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Abstract. This paper presents an efficient and side channel protected
software implementation of point multiplication for the standard NIST
and SECG binary elliptic curves. The enhanced performance is achieved
by improving the Lòpez-Dahab/Montgomery method at the algorithmic
level, and by leveraging Intel’s AVX architecture and the pclmulqdq pro-
cessor instruction at the coding level. The fast carry-less multiplication is
further used to speed up the reduction on the newest Haswell platforms.
For the five NIST curves over GF (2m) with m ∈ {163, 233, 283, 409, 571},
the resulting point multiplication implementation is about 6 to 12 times
faster than that of OpenSSL-1.0.1e, enhancing the ECDHE and ECDSA
algorithms significantly.
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1 Introduction

All SSL/TLS communications start with a client-server key establishment, based
on a public key cryptosystem. The classical protocol uses the RSA algorithm for
encryption/decryption of a session key, but it suffers from the following draw-
back: the confidentiality of the sessions depends directly on the security of the
server’s private RSA key. Especially motivated by recent disclosures, the current
trends are to move to protocols providing (perfect) forward secrecy, such as the
authenticated Diffie-Hellman Ephemeral (DHE) key exchange. One approach is
to use Elliptic Curve Cryptography (ECC) to efficiently perform this kind of key
exchange (ECDHE). Similarly, ECC based signature schemes (ECDSA) become
attractive because of their relatively short keys. Thus, software implementations
of ECC for the high end server platforms become a target for optimization.

Protocols such as TLS 1.x support elliptic curves over both prime and bi-
nary fields, and the important cryptographic libraries include implementations
for both types of ECC. For instance, the OpenSSL library that underlies the
mod ssl module of Apache, implements the ECDHE-ECDSA, ECDHE-RSA and
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other key agreement protocols over binary and prime fields. It is interesting to
note that from the hardware implementation cost, protocols using binary curves
are cheaper to implement than prime field curves, which can be significant for
low-end client devices. However, on the software implementation side, binary
curves have been less efficient than their prime curves counterparts on high
end processors. This was mainly caused by the fast integer multiplication units
compared to slow carry-less multiplication. In OpenSSL-1.0.1e for example, the
prime curve secp256k1 outperformes it’s binary counterpart sect283k1 by sev-
eral magnitudes.

This paper focuses on software optimization of point multiplication over
binary elliptic curves, leveraging the AVX instruction set and the newly op-
timized carry-less multipliers on high end x86-64 platforms. Targeting perfor-
mance and security by fast, side channel protected code, we built a library for
the underlying binary field arithmetic for the common fields specified by NIST
and SECG [17], covering security levels from 80 bits up to 256 bits. Table 1 shows
the binary elliptic curves over GF (2m) (both random and Koblitz curves) that
are optimized in this paper. It further displays their field representation and
the equivalent bit level security, and (in parentheses) the corresponding RSA
key length. On the left column, “1” indicates that the respective curve is stan-
dardized by NIST (the National Institute of Standards and Technology); “2”
indicates a curve standardized by SECG (Standards for Efficient Cryptography
Group); “3” indicates that the curve is part of the Wireless Transport Layer
Security (WTLS).

Curve
identifier

Type m Bit level security
(Equiv. RSA key length)

Field polynomial
for reduction in GF (2m)

sect163k11,2,3 Koblitz 163 80 (1024) x163 + x7 + x6 + x3 + 1
sect163r12 Random
sect163r21,2 Random

sect193r12 Random 193 96 (1536) x193 + x15 + 1
sect193r22 Random

sect233k11,2,3 Koblitz 233 112 (2240) x233 + x74 + 1
sect233r11,2,3 Random

sect239k12 Koblitz 239 115 (2304) x239 + x158 + 1

sect283k11,2 Koblitz 283 128 (3456) x283 + x12 + x7 + x5 + 1
sect283k11,2 Random

sect409k11,2 Koblitz 409 192 (7680) x409 + x87 + 1
sect409r11,2 Random

sect571k11,2 Koblitz 571 256 (15360) x571 + x10 + x5 + x2 + 1
sect571r11,2 Random

Table 1: Targeted binary elliptic curves and their security level
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2 The improved 2P algorithm

Given an elliptic curve E with |E| = |GE | · |HE | = n · h (here: h ∈ {2, 4}), the
essential operation of elliptic curve cryptosystems is multiplying a point P ∈ GE
on the curve, by a positive integer k ∈ [1, n], to obtain a new point

Q = k · P = P + P + ...+ P︸ ︷︷ ︸
k-times

=

k−1∑
i=0

P.

Montgomery [15] introduced a fast approach for this point multiplication. It
uses the fact that the sum of two points whose difference is known, can be eval-
uated with a procedure that involves only the x-coordinate of these points when
performing one point doubling, and one point addition per iteration. López and
Dahab (LD hereafter) improved this algorithm for binary curves over GF (2m),
by eliminating costly inversion operations in the field (when given in polynomial
representation). In their so-called 2P-Algorithm [14], the point P = (x, y) is
represented in the LD-projective form P = (X/Z, Y/Z2). The x-coordinate of
the sum P0 + P1 and of 2Pi is the fraction X ′/Z ′, where

2Pi: P0 + P1:

X ′ = X4
i + b · Z4

i X ′ = x · Z ′ + (Z0 ·X1) · (Z1 ·X0)

Z ′ = X2
i · Z2

i Z ′ =

(
(Z0 ·X1) + (Z1 ·X0)

)
The computational cost of the resulting algorithm is dominated by the perfor-

mance of the point addition(Madd) and point doubling(Mdouble), which are exe-
cuted blog2(k)c times in a point multiplication kP . Here, we speed up the point
multiplication by reducing the amount of computations in Madd and Mdouble.

2.1 Improved Mdouble

By re-ordering the flow of the Mdouble, we first multiply Z2 with the precom-
puted value c =

√
b, then add the result to X2, square this again and obtain

the result X ← (X2 + c · Z2)2 = X4 + b · Z4. This saves one squaring and one
reduction operation per run. Algorithm 2 shows the improved Mdouble flow.

For Koblitz curves, we have b = 1 and therefore c = b2
m−1

= 1, so another
multiplication and reduction can be saved, as shown in Algorithm 3.

2.2 Improved Madd

The Madd function can be improved by deferring reduction operations (we call
it lazy reduction, after [21]). Algorithm 4 shows the improved Madd flow, where
we defer the reduction after Steps 4 and 8, and reduce the result only in Step
9. The rationale is that double sized addition is cheaper than a reduction (the
actual gain depends on the specific field).
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2.3 Estimating the impact of the improved Mdouble and Madd

Table 2 compares the number of the field operations in Algorithms 2, 3, and 4,
compared to their original form. For simplicity, we count the reduction as a field
operation here.

Field
Operations

Mdouble
Koblitz

Mdouble
Random

Mdouble
Original

Madd
Improved

Madd
Original

#MUL 1blog2(k)c 2blog2(k)c 2blog2(k)c 4blog2(k)c 4blog2(k)c
#RED 4blog2(k)c 5blog2(k)c 6blog2(k)c 4blog2(k)c 5blog2(k)c
#SQR 3blog2(k)c 3blog2(k)c 4blog2(k)c blog2(k)c blog2(k)c
#ADD blog2(k)c blog2(k)c blog2(k)c 3blog2(k)c 2blog2(k)c

Table 2: The number of field operations for point multiplication, with the original
and the improved Mdouble and Madd algorithms.

3 Side channel protected point multiplication

This section discusses the potential threat and countermeasures of software side
channel attacks, where an adversary attempts to collect information about the
secret keys that are being used. Today, it is known that software implementations
of cryptographic primitives need to take such side channel attacks into account,
and add appropriate countermeasures.

3.1 Protection requirements

As with other cryptographic schemes, implementations of ECC have been shown
to be susceptible to software side channel attacks. Even the applicability of re-
mote timing attacks on a ECC implementation has been demonstrated [7]. We
concentrate here on protecting the software implementation of the LD/Mont-
gomery point multiplication, without covering the higher implementation parts
of the various protocols like ECDHE or ECDSA.
Timing attacks exploit the occurrence of variant execution times for different
inputs. This kind of attack can be mounted whenever a correlation between the
key and the execution time is found. Further, we take cache based timing attacks
into account, where the adversary is assumed to be able to run an unprivileged
process to measure instruction and data cache latencies. Thus, key dependent
branches and table accesses should be avoided or masked.

To avoid timing attacks in the LD/Montgomery point multiplication one
must ensure that

1. all inputs (k,P ) to the point multiplication function are valid, meaning
◦ Integer k is in the interval [1, n] with n = |〈P 〉|
◦ k has constant bit length (for the same group)
◦ P is a valid point on the curve.

2. the point multiplication and its sub-functions are executed in constant time,
3. no key dependent code branches or data accesses exist.
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3.2 Protection strategy

The large variety of attacks makes it very difficult to protect an implementation
against all possible side channel threats. In the following, we will show the mech-
anisms to prevent the previously mentioned threats for server implementations.

Constant key length is a first step to assert a constant running time of the
point multiplication kP . Although, the input validation of the scalar k and the
point P should be performed prior to the point multiplication, we provide a bit
length fix for all valid k ∈ [1, n] with n order of the large subgroup GE of E . At
first, we always add n to k, so that k′ = k + n and kP = k′P . The bit length of
k′ is then blog2(n)c ≤ log2(k′) ≤ blog2(n)c+ 1, since the result of an addition
of two integers n and k ≤ n is not longer than blog2(n)c+ 1 bits.

To make the bit length fixed for all cases of k, one can repeat the addition of
n, if and only if the bit at position blog2(n)c+ 1 is NOT set. To ensure that the
implementation does not include any branches, one should create a mask in a
similar way as suggested in Algorithm 1 and then add the masked value, which
is either the order n or an equivalent sized number with zero value. Thereafter,
the bit length of k′ is fixed to dlog2(n)e. One has to take into account that k
needs to be a valid input with k ∈ [1, n] in order to assert the fixed bit length,
which is expected to be evaluated outside the point multiplication. Additionally,
this countermeasure eventually adds vulnerability to Carry-based attacks [8],
attacking not the point multiplication but this particular countermeasure itself.
However, considering our attacker model this is no reasonable threat.

Constant memory access pattern and the elimination of key dependent
branches are the main countermeasure against cache based side channel attacks
in our implementation. Since cache attacks are most likely with our attacker
model, we want to assure not only a fixed memory access pattern but also avoid
any key dependent branch. Therefore, we suggest algorithm 1 to veil the data
access.

Let tx1,tx2,tz1 and tz2 be fixed size temporary variables for a GF (2m) and
ki the current bit at position i. Table 3 shows the transition of the coordinates
involved in the double/add process inside the LD/Montgomery point multipli-
cation’s key evaluation loop.

For the proposed data veiling method, a masking
word t0 is created with either all bits set to zero,
or all bits set to one, depending on the value of
ki. This word is then used to create the mask for
field elements in step 2, which in turn is succes-
sively applied with AND and NAND operations
to the two possible values, satisfying the rules in
Table 3. This transition is self-inverse and needs
to be re-applied after the execution of Madd and
Mdouble.

ki = 0 ki = 1
tx1 x2 x1

tx2 x1 x2

tz1 z2 z1
tz2 z1 z2

Table 3: X/Z Transformation
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Algorithm 1: Proposed data veiling method

Input: Keybit ki, EC coordinates x1, x2, z1, z2 ∈ GF (2m)
Output: Temporary coordinates tx1, tx2, tz1, tz2 ∈ GF (2m)

1 t0 ← ( 0x00...0︸ ︷︷ ︸
Wbit word

− ki);

2 for (j = 0; j < dm
W
e; j++) do mask[j]← t0;

3 tx1 ← (mask ∧ x1)⊕ (mask Z x2);
4 tx2 ← (mask Z x1)⊕ (mask ∧ x2);
5 tz1 ← (mask ∧ z1)⊕ (mask Z z2);
6 tz2 ← (mask Z z1)⊕ (mask ∧ z2);

7 return tx1, tx2, tz1, tz2

In summary, the proposed technique requires 4 field XORs, NANDs and
ANDs, and, neglectable in proportion, one 64 bit subtraction and one constant
load each.

Constant function calls inside the key evaluation loop are naturally provided
by the LD/Montgomery point multiplication. In addition, we must ensure that
all called subfunctions are executed in constant time and thus not include data
depending branches. However, due to the branches inside Mxy, which is the final
transformation to extract the y-coordinate, the running time for the point mul-
tiplication is not constant if the result is invalid, the inverse −P of a point P or
the point at infinity (and thus the scalar k a multiple of n).

Constant time implementation for binary field arithmetic is the neces-
sary consequence from the previous point. If we want to ensure that the running
time is constant, the binary field arithmetic must be totally data independent.
This does not only mean that we cannot include any shortcuts for special values
and data dependent branches at all, but it also biases the choice of algorithm,
e.g., the inversion method.

4 Efficient implementation of binary field arithmetics

In this section we explain the techniques for the implementation of the binary
field arithmetic. With special focus on fast reduction, we introduce a reduction
scheme using the pclmulqdq instruction to speed up the reduction on the new
Haswell architecture.
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4.1 Binary field arithmetic

The square of a field element a(x) ∈ GF (2m), rather than just multiplying a
field element with itself, can be computed as follows:

a2(x) =

(m−1∑
i=0

ai x
i

)2

=

m−1∑
i=0

(ai x
i)2 =

m−1∑
i=0

ai x
2i mod f(x)

This property makes squaring in GF (2m) a linear operation and therefore
much faster than the conventional multiplication, and can be performed with
small table lookups. This table can be stored in only one vector and is therefore
naturally accessed in a fixed pattern. Expanding the element by successively
inserting zeros, it can even be computed in parallel, using the pshufb instruction.
The use of pshfub to implement lookup tables was originally proposed by Gueron
and Kounavis [9] and first used by Aranha et al. in [4] for squaring in GF (2m).

The multiplication in GF (2m) was usually a very expensive operation. The
64 bit carry-less multiplier, which is now available on various x86 platforms,
significantly accelerates the multiplication in binary fields. In this work we use
both explicit and recursive versions of Karatsuba-Ofman for different sizes. We
chose explicit forms for 2-, 3- and 5-term Karatsuba and recursive forms for 4-,7-
and 9-terms, balancing performance gain against code size. For a comparison of
Karatsuba implementations with vector extensions see [18] by Su and Fan.

For the inversion in GF (2m) we use the Itoh-Tsujii Algorithm(ITA)[11]. The
ITA performs the inversion with exactly m − 1 squares and blog2(m − 1)c +
H(m − 1) − 1 multiplications with Hamming weight H. The general recursive
formula to obtain the chain can be given as

1 + 2n + 22n + ...+ 2(k−2)n ={
(1 + 2n)× (1 + 22n + ...+ 2(k−3)n), if k − 1 ≡ 0 mod 2

1 +
(
2n × (1 + 2n)× (1 + 22n + ...+ 2(k−4)n

)
, if k − 1 ≡ 1 mod 2

The running time boundaries for this algorithm are mainly determined by
squares and requires a serious amount of time. In this implementation, fortu-
nately, the costly inversion is only required once per point multiplication.

4.2 Reduction

The reduction is a very crucial part of the implementation. The two most im-
portant field operations, squaring and multiplication, both require a reduction
with the field polynomial f(x), which can be seen as a multiplication with the
reduction polynomial. In this work we deal with the NIST polynomials and two
polynomials from the SECG standard[17], either trinomials or pentanomials.
In this section, we will describe our strategy for each type and discuss special
opportunities to speed up the reduction schemes with AVX.
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The reduction is basically a multiplication of the upper half of the double
sized element with the reduction polynomial. Let f(x) = xm + r(x) with degree
deg(r) = k be the reduction polynomial over GF (2m). We split the polynomial
c(x) = cH(x) + cL(x) with degree deg(c) = m+ t into two parts where

cH(x) =
∑t
i=m cix

i and cL(x) =
∑m−1
i=0 cix

i.

The reduction of c(x) is then computed as

c′(x) = cL(x)⊕ cH(x) · r(x).

The resulting polynomial c′(x) has degree d = deg(c′) = max(m− 1, t+ k).
In case of d ≥ m, the reduction is applied recursively.

“Left-to-Right In-Place Shift and Add” approach is the consequence.
Since the multiplication of a word by one bit is a simple shift, this multiplica-
tion can be applied as a series of shifts and adds. This makes especially sense, if
we remember that the amount of bits in r(x) is very small (here either 2 or 4).
In our experiments, this technique produced better results than other reduction
schemes such as Barrett’s method [12][13].

The reduction for trinomials is very straightforward - we successively shift
the top word by the components of r(x) to the right and add the result to the
remainder, while skipping multiples of 64 and 128 bit with memory alignments.
In order to avoid duplication of work, one should execute the shift and add from
the left to the right and adding the current word immediately to the remainder.
Under the assumption that we are about to reduce a double quadword w by
component xk, we shift w exactly (m−k mod 64) bits to the right and add it to
the remainder while skipping l×128 bits, where l = bm−k128 c. If (m−k mod 128) ≥
64, however, we need to add the lower half of w to the previous word.

The strategy for pentanomi-
als differs from the trinomial
way in terms of recombination.
Instead of directly adding each
component to the remainder, we
gather the results of left and
right shifts of a vector A in sep-
arated vectors and recombine
them by finally adding them
to the remainder, which saves
three alignments per 128 bit el-
ement. Figure 1 shows the com-
bination steps for a vector A. Fig. 1: Example step of the re-combination

strategy for pentanomials
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Fast vector shifting uses the (faster) 128 bit shift instruction(pslldq/psrldq),
which is feasible whenever the difference of two components in the polynomial
is a multiple of 8. With the polynomials from 1, we can apply this trick for the
polynomial f(x) = x163 + x7 + x6 + x3 + 1 where 163 − 3 = 160. Additionally,
we have the components x10 and x2 in the reduction polynomial for GF (2571)
but here the fast shifting interferes with the recombination strategy, where the
savings for the alignment pay off in comparison.

Special reduction schemes are possible inGF (2283) and necessary inGF (2239).
A fast reduction in GF (2283) was proposed in [1] and uses the observation
f(x) = x283 + x12 + x7 + x5 + 1 = x283 + (x7 + 1) · (x5 + 1).

The polynomial f(x) = x239 + x158 + 1 is one of the two polynomials sug-
gested in [17] for this field size and currently integrated in OpenSSL. For the
implementation with vector extensions, this polynomial is suboptimal. This is
caused by the small distance 239 − 158 = 81 < 128, which means that a 128
bit word of the remainder affects itself during the reduction, which makes shift
and add reduction inefficient for this size. The GF (2239) reduction is therefore
provided in 64 bit mode only. When using vector extensions, the polynomial
f(x) = x239 + x36 + 1 (which has also been suggested by SECG) is much faster.
Another approach would be to implement the reduction with a special version
of Barrett’s method, which should increase the performance of this field signifi-
cantly. Due to this issues we do not recommend the use of this field. Reduction in
GF (2233) is much faster and this particular curve has almost the same security
level (see 1) with an only slightly shorter key. Anyhow, we added this curve to
our implementation for convenience.

4.3 Mul&Add reduction

The pclmulqdq instruction can be utilized for reduction. Thus, each 64 bit word

of the operand cH(x) must be multiplied with r(x) =
∑k
i=0 rix

i and added to
the remainder cL(x). Obviously, k must hold the condition k < 64 to ensure

the lowest number of multiplications, which is exactly t = d log2(cH(x))
64 e then. If

k > 63, we must multiply each word more than once, particularly s = d k64e times
per word and we therefore require t · s multiplications overall.

In order to spare the additional reduction step, as described above, the multi-
plications are executed from the left to the right and the results are immediately
added to the remainder. Due to the fact that the bits of c(x) are results from
either multiplication or squaring and are stored into a series of words where the
border between cL(x) and cH(x) at position m − 1 is right in the middle of a
64 bit block, each multiplication result must be aligned in order to be added to
the remainder. Therefore, we can either initially shift the polynomial r(x) to the
left by l = m mod 64 bits (if k + l < 64 still holds), or we can shift the input
words l bits to the right, or 64 − l bits to the left. Thereby, the operand needs
to be saved temporarily as the reduction is performed in-place, requiring more
temporary variables. Shifting the operand especially makes sense if the data in
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cH(x) overlaps into an additional register, thus requiring t + 1 multiplications.

For example the reduction in GF (2163), the bits of cH(x) =
∑325
i=163 cix

i are
spread over four 64 bit words. For our target curves, the operand shifting re-
quires to much efforts compared to a single multiplication on Haswell, whereas
on the Sandy/Ivy Bridge this shifting pays off. Obviously, the proposed tech-
nique makes more sense the greater the hamming weight of r(x) is, and if all the
bits in r(x) are in one 64 bit word (s = 1). Fortunately, this is the case for the
NIST curves over GF (2163), GF (2283) and GF (2571).

As a matter of fact, the performance of the pclmulqdq reduction strongly
depends on the underlying architecture. This reduction scheme starts to pay
off when the multiplier performs two multiplications faster than the according
shifts and additions. Let the reduction polynomial be pentanomial with no spe-
cial properties as fast shifts or other special properties. For the “shift” step of the
shift&add reduction, the required amount of operations for each 128 bit word
is 4×2 SHIFT’s (psllq/psrlq) plus 3×2 XOR’s. Requiring the same amount
of operations for the “add” step, the multiplier must be able to perform 2 mul-
tiplications faster than this in order to beat the shift&add implementation for
pentanomial reduction polynomials. On the Sandy/Ivy Bridge, this cannot be
performed faster than 10 cycles (usually more), whereas one 64 bit multiplica-
tion has a latency of 14 cycles. This explains why this reduction scheme does
not pay off on these architectures.

On Haswell however, with a latency of 7 and a throughput of only 2 cycles,
this can be performed in 9 cycles. In many cases, one can make advantage of
the small throughput by fetching multiple multiplications at once to gain even
better performance.

5 Results

This section presents the results for the binary field arithmetic and shows the
impact of the improved LD/Montgomery point multiplication and the resulting
performance gain for both ECDH and ECDSA of the OpenSSL implementa-
tion. The corresponding tables can be found in the appendix. Since our imple-
mentation is suitable for several architectures, we provide data for a Haswell
Core i7-4770 CPU at 3.40GHz (HSW) and a Core i5-3210M Ivy Bridge (IVB),
running with 2.50GHz. Tests on a Sandy Bridge processor have produced very
similar relative results as on the Ivy Bridge. To reduce randomness, we followed
the guidelines from ECRYPT Benchmarking of Cryptographic Systems(eBACS)
[20]. The code was compiled with the latest gcc in version 4.8.1. As tools for
measurement we used the OpenSSL built-in speed tool as well as a cycle counter
using the RDTSC instruction, similar to [10], with slightly different repetition
factors. The OpenSSL speed utility can be used to reproduce our results after
applying the patch and indicates the patch’s impact to the overall performance
of OpenSSL ECDH and ECDSA operations.
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Binary field arithmetic costs are shown in Table 5. The results indicate
the benefits of the fast pclmulqdq on Haswell and the performance difference of
squaring and multiplication.

Reduction costs can be found in Table 6 on the different architectures.
It shows the performance difference of trinomials and pentanomials as well as
the performance loss due to the 64 bit mode in GF (2239). Furthermore, we
see the mul&add reduction outperforming the shift&add reduction with factor
1.25 in GF (2163) and about 1.62 in GF (2283) and 1.61 in GF (2571) on Haswell.
However, the shift&add implementation does not use AVX2 features, which could
eventually allow improvements.

The computational costs for side channel protection by hiding the
coordinates in order to assure a fixed memory access pattern per round are also
not neclectable. A single data veiling requires twelve logical operations at the cost
of an XOR. Additionally, one requires four temporary variables in order to hide
the data processing for all four coordinates involved in the point multiplication.
This has of course some performance impact to the point multiplication process,
as this performance overhead applies for each loop execution.

The point multiplication’s importance has been pointed out several times
by now. Table 7 shows the results for k ·P in cycles. We find that the amount of
cycles has been substantially diminished, up to a factor of almost 12. Also, we
observe the impact of the improved code flow for the Koblitz rather than random
curves, which is noticeable in both absolute numbers and the relative speedup.
Hereby, we have to mention that the numbers for the unpatched OpenSSL-1.0.1e
are not constant, since it is not a constant time implementation, especially the
bit length of k is not fixed. Therefore, the speedup factor is also not consistent
and will differ from run to run.

Elliptic curve Diffie-
Hellman operations are
presented in Table 11 and
Figure 2, measured with the
OpenSSL speed tool and
therefore the curve iden-
tifiers have been changed
to nistk for Koblitz and
nistb for random curves.
Since the ECDH is basi-
cally a point multiplication,
the speedup is very high.
Prime curves are currently
more frequently used in
server implementations. As
demonstrated in Table 8,
our improvements to the
point multiplication of the
binary curves result in a big
performance lead.

Fig. 2: ECDH - operations per second.
OpenSSL (with enable-ec nistp 64 gcc 128
flag) versus proposed implementation on the
Haswell processor
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Elliptic curve signature and verification algorithms have considerably
more overhead than the ECDH. However, as shown in Tables 9 and 10, we
perceive an average speedup of factor 4.9 (sign) and 6.2 (verify) on Ivy Bridge
as well as 4.5 and 6.3 on Haswell, respectively. Since the bit length for the
ECDSA in OpenSSL has been fixed before the point multiplication in response
to a timing attack [7], the resulting scalar k is not in the interval [1, n] anymore
and is either one or two bits longer (but constant for a specific field) than the
original scalar (depending on the form of the corresponding curve order n), which
slightly increases the amount of cycles for the patched version.

6 Comparison to other works

Most works about the implementation of binary elliptic curves with the use of
vector instructions are aiming to break speed records and thus often exploit al-
gebraic properties. This work aims for provision of a generic point multiplication
for the well known NIST/SECG curves over the binary field, without any com-
promises in regard to security. This work does not use precomputation schemes
(such as wNAF, τNAF), point halving, special fields with beneficial properties
(such as Fq2), or other algebraic properties (e.g., Forbenius morphism).

In Table 4 we show results for implementations of random point multiplica-
tion for binary elliptic curves in NIST/SEC fields. All numbers are given in 103

cycles on a single core.

Work SCP1 CPU Method 2233 2283 2409 2571

Aranha et al. [2] no Core i7-860 4-TNAF - 386 - 1656
Taverne et al. [19] no Core i7 (SNB) 5-τNAF,τ&add 068 - 264 -

Aranha et al. [3] no Core i7 (SNB) 5-τNAF,τb283/2c - 099 - -
This work yes Core i5 (IVB) LD-Montgomery 128 217 511 1095

K
o
b
li

t
z

yes Core i7 (HSW) LD-Montgomery 81 118 286 566

Aranha et al. [2] no Core i7-860 LD-Montgomery - 793 - 4440
Taverne et al. [19] no Core i7 (SNB) 4-ωNAF 180 - 738 -
This work yes Core i5 (IVB) LD-Montgomery 148 254 599 1271

R
a
n
d
o
m

yes Core i7 (HSW) LD-Montgomery 91 135 325 650

Table 4: Unknown Point Multiplication over NIST Curves (Koblitz)

This work yields very good results for random curves and wins against all cur-
rent state-of-the-art implementations over the NIST fields, even with the costly
side channel countermeasures. Since all previous works have been implemented
on the Sandy/Ivy Bridge, we compare with the Ivy Bridge implementation here.
For the random curve over the GF (2233) NIST field, our implementation is about
factor 1.22 (1.23 in GF (2409)) faster than [19] and even factor 3 (GF (2283)) and
3.5 (GF (2571)) faster than reported in [2] for a single core. Although our Ivy
Bridge implementation for Koblitz curves beats the numbers presented in [2] by
1.77x and 1.51x, [19] achieve results which are factor 1.53 faster, whilst [3] is
even as twice as fast.

1 Side Channel Protection
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7. CONCLUSION

For further comparison, we give the latest numbers of protected (as claimed
by the authors) point multiplication implementations at the 128 bit security
level, using curves with special algebraic properties. Bos et al.[6] report 117,000
cycles for a protected point multiplication on a Kummer surface with the Mont-
gomery ladder and [16] reports 115,000 cycles on a GLS curve using 2-GLV
(double&add) on a single core. At the same security level, this work achieves a
point multiplication in 118,000 cycles with the OpenSSL patch [5] on the Haswell
processor, without using special fields, exploiting algebraic properties or precom-
putation techniques. At the 256 bit security level, this work achieves a EC point
multiplication in about 566,000 (Koblitz) and 650,000 (random) cycles.

7 Conclusion

In this work, we proposed a fast, constant time implementation of the point
multiplication on binary elliptic curves at a security level of 80 bits and greater,
standardized by NIST and SECG.

We analyzed major implementation threats for server environments and se-
cured the implementation by applying countermeasures against common and
dangerous side channel threats such as cache and remote timing attacks. Over
the last years, several publications have pointed out that these side channel at-
tacks are more than a theoretical but a serious menace. To address this issue,
we provide a constant time implementation of the elliptic curve point multipli-
cation and binary field arithmetic, without key dependent branches and a fixed
memory access pattern.

Additionally, we introduced an improved version for the well known LD/-
Montgomery multiplication with enhancements on the arithmetic level, provided
a patch for the OpenSSL library and showed its significant performance impact.
This improvement is available on all 64 bit architectures implementing at least
SSE4 (better: AVX) and the pclmulqdq instruction. The implementation has
been contributed to OpenSSL as patch for version 1.0.1e and is available for
download [5].

We further showed that this impact is not limited to the point multiplica-
tion itself but improves the servers performance regarding ECDH operations
and signature based cryptography. This further leads to a major performance
improvement for servers and clients conducting TLS handshakes. This is an es-
sential enhancement especially for server environments, which are often required
to conduct a big number of handshakes simultaneously. Also, our results might
indicate a different view to the binary ECC on server architectures.
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A.1 Speed results

Field
Squaring Multiplication Inversion

HSW IVB HSW IVB HSW IVB

GF (2163) 21 21 34 71 4,271 4,811
GF (2193) 17 19 37 98 4,122 4,788
GF (2233) 18 21 38 87 6,074 6,956
GF (2239) 49 44 67 100 15,349 14,777
GF (2283) 27 30 53 121 11,688 9,677
GF (2409) 28 31 97 227 15,182 15,648
GF (2571) 61 68 158 335 37,118 42,595

Table 5: Cycles for arithmetic operations in GF (2m) (without addition)

Field Shift&Add
(Haswell)

Mul&Add
(Haswell)

Shift&Add
(Ivy Bridge)

Mul&Add
(Ivy Bridge)

GF (2163) 15 12 18 31
GF (2193) 11 - 13 -
GF (2233) 12 - 15 -
GF (2239) 42 - 41 -
GF (2283) 21 13 25 57
GF (2409) 15 - 20 -
GF (2571) 37 23 48 81

Table 6: Comparison of the two reduction schemes on Haswell and Ivy Bridge

http://bench.cr.yp.to/supercop.html
http://bench.cr.yp.to/supercop.html


Binary
Curve

OpenSSL-1.0.1e OpenSSL patch Speedup factor
Ivy Bridge Haswell Ivy Bridge Haswell Ivy Bridge Haswell

sect163k1

sect163r1

sect163r2

sect193r1

sect193r2

sect233k1

sect233r1

sect239k1

sect283k1

sect283r1

sect409k1

sect409r1

sect571k1

sect571r1

624,949
643,236
646,374
801,932
818,985
993,195

1,030,043
1,027,541
1,892,016
2,019,134
3,315,895
3,655,279
7,659,288
8,432,393

543,097
563,928
567,854
572,307
567,929
681,347
712,864
718,156

125,8711
1,341,366
1,984,879
2,142,064
4,764,870
5,222,559

66,378
76,534
77,238

121,127
121,163
128,474
148,230
185,629
217,192
254,163
510,787
599,002

1,094,765
1,270,666

45,642
49,869
50,127
73,296
73,442
81,133
91,372

144,816
118,120
134,571
286,090
325,279
566,257
659,528

9.42
8.40
8.37
6.62
6.76
7.73
6.95
5.54
8.71
7.94
6.49
6.10
7.00
6.64

11.90
11.31
11.33
7.81
7.73
8.40
7.80
4.96

10.66
9.97
6.94
6.59
8.41
7.92

Table 7: Point multiplication results in comparison to OpenSSL-1.0.1e in cycles

Curve
Identifier

Patched OpenSSL-1.0.1e Speedup factor
Ivy Bridge Haswell Ivy Bridge Haswell

secp160r1
nistk163

nistb163

nistp224
nistk233

nistb233

nistp256
nistk283

nistb283

nistp384
nistk409

nistb409

nistp521
nistk571

nistb571

4444.3
27837.0
24043.5

7573.1
14946.4
13057.0

3891.5
9026.5
7754.4

1051.9
3879.5
3319.6

971.0
1822.3
1565.0

7391.5
67212.4
61667.8

11993.8
39102.2
35246.4

6489.0
27586.5
24320.7

1848.5
11611.2
10238.1

1682.8
5941.8
5158.8

-
6.26
5.41

-
1.97
1.72

-
2.32
1.99

-
3.69
3.16

-
1.88
1.61

-
9.09
8.34

-
3.26
2.94

-
4.25
3.75

-
6.28
5.54

-
3.53
3.07

Table 8: Comparison of ECDH operations per second for binary and prime el-
liptic curves on Ivy Bridge and Haswell



Binary Curve OpenSSL-1.0.1e Patched OpenSSL Speedup Factor
Sign Verify Sign Verify Sign Verify

Iv
y

B
ri

d
g
e

sect163k1

sect163r1

sect163r2

sect193r1

sect193r2

sect233k1

sect233r1

sect239k1

sect283k1

sect283r1

sect409k1

sect409r1

sect571k1

sect571r1

929,081 1,667,026
955,187 1,743,232
959,119 1,734,078

1,004,362 1,806,773
1,007,317 1,816,476
1,161,852 2,125,398
1,197,683 2,226,927
1,194,324 2,210,181
2,097,257 4,006,091
2,227,001 4,241,617
3,505,242 6,801,755
3,776,632 7,322,093
8,018,930 15,635,228
8,745,813 17,133,137

181,832 215,389
190,778 238,232
193,299 236,150
248,191 335,012
248,683 334,215
262,615 362,315
289,039 405,330
321,347 482,566
366,470 557,568
404,091 628,606
702,767 1,181,176
793,073 1,359,816

1,365,881 2,461,485
1,542,300 2,816,402

5.11 7.74
5.01 7.32
4.96 7.34
4.05 5.39
4.05 5.44
4.42 5.87
4.14 5.49
3.72 4.58
5.72 7.18
5.51 6.75
4.99 5.76
4.76 5.38
5.87 6.35
5.67 6.08

H
a
sw

e
ll

sect163k1

sect163r1

sect163r2

sect193r1

sect193r2

sect233k1

sect233r1

sect239k1

sect283k1

sect283r1

sect409k1

sect409r1

sect571k1

sect571r1

680,085 1,215,819
698,430 1,256,375
702,585 1,246,757
730,894 1,302,676
732,172 1,306,010
841,066 1,530,004
875,737 1,585,333
869,989 1,582,703

1,440,771 2,724,199
1,517,952 2,882,340
2,201,747 4,230,856
2,353,768 4,524,217
5,091,193 9,885,973
5,478,258 10,727,383

157,761 173,166
160,901 180,300
163,610 182,937
198,160 234,577
197,911 236,197
213,628 264,756
223,396 285,478
278,374 402,386
266,409 355,636
283,443 386,729
480,983 738,817
524,003 822,021
833,567 1,384,070
914,464 1,552,640

4.31 7.02
4.34 6.97
4.29 6.82
3.69 5.55
3.70 5.53
3.94 5.78
3.92 5.55
3.13 3.93
5.41 7.66
5.36 7.45
4.58 5.73
4.49 5.50
6.11 7.14
5.99 6.91

Table 9: ECDSA sign and verify cycles for the NIST curves on Ivy Bridge and
Haswell



Binary
Curve

OpenSSL-1.0.1e OpenSSL patch Speedup factor
Ivy Bridge Haswell Ivy Bridge Haswell Ivy Bridge Haswell

S
IG

N

nistk163

nistk233

nistk283

nistk409

nistk571

nistb163

nistb233

nistb283

nistb409

nistb571

3,749.9
1,881.7
1,267.5

542.2
257.6

3,766.5
1,893.1
1,265.7

539.3
257.2

6,465.3
3,259.2
2,204.7

977.0
466.4

6,487.3
3,279.2
2,196.4

976.3
466.6

17,721.8
10,359.0
6,688.9
3,140.9
1,556.0

16,203.5
9,386.5
5,962.3
2,763.4
1,354.8

36,872.6
22,998.4
16,884.9
8,150.0
4,424.1

35,110.0
21,468.8
15,602.7
7,423.1
3,977.0

4.73
5.51
5.28
5.79
6.04

4.30
4.96
4.71
5.12
5.27

5.70
7.06
7.66
8.34
9.49

5.41
6.55
7.10
7.60
8.52

V
E

R
IF

Y

nistk163

nistk233

nistk283

nistk409

nistk571

nistb163

nistb233

nistb283

nistb409

nistb571

1,578.6
1,211.6

639.3
361.9
159.9

1,514.5
1,150.4

594.2
344.2
145.7

3,159.5
2,419.8
1,355.7

839.1
368.3

3,043.9
2,348.0
1,283.5

786.9
341.0

11,688.1
6,439.4
3,951.1
1,757.1

834.6

10,453.8
5,711.9
3,445.5
1,522.4

724.9

26,508.4
15,557.1
11,003.2
4,845.0
2,533.6

24,904.8
14,095.6
9,888.5
4,361.9
2,251.6

7.40
5.31
6.18
4.86
5.22

6.90
4.97
5.80
4.42
4.98

8.39
6.43
8.12
5.77
6.88

8.18
6.00
7.70
5.54
6.60

Table 10: OpenSSL ECDSA sign and verification operations per second for the
NIST curves on Ivy Bridge and Haswell

Binary
Curve

OpenSSL-1.0.1e OpenSSL patch Speedup factor
Ivy Bridge Haswell Ivy Bridge Haswell Ivy Bridge Haswell

nistk163

nistk233

nistk283

nistk409

nistk571

nistb163

nistb233

nistb283

nistb409

nistb571

4,129.0
2,628.4
1,338.5

836.3
406.5

3,217.6
2,443.5
1,244.3

723.4
368.3

6,586.9
5,121.9
2,825.7
1,745.8

763.2

6,382.5
4,881.9
2,651.6
1,640.3

693.8

34,739.0
17,013.4
9,017.6
3,884.0
1,824.1

24,237.2
13,114.3
7,711.6
3,382.3
1,943.5

67,029.6
39,441.3
27,718.5
11,634.2
5,930.9

60,729.6
35,230.4
24,456.4
10,228.6
5,172.1

8.41
6.47
6.74
4.64
4.49

7.53
5.37
6.20
4.68
5.28

10.18
7.70
9.81
6.66
7.77

9.52
7.22
9.22
6.24
7.45

Table 11: OpenSSL ECDH operations per second over the NIST curves



A.2 New 2P-Algorithm subfunctions

Algorithm 2: Point Doubling algorithm for random curves

Input: c ∈ GF (2m) where c2 = b, x-coordinate X/Z for a point P
Output: x-coordinate X/Z for the point 2P

1 t← c;
2 X ← X2 mod f(x);
3 Z ← Z2 mod f(x);
4 t← Z × t mod f(x);
5 Z ← Z ×X mod f(x);
6 X ← X + t;
7 X ← X2 mod f(x);

8 return X, Z

Algorithm 3: Point Doubling algorithm for Koblitz curves

Input: x-coordinate X/Z for a point P
Output: x-coordinate X/Z for the point 2P

1 X ← X2 mod f(x);
2 Z ← Z2 mod f(x);
3 t← X + Z;
4 Z ← Z ×X mod f(x);
5 X ← t2 mod f(x);

6 return X, Z

Algorithm 4: Algorithm for Point Addition

Input: x-coordinates X/Z of the point P (x, y), P0(X0, Z0), P1(X1, Z1)
Output: x-coordinate X1/Z1 for the point P0 + P1

1 t0 ← X1;
2 X0 ← X0 × Z0 mod f(x);
3 Z0 ← Z0 × t0 mod f(x);
4 t1 ← X0 × Z0 ; // mult. w/o reduction, result double sized

5 Z0 ← Z0 + X0;
6 Z0 ← Z2

0 mod f(x);
7 t0 ← x;
8 t2 ← Z0 × t0 ; // mult. w/o reduction, result double sized

9 t2 ← t2 + t1 ; // double sized addition

10 X0 ← t2 mod f(x) ; // final reduction

11 return X0,Z0
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