32
v13 : 8, 24
v14 : 16, 32

8 v2 : 32 1
9 2−1

10 v0 : 32 2−24

v5 : 17
v10 : 24
v15 : 24

10.5 v0 : 4, 32 —
v1 : 5, 17, 21
v2 : 12
v3 : 28
v4 : 1, 9, 17, 21, 29
v5 : 2, 6, 14, 18, 22, 26, 30
v6 : 5, 17, 29
v7 : 1, 13, 21, 25
v8 : 8, 16, 24, 28
v9 : 1, 9, 13, 25, 29
v10 : 4, 24
v11 : 8, 20, 32
v12 : 8, 24, 28
v13 : 9, 13, 25, 29
v14 : 4
v15 : 20, 32
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Table 11. Example of a boomerang quartet for 7-round KP of BLAKE-256

P1 3c8a4276 cfb0dcc0 ab6c46fc da21a046 ec13b53b cf12cee3 45fc2729 ccca4dee
14c76a6a 40f2aada a0933ddf d51f0f3e 260c01f7 6beb49c8 da575eb9 a72108d8

P2 3c9a4286 cfb0dcc0 ab6c46fc da21a045 ec03b52b cf12cee3 45fc2729 ccda4def
04b75a7a 40f2aada a0933ddf d50f0f3e 360c11f7 6beb49c8 da575eb9 a71108d8

P3 ac3b9572 70a2660d 6520d49f d01074b9 71422e9e 39e0c7ab 4af9b4d4 797282e3
86cddb58 b5c62820 5b8ff4d0 be138673 8b1e21ea b6dd991a 36176157 ebc193f1

P4 ac2b9582 70a2660d 6520d49f d01074ba 71522e8e 39e0c7ab 4af9b4d4 796282e2
96bdeb48 b5c62820 5b8ff4d0 be038673 9b1e31ea b6dd991a 36176157 ebf193f1

M1 cf25b88d 0b85815c 7a2c591a 6df41a94 59eb3709 ef111a43 c3f441c7 846d24e6
950acec4 dfaa5876 05676c74 a3a2894f a000ff75 31595bf2 61592468 79f50b81

M2 cf25b88d 0b85815c 7a2c591a 6df41a94 59eb3709 ef011a43 c3f441c7 846d24e6
950acec4 dfaa5876 05676c74 a3a2894f a000ff75 31595bf2 61592468 79f50b81

M3 cf25b88d 0b85815c 7a2c591a 6df41a94 59eb3709 ef111a43 c3f441c7 846d24e6
950acec4 dfaa5876 05676c74 23a2894f a000ff75 31595bf2 61592468 79f50b81

M4 cf25b88d 0b85815c 7a2c591a 6df41a94 59eb3709 ef011a43 c3f441c7 846d24e6
950acec4 dfaa5876 05676c74 23a2894f a000ff75 31595bf2 61592468 79f50b81

C1 1db2186a ce3fe558 a96bdf5e b0895b04 678b343b d6dd58ea e333eb5d fe982f92
52660ebe f519fabe d32be0de b81731bb 185dd895 050bf35e bc6f992c eb0364f8

C2 fbb8c27f 99cff7f2 ab2dabef faa5905e 709f8d52 81f4ec99 d3b15660 d6412448
ad141e81 bf02aa21 fd84e3fb 02a3bc0d 973c04e0 bb95e80b 5fcad084 f2f36107

C3 9db2186a ce3fe558 a96bdf5e b0895b04 678b343b d6dc58ea e333eb5d fe982f92
52660ebe f519fabe d3abe0de b81731bb 185dd895 050bf35e bc6f992c eb8364f8

C4 7bb8c27f 99cff7f2 ab2dabef faa5905e 709f8d52 81f5ec99 d3b15660 d6412448
ad141e81 bf02aa21 fd04e3fb 02a3bc0d 973c04e0 bb95e80b 5fcad084 f2736107
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