You are looking at a specific version 20131216:192106 of this paper. See the latest version.

Paper 2013/840

(Efficient) Universally Composable Oblivious Transfer Using a Minimal Number of Stateless Tokens

Seung Geol Choi and Jonathan Katz and Dominique Schröder and Arkady Yerukhimovich and Hong Sheng Zhou

Abstract

We continue the line of work initiated by Katz (Eurocrypt 2007) on using tamper-proof hardware for universally composable secure computation. As our main result, we show an efficient oblivious-transfer (OT) protocol in which two parties each create and exchange a single, stateless token and can then run an unbounded number of OTs. Our result yields what we believe is the most practical and efficient known approach for oblivious transfer based on tamper-proof tokens, and implies that the parties can perform (repeated) secure computation of arbitrary functions without exchanging additional tokens. Motivated by this result, we investigate the minimal number of stateless tokens needed for universally composable OT/secure computation. We prove that our protocol is optimal in this regard for constructions making black-box use of the tokens (in a sense we define). We also show that nonblack-box techniques can be used to obtain a construction using only a single stateless token.

Note: This is the TCC proceedings version of the paper. This replaces the previously withdrawn paper (eprint report 2011/689).

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Published by the IACR in TCC 2014
Contact author(s)
arkady @ cs umd edu
History
2018-01-24: last of 3 revisions
2013-12-16: received
See all versions
Short URL
https://ia.cr/2013/840
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.