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Abstract. We show how the Bitcoin currency system (with a small modification)
can be used to obtain fairness in any two-party secure computation protocol in the
following sense: if one party aborts the protocol after learning the output then the
other party gets a financial compensation (in bitcoins). One possible application
of such protocols is the fair contract signing: each party is forced to complete the
protocol, or to pay to the other one a fine.
We also show how to link the output of this protocol to the Bitcoin currency. More
precisely: we show a method to design secure two-party protocols for functional-
ities that result in a “forced” financial transfer from one party to the other.
Our protocols build upon the ideas of our recent paper “Secure Multiparty Com-
putations on Bitcoin” (Cryptology ePrint Archive, Report 2013/784). Compared
to that paper, our results are more general, since our protocols allow to compute
any function, while in the previous paper we concentrated only on some specific
tasks (commitment schemes and lotteries). On the other hand, as opposed to “Se-
cure Multiparty Computations on Bitcoin”, to obtain security we need to modify
the Bitcoin specification so that the transactions are “non-malleable” (we discuss
this concept in more detail in the paper).

1 Introduction

In our recent paper [2] we put forward a new concept dubbed “secure multiparty com-
putations (MPCs) on Bitcoin”. On a high level the idea of this concept is as follows.
Recall that the MPCs [29,20] are protocols that allow a group of mutually distrusting
parties to “emulate” a trusted third party functionality in a secure way. Examples of such
functionalities include lotteries, auctions, voting schemes and many more. It is known
since 1980s that for any efficiently-computable functionality there exists an efficient
protocol that emulates it, assuming that the majority of the participants is honest and
that certain computational problems are intractable. If there is no honest majority (in
particular: if there are just two parties and one of them is cheating), then such protocols
also exist, but in general they do not provide fairness, i.e. a dishonest party can prevent
the other parties from learning their outputs, after she learned it herself [10,17].
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Despite of their great importance both to the theory and applications, the MPC
protocols suffer from some inherent limitations. The first one is the above-mentioned
lack on fairness when the majority of the participants is dishonest. The second is that the
standard security definition of MPCs does not ensure that the parties provide the inputs
to the computations in an honest way, and that they respect the outcome. For example,
in most of the settings it is clearly impossible to guarantee in a cryptographic way that a
bidder in an auction has enough money to pay his bid, or that the losing party will accept
the outcome of the voting procedure. Bitcoin, due to its fully distributed nature, and the
fact that the list of transactions is publicly known, gives an attractive opportunity to go
beyond this barrier. In [2] we discuss this idea, and provide some examples of how it
can be used. The main technical contribution of that paper is a protocol for a multiparty
lottery with a very strong security property: each honest party can be sure that, once
the game starts, it will be fair, and she will be paid the money in case she wins. This
happens even if the other parties actively cheat, and in particular even if some (or all)
of them abort the protocol prematurely. In order to achieve it we use a mechanism that
financially penalizes a party that does not follow the protocol.

Our main tool is a special type of a “Bitcoin-based timed commitment scheme”, that
has the following non-standard property: a committer has to pay a “deposit” during the
commitment phase, that he gets it back only if he opens his commitment within some
specific time. Although the main application of this commitment scheme is the lottery
protocol, it can actually also be used to obtain fairness in protocols where the inputs
and outputs do not concern Bitcoin. One of the questions left open in [2] is to construct
protocols for more general functionalities than the commitment scheme or the lottery.

Our contribution. In this paper we show that a small modification of the Bitcoin spec-
ification would make it possible to construct protocols for a very general class of func-
tionalities in a two-party settings. Roughly speaking (for more details see Section 3),
for our protocols to work we need to assume that the transactions are “non-malleable”
in the following sense: we assume that each transaction is identified by the hash of its
simplified version (also called the “body” of a transaction), instead of the hash on the
complete transaction (i.e. the body and the input scripts) as it is done currently in Bit-
coin. Assuming this modification, we show how to achieve fairness in any two-party
protocol in the following sense. Before learning the output of the computation, each
party has to pay some deposit. She is guaranteed to get this money back as long as she
behaves honestly until the very end of the protocol, i.e. until the other party learns the
output. If she misbehaves then her money is given to the other party.

In practice it will make sense to use this protocol if the potential gain from a pre-
mature termination is lower than the deposit that the party pays. As the potential appli-
cations of our protocols let us mention the contract signing problem, which has been
extensively studied in cryptography since 1980s [18,6,12,14]. Informally, the challenge
in this line of work is to design the protocols where two parties simultaneously sign a
documentM in a fair way, i.e. it should be impossible for one party, say Alice, to obtain
Bob’s signature on M without Bob obtaining Alice’s signature on M (and vice-versa).
It was shown by Even and Yacobi [18] that this task is in general impossible to achieve,
and since then there has been a substantial effort to overcome this impossibility result



in various ways (e.g. by assuming an existence of a trusted third party). Since obviously
a signing procedure can be modeled as a two-party functionality, hence one can use
our protocol to achieve fairness. If the value of the contract is lower than the deposit
paid by each party, then clearly the parties will have no incentive to cheat. Moreover,
if one party, say Alice, cheats then Bob will earn Alice’s deposit (plus he will get his
own deposit back), which will compensate his loses resulting from the fact that Alice
cheated during the contract signing protocol. Of course, our protocols can be used in
several other applications that rely on a fair exchange of secrets, such as certified e-mail
systems [31,4,1] or non-repudiation protocols [30].

We also show how to link the outputs of our protocols to the Bitcoin money in the
following sense (for more information see Sec. 6). The output of the emulated func-
tionality can contain instructions of a form “Alice sends dB to Bob” or “Bob sends dB
to Alice” (where “B” is the Bitcoin currency symbol). Our protocol will enforce that
these transfers are indeed performed. Of course, this holds only if the parties conduct
the protocol until the very end, but again, if one party decides to abort prematurely then
her deposit will be paid to the other party. Hence, if this deposit is larger than d then it
clearly makes no economic sense to abort. Of course, one example of a such a function-
ality is the lottery protocol. We would like to stress, however, that our result does not
imply the result of [2], since the protocols of [2] work on the current version of Bitcoin
protocol (without any modification).

One can, of course, imagine several other applications of our protocols. For exam-
ple, one can construct protocols for buying digital goods that can be specified by any
poly-time computable functions π : {0, 1}∗ → {true, false}. More precisely: imagine
that Alice promises Bob that she will pay him 1B if he sends her a file m ∈ {0, 1}∗
such that π(m) = true, however she does not want to reveal this function neither to
Bob nor to the public. Then, we can construct such a protocol that emulates the follow-
ing functionality: the input of Alice is π and the input of Bob ism. If π(m) = true then
the output is m and a “forced transfer of 1B from Alice to Bob”, otherwise the output
is ⊥. Such π can be, e.g., a function that checks if m is a secret that concerns a certain
person.1

On a technical level, our protocols are based on a new variant of a Bitcoin-based
timed commitment scheme that we call the “simultaneous commitment” and denote
SCS. It can be viewed as an extension of the Bitcoin-based commitment scheme from
[2] described above. The main difference is that it forces both users to simultaneously
commit to their secrets. In other words, the commitment of each party is valid (and she
is forced to open it by some time t) only if the other party made her corresponding
commitment at the same time.

Related work. As described above our paper builds upon the ideas from our previous
paper [2], and hence most of the work relevant to that paper is also relevant to this one.
Usage of Bitcoin to create a secure and fair two-player lottery has been independently
proposed by Back and Bentov in [5]. Similarly to [2], their protocol makes use of the

1 A real-life example of such situation is the recent case when the German tax authorities paid
4 million euro to an anonymous informant for a CD containing information about the German
tax evaders with bank accounts in Switzerland [13].



time-locked transactions, but the purpose they are used for is slightly different. Their
protocol uses time-locks to get the deposit back if the protocol is interrupted, while
this paper and [2] use time-locks to make a financial compensation to an honest party,
whenever the other party misbehaves.

Usage of timed-commitments to achieve fairness in MPC has been already proposed
in a number of papers, e.g. [8,19,25], but this line of research uses a completely different
approach from ours. It is based on a gradual release of information and if the protocol is
interrupted prematurely than both parties can reconstruct the result with a huge compu-
tational effort. The fairness of two-party computation has been also studied by Gordon
et al. [17], who showed that complete fairness can be achieved for some functions being
computed, e.g. Boolean and/or, but not xor. In contrast, our construction works for an
arbitrary function.

Improvements to Bitcoin have been suggested in an important work of Barber et
al. [16] who study various security aspects of Bitcoin and Miers et al. [15] who pro-
pose a Bitcoin system with provable anonymity. The idea to use some concepts from
the MPC literature appeared already in Section 7.1 of [16] where the authors construct
a secure “mixer”, that allows two parties to securely “mix” their coins in order to ob-
tain unlinkability of the transactions. They also construct commitment schemes with
time-locks, however some important details are different, in particular, in the normal
execution of the scheme the money is at the end transferred to the receiver. Also, the
main motivation of this work is different: the goal of [16] is to fix an existing problem
in Bitcoin (“linkability”), while our goal is to use Bitcoin to perform tasks that are hard
(or impossible) to perform by other methods.

Commitment schemes and zero-knowledge proofs in the context of the Bitcoin were
already considered in [9], however, the construction and its applications are different —
the main idea of [9] is to use the Bitcoin system as a replacement of a trusted third party
in time-stamping. The notion of “deposits” has already been used in Bitcoin (see [26],
Example 1), but the application described there is different: the “deposit” is a method for
a party with no reputation to prove that she is not a spambot by temporarily sacrificing
some of her money.

The Bitcoin wiki “Contracts page” [26] contains several interesting multiparty pro-
tocols, and in some sense our work can be viewed as an effort to extend the set of
possible types of contracts. We note that the main features that distinguishes our work
from most of them is (1) we do not want to rely on any trusted third parties (like the
“mediators”) and (2) the focus of our protocols is to protect the input privacy.

The problem of the malleability of the transactions has been noticed before and de-
scribed in [28]. Malleability is a problem for most of the protocols using time-locks
(e.g. [5,27]) and Examples 1, 5, and 7 in [26], but is usually not even mentioned, prob-
ably because it is believed that it will be eliminated in the future versions of the Bitcoin
protocol. In contrast, our lottery protocol from [2] is not susceptible to the malleability
problem. We also note that in our subsequent work [3] we managed to solve the problem
of constructing the simultaneous commitment schemes in the standard Bitcoin (without
any modifications), at a cost of making the protocol more complicated. Nevertheless,
we think that our modification proposal from this paper still makes sense, as it allows to



construct simpler simultaneous commitment protocols, and may be useful also in other
contexts.

2 A description of Bitcoin

We assume reader’s familiarity with the basic principles of the Bitcoin. Let us only
briefly recall that the Bitcoin currency system consists of addresses and transactions
between them. An address is simply a public key pk (technically an address is a hash
of pk ). We will frequently denote key pairs using the capital letters (e.g. A). We will
also use the following convention: if A = (sk , pk) then sigA(m) denotes a signature
on a message m computed with sk and verA(m,σ) denotes the result (true or false) of
the verification of a signature σ on message m with respect to the public key pk .

Each Bitcoin transaction can have multiple inputs and outputs. Inputs of a transac-
tion Tx are listed as triples (y1, a1, σ1), . . . , (yn, an, σn), where each yi is a hash of
some previous transaction Tyi (our proposal, described in Section 3, is to change it,
but for a moment let us stick to the current version of the system), ai is an index of
the output of Tyi (we say that Tx redeems the ai-th output of Tyi ) and σi is called an
input-script . The outputs of a transaction are presented as a list of pairs (v1, π1), . . . ,
(vm, πm), where each vi specifies some amount of coins (called the value of the i-
th output of Tx) and πi is an output-script . A transaction can also have a time-lock
t, meaning that it is valid only if time t is reached. Hence, altogether transaction’s
most general form is: Tx = ((y1, a1, σ1), . . . , (yn, an, σn), (v1, π1), . . . , (vm, πm), t).
The body of Tx2 is equal to Tx without the input-scripts, i.e.: ((y1, a1), . . . , (yn, an),
(v1, π1), . . . , (vm, πm), t), and denoted by [Tx]. One of the most useful properties of
Bitcoin is that the users have flexibility in defining the condition on how the transac-
tion Tx can be redeemed. This is achieved by the input- and the output-scripts. One can
think of an output-script as a description of a function whose output is Boolean. A trans-
action Tx defined above is valid if for every i = 1, . . . , n we have that π′i([Tx], σi)

3

evaluates to true, where π′i is the output-script corresponding to the ai-th output of Tyi .
Another conditions that need to be satisfied are that the time t has already passed and
v1 + · · · + vm ≤ v′1 + · · · + v′n where each v′i is the value of the ai-th output of Tyi .
The scripts are written in the Bitcoin scripting language.

We will present the transactions as boxes. The redeeming of transactions will be
indicated with arrows (cf. e.g. Fig. 1). The transactions where the input script is a
signature, and the output script is a verification algorithm are the most common type
of transactions and are called standard transactions. The address against which the
verification is done will be called a receiver of this transaction. Currently some miners
accept only such transactions. However, there exist other ones that do accept the non-
standard (also called strange) transactions, one example being a big mining pool called
Eligius.

We use the security model defined in [2]. For the lack of space we only sketch it
here. We assume that the parties are connected by an insecure channel and have access

2 In the original Bitcoin documentation this is called “simplified Tx”
3 Technically in Bitcoin [Tx] is not directly passed as an argument to π′i. We adopt this conven-

tion to make the exposition clearer.



Put(in: T )
in-script: sigC([Put ])
out-script(body , σ1, σ2):
verC(body , σ1)∧ verS(body , σ2)
val: dB

Fuse(in: Put)
in-script: sigC([Fuse]), sigS([Fuse])
out-script(body , σ): verC(body , σ)
val: dB
tlock: t

dB dB

dB

Fig. 1. The graph of transactions for a situation when a user locks dB. This is an exemplary situ-
ation when the problem of malleability arises. C and S denote the pairs of keys hold respectively
by the client and the server. t is a moment of time, when the user can take his deposit back. T
denotes an unredeemed transaction with value dB, which can be redeemed with key C.

to the Bitcoin chain, which is the only “trusted component” in the system. We assume
that each party can access the current contents of the block chain, and post messages on
it. Let maxBB be the is maximal possible delay between broadcasting the transaction and
including it in the block chain. We do not assume that this communication is private.
For simplicity we also assume that the transaction fees are zero, but our model and
security statements can be easily modified to take into account the non-zero fees.

3 Bitcoin Improvement Proposal

One of the problems with constructing multi-party protocols using Bitcoin is the “mal-
leability” of transactions. This problem has been noticed before by the Bitcoin commu-
nity [28] as it concerns several Bitcoin protocols that use the advanced features of the
scripting language. Essentially, the problem is that, given a valid transaction T , it is
possible for everyone to construct a different valid transaction T ′, which is functionally
equivalent to T , but has a different hash. The malleability of transactions comes from
the fact, that a hash of a transaction is computed over the whole transaction including
its input scripts. On the other hand, signatures are computed only over the body of the
transaction, which means that they do not cover the input scripts4. Therefore, one can
tweak an input script in a way that does not change its functionality (e.g. by adding push
and pop operations5) and create a transaction, which is also correct (the signatures are
still valid as the input scripts are not signed), and functionally equivalent to the original
transaction, yet its hash is different.

To understand why malleability of transactions may be a problem consider a sit-
uation, when a client wants to prove to a server that he is not a spambot by locking
(making unspendable for a particular amount of time) some amount of bitcoins6. To
achieve this, the client should create a transaction such that he can not redeem it on his

4 The reason is that it is impossible to construct a signature, in such a way, that it is a part of the
message being signed.

5 In this paper we usually treat input scripts as arguments for the corresponding output scripts.
In reality, however, they are scripts in Bitcoin scripting language, which are supposed to push
arguments for an output script on the stack.

6 To read more about such deposits see [26].



own. But he has to be sure, that he will eventually get his money back after some time.
This could be resolved by using a transaction with a time-lock (see Fig. 1 for a graph
of transactions) — the client first creates a transaction Put spending his money, which
can be redeemed only by a transaction signed by him and the server (so they can agree
to return the deposit to the client at any time). Then he sends the hash of this transaction
to the server and the server returns a transaction Fuse with a signature of the server
on it 7 — this transaction sends back the deposit to the client after some time. So now
the client may broadcast the first transaction, and after some time he may use the Fuse
transaction to get back his deposit. This is exactly where the problem of malleability
arises: if an adversary sees the transaction Put after it is broadcast, but before it is in-
cluded in the block chain (as the transactions are broadcast in a peer-to-peer network),
he can create and broadcast a transaction Put ′, which is functionally equivalent to Put ,
but has a different hash. Then, if Put ′ is included in the block chain first, the original
Put becomes invalidated. As a result the Fuse will not be correct (it contains a hash of
Put , which never appeared in the block chain), so the client may lose his money.

A source of the malleability problem is that a hash of a transaction depends on its
input scripts. In some situation this dependence is itself a problem, because we may not
know the input scripts of the transaction T while signing a transaction redeeming T .
In next section we present a possible solution for these problems. It requires a small
modification of the Bitcoin specification. We believe that this modification could be
implemented in the future in Bitcoin. We discuss why it does not decrease the security
of Bitcoin.

Our modification. In the current version of Bitcoin protocol, each transaction contains
a hash of the transaction it spends. That hash is computed over the whole transaction.
We propose to compute those hashes over the transaction without its input scripts (i.e.
over the body of the transaction), so they would be computed in the same way the
hashes for transactions’ signatures are currently being computed. That means that the
transaction would have the same hash value regardless of its input scripts.

Obviously with this modification, the malleability is not a problem. An adversary
can still tweak the input script of an arbitrary transaction in the network and broadcast
its modified version, but the hashes of both transactions — original and modified one
— are identical, so it does not make any difference, which of them will be included in
the block chain.

Additionally, with this modification it is possible to sign a chain of transactions
even if we do not know the input scripts of some of them. The only thing, which is
necessary to compute signatures are outputs (output scripts and values) and the hashes
of the transactions redeemed by the first transaction in the chain. This may be useful in
constructing more complex protocols.

Now consider, what in fact is changed with this modification. The input scripts are
used only to show that the transaction is authorized to redeem the other transactions.

7 The server signs a transactions Fuse without seeing the transaction Put and a malicious client
could try to send a hash of an existing transaction instead of Put . Therefore, the server should
use a fresh key every time to prevent itself from being tricked into signing a transaction spend-
ing some other transaction of its to the client.



So two correct transactions which differ only in the input scripts are equivalent — they
prove in two different ways that the Bitcoin transfer is authorized. It is not possible
that the block chain contains two such transactions. That is why the hash still uniquely
identifies the redeemed transaction.8

4 Simultaneous Bitcoin-based timed commitment scheme

In this section we present a modification of the Bitcoin-based timed commitment sche-
me introduced in [2]. To make the paper self-contained we first recall the original timed-
commitment scheme CS(C, d, t, s) of [2], and then we describe our modified scheme.

Timed-commitments of [2]. Recall that a (standard) commitment scheme is a proto-
col between two parties: a committer C and a receiver R. The protocol contains of two
phases. In the first one, called the commitment phase, C commits to some secret string
s by interacting with R. What is important is that after this interaction s should remain
secret (this is called the hiding property of the scheme). Then comes the opening phase
in which C opens the commitment by interacting again with R, which results in R learn-
ing s. What we require is that a cheating C cannot “change his mind”, in other words,
once the commitment phase is over, there exists at most one value s that R will accept.
This property is called binding. A simple commitment scheme can be constructed as
follows. Let H be a hash function. To commit to a string s (of some fixed length) the
committer selects a random string ρ, computes s′ = (s||ρ) and sends H(s′) to the re-
ceiver. If H is modeled as a random oracle, and ρ is sufficiently large (say: linear in the
security parameter), then obviously H(s′) does not reveal any significant information
about s (hence the commitment is hiding). To open the commitment, C sends s′ to R.
The binding property of this commitment scheme follows from the collision-resistance
of H .

Several other commitment schemes have been constructed over the last 2 decades.
One inherent problem with all of them is related to the fairness issue in the two-party
computation protocols (see Sect. 1). Namely, there is no way to force C to open the
commitment. This problem has negative consequences for several applications. Con-
sider, e.g., a simple protocol in which two parties (call them again C and R) want to
“flip a coin”, i.e., to select a bit b ← {0, 1} uniformly at random. A simple protocol
of Blum [7] for this problem works as follows: (1) C commits to some random bit
c ← {0, 1}, (2) R selects a random bit r ← {0, 1} and sends it to C, (3) C opens his
commitment, and the output of the protocol is computed as b = c ⊕ r. This protocol
is obviously secure, informally because the hiding property of the commitment scheme
guarantees that R does not know c when he chooses r, and the binding property pre-
vents C from changing c after he learned r. Unfortunately, there is no way to force R
to complete Step (3) and to open the commitment. Hence, C he can make the protocol
“crash” without producing the output, depending on what the output is.

8 The only exception are the so-called generation transactions, which create new bitcoins and
can have arbitrary input scripts (the script is called “coinbase” in this case). However, it is not
difficult to ensure that each such transaction has a different hash, by using a new pair of keys
for each generation.



As a remedy to this problem [2] propose to use Bitcoin in the following way. During
the commitment phase the committer has to put aside a “deposit”. Assume its value is
dB, and it comes from an unredeemed standard transaction T , whose receiver is C. The
committer gets his money back once he opens the commitment. If he does not open
the commitment within some time t then the money can be claimed by the receiver.
This is implemented using the Bitcoin scripts and time-locks on top of the hash-based
commitment scheme described above. Let C andR be the respective key-pairs of C and
R. The transactions used in this implementation are as follows (the scripts’ arguments,
which are omitted are denoted by ⊥):

Commit(in: T )
in-script: sigC([Commit ])

out-script(body, σ1, σ2, x):
(H(x) = h ∧ verC(body, σ1)) ∨ (verC(body, σ1) ∧ verR(body, σ2))
val: dB

Open(in: Commit)

in-script:
sigC([Open]),⊥, s′
out-script(body, σ):
verC(body, σ)
val: dB

Fuse(in: Commit)

in-script:
sigC([Fuse]), sigR([Fuse]),⊥
out-script(body, σ): verR(body, σ)
val: dB
tlock: t

dB dB

dB

dB dB

To commit to a secret s the committer first computes s′ = (s||ρ) (where ρ is a ran-
dom string of some fixed length), and sets h := H(s′). He then creates the Commit
transaction and posts it on the block chain. The role of this step is to publish h and to
deposit the money. The committer also creates the body of the Fuse transaction with
time lock set to some time t in the future, and sends it to R together with his signature
on it. Hence, the only thing that is missing to obtain the complete Fuse transaction is
the receiver’s signature on the body. This, however, R can compute himself. Hence at
the end of the commitment phase R holds a Fuse transaction. The purpose of Fuse is to
allow the receiver to claim the money, if R did not open the commitment within time t.

In the opening phase the committer posts Open on the block chain. This has two
consequences. Firstly, this reveals s′ (and hence s), which is part of the input script.
Secondly, it allows the committer to get his money back. Thanks to the way in which
the scripts are created, this is actually the only way for him to get his money. If he does
not do it by the time t, then R posts Fuse on the block chain and gets the committer’s
deposit.

It is easy to see how this timed-commitment scheme solves the problem of fairness
in the coin-flipping protocol described above: if C did not open the commitment scheme
on time then he is “punished” financially for this, and R gets a compensation. Unfortu-
nately, this commitment scheme does not solve the fairness problem in general. This is
because for the general two-party computation protocols we need something stronger.
More precisely, the problem is that this commitment scheme forces the committer to
reveal his secret (or to pay a fine), no matter how the other party behaves. To see why it
is a problem, imagine two parties, called Alice and Bob holding secrets denoted respec-
tively sA and sB . Suppose that the protocol instructs both of them to commit to their



secrets and then to reveal them (in fact this is exactly the situation that we have in our
two-party scheme in Sect. 5). If they just run two instantiations of the CS scheme, then
one party, say Alice, can interrupt the protocol where she is the committer, after Bob has
already made a commitment. In that case Bob will be forced to reveal his secret share
or lose his deposit. Hence, it is important that both commitment schemes are executed
simultaneously, i.e. it is not possible that as a result of the protocol one of the parties is
committed to her secret and the other one is not. A construction of such a commitment
scheme is one of our two main contributions and is presented below.

Simultaneous Bitcoin-based timed commitment scheme. The protocol is denoted by
SCS(A,B, d, t), where A and B are the parties executing the protocol, d is the value of
the deposits in B, t is the timestamp — the parties should open the commitments before
that time, and sA, sB are the secrets. We assume that A and B are the respective key
pairs of A and B and the block chain contains unredeemed transactions TA and TB ,
both of a value d, whose receivers are A and B respectively. The protocol is depicted on
Fig. 2. The commitment phase is denoted by SCS.Commit(A,B, d, t) and the opening
phase is denoted by SCS.Open(A,B, d, t). Let α be the security parameter.

The security definition of the SCS protocol is very similar to the security definition
of the CS protocol described above. We model the hash function H used in the protocol
as a random oracle. We require that the commitment is hiding and binding. We allow
a negligible (in α) error probabilities in both hiding and biding. The protocol can be
interrupted during the commitment phase — in this case the parties do not lose any
bitcoins and do not learn the other party’s secret. The only difference between the CS
protocol and the SCS protocol is that if the SCS protocol is not interrupted during the
commitment phase, then both parties are committed. This means that an honest party
can be sure that her opponent either reveals the secret by the time t or transfers dB
to her. Moreover, it is guaranteed that the party which reveals a secret would get her
deposit back. Again, we allow negligible probabilities that the above statements do not
hold.

We construct the SCS protocol assuming the Bitcoin modification from Section 3.
The detailed description of the SCS protocol is presented on Fig. 2. In SCS protocol we
assume that both parties already know the hashes hA and hB of both secrets concate-
nated with some random strings ρA and ρB (resp.). More precisely: hA := H(sA||ρA)
and hB := H(sB ||ρB), where ρA ← {0, 1}α and ρB ← {0, 1}α. The reason for this
will become clear in Sec. 5. The idea behind the protocol is as follows. First the par-
ties use the existing transactions TA and TB to construct the transaction Commit . The
transaction Commit has two outputs — one is used to commit A to sA and the other
one to commit B to sB . The first output can be claimed by A with revealing her secret
or after time t by B. The latter option is technically achieved by signing at the very be-
ginning of the protocol a transaction FuseA, which redeems Commit , can be claimed
only by B and has a time-lock t. The second output of Commit is analogous. The proof
of the following lemma appears in the extended version of this paper.

Lemma 1. The SCS scheme from Fig. 2 is a simultaneous Bitcoin-based commitment
scheme assuming the modification from Sec. 3.



Commit(in: TA, TB)
in-script1: sigA([Commit ]) in-script2: sigB([Commit ])

out-script1(body, σ1, σ2, x):
(verA(body, σ1) ∧H(x) = hA)∨
(verA(body, σ1) ∧ verB(body, σ2))

out-script2(body, σ1, σ2, x):
(verB(body, σ2) ∧H(x) = hB)∨
(verB(body, σ2) ∧ verA(body, σ1))

val1: dB val2: dB

OpenA(in: Commit(1))

in-script:
sigA([OpenA]),⊥, s′A
out-script(body, σ):
verA(body, σ)
val: dB

OpenB(in: Commit(2))

in-script:
⊥, sigB([OpenB ]), s′B
out-script(body, σ):
verB(body, σ)
val: dB

FuseA(in: Commit(1))

in-script: sigA([Fuse
A]),

sigB([Fuse
A]),⊥

out-script(body, σ): verB(body, σ)
val: dB
tlock: t

FuseB(in: Commit(2))

in-script: sigA([Fuse
B ]),

sigB([Fuse
B ]),⊥

out-script(body, σ): verA(body, σ)
val: dB
tlock: t

dB dB

dB dB

dB dB

dB dB

dB dB

Pre-condition:
1. A holds the key pair A and B holds the key pair B.
2. A knows the secret sA, B knows the secret sB , both players know the hashes hA = H(s′A)

and hB = H(s′B), where s′A := (sA||ρA), s′B := (sB ||ρB), and ρA, ρB ← {0, 1}α are
random strings known only to A and B respectively.

3. There are two unredeemed transactions TA, TB of value dB, which can be redeemed with
the keys A and B respectively.

The SCS.Commit(A,B, d, t) phase
1. Both players compute the body of the transaction Commit using TA and TB as inputs.
2. Both players compute the bodies of the transactions FuseA and FuseB using appropriate

outputs (Commit(1) and Commit(2) respectively) of the Commit transaction. Then, they
sign FuseA and FuseB and exchange the signatures.

3. A signs the transaction Commit and sends the signature to B.
4. B signs the transaction Commit and broadcasts it.
5. Both parties wait until the transaction Commit is included in the block chain.
6. If the transaction Commit does not appear on the block chain until time t− 2maxBB, where

maxBB is a maximal possible delay between broadcasting the transaction and including it in
the block chain (what means that B did not perform Step. 4), then A immediately redeems
the transaction TA and quits the protocol. Analogously, if A did not send her signature to B
until time t− 2maxBB, then B redeems the transaction TB and quits the protocol.

The SCS.Open(A,B, d, t) phase
7. A and B broadcast the transactions OpenA and OpenB respectively, what reveals the secrets
sA and sB .

8. If within time t the transaction OpenA does not appear on the block chain, then B broadcasts
the transaction FuseA and gets dB. Similarly, if within time t the transaction OpenB does
not appear on the block chain, then A broadcasts the transaction FuseB and gets dB.

Fig. 2. The SCS protocol. The scripts’ arguments, which are omitted are denoted by ⊥.



5 Two-party computation

The concept of secure two-party computations has already been informally described in
the introduction. For the lack of space we do not provide full security definitions of these
protocols, and only briefly sketch the constructions. The reader may refer to [11,21]
for more on this topic. A common paradigm [22] for constructing secure multiparty
protocols is to: (1) create a protocol secure only against passive (also called “semi-
honest”) adversaries, i.e. adversaries, which honestly perform the protocol, and then (2)
“compile” such a protocol to be secure against any type of adversarial behavior.

The problem that such a compiler needs to address is that a malicious party can
send a different message than she is supposed to send according to the protocol. One
can deal with this problem using the zero-knowledge protocols [24]. This is possible
since in every protocol a message which should be sent by a party is determined by
(a) the public inputs, (b) the party’s private inputs, (c) the messages that she received
earlier, and (d) the party’s internal randomness. The idea is to attach to each message
a zero-knowledge proof that this message was computed correctly. Since a message
can depend on private inputs and the internal randomness of the sender (which are not
known to the receiver), the players commit at the beginning of the protocol to their
private inputs and the randomness and later use these commitments in the proof (they
actually never open them). Moreover, we need to ensure that the bits used as internal
randomness are indeed random, but it can be easily achieved by masking them with the
bits chosen by the other party. More details can be found, e.g., in [21].

This compiler works as long as all the parties are interested in completing the pro-
tocol. However, the technique described above cannot be used to force a party to send
a message if she loses interest in the execution. It is easy to see that in general, there
is no “purely cryptographic” way to force a party to execute the protocol until the very
end. This may have particularly bad consequences if one of the parties learns the output
and, depending on its value either completes the protocol, or halts (preventing the other
party from learning the output). This is precisely the problem of the lack of fairness
described in the introduction.

In this paper we propose a new way to achieve fairness in two-party computation
based on Bitcoin deposits. The idea is that before starting the execution of the protocol
both parties make a Bitcoin deposit of an agreed amount dB. If the protocol terminates
successfully, then both parties get their deposits back. However, if one of the parties
interrupts the protocol after she learned the output, the other party takes both deposits
— her own and the opponent’s one, so she gains dB. We would like to stress that
making such a deposit is completely safe — the party making it is guaranteed to get it
back if she follows the protocol regardless of the other party’s behavior.

Our construction is based on the two-party computation protocol by Goldreich and
Vainish [23]. We do not provide the details of this protocol here (for its full descrip-
tion the reader may consult, e.g. [11]). Let us just describe its most relevant part. The
property which we take advantage of is that at the end of the protocol’s execution the
parties hold additive shares of the result of the computation, but none of the parties
learned anything about the actual output. This means that the parties holds respectively
bit strings sA and sB , such that the result of the computation is equal to sA ⊕ sB . In
the original protocol, the parties reconstruct the result by revealing their shares. More



precisely, each party sends its share to the other party and makes a zero-knowledge
proof that it is indeed its share of the result. Of course, one of the parties has to reveal
her share first (or at least a part of it) and the other party can quit the protocol at this
moment, leaving the honest party with no information about the output9.

In FairComp protocol, which we present in this section the parties reconstruct the
result in a different and fair way. Fairness of that protocol means that one of the fol-
lowing things happened: either (1) at the end of its execution both parties followed the
protocol and they both know the result of the computation, or (2) one of the parties
interrupted the protocol at the beginning and none of the parties learned anything about
the result, or (3) only a malicious party learned the result, and she paid the other party
an agreed amount of bitcoins.

The idea behind FairComp protocol is as follows. Suppose that the parties are called
Alice and Bob. At the very beginning Alice and Bob agree on a value of a deposit
equal to dB. Then they execute the two-party protocol [23,11] together with the zero-
knowledge proofs in order to make it secure against the active adversary. However, they
do not reconstruct the result. Then, Alice sends a hash hA of her share concatenated
with some random string to Bob and makes a zero-knowledge proof that she indeed
computed hA in that way. Similarly, Bob sends hB to Alice and makes an analogous
proof. Later, the parties execute SCS protocol to simultaneously commit themselves to
respectively hA and hB . When the commitment is done, the parties reveal their shares.
If any of them does not reveal its share, the honest party can claim the opponent’s
deposit. The description of the protocol is presented on Fig. 3.

We now have the following lemma whose proof appears in the extended version of
this paper.

Lemma 2. The FairComp protocol from Fig. 3 is a fair two party computation protocol
assuming the modification from Sec. 3.

6 Extensions

The result from the previous section can be extended in various ways. It is for example
relatively easy to see that the deposits in the SCS and FairComp do not need to be equal
for both parties. Another generalization is that (in theory, and very inefficiently) one
can use an arbitrary commitment scheme, not necessarily the one based on hashes (the
details of this will be provided in the extended version of this paper).

Probably the most interesting extension is to make the payoffs in the FairComp
protocol depend on the result of the computation. More precisely, the FairComp pro-
tocol can be easily extended to handle a situation when the result of the computation
determines the winner, which will be given some reward (an agreed amount of bit-
coins). To achieve this it is enough to add a third output with the value equal to the
value of the reward to the Commit transaction used in the execution of SCS.Commit
in Step. 4 of FairComp protocol. The output script would take as arguments both
secrets s′A, s′B and a signature. It would check if both provided secrets are correct
(H(s′A) = hA ∧H(s′B) = hB), compute sA and sB as prefixes of respectively s′A and

9 Except of that, what she can learn from her inputs and from the function being computed.



Pre-condition:
1. A holds a key pair A and B holds the key pair B.
2. The parties agree on a function they want to jointly compute and on a value of deposits

equal dB each.

The computation phase
The parties execute the two-party protocol of Goldreich and Vainish [23] additionally
secured against an active adversary with zero-knowledge proofs, but they do not recon-
struct the secret. At the end of the execution A holds sA and B holds sB , such that the
result of the computation in equal to sA ⊕ sB .

The commitment phase
1. A computes her secret s′A as a concatenation of her share sA and some random string
ρA of length α, where α is a security parameter.

2. A sends hA := H(s′A) to B and makes a zero-knowledge proof to B that this value is
indeed equal to H(sA||ρA) for some string ρA.

3. Similarly, B computes s′B := sB ||ρB for some random string ρB of length α, sends
hB := H(s′B) to A and makes an analogous proof.

4. The parties execute SCS.Commit(A,B, d, t) protocol for some moment of time t in the
future.

The opening phase
5. The parties execute SCS.Open(A,B, d, t) protocol.
6. If A reveals s′A before time t, then B computes sA as a prefix of s′A of an appropriate

length and computes the result of the computation s := sA ⊕ sB . Otherwise, B earns
dB from FuseA transaction (See Fig. 2).

7. Similarly, if B reveals s′B before time t, then A computes sB as a prefix of s′B of an
appropriate length and computes the result of the computation s := sA⊕sB . Otherwise,
A earns dB from FuseB transaction (See Fig. 2).

Fig. 3. The FairComp protocol.

s′B , compute the actual result (s := sA⊕ sB), check which party is a winner and verify
if the signature is the winner’s signature on that transaction (this idea is very similar to
the ones used in [5] and [2]).

The idea described above can be further extended to handle a situation, where the
reward may be split arbitrarily among the parties depending on the result of the com-
putation, e.g. the result is a fraction between 0 and 1, which determines how big part
of the reward will be given to one of the parties (the other party gets the rest of the
reward). Suppose that the reward is equal to 1B. The parties have to add to Commit
transaction, not one additional output, but a number of them — one with value 0.5B,
one with value 0.25B, one with value 0.125B and so on10. Similarly as earlier, each
output script expects both secrets and a signature. It computes the results of the com-
putation, checks, which party should be given the appropriate part of the reward and
verifies if the signature is that party’s signature.

10 The number of outputs created this way is limited and not greater than 30 as a bitcoin is not
infinitely divisible. The smallest amount of bitcoins is called “satoshi” and is equal to 10−8 B.
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