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Abstract. We extend the techniques of Kiltz et al. (in ASIACRYPT 2010) and Galindo et al. (in SAC

2012) to construct two efficient leakage-resilient signature schemes. Our schemes based on Boneh-Lynn-

Shacham (BLS) short signature and Waters signature schemes, respectively. Both of them are more

efficient than Galindo et al.’s scheme, and can tolerate leakage of (1− o(1))/2 of the secret key at every

signature invocation. The security of the proposed schemes are proved in the generic bilinear group

model (additionally, in our first scheme which based on the BLS short signature, a random oracle is

needed for the proof).
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1 Introduction

In the traditional security proof of the cryptographic schemes, there has a basic assumption that the

secret state is completely hidden to the adversary. However, it is very hard to realize this assumption

in the real world. Many cryptographic engineers have designed some side-channel attacks which can

detect some leakage information about the secret state. For example, power consumption [25], fault

attacks [5, 9], and timing attacks [8], etc.

Leakage-resilient cryptography is a countermeasure to against the side-channel attacks with some

algorithmic techniques. Which means that designing algorithms such that their description already

provides security against those attacks. Leakage-resilient cryptography is an increasingly active

area in recent years and many leakage models have been proposed, such as only computation leaks

information (OCLI) [19, 21, 27, 24], memory leakage [1, 17], bounded retrieval [2, 3, 14], and auxiliary

input models [15, 21, 20, 34], etc. In this work, we design leakage-resilient signature schemes based

on the following two leakage models:

– OCLI model: leakage is assumed to only occur on values that currently accessed during the

computation.

– Continual leakage model: the amount of leakage is assumed to be bounded only in between

any two successive key refreshes but the overall amount can be unbounded.

Bounded leakage model [23, 7] is a weaker notion, corresponding to the continual leakage model,

which means that the amount of the leakage information is bounded with a fixed value throughout

the lifetime of the system. Obviously, the continual leakage model is more closer to the real scenarios.
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Note that in the continual leakage setting, the secret state should be stateful, i.e., the secret state

should be updated after (or before) every round of the invocation of the secret state. Otherwise,

the entire secret state will be completely leaked after plenty of invocations.

In the past few years, many leakage-resilient cryptographic schemes or protocols have been

proposed based on various leakage models. For example, stream ciphers [30], zero knowledge proof

[22], PKE [24, 29], IBE [14, 34], signatures [2, 7, 19, 23, 28], etc. All of these schemes could be proved

secure in the standard model without any idealized assumption (e.g., random oracle, generic groups)

and thus have a more persuasive security result, but on the other hand, they are not yet quite

efficient to be used in practice. Such as the signature schemes [23, 18, 6, 7, 28, 20, 35], all of them

utilized a non-interactive witness indistinguishable proof or zero-knowledge proof system, and even

a complicated PKE scheme. Such schemes mainly exist in the field of theoretical research for the

reason of the poor efficiency.

Kiltz and Pietrzak [24] constructed a leakage-resilient PKE scheme which is a bilinear version of

the ElGamal key encapsulation mechanism and it is secure even in the presence of continual leakage

in the generic bilinear group (GBG) model [11]. It is more important that their scheme is very

efficient, just less than a little time slower than the standard ElGamal scheme. Galindo and Vivek

[21] then adapted their techniques (i.e., blinding the secret state) to construct a practical signature

scheme based on the Boneh-Boyen IBE scheme [10]. Its efficiency is close to the non leakage-resilient

one and it tolerates leakage of almost half of the bits of the secret key at every signature invocation.

In this paper, we follow the techniques by Kiltz et al. [24] and Galindo et al. [21], construct

two leakage-resilient signature schemes based on the OCLI and continual leakage models. They

are provable leakage-resilience in the GBG model (the BLS-based one needs an additional random

oracle for the proof). Our first scheme is based on the BLS short signature scheme [13] which signing

algorithm is deterministic, we adapt it to a probabilistic one and the resulting scheme tolerates

leakage of (1− o(1))/2 of the secret key at every signature invocation. Our second scheme is based

on the Waters signature scheme [33], the resulting scheme also tolerates leakage of (1−o(1))/2 of the

secret key at every signature invocation. Both of them are more efficient than Galindo and Vivek’s

signature scheme, more precisely, one exponentiation is decreased in the signing and verification

algorithm, respectively.

2 Preliminaries

In this section, we present some basic notions and preliminaries for this paper: bilinear groups

and two intractability assumptions CDH and DBDH, generic bilinear groups model, entropy, and

Schwartz-Zippel lemma.

The following notations will be used in this paper. Let Z be the set of integers and Zp be the

ring modulo p. 1k denotes the string of k ones for k ∈ N. |x| denotes the length of the bit string

x. s
$← S means randomly choosing an element s form the set S. [n] is a shorthand for the set

{1, 2, . . . , n}. We write y ← A(x) to indicate that running the algorithm A with input x and then

outputs y, y
$← A(x) has the same indication except that A is a probabilistic algorithm, and if we
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want to explicitly denote the randomness r used during the computation we write it y
r← A(x).

Lastly we write PPT for the probabilistic polynomial time.

2.1 Bilinear Groups

Let G1 and G2 be two multiplicative cyclic groups with a same prime order p, and g be an arbitrary

generator of G1. We say that ê : G1 ×G1 → G2 be an admissible bilinear mapping if it satisfies the

the following properties:

– Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zp.
– Non-degeneracy: ê(g, g) 6= 1G2 .

– Computability: there exists efficient algorithm to calculate ê(ga, gb) for all a, b ∈ Zp.

We assume that BGen(1k) be a PPT algorithm which generates parameters (G1, G2, p, g, ê) to satisfy

the above properties with a input of security parameter k. The group G1 is said to be a bilinear

group, and it is also called the base group and G2 be the target group.

Definition 1 (CDH Assumption). For any PPT adversary A, any polynomial p(·), and all

sufficiently large k ∈ N,

Pr

 (G1, G2, p, g, ê)← BGen(1k);

a, b
$← Zp; : v = gab

v← A(G1, p, g, g
a, gb)

 < 1

p(k)
.

Definition 2 (DBDH Assumption). For any PPT adversary A, any polynomial p(·), and all

sufficiently large k ∈ N,

∣∣∣∣∣Pr

 (G1, G2, p, g, ê)← BGen(1k);

a, b, c
$← Zp; : d = 1

d← A(P, ga, gb, gc, ê(g, g)abc)

−

Pr

 (G1, G2, p, g, ê)← BGen(1k);

a, b, c, r
$← Zp; : d = 1

d← A(P, ga, gb, gc, ê(g, g)r)

 ∣∣∣∣∣ < 1

p(k)
.

2.2 Generic Bilinear Group Model

In the generic group model [31], the elements of the group encoded by unique but randomly chosen

strings, and thus the only property that can be tested by adversary is equality. Boneh et al. [11]

extended it to a generic bilinear group (GBG) model. In the GBG model, the encoding is given by

randomly chosen injective functions ξ1 : Zp → Ξ1 and ξ2 : Zp → Ξ2 which are the representations

of the elements of the base group G1 and target group G2, respectively (w.l.o.g., we assume that

Ξ1 ∩ Ξ2 = ∅). The operations of the groups and the bilinear map are performed by three public

oracles O1,O2, and Oê, respectively. For any a, b ∈ Zp

– O1(ξ1(a), ξ1(b))→ ξ1(a+ b mod p)
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– O2(ξ2(a), ξ2(b))→ ξ2(a+ b mod p)

– Oê(ξ1(a), ξ1(b))→ ξ2(ab mod p)

For a fixed generator g of G1 satisfies g = ξ1(1) and gT = ê(g, g) = ξ2(1).

2.3 Entropy

Let X be a finite random variable. The min-entropy of X defined as:

H∞(X)
def
= − log2(max

x
Pr[X = x]).

The average conditional min-entropy of X given a random variable Y defined as:

H̃∞(X|Y )
def
= − log2(Ey←Y [max

x
Pr[X = x|Y = y]).

The following lemma is based on the work of [16].

Lemma 1. Let f : X → {0, 1}∆ be a function on X. Then H̃∞(X|f(X)) ≥ H∞(X)−∆.

2.4 Schwartz-Zippel Lemma

We follow the result of [21, 31], it is a simple variant of the Schwartz-Zippel lemma [32, 36].

Lemma 2. Let F ∈ Zp[X1, . . . , Xn] be a non-zero polynomial of total degree at most d. Let Pi(i =

1, . . . , n) be probability distributions on Zp such that H∞(Pi) ≥ log p −∆, where 0 ≤ ∆ ≤ log p. If

xi
Pi← Zp(i = 1, . . . , n) are chosen independently, then Pr[F (x1, . . . , xn) = 0] ≤ d

p2∆.

This lemma can be proved by mathematical induction (cf. paper [21, 31] for detailed description).

Based on this lemma, we can get the following result directly.

Corollary 1. If ∆ = (1−o(1)) log p in Lemma 2, then Pr[F (x1, . . . , xn) = 0] is negligible (in log p).

3 Definitions

3.1 Signature Scheme

A signature scheme Σ generally consists of three algorithms, key generation, signing, and verifica-

tion, denoted by KGen, Sign, and Vrfy, respectively.

Definition 3. Σ=(KGen, Sign, Vrfy) is a signature scheme if it satisfies:

– KGen is a PPT algorithm takes as input a security parameter k, then outputs the signer’s public

key pk and secret key sk. We write it (pk, sk)
$←KGen(1k).

– Sign is a PPT algorithm run by the signer who takes as input its secret key sk and a message

mi, then outputs a signature σi. We write it σi
$←Sign(sk,mi).

– Vrfy is a deterministic algorithm run by the verifier who takes as input the signer’s public key

pk, the signed message mi, and the corresponding signature σi, then outputs 1 if it is valid, else

outputs 0. We write it 1/0←Vrfy(pk,mi, σi).

For any index i, we require that 1← Vrfy(pk,mi,Sign(sk,mi)).

We say that a signature scheme is stateful if its signing algorithm is stateful, which means that the

secret key will be updated before (or after) each signing algorithm invocation while the public key

remains fixed.
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3.2 Security

The notion of existential unforgeability against adaptive chosen message attack (EUF-CMA) for

the signature scheme is defined by the following game Geuf−cmaΣ,A .

Game Geuf−cmaΣ,A (1k) Oracle OSign(mi)

(pk, sk)
$← KGen(1k) σi

$← Sign(sk,mi)

(m∗, σ∗)
$← AOSign(pk) return σi and set i← i+ 1

if 1← Vrfy(pk,m∗, σ∗) and m∗ 6∈ {m1, . . . ,mi}
then output 1 else output 0

Adversary A wants to give a forgery (m∗, σ∗) by means of adaptive query to the signing oracle

OSign. We denote the advantage of A wins the above game by Adveuf−cmaΣ,A .

Definition 4. The signature scheme Σ is EUF-CMA secure if have no polynomial-bounded adver-

sary can win the above game with a non-negligible advantage.

3.3 Security in the Presence of Leakage

Following the techniques of the papers [21, 24], we split the singing key into two parts which stored

in different parts of the memory. Then the signing process be divided into corresponding two phases.

However, the input/output behavior will exactly the same as in the original one.

Formally, Σ∗ = (KGen∗, Sign∗,Vrfy∗) be a stateful signature scheme, in the KGen∗ algorithm,

the secret key sk is split into two initial states S0 and S′0, correspondingly, the signing algorithm

be processed with a sequence of two phases Sign∗ = (Sign∗Phase1, Sign
∗
Phase2). The ith invocation of

signing (with secret state (Si−1, S
′
i−1)) is computed as

(Si, wi)
ri← Sign∗Phase1(Si−1,mi); (S′i, σi)

r′i← Sign∗Phase2(S
′
i−1, wi). (1)

Where the parameter wi is some state information passed from Sign∗Phase1 to Sign∗Phase2. After this

round of signing, the secret state will be updated to (Si, S
′
i).

In the presence of leakage, an adversary A∗ can obtain some leakage information in addition to

the signatures for some messages of its choice. To modeling thus scenario, we define a Sign&Leak

oracle OLeak
Sign . In this oracle, besides the messages chosen by A∗ to the signing oracle, it also allowed

to specify two leakage functions fi and hi with bounded range {0, 1}λ (where λ be the leakage

parameter). The leakage functions defined as

Λi = fi(Si−1, ri);Λ
′
i = hi(S

′
i−1, r

′
i, wi). (2)

We define the security notion of existential unforgeability under adaptive chosen message and

leakage attacks (EUF-CMLA) through the following game Geuf−cmlaΣ∗,A∗ , where |fi| denotes the length

of the output of fi.
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Game Geuf−cmlaΣ∗,A∗ (1k) Oracle OLeak
Sign (mi, fi, hi)

(pk, (S0, S
′
0))

$← KGen∗(1k), i← 1 if |fi| 6= λ or |hi| 6= λ, return ⊥
(m∗, σ∗)

$← A∗O
Leak
Sign (pk) (Si, wi)

ri← Sign∗Phase1(Si−1,mi)

if 1← Vrfy∗(pk,m∗, σ∗) and m∗ 6∈ {m1, . . . ,mi} (S′i, σi)
r′i← Sign∗Phase2(S

′
i−1, wi)

then output 1 else output 0 Λi = fi(Si−1, ri)

Λ′i = hi(S
′
i−1, r

′
i, wi)

return (σi, Λi, Λ
′
i) and set i← i+ 1

Adversary A∗ wants to give a forgery (m∗, σ∗) by means of adaptive query to the Sign&Leakage

oracle OLeak
Sign . We denote the advantage of A∗ wins the above game by Adveuf−cmlaΣ∗,A∗ .

Definition 5. The signature scheme Σ∗ is EUF-CMLA secure if have no polynomial-bounded ad-

versary can win the above game with a non-negligible advantage.

4 Boneh-Lynn-Shacham Signature Scheme

In ASIACRYPT 2001, Boneh, Lynn, and Shacham [13] proposed a very efficient short signa-

ture scheme. It has been received great attention and adopted to construct many more compli-

cated cryptographic schemes, e.g., aggregate signature [12]. The BLS signature scheme ΣBLS =

(KGenBLS,SignBLS,VrfyBLS) constructed as follows:

– KGenBLS(1k):

• (G1, G2, p, g, ê)
$← BGen(1k) and choose a cryptographic hash function H : {0, 1}∗ → G1,

then set the system public parameter as P = (G1, G2, p, g, ê,H).

• Choose random x
$← Zp and compute v = gx ∈ G1.

• Output pk = v and sk = x.

– SignBLS(P, sk,m): Compute and output the signature σ = H(m)x.

– VrfyBLS(P, pk,m, σ): Check whether ê(σ,g)
ê(H(m),v)

?
= 1G2 .

Theorem 1 ([13]). The BLS signature scheme ΣBLS is EUF-CMA secure in the random oracle

model based on the CDH assumption.

4.1 Probabilistic BLS Signature Scheme

We adapt the deterministic BLS signature to a probabilistic scheme, which denoted by ΣpBLS =

(KGenpBLS, SignpBLS,VrfypBLS) constructed as follows:

– KGenpBLS(1k):

• (G1, G2, p, g, ê)
$← BGen(1k) and choose a cryptographic hash function H : {0, 1}∗ → G1,

then set the system public parameter as P = (G1, G2, p, g, ê,H).
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• Choose random x
$← Zp, then compute X = gx ∈ G1 and XT = ê(X, g) = ê(g, g)x ∈ G2.

• Output pk = XT and sk = X.

– SignpBLS(P, sk,m):

• Choose random r
$← Zp.

• Compute and output σ = (σ1, σ2) = (X ·H(m)r, gr).

– VrfypBLS(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,H(m))

?
= XT .

In fact, the probabilistic BLS signature scheme is parallels to the Galindo et al.’s basic signature

scheme (cf. Section 3 of paper [21]). In their scheme, σ1 = X · (X0 ·Xm
1 )r, which can be regarded

as a design without random oracle model. However, we construct the probabilistic BLS signature

mainly based on the considerations of the efficiency and the length of the public key. Furthermore,

the message space of our scheme is more flexible than theirs.

Similar to the Galindo et al.’s basic scheme (which cannot proved in the standard model),

unfortunately, we cannot prove the security of the probabilistic BLS scheme even in the random

oracle model as the BLS scheme does, but we can prove it in the combinational models of the

random oracle and generic bilinear group. Which means that in the generic bilinear groups model,

the hash function H is treated as a random oracle. For space reasons, here we only give the security

result and the complete proof is presented in the Appendix A.

Theorem 2. The probabilistic BLS signature scheme ΣpBLS is EUF-CMA secure w.r.t. the Defini-

tion 4 in the combinational models of random oracle and generic bilinear group. The advantage of

a q-query adversary is O( q
2

p ).

4.2 Leakage-Resilient Probabilistic BLS Signature Scheme

We now adapt the probabilistic BLS signature scheme to the leakage resilient setting, i.e., leakage-

resilient probabilistic BLS signature scheme Σ∗pBLS = (KGen∗pBLS,Sign
∗
pBLS,Vrfy

∗
pBLS) which con-

structed as follows:

– KGen∗pBLS(1k):

• (G1, G2, p, g, ê)
$← BGen(1k) and choose a cryptographic hash function H : {0, 1}∗ → G1,

then set the system public parameter as P = (G1, G2, p, g, ê,H).

• Choose random x
$← Zp, then compute X = gx ∈ G1 and XT = ê(X, g) = ê(g, g)x ∈ G2.

• Choose random l0
$← Zp and set (S0, S

′
0) = (gl0 , gx−l0).

• Output pk = XT and sk0 = (S0, S
′
0).

– Sign∗pBLS(P, ski−1,m):

• Phase 1 (P, Si−1,m):

∗ Choose random li
$← Zp and compute Si = Si−1 · gli .

∗ Choose random r
$← Zp and compute (σ′1, σ

′
2) = (Si ·H(m)r, gr).

∗ Output wi = (li, σ
′
1, σ
′
2).
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• Phase 2 (P, S′i−1, wi):
∗ Compute S′i = S′i−1 · g−li .
∗ Compute and output σ = (σ1, σ2) = (S′i · σ′1, σ′2).

– Vrfy∗pBLS(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,H(m))

?
= XT .

At the beginning of the each signing phase, the partial secret key will be re-randomized, however,

for any i, let Li :=
∑i

j=0 lj , then Si · S′i = gLi · gα−Li = X. Hence, actually, the signatures of the

scheme Σ∗pBLS identical to that from scheme ΣpBLS. However, precisely because of the re-randomized

process, adversary cannot collect enough leakage information of the “fresh” secret state to recover

the real secret key X.

In the first phase of the the signing algorithm, it requires three exponentiations, and no expo-

nentiation in the second phase if we see g−l as the inverse element of gl which has been calculated in

the first phase. Hence it requires three exponentiations in every signature calculation. In addition,

it requires two pairing operations in the verification algorithm.

Because of the values of the input and output of the schemes Σ∗pBLS and ΣpBLS are identical, the

security of Σ∗pBLS in the non-leakage setting is obviously. That is to say,

Lemma 3. The probabilistic BLS signature scheme Σ∗pBLS is EUF-CMA secure w.r.t. the Definition

4 in the combinational models of random oracle and generic bilinear group. The advantage of a q-

query adversary is O( q
2

p ).

Considering the security in the leakage-resilient setting, for space reasons, here we only give the

security result and the complete proof is presented in the Appendix B.

Theorem 3. The probabilistic BLS signature scheme Σ∗pBLS is EUF-CMLA secure w.r.t. the Defi-

nition 5 in the combinational models of random oracle and generic bilinear group. The advantage of

a q-query adversary who gets at most λ bits of leakage per each invocation of Sign∗Phase1 or Sign∗Phase2
is O( q

2

p 22λ).

5 Waters Signature Scheme

The Waters signature scheme [33], ΣW = (KGenW,SignW,VrfyW), constructed as follows:

– KGenW(P):

• P = (G1, G2, p, g, ê)
$← BGen(1k).

• Choose random x1
$← Zp and compute X1 = gx1 .

• Choose random X2
$← G1.

• Choose random Ui
$← G1, i ∈ [0, n] and set U = {Ui}i∈[0,n].

• Output pk = (X1, X2,U) and sk = X = Xx1
2 .

– SignW(P, sk,m):

• m = m1m2 · · ·mn, where mi denotes the ith bit of the m.
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• Choose random r
$← Zp.

• Compute (σ1, σ2) = (X · (U0
∏
i∈M Ui)

r, gr), where M is the set of all i such that mi = 1.

• Output σ = (σ1, σ2).

– VrfyW(P, pk,m, σ): Check whether ê(σ1,g)
ê(σ2,U0

∏
i∈M Ui)

?
= ê(X1, X2).

Theorem 4 ([33]). The Waters signature scheme ΣW is EUF-CMA secure in the standard model

based on the DBDH assumption.

5.1 Leakage-Resilient Waters Signature Scheme

We now adapt the Waters signature scheme to the leakage-resilient setting, i.e., leakage-resilient

Waters signature scheme Σ∗W = (KGen∗W, Sign
∗
W,Vrfy

∗
W) which constructed as follows:

– KGen∗W(P):

• P = (G1, G2, p, g, ê)
$← BGen(1k).

• Choose random x1, x2
$← Zp and compute (X1, X2) = (gx1 , gx2), then set XT = ê(X1, X2).

• Choose random ui
$← Zp, i ∈ [0, n] and compute Ui = gui ∈ G1, then set U = {Ui}i∈[0,n].

• Choose random l0
$← Zp and set (S0, S

′
0) = (X l0

2 , X
x1−l0
2 ).

• Output pk = (XT ,U) and sk0 = (S0, S
′
0).

– Sign∗W(P, ski−1,m):

• Phase 1 (P, Si−1,m):

∗ Let m = m1m2 · · ·mn, where mi denotes the ith bit of the m.

∗ Choose random li
$← Zp and compute Si = Si−1 ·X li

2 .

∗ Choose random r
$← Zp and compute (σ′1, σ

′
2) = (Si · (U0

∏
i∈M Ui)

r, gr).

∗ Output wi = (li, σ
′
1, σ
′
2).

• Phase 2 (P, S′i−1, wi):
∗ Compute S′i = S′i−1 ·X

−li
2 .

∗ Compute and output σ = (σ1, σ2) = (S′i · σ′1, σ′2).
– Vrfy∗W(P, pk,m, σ): Check whether ê(σ1,g)

ê(σ2,U0
∏

i∈M Ui)

?
= XT .

In the key generation algorithm, we change the strategies that choosing the random elements

X2 and Ui(i = 1, . . . , n) from G1 to choosing random integers x2 and ui(i = 1, . . . , n) from Zp, and

then compute X2 = gx2 and Ui = gui(i = 1, . . . , n), respectively. However, the new strategies is

indistinguishable from the old ones to anyone, and it also cannot provide more information to the

potential adversary even in the presence of leakage if we restrict the leakage functions to apply only

to those values used by the signer after the key generation phase, i.e., the secret key and all state

variables used to sign, but not the randomness used to generate the secret-public key.

At the beginning of the each signing phase, the partial secret key will be re-randomized, however,

for any i, let Li :=
∑i

j=0 lj , then Si · S′i = XLi
2 ·X

x1−Li
2 = X. Hence, actually, the signature of this

scheme Σ∗W identical to that from scheme ΣW.
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In the first phase of the the signing algorithm, it requires three exponentiations, and no expo-

nentiation in the second phase if we see X−l2 as the inverse element of X l
2 which has been calculated

in the first phase. Hence it requires three exponentiations in every signature calculation. In addition,

it requires two pairing operations in the verification algorithm.

Because of the values of the input and output of the schemes Σ∗W and ΣW are identical, the

security of Σ∗W in the non-leakage setting is obviously. That is to say,

Lemma 4. The signature scheme Σ∗W is EUF-CMA secure in standard model based on the DBDH

assumption.

The security of the scheme Σ∗W in the leakage-resilient setting be proved in the generic bilinear

group model. For space reasons, here we only give the security result and the complete proof is

presented in the Appendix C.

Theorem 5. The signature scheme Σ∗W is EUF-CMLA secure w.r.t. the Definition 5 in the generic

bilinear group model. The advantage of a q-query adversary who gets at most λ bits of leakage per

each invocation of Sign∗Phase1 or Sign∗Phase2 is O( q
2

p 22λ).

6 Comparison

We compare our schemes Σ∗pBLS, Σ
∗
W to Galindo and Vivek’s scheme Σ∗BB [21]. All of them have

similar security results: if allowing λ bits of leakage at every signing process then the security of

the schemes decreased by at most a factor 22λ, and thus they can tolerate 1−o(1)
2 log p bits per each

signing invocation. We now compare them from the aspects of their length of public key, signing cost,

and verification cost. The results of the comparison in the table below. Where |G1|, |G2| denote the

length of the element in group G1 and G2, respectively, e denotes an exponentiation computation

and p denotes a pairing computation.

Scheme Length of public key Signing cost Verification cost

Σ∗BB 2|G1|+ |G2| 4e e + 2p

Σ∗pBLS |G2| 3e 2p

Σ∗W (n+ 1)|G1|+ |G2| 3e 2p

Table 1. Comparing the three schemes.

From the above table we can see that both of our two schemes are more efficient than the scheme

Σ∗BB, especially the scheme Σ∗pBLS not only has a low computation cost, but also has a short public

key. The public key of the scheme Σ∗W is long, however, its security can be guaranteed in the standard

model in the black-box model which without any information leakage (both Σ∗BB and Σ∗pBLS do not

have this property), and from this point we can see that proving the cryptographic scheme’s security

in the leakage-resilient setting is more intractable than in the traditional black-box model.

Finally, we may note that because of the similarity of the structure, the blinding technique

also can be used to convert the Lewko-Waters signature (which can be constructed from their IBE

scheme [26]) to the leakage-resilient setting. However, the result scheme, i.e., leakage-resilient LW
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signature scheme, cannot improve the computational efficiency relative to the leakage-resilient BB

scheme Σ∗BB. Hence, we omit the analysis of this scheme in this paper.
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A Proof of Theorem 2

Let A be an adversary can break the security of the scheme ΣpBLS. Without loss of generality,

we assume that A is allowed to make totally at most q queries, which contains qg group oracles

(O1,O2,Oê) queries, qh random oracle (OH) queries, and qs signing oracle (OSign) queries, i.e.,

qg + qh + qs ≤ q. We bound the advantage of A against ΣpBLS in the following game G (cf. papers

[11, 21, 31]). A plays the game G with a simulator S as follows.

Game G: Let X, {Hi : i ∈ [qh]}, {Ri : i ∈ [qs]}, {Yi : i ∈ [qg1 ], qg1 ∈ [0, 2qg + 2]}, and {Zi : i ∈
[qg2 ], qg2 ∈ [0, 2qg]} be indeterminates. They are correspond to randomly chosen group elements in

the scheme ΣpBLS, or more precisely their discrete logarithms. That is to say, X corresponds to x. Ri

corresponds to the randomness ri that used in the signature invocation. Besides that, A may query

the group oracles with some bit strings that not previously obtained from the group oracles. In

order to record thus values we introduce indeterminates Yi and Zi which correspond to the discrete

logarithm of the elements of G1 and G2, respectively. Hi corresponds to the discrete logarithms

of the random and independent elements chosen from G1 which correspond to the hash values of

the messages, this is why we need to see the hash function H as a random oracle. Without loss of

generality, we assume that the first qs queries of the OH , i.e., {Hi : i ∈ [qs]}, correspond to the hash

values of messages {mi : i ∈ [qs]} that chosen by A used to query to the signing oracle, and the

(qs + 1)th query, i.e., Hqs+1, corresponds to message m∗ that also chosen by A as the message of its

forgery. For simplicity sake, we denote them by {R}, {Y }, {Z}, and {H}, respectively.
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S maintains the following two lists of polynomial-string pair to answer and record A’s queries

L1 = {(F1,i, ξ1,i) : i ∈ [τ1]}, (3)

L2 = {(F2,i, ξ2,i) : i ∈ [τ2]}, (4)

where F1,i ∈ Zp[X, {H}, {R}, {Y }], F2,i ∈ Zp[X, {H}, {R}, {Y }, {Z}] and ξ1,i, ξ2,i are bit strings

from the encoding sets Ξ1 (of group G1) and Ξ2 (of group G2), respectively.

Initially, i.e., at step τ = 0 and τ1 = 2qs + qh + qg1 + 1, τ2 = qg2 + 1, S creates the following lists

L1 =
{

(1, ξ1,1), {(Hi, ξ1,i+1) : i ∈ [qh]}, {(Yi, ξ1,i+qh+1) : i ∈ [qg1 ]},

{(X +RiHi, ξ1,2i+qh+qg1 ), (Ri, ξ1,2i+qh+qg1+1) : i ∈ [qs]}
}
,

L2 =
{

(X, ξ2,1), {(Zi, ξ2,i+1) : i ∈ [qg2 ]}
}
,

where ξ1,i, ξ2,i are chosen randomly and distinctly from Ξ1 and Ξ2, respectively. We assume that

the entries in the sets Ξ1 and Ξ2 are recorded in order, and thus given a string ξ1,i or ξ2,i, it is

able to determine its index in the lists if it exists. Similarly, the entries {(Hi, ξ1,i+1) : i ∈ [qh]} has

an ordering and thus given a message m, then it is able to determine its index in these entries if it

exists. At step τ ∈ [0, qg + qh] of the game,

τ1 + τ2 = τ + 2qs + qh + qg1 + qg2 + 2. (5)

For the initial entries of the two lists, they are correspond to the group elements of the public

parameters and the signatures on the corresponding messages which chosen by A. {Y } and {Z}
correspond to the group elements that A will guess in the actual interaction. In the game, A can

query the group oracles with at most two new (guessed) elements and it also will output two new

elements from G1 as the forgery, hence qg1 +qg2 ≤ 2qg +2. Therefore, from the equation (5) we have

(w.l.o.g., assuming qh + qs ≥ 4)

τ1 + τ2 ≤ qg + qh + 2qs + qh + 2qg + 2 + 2 ≤ 3(qg + qh + qs) ≤ 3q. (6)

Random OracleOH :A queries the random oracleOH with inputm, S searches the entries {(Hi, ξ1,i) :

i ∈ [qh]} in L1, if there exists entry {(Hk, ξ1,k)} for k ≤ qh corresponds to m, then S returns ξ1,k to

A. Otherwise, it first increments the counter τ1 := τ1 + 1 and τ := τ + 1, then returns a random

string ξ1,i distinct from those already contained in L1 to A. Finally, adding (Hi, ξ1,i) to L1.
Group Oracles O1,O2: For the group operations in group G1, A takes as input two elements

ξ1,i, ξ1,j(i, j ∈ [τ1]) in L1 and specifies whether to multiply or divide them. S first increments the

counters τ1 := τ1+1 and τ := τ+1, then computes F1,τ1 = F1,i+F1,j if A calls for multiplication, or

else F1,τ1 = F1,i−F1,j . If there exists k < τ1 such that F1,τ1 = F1,k, then sets ξ1,τ1 := ξ1,k. Otherwise,

S chooses a random string ξ1,τ1 that distinct from those already contained in L1. Finally, S adds the

entry (F1,τ1 , ξ1,τ1) to L1. Note that the degree of the polynomials F1,i in L is at most two. Similarly,

S answers A’s queries to the oracle O2, updates the list L2 and the counters τ2 and τ .

Pairing Oracle Oê:A takes as input two elements ξ1,i, ξ1,j(i, j ∈ [τ1]) from the list L1 to this oracle.

S first increments the counters τ2 := τ2 + 1 and τ := τ + 1, and then computes F2,τ2 = F1,i · F1,j .



14 Fei Tang, Hongda Li, Qihua Niu, and Bei Liang

If there exists k < τ2 such that F2,τ1 = F2,k, then sets ξ2,τ1 := ξ2,k. Otherwise, S chooses random

string ξ2,τ2 that distinct from those already contained in L2. Finally, S adds the entry (F2,τ2 , ξ2,τ2)

to the list L2. The degree of the polynomials F2,i ∈ L2 is at most four.

Output: After finishing the queries, A outputs (m∗, (ξ1,σ1 , ξ1,σ2)) ∈ Zp × L1 × L1(σ1, σ2 ∈ [τ1]).

Which corresponds to the forgery outputted by A in the actual interaction and m∗ was not taken

as input to the signing oracle. Let F1,σ1 and F1,σ2 be the polynomials which correspond to ξ1,σ1 and

ξ1,σ2 in L1, respectively. S computes the polynomial

F1,σ = X + F1,σ2Hqs+1 − F1,σ1 . (7)

The degree of F1,σ is at most three. Then S chooses random and independent values x, {h}, {r}, {y}
and {z} from Zp and evaluates the polynomials in the lists L1 and L2. We say that A wins the

game G if one of the following cases occurs:

– Case 1: F1,i(x, {h}, {r}, {y}) = F1,j(x, {h}, {r}, {y}) in Zp, for some two polynomials F1,i 6= F1,j

in list L1.
– Case 2: F2,i(x, {h}, {r}, {y}, {z}) = F2,j(x, {h}, {r}, {y}, {z}) in Zp, for some two polynomials

F2,i 6= F2,j in list L2.
– Case 3: F1,σ(x, {h}, {r}, {y}) = 0 in Zp.

Game G vs. actual EUF-CMA game: The success probability of A in the actual EUF-CMA game

is bounded by its success probability in the above game G with a negligible probability gap. The

reasons are as follows:

– Case 1 means that A can provoke collisions among group elements of G1, i.e., F1,i 6= F1,j but

gF1,i(x,{h},{r},{y}) = gF1,j(x,{h},{r},{y}) in the actual EUF-CMA game with a fixed generator g

of the group G1, which can be used to solve the discrete logarithm problem of the group G1

(cf. Lemma 1 of the full version of the paper [24]). Similarly, case 2 means that A can provoke

collisions among group elements of G2. As long as these two cases do not occur, then the view of

A is identical that in the game G and in the actual interaction. Therefore, if A cannot provoke

collisions, then its adaptive strategies are no more powerful than non-adaptive ones (for more

details, we refer to [31]).

– Case 3 means that (ξ1,σ1 , ξ1,σ2) is a valid forgery on a new message m∗.

Advantage: We now analyze the advantage ofA in the game G. Since F1,i 6= F1,j ⇔ F ′ = F1,i−F1,j 6=
0, and the degree of the polynomials in the list L1 at most two. According to the Schwartz-Zippel

lemma (with ∆ = 0), Pr[F ′(x, {h}, {r}, {y}) = 0] ≤ 2
p . The list L1 has τ1 entries, so there exists at

most
(
τ1
2

)
distinct pairs (F1,i, F1,j), the probability of the case 1 occurs is at most

(
τ1
2

)
· 2p . Similarly,

the probability of the case 2 occurs is at most
(
τ2
2

)
· 4p . The degree of the polynomial F1,σ is at most

three, so if it is non-zero (proved in Lemma 5 below), then we can use the Schwartz-Zippel Lemma

to compute the probability of the case 3 occurs is at most 3
p . In conclusion, the advantage of A wins

the game G is

Adveuf−cmaΣpBLS,A ≤
(
τ1
2

)
· 2

p
+

(
τ2
2

)
· 4

p
+

3

p
≤ 2

p
(τ1 + τ2)

2 ≤ 18q2

p
= O(

q2

p
). (8)

Therefore, let q = poly(log p), then Adveuf−cmaΣpBLS,A is negligible.
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Lemma 5. F1,σ is a non-zero polynomial in Zp[X, {H}, {R}, {Y }].

Proof. From the design of the group oracles and the initial elements of the list L1, we can see

that any polynomial in L1 is computed by either adding or subtracting two polynomials previously

existing in the list. Therefore, w.l.o.g., we can write the forgery (F1,σ1 , F1,σ2) as follows

F1,σ1 = c1 +

qh∑
i=1

c2,iHi +

qs∑
i=1

c3,iRi +

qg1∑
i=1

c4,iYi +

qs∑
i=1

c5,i(X +RiHi), (9)

F1,σ2 = d1 +

qh∑
i=1

d2,iHi +

qs∑
i=1

d3,iRi +

qg1∑
i=1

d4,iYi +

qs∑
i=1

d5,i(X +RiHi), (10)

where c1, d1, cj,i, dj,i(j = 2, 3, 4, 5) ∈ Zp are chosen by A. We divide them into two cases:

– Case 1: c5,i = d5,i = 0, for ∀i ∈ [qs].

In this case, both F1,σ1 and F1,σ2 do not contain the indeterminate X. Hence the polynomial

F1,σ2Hqs+1−F1,σ1 in (7) also does not contain the determinate X. Therefore, in the polynomial

F1,σ, the coefficient of the term X is non-zero, and thus F1,σ is non-zero.

– Case 2: c5,k 6= 0 or d5,k 6= 0, for ∃k ∈ [qs].

• If d5,k 6= 0, then the coefficient of the term RkHkHqs+1 is non-zero, and thus F1,σ is non-zero.

• If c5,k 6= 0, then the coefficient of the term RkHk is non-zero, and thus F1,σ is non-zero.

Therefore, the polynomial F1,σ is non-zero. This completes the proof of Theorem 2. �

B Proof of Theorem 3

Let A∗ be an adversary can break the security of the scheme Σ∗pBLS. Without loss of generality,

we assume that A∗ is allowed to make totally at most q queries, which contains qg group oracles

(O1,O2,Oê) queries, qh random oracle (OH) queries, and qs signing oracle (OSign) queries, i.e.,

qg + qh + qs ≤ q. In the count qg, the group oracle queries by leakage functions fi, hi specified by

A∗ are also included.

We define the following events:

– E:A∗ computes or guesses the secret key X = gx by any of the leakage functions fi or hi(i ∈ [qs]).

– E: the complement of the event E.

– F: A∗ outputs a forgery on a new message.

Hence, we have

Adveuf−cmlaΣ∗pBLS,A∗
= Pr[F|E]Pr[E] + Pr[F|E]Pr[E] ≤ Pr[E] + Pr[F|E]. (11)

We now bound the right two terms of the inequality, respectively.

Lemma 6. Pr[E] ≤ O( q
2

p 22λ).
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Proof. A∗ plays the following game G∗ with the simulator S. Naturally, game G∗ is similar to the

game G in Theorem 2, and thus we use the notations introduced in the game G and only briefly

describe G∗. Let {Li : i ∈ [0, qs]} be indeterminates which correspond to the values li in Σ∗pBLS.

Game G∗: For every signing process, A∗ specifies two leakage functions fi and hi correspond to the

signing phase 1 and 2, respectively, on the internal state which have involved in the computation,

i.e., fi(Si−1, (li, ri)) and hi(S
′
i−1, (li, σ

′
i,1, σ

′
i,2)) (for |fi| = |hi| = λ), respectively. In the mean time,

A∗ maintains two lists Lfi1 and Lhi1 . These two lists contain polynomial-string pairs, where the

polynomials are from Zp[X, {H}, {R}, {Y }, {L}] and the strings are from the encoding set ξ1 of G1.

Intuitively, the polynomials in the lists Lfi1 and Lhi1 correspond to the elements of group G1 that

can be computed by fi and hi, respectively. The polynomials in Lfi1 are of the form

c1,i

i−1∑
j=0

Lj + c2,iLi + c3,iVi, (12)

where c1,i, c2,i, c3,i ∈ Zp are chosen by A∗ and Vi ∈ L1. The polynomials in Lhi1 are of the form

d1,i(X −
i−1∑
j=0

Lj) + d2,iLi + d3,i(
i∑

j=0

Lj +Ri ·Hi) + d4,iWi, (13)

where d1,i, d2,i, d3,i, d4,i ∈ Zp are also chosen by A∗ and Wi ∈ L1.
When finishing the game, A∗ outputs a polynomial F from the list Lfi1 or Lhi1 . That is to say,

the polynomial F is corresponds to A∗’s guess of the secret key X. We say that A∗ wins the game

G∗ if one of the following cases occurs:

– Case 1 : F −X = 0 in Zp.
– Case 2 : There exists collision in any of the lists Lfi1 or Lhi1 , for some i ∈ [qs].

Since |fi|+ |hi| = 2λ and the result of the Lemma 1, the polynomials are now evaluated with values

chosen from independent distributions with min-entropy log p− 2λ.

Technically speaking, A∗ should also maintain lists Lfi2 and Lhi2 (0 ≤ i ≤ qs) which correspond

to the elements of the group G2 that can be computed by fi and hi. However, similar arguments of

Lfi1 and Lhi1 also applied to the lists Lfi2 and Lhi2 , respectively, hence the probability Pr[E] only up

to a constant factor.

For similar reasons as given in the proof of Theorem 2, Pr[E] is bounded above by the success

probability of A∗ in the game G∗, and even in the presence of leakage adaptive strategies are no

more powerful than non-adaptive ones [4].

Advantage: We first prove that F −X is a non-zero polynomial. If c1,i = c2,i = 0 in equation (13),

then the lists Lfi1 do not contain the polynomial X. If c1,i 6= 0 or c2,i 6= 0, then the polynomials

in (12) will contain polynomial Li or Li−1, or both. Hence the polynomial X cannot appear in

any of the lists Lfi1 . Similarly, the lists Lhi1 also cannot contain X. Therefore, F −X is a non-zero

polynomial of degree at most two. Hence Pr[Case1] ≤ 2
p22λ.

In order to compute the probability of the case 2, we evaluate the polynomials in equations

(12) and (13) by randomly and independently choose values from Zp according to distributions with
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min-entropy at least log p−2λ. The total length of the lists Lfi1 ,L
hi
1 is at most O(qh+qo+qs) = O(q),

and thus there can be at most O(q2) pairs of distinct polynomials of degree at most two evaluated

to the same value. According to the Schwartz-Zippel Lemma, Pr[Case2] ≤ O( q
2

p 22λ). Therefore,

Pr[E] ≤ O( q
2

p 22λ).

Lemma 7. Pr[F|E] ≤ 18q2

p 2λ.

Proof. If the event E has not occurred which means that A∗ has not compute or guess the secret

key X, the only meaningful leakage for A∗ is that of ri(i = 1, . . . , qs). Since at most λ bits of ri

will be leaked by fi, from the view point of A∗ the values ri have min-entropy at least log p − λ.

According to the Schwartz-Zippel lemma and the analysis of the cases 1, 2, 3 in the Theorem 2,

Pr[F|E] ≤ 18q2

p 2λ.

In conclusion, we have Adveuf−cmlaΣ∗pBLS,A∗
≤ O( q

2

p 22λ). From the point of the length of the leakage, it

can be leaked 1−o(1)
2 log p bits per each signing process. This completes the proof of Theorem 3. �

C Proof of Theorem 5

Let A∗ be an adversary can break the security of the scheme Σ∗W. Without loss of generality, we

assume that A∗ can make totally at most q queries, which contains qg group oracles (O1,O2,Oê)
queries and qs signing oracle (OSign) queries, i.e., qg + qs ≤ q. In the count qg, the group oracle

queries by leakage functions fi and hi specified by A∗ are also included. We bound the advantage

of A∗ against Σ∗W in the following game G∗. A∗ plays the game G∗ with a simulator S as follows.

Game G∗: Let X1, X2, {Ui, i ∈ [0, n]}, {Li, i ∈ [qs]}, {Ri, i ∈ [qs]}, {Yi, i ∈ [qg1 ], qg1 ∈ [0, 2qg + 2]},
and {Zi, i ∈ [qg2 ], qg2 ∈ [0, 2qg]} be indeterminates. They are correspond to randomly chosen group

elements from the scheme Σ∗W, or more precisely their discrete logarithms. That is to say, X1

corresponds to x1. X2 corresponds to x2. Ui corresponds to ui. Li corresponds to the randomness li

that used to update the secret key. Ri corresponds to the randomness ri that used in the signature

invocation. Besides that, A∗ may query the group oracles with some bit strings that not previously

obtained from the group oracles. In order to record thus values we introduce indeterminates Yi

and Zi which correspond to the discrete logarithm of the elements of G1 and G2, respectively. For

simplicity sake, we denote them by {U}, {R}, {Y }, and {Z}, respectively. Note that the secret key

X = Xx1
2 = gx1x2 , which depends on X1 and X2, hence we cannot define X as an independent

indeterminate. Let {mi : i ∈ [qs]} be the messages that chosen by A∗ used to query to the signing

oracle. We define the following events:

– E: A∗ computes or guesses the secret key X by any of the leakage functions fi or hi(i ∈ [qs]).

– E: the complement of the event E.

– F: A∗ outputs a forgery on a new message.

Hence, we have

Adveuf−cmlaΣ∗W,A∗
= Pr[F|E]Pr[E] + Pr[F|E]Pr[E] ≤ Pr[E] + Pr[F|E]. (14)
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S maintains the following two lists of pair to answer and record A∗’s queries

L1 = {(F1,i, ξ1,i) : i ∈ [τ1]}, (15)

L2 = {(F2,i, ξ2,i) : i ∈ [τ2]}, (16)

where F1,i ∈ Zp[X1, X2, {U}, {R}, {Y }], F2,i ∈ Zp[X1, X2, {U}, {R}, {Y }, {Z}] and ξ1,i, ξ2,i are bit

strings from the encoding sets Ξ1 (of group G1) and Ξ2 (of group G2), respectively.

Initially, i.e., at step τ = 0 and τ1 = 2qs + n+ qg1 + 1, τ2 = qg2 + 1), S creates the following lists

L1 =
{

(1, ξ1,1), {(Ui, ξ1,i+1) : i ∈ [n]}, {(Yi, ξ1,i+n+1) : i ∈ [qg1 ]},

{(X1X2 + (U0 +
∑

j∈Mi
Uj)Ri, ξ1,2i+n+qg1 ), (Ri, ξ1,2i+n+qg1+1) : i ∈ [qs]}

}
,

L2 =
{

(X1X2, ξ2,1), {(Zi, ξ2,i+1) : i ∈ [qg2 ]}
}
,

where Mi (corresponds to mi) be the set of all j such that mi,j = 1, ξ1,i, ξ2,i are chosen randomly

and distinctly from Ξ1 and Ξ2, respectively. At step τ ∈ [0, qg] of the game,

τ1 + τ2 = τ + 2qs + n+ qg1 + qg2 + 2. (17)

For the initial entries of the two lists, they are correspond to the group elements of the public

parameters and the signatures on the corresponding message which chosen by A∗. {Y }, {Z} cor-

respond to the group elements that A∗ will guess in the actual interaction. In the game, A∗ can

query the group oracles with at most two new (guessed) elements and it also will output two new

elements from G1 as the forgery, so qg1 + qg2 ≤ 2qg + 2. Therefore, from the equation (17) we have

(w.l.o.g., assuming qs ≥ n+ 4)

τ1 + τ2 ≤ qg + 2qs + n+ 2qg + 2 + 2 ≤ 3(qg + qs) ≤ 3q. (18)

The Group Oracles (O1,O2) and Pairing Oracle (Oê) are run by the adversary A∗ and simulator

S which is similar to that in the proof of the Theorem 2.

Leakage: For every signing process, A∗ specifies two leakage functions fi and hi correspond to the

signing phase 1 and 2, respectively, on the internal state which have involved in the computation,

i.e., fi(Si−1, (li, ri)) and hi(S
′
i−1, (li, σ

′
i,1, σ

′
i,2)) (for |fi| = |hi| = λ), respectively. In the mean time,

A∗ maintains two lists Lfi1 and Lhi1 which contain polynomial-string pairs, where the polynomials are

from Zp[X1, X2, {U}, {R}, {Y }, {L}] and the strings are from the encoding set ξ1 of G1. Intuitively,

the polynomials in the lists Lfi1 and Lhi1 correspond to the elements of groupG1 that can be computed

by fi and hi, respectively. The polynomials in Lfi1 are of the form

c1,i

i−1∑
j=0

Lj + c2,iLi + c3,iVi, (19)

where c1,i, c2,i, c3,i ∈ Zp are chosen by A∗ and Vi ∈ L1. The polynomials in Lhi1 are of the form

d1,i(X2(X1 −
i−1∑
j=0

Lj)) + d2,iLi + d3,i(
i∑

j=0

Lj + (U0 +
∑
j∈Mi

Uj)Ri) + d4,iWi, (20)
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where d1,i, d2,i, d3,i, d4,i ∈ Zp are also chosen by A∗ and Wi ∈ L1.
A∗ should also maintain lists Lfi2 and Lhi2 (0 ≤ i ≤ qs) that correspond to the elements of the

group G2 that can be computed by fi and hi, which only up the probability Pr[E] a constant factor.

Output: After finishing the queries, A∗ outputs (m∗, (ξ1,σ1 , ξ1,σ2)) ∈ Zp × L1 × L1(σ1, σ2 ∈ [τ1]). It

corresponds to the forgery outputted by A∗ in the actual interaction. Let F1,σ1 and F1,σ2 be the

polynomials which correspond to ξ1,σ1 and ξ1,σ2 in L1, respectively. S computes the polynomial:

F1,σ = X1X2 + F1,σ2(U0 +
∑
j∈M∗

Uj)− F1,σ1 . (21)

The degree of F1,σ is at most three. Then S chooses random and independent values x1, x2, {u}, {r},
{y}, and {z} from Zp and evaluates the polynomials in the lists L1 and L2. We say that A∗ wins

the game G∗ if one of the following cases occurs:

– Case 1 : There exists collision among group G1, i.e., F1,i(x1, x2, {u}, {r}, {y}) = F1,j(x1, x2, {u},
{r}, {y}) in Zp, for some two polynomials F1,i 6= F1,j in list L1.

– Case 2 : There exists collision among group G2 in list L2.
– Case 3 : There exists collision among group G1 in list Lfi1 .

– Case 4 : There exists collision among group G1 in list Lhi1 .

– Case 5 : There exists collision among group G2 in list Lfi2 .

– Case 6 : There exists collision among group G2 in list Lhi2 .

– Case 7 : F −X = 0 in Zp.
– Case 8 : F1,σ(x1, x2, {u}, {r}, {y}) = 0 in Zp.

Game G∗ vs. actual EUF-CMLA game: The success probability of A∗ in the actual EUF-CMLA

game is bounded by its success probability in the above game G∗ with a negligible probability gap.

The reasons are as follows:

– Case 1 means that A∗ can provoke collisions among group elements of G1, i.e., F1,i 6= F1,j

but gF1,i(x1,x2,{u},{r},{y}) = gF1,j(x1,x2,{u},{r},{y}) in the actual EUF-CMLA game with a fixed

generator g. Cases 2-6 have the similar meanings. As long as these six cases do not occur, then

the view of A∗ is identical that in the game G∗ and in the actual interaction. Therefore, if A∗

cannot provoke collisions in these lists, then its adaptive strategies are no more powerful than

non-adaptive ones.

– Case 7 means that A∗ computes or guesses the secret key X from the leakage function fi or hi.

– Case 8 means that (ξ1,σ1 , ξ1,σ2) is a valid forgery on a new message m∗.

Advantage: We now analyze the advantage of A∗ in the game G∗ one by one correspond to the

above cases.

– Pr[Cases1− 6]: i.e., the probability of A∗ can provoke collisions in the lists L1, L2, L
fi
1 , L

hi
1 , L

fi
2

or Lhi2 . We first analyze the case 1, since F1,i 6= F1,j ⇔ F ′ = F1,i − F1,j 6= 0, and the degree of

the polynomials in the list L1 at most two. Note that in the presence of leakage, the polynomials

are evaluated with values chosen from independent distributions with min-entropy log p − 2λ1.

1 Since A∗ can obtain at most 2λ bits of leakage about li(i ∈ [qs]) and at most λ bits of ri(i ∈ [qs]). According to

the result of the Lemma 1, li and ri have min-entropy at least log p− 2λ in the view of A∗.
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According to the Schwartz-Zippel Lemma (with ∆ = 2λ), Pr[F ′(x1, x2, {u}, {r}, {y}) = 0] ≤
2
p22λ. The list L1 has τ1 entries, so there exists at most

(
τ1
2

)
distinct pairs (F1,i, F1,j), the

probability of the case 1 occurs is at most
(
τ1
2

)
· 2p22λ. Similarly, the probability of the case 2

occurs is at most
(
τ2
2

)
· 4p22λ. To the cases 3 and 4, the total length of the lists Lfi1 ,L

hi
1 is at

most O(qo + qs) = O(q), and thus there can be at most O(q2) pairs of distinct polynomials

of degree at most two evaluated to the same value. According to the Schwartz-Zippel Lemma,

Pr[Cases3, 4] ≤ O( q
2

p 22λ). Similarly, Pr[Cases5, 6] ≤ O( q
2

p 22λ) too.

– Pr[Case7]: i.e., Pr[E]. We first show that F −X is a non-zero polynomial. If c1,i = c2,i = 0 in

equation (19), then the lists Lfi1 do not contain the polynomial X. If c1,i 6= 0 or c2,i 6= 0, then

the polynomials in (19) will contain polynomial Li or Li−1, or both. Hence the polynomial X

cannot appear in any of the lists Lfi1 . Similarly, the lists Lhi1 also cannot contain X. Therefore,

F −X is a non-zero polynomial of degree at most two. Hence Pr[Case7] ≤ 2
p22λ.

– Pr[Case8]: i.e., Pr[F|E]. If the event E has not occurred which means that A∗ has not compute

or guess the secret key X, the only meaningful leakage for A∗ is that of ri(i = 1, . . . , qs). Since at

most λ bits of ri will be leaked by fi, from the view point of A∗ the values ri have min-entropy

at least log p− λ. According to the Schwartz-Zippel lemma (if F1,σ is non-zero which proved in

Lemma 8 below), Pr[F|E] ≤ 3
p2λ.

Therefore, the advantage of A∗ is Adveuf−cmlaΣ∗W,A∗
≤ O( q

2

p 22λ). From the point of the length of the

leakage, it can be leaked 1−o(1)
2 log p bits per each signing invocation.

Lemma 8. F1,σ is a non-zero polynomial in Zp[X1, X2, {U}, {R}, {Y }].

Proof. From the design of the group oracles and the initial elements of the list L1, we can see

that any polynomial in L1 is computed by either adding or subtracting two polynomials previously

existing in the list. Therefore, w.l.o.g., we can write the forgery (F1,σ1 , F1,σ2) as follows.

F1,σ1 = c1+c2X1+c3X2+
n∑
i=1

c4,iUi+

qs∑
i=1

c5,iRi+

qg1∑
i=1

c6,iYi+

qs∑
i=1

c7,i(X1X2+(U0+
∑
j∈Mi

Uj)Ri) (22)

F1,σ2 = d1+d2X1+d3X2+
n∑
i=1

d4,iUi+

qs∑
i=1

d5,iRi+

qg1∑
i=1

d6,iYi+

qs∑
i=1

d7,i(X1X2+(U0+
∑
j∈Mi

Uj)Ri) (23)

where cj , dj(j = 1, 2, 3), cj,i, dj,i(j = 4, 5, 6, 7) ∈ Zp are chosen by A∗. We divide them into two cases:

– Case 1: c7,i = d7,i = 0, for ∀i ∈ [qs].

In this case, both F1,σ1 and F1,σ2 do not contain the term X1X2. Hence the polynomial F1,σ2(U0+∑
j∈M∗ Uj) − F1,σ1 in (21) also does not contain X1X2. Therefore, in the polynomial F1,σ, the

coefficient of the term X1X2 is non-zero, and thus F1,σ is non-zero.

– Case 2: c7,k 6= 0 or d7,k 6= 0, for ∃k ∈ [qs].

• If d7,k 6= 0, then the coefficient of the term U2
0Rk is non-zero, and thus F1,σ is non-zero.

• If c7,k 6= 0, since m∗ 6= mk, and thus it exists at least one bit is unequal, w.l.o.g., we assume

that 0 = m∗j 6= mk,j = 1. Hence the coefficient of the term UjRk is non-zero, and thus F1,σ

is non-zero.

Therefore, the polynomial F1,σ is non-zero. This completes the proof of Theorem 5. �


