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Abstract

We study the classical problem of privacy amplification, where two parties Alice and Bob share
a weak secret X of min-entropy k, and wish to agree on secret key R of length m over a public
communication channel completely controlled by a computationally unbounded attacker Eve.

Despite being extensively studied in the literature, the problem of designing “optimal” efficient
privacy amplification protocols is still open, because there are several optimization goals. The first of
them is (1) minimizing the entropy loss L = k−m (it is known that the optimal value for L = O(λ),
where ε = 2−λ is the desired security of the protocol). Other important considerations include (2)
minimizing the number of communication rounds, (3) maintaining security even after the secret key
is used (this is called post-application robustness), and (4) ensuring that the protocol P does not leak
some “useful information” about the source X (this is called source privacy). Additionally, when
dealing with a very long source X, as happens in the so-called Bounded Retrieval Model (BRM),
extracting as long a key as possible is no longer the goal. Instead, the goals are (5) to touch as little
of X as possible (for efficiency), and (6) to be able to run the protocol many times on the same X,
extracting multiple secure keys.

Achieving goals (1)-(4) (or (2)-(6) in BRM) simultaneously has remained open, and, indeed, all
known protocols fail to achieve at least two of them. In this work we improve upon the current state-
of-the-art, by designing a variety of new privacy amplification protocols, in several cases achieving
optimal parameters for the first time. Moreover, in most cases we do it by giving relatively general
transformations which convert a given protocol P into a “better” protocol P ′. In particular, as special
cases of these transformations (applied to best known prior protocols), we achieve the following
privacy amplification protocols for the first time:

• 4-round (resp. 2-round) source-private protocol with optimal entropy loss L = O(λ), whenever
k = Ω(λ2) (resp. k > n

2 (1 − α) for some universal constant α > 0). Best previous constant
round source-private protocols achieved L = Ω(λ2).

• 3-round post-application-robust protocols with optimal entropy loss L = O(λ), whenever k =
Ω(λ2) or k > n

2 (1−α) (the latter is also source-private). Best previous post-application robust
protocols achieved L = Ω(λ2).

• The first BRM protocol capable of extracting the optimal number Θ(k/λ) of session keys,
improving upon the previously best bound Θ(k/λ2). (Additionally, our BRM protocol is post-
application-robust, takes 2 rounds, and can be made source-private by increasing the number
of rounds to 4.)
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1 Introduction

We study the classical problem of privacy amplification [BBR88, Mau92, BBCM95, MW97] (PA), in
which two parties, Alice and Bob, share a weak secret X of min-entropy k and wish to agree on a close-
to-uniform secret key R of length m. We consider the active-adversary case, in which the communication
channel between Alice and Bob can be not only observed, but also fully controlled, by a computationally
unbounded attacker Eve. The most natural quantity to optimize here is the entropy loss L = k−m (for
a given security level ε = 2−λ), but several other parameters (described below) are important as well.

Aside from being clean and elegant, this problem arises in a number of applications, such as bio-
metric authentication, leakage-resilient cryptography, and quantum cryptography. Additionally, the
mathematical tools used to solve this problem (such as randomness extractors [NZ96]) have found
many other applications in other areas of cryptography and complexity theory. Not surprisingly, PA
has been extensively studied in the literature, as we survey below.

In the easier “passive adversary” setting (in which Eve can observe, but not modify, the communi-
cation channel), PA can be solved by applying a (strong) randomness extractor [NZ96], which uses a
uniformly random nonsecret seed S to extract nearly uniform secret randomness from the weak secret
X. A randomness extractor accomplishes passive-adversary PA in one message: Alice sends the seed
S to Bob, and both parties compute the extracted key R = Ext(X;S). Moreover, it is known that
the optimal entropy loss of randomness extractors is L = Θ(log (1/ε)) [RTS00], and this bound can be
easily achieved (e.g. using the Leftover Hash Lemma [HILL99]).

Active Eve Setting: Number of Rounds vs. Entropy Loss. The situation is more complex
in the “active Eve” setting. Existing one-message solutions [MW97, DKK+12] work for min-entropy
k > n/2 and require large entropy loss L > n − k. It was shown by [DS02, DW09] that k > n/2 is
necessary, and that the large entropy loss of n−k is likely necessary, as well. Thus, we turn to protocols
of two rounds or more rounds.

Two rounds were shown to be sufficient by [DW09], who proved, nonconstructively, the existence of
two-round PA protocols with optimal entropy loss L = Θ(log (1/ε)) for any k. (This was done using
a strengthening of extractors, called non-malleable extractors, whose existence was shown in [DW09].)
Constructively, no such protocols are known, and all known constructive results sacrifice either the
number of rounds, or the entropy loss, or the minimum entropy requirement. A protocol of [Li12b,
Theorem 1.9] (building on [RW03, KR09, CKOR10]) sacrifices the number of rounds: it achieves L =
O(log (1/ε)), but only in O(1 + log (1/ε) /

√
k) rounds. The protocol of [Li12b, Theorem 1.6] (building

on [DW09]) sacrifices the minimum entropy requirement: it achieves L = O(log (1/ε)) in two rounds,
but only when k = Ω(log2(1/ε)). Protocols of [DLWZ11, CRS12, Li12a, Li12c] make an incomparable
minimum entropy requirement: they also achieve L = O(log (1/ε)) in two rounds, but require that
k > n/2 (with the exception of [Li12c], who slightly relaxed it to k > n

2 (1 − α) for some tiny but
positive constant α). These protocols also built the first constructive non-malleable extractors when
k > n/2. The result of [Li12b, Theorem 1.8] (building on [DLWZ11, Li12a]) further relaxes the entropy
requirement to k > δn for any constant δ > 0. It also achieves L = O(log (1/ε)) in two rounds, but the
constant hidden in the O-notation is g(δ) = 2(1/δ)c for some astronomical (and not even exactly known)
constant c.1 More generally, since some of the protocols mentioned above hide relatively large (or, as
in the last example, even astronomical) constant factors, simpler protocols (such as [DW09] or [KR09])
may outperform asymptotically optimal ones for many realistic settings of parameters.

To summarize, the landscape of existing PA protocols is rather complex, even if we consider only the
tradeoff between the min-entropy, the entropy loss, and the number of rounds. The situation becomes
even more complex, if one adds additional highly desirable properties: source privacy, post-application
robustness, and local computability. We consider those next.

1The value c depends on some existential results in additive combinatorics. However, it appears safe to conclude that
it is astronomical, which translates into “triply astronomical” g(δ) = 2(1/δ)c

, even for δ = 0.49.
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Source Privacy. Intuitively, this property demands that the transcript of the protocol (even together
with the derived key R!) does not reveal any “useful information” about the source X; or, equivalently
(as shown by [DS05]), that the transcript does not reveal any information at all about the distribution
of X (beyond a lower bound k on its min-entropy). For the case of passive Eve, source privacy was
considered by Dodis and Smith [DS05], who showed that randomness extractors are indeed source-
private. For active Eve, the only work that considered this notion is the elegant paper [BF11], which
constructed a 4-round private protocol with entropy loss L = O(log2(1/ε)). Thus, unlike for PA
protocols without source privacy,
(A) no source-private PA protocol is known which achieves either optimal entropy loss L = O(log (1/ε)),

or fewer than four rounds.

Post-Application Robustness. Informally, the basic authenticity notion of PA protocols, called
pre-application robustness by [DKK+12], simply states that Eve cannot force Alice and Bob to agree on
different keys RA 6= RB. While easy to define, this property is likely insufficient for most applications
of PA protocols, because in any two-party protocol, one party (say, Bob) has to finish before the other
party. In this case, Bob is not sure if Alice ever received his last message, and must somehow decide
to use his derived key RB. In doing so, he might leak some partial information about RB (possibly all
of it!), and Eve might now use this partial (or full) information to modify the last message that Bob
originally sent to Alice. Motivated by these considerations, [DKK+12] defined a strong property called
post-application robustness, which (intuitively) requires that Eve cannot modify Bob’s last message and
cause Alice to output RA 6= RB, even if given Bob’s key RB.

The only protocols known to achieve post-application robustness are in [DKK+12, DW09, DLWZ11];
in particular, none of them achieves optimal entropy loss. (Recall, the protocol of [DLWZ11] for entropy
k > δn achieves entropy loss O((1/δ)c log (1/ε)) in O((1/δ)c) rounds for some astronomical constant c
mentioned in Footnote 1.) Most protocols in [RW03, DKK+12, DW09, CKOR10, DLWZ11, CRS12,
Li12a, Li12c, Li12b] are proven only for pre-application robustness (some works simply ignored the
distinction). In particular,
(B) no post-application robust, constant-round protocol with optimal entropy loss is known (with the

exception of protocol of [DLWZ11] using astronomical constants mentioned above).

Local Computability and Reusability. Local computability is of interest when the length and
the min-entropy of the source X is much larger than the desired number of extracted bits m. In such
a case, it is desirable to compute the output without having to read all of the source. This property is
traditionally associated with the Bounded Retrieval Model (BRM) [Dzi06, CLW06], where the random
source X is made intentionally huge, so that X still has a lot of entropy k even after the attacker
(“virus”) managed to download a big fraction of X over time. For historical reasons, we will also use
the term “BRM”, but point out that local computability seems natural in any scenario where k � m,
and not just the BRM application.

The right way to think about entropy loss in such a scenario is not via the formula L = k−m, because
entropy from X is not “lost”: much entropy remains in X even after the protocol execution, because
most of X is not even accessed. In fact, the PA protocol may be run multiple times on the same X,
to obtain multiple keys, until the entropy of X is exhausted. Specifically focusing on m = Θ(log (1/ε))
(so that the extracted key can be used to achieve ε security), “optimal” reusability means the ability
to extract Θ(k/ log (1/ε)) keys (assuming the entropy rate of X is constant).

In the passive adversary case, optimal reusability is achievable with locally computable randomness
extractors [Lu04, Vad04]. In the active adversary case, however, the story is again more complicated.
The only prior work to consider local computability in this setting is the work of [DW09]. Reusability
has not been explicitly considered before, but it is easy to see that the locally computable protocol
of [DW09] allows the extraction of Θ(k/ log2(1/ε)) keys. Thus,

(C) no prior locally computable protocol achieves optimal reusability.
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Result Entropy Rounds Entropy Loss Source
Pre-app Post-app Privacy

[DW09] k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) NO
(non-expl.)
This work k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) YES
(non-expl.)
[DKK+12] k > n

2 1 n− k −Θ(log (1/ε)) n
2 + Θ(log (1/ε)) YES2

[Li12b] k = Ω(log2(1/ε)) 2 Θ(log (1/ε)) Θ(log2(1/ε)) NO
This work k = Ω(log2(1/ε)) 3 Θ(log (1/ε)) Θ(log (1/ε)) NO
[BF11] k = Ω(log2(1/ε)) 4 Θ(log2(1/ε)) Θ(log2(1/ε)) YES
This work k = Ω(log2(1/ε)) 4 Θ(log (1/ε)) Θ(log2(1/ε)) YES
This work k = Ω(log2(1/ε)) 5 Θ(log (1/ε)) Θ(log (1/ε)) YES
[Li12c] k > n

2 (1− α) 2 Θ(log(1/ε)) n
2 (1− α) + Θ(log (1/ε)) NO

This work k > n
2 (1− α) 2 Θ(log(1/ε)) n

2 (1− α) + Θ(log (1/ε)) YES
This work k > n

2 (1− α) 3 Θ(log(1/ε)) Θ(log (1/ε)) YES

Table 1: Our improvement (also marked in RED) over prior PA protocols.

1.1 Our Results

In this work, we solve open problems (A), (B), and (C), by designing several new techniques for building
PA protocols. Many of our techniques are general transformations that convert a given protocol P into
a “better” protocol P ′. Given a wide variety of incomparable existing PA protocols (surveyed above),
this modular approach will often allow us to obtain several improved protocols in “one go”.

Two Methods of Adding Source Privacy. Our first method (Section 3.2) maintains the number
of rounds at 2, at the expense of using a strengthening of non-malleable extractors [DW09] (which
we call adaptive non-malleable extractors) to derive a one-time pad to mask the “non-private” message
which should be sent in the second round. (Given that we already use non-malleable extractors however,
we might as well combine our protocol with the non-private protocol of [DW09] based on non-malleable
extractors with similar parameters; this is what we do to keep things simple.) Our second method
(Section 3.3), inspired by the specific protocol of [BF11], turns certain 2-round non-private protocols into
4-round private protocols, using standard extractors and XOR-universal hash functions. (The concrete
protocol of [BF11] implicitly applied a very particular variant of our transformation to the two-round
protocol of [DW09], but we get improved results using “newer” protocol [Li12b].) In particular, either
one of these transformations will provide (with different tradeoffs) a positive answer to Open Question
(A). For completeness, we also observe (Section 3.1) that the 1-round PA protocols of [DKK+12] are
already source-private.

Pre- to Post-Application Robustness. We make a very simple transformation which converts
pre-application robust protocols to post-application robust protocols, at the cost of one extra round,
but with almost no increase in the entropy loss. Although very simple, it immediately gives a variety
of answers to Open Question (B) (and can also be combined with our first transformation, since it
preserves source privacy).

Overall, by applying our transformations above to different protocols and in various orders, we get
several improvements to existing protocols, summarized in Table 1 (which includes various solutions to
Questions (A), (B), and more).

2We observe in this paper that this protocol is private.
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Achieving Local Computability and Optimal Reusability. While only the work of [DW09]
explicitly considered local computability, it is reasonable to ask if other existing protocols can be mod-
ified to be locally computable and reusable. To achieve optimal reusability, we focus on protocols with
optimal entropy loss, because they have the property that the protocol transcript reduces the entropy
of X by O(log (1/ε)), leaving residual entropy of X high. They can be modified to extract a short key
of length Θ(log (1/ε)), which will give optimal reusability.

To achieve local computability, extractors used within a protocol can be replaced with locally com-
putable extractors. Indeed, the protocol of [CKOR10] seems to amenable to such modification. However,
it is not constant-round. Most other constant-round protocols with optimal entropy loss [DLWZ11,
CRS12, Li12a, Li12c] use non-malleable extractors, and this approach fails, because no locally com-
putable (even non-constructive!) instantiations of non-malleable extractors are known.

However, we observe that the 2-round, optimal entropy loss protocol of [Li12b, Theorem 1.6] does not
use non-malleable extractors. Moreover, by making all extractors in that protocol locally computable,
we get a locally computable, 2-round protocol. However, the security analysis of [Li12b] uses a very
delicate and interdependent setting of various parameters for the security proof to go through. Hence, it
is not immediately clear if this intricate proof will go though if one uses locally computable extractors.
Instead, we will develop a different, modular analysis underlying the key ideas of [Li12b], which will give
us a rigorous 2-round solution to open problem (C), as well as have other benefits we describe shortly.
Specifically, we show a general transformation that turns certain (post-application) secure 2-round
protocols into 2-round protocols with optimal entropy loss L = O(log (1/ε)) and residual min-entropy
k′ = k−O(log (1/ε)) (Section 5). The transformation uses two-source extractor of [Raz05] to compress
the second message of the protocol to only O(log (1/ε)) bits. By applying this transformation to the
original (non-BRM) protocol of [DW09], we get a protocol very similar to the protocol of [Li12b], but
with a much more modular and easier-to-follow security analysis. On the other hand, by using the locally
computable protocol of [DW09] instead (see Section 6), we get a 2-round locally computable protocol
with optimal residual entropy (and, thus, reusability), solving open problem (C).3 Furthermore, we can
add source privacy by using our 2-to-4-round transformation mentioned earlier, which can be done via
local computation as well.

These results are summarized in Table 2.

Improving Entropy Loss of Post-Application Robust Protocols. As another advantage
of our modular approach, we note that the transformation described in the previous paragraph is
interesting not only in the context of local computability. It also allows one to turn post-application
robust 2-round protocols with sub-optimal entropy loss L into 2-round pre-application robust protocols
with optimal entropy loss, which then (using our pre-application to post-application transformation
described above) can be turned into 3-round post-application robust protocols with optimal entropy
loss. Namely, we can obtain optimal entropy loss at the expense of one extra round. (For the BRM
setting, no extra round is needed, as we only extract “short” keys of length O(log (1/ε)).)

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we let Um denote
the uniform distribution over {0, 1}m, the bit-strings of length m. For a distribution or random variable
X we write x ← X to denote the operation of sampling a random x according to X. For a set S, we
write s← S as shorthand for s← US .

Entropy and Statistical Distance. The min-entropy of a random variable X is defined as
3Interestingly, the main limitation of the non-BRM protocol of [Li12b] — high min-entropy requirement k =

Ω((log (1/ε))2) — is not an issue in the BRM model. Thus, we can view our result as finding a “practical application
scenario” for the very elegant communication reduction technique developed by [Li12b].
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Result Rounds Residual Min-entropy # Keys Extracted Source Privacy
[DW09] 2 k −Θ(log2(1/ε)) Θ(k/ log2(1/ε)) NO

This work 2 k −Θ(log(1/ε)) Θ(k/ log(1/ε)) NO
This work 4 k −Θ(log(1/ε)) Θ(k/ log(1/ε)) YES

Table 2: Protocols in the Bounded Retrieval Model; each extracts Θ(log(1/ε)) bits per key, is post-
application robust, and requires k = Ω(log2(1/ε)). Entries in RED mark our improvements.

H∞(X) def= − log(maxx Pr[X = x]). We say that X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) > k.
For X ∈ {0, 1}n, we define the entropy rate of X to be H∞(X)/n. We also define average (aka
conditional) min-entropy of a random variable X conditioned on another random variable Z as

H∞(X|Z) def= − log
(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
where Ez←Z denotes the expected value over z ← Z. We have the following lemma.

Lemma 2.1 ([DORS08]). Let (X,W ) be some joint distribution. Then,

• For any s > 0, Prw←W [H∞(X|W = w) ≥ H∞(X|W )− s] ≥ 1− 2−s.

• If Z has at most 2` possible values, then H∞(X|(W,Z)) ≥ H∞(X|W )− `.

The statistical distance between two random variables W and Z distributed over some set S is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1
2

∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a probabilistic function.
We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. We write ∆(W,Z|Y ) as shorthand for
∆((W,Y ), (Z, Y )).

Extractors. An extractor [NZ96] can be used to extract uniform randomness out of a weakly-random
value which is only assumed to have sufficient min-entropy. Our definition follows that of [DORS08],
which is defined in terms of conditional min-entropy.

Definition 2.2 (Extractors). An efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}m is an (average-case,
strong) (k, ε)-extractor, if for all X,Z such that X is distributed over {0, 1}n and H∞(X|Z) ≥ k, we
get

∆( (Z, Y,Ext(X;Y )) , (Z, Y, Um) ) 6 ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k−m is called the entropy loss
of Ext, and the value d is called the seed length of Ext.

It is well known [RTS00] that the optimal entropy loss of an extractor is 2 log (1/ε) − O(1), which
is achieved by the famous Leftover Hash Lemma [HILL99] with seed length d = n. To reduce the seed
length to d = O((log (1/ε) + log k) log n), we can also use more sophisticated extractor constructions,
such as those in [GUV09, DKSS09]. Altentatively, we can extract m = (1−δ)k bits using asymptotically
optimal seed length d = O(log (1/ε) + log n) [GUV09].

Message Authentication Codes. One-time message authentication codes (MACs) use a shared
random key to authenticate a message in the information-theoretic setting.
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Definition 2.3 (One-time MACs). A function family {MACR : {0, 1}d → {0, 1}v} is an ε-secure one-
time MAC for messages of length d with tags of length v if for any w ∈ {0, 1}d and any function
(adversary) A : {0, 1}v → {0, 1}d × {0, 1}v,

Pr
R

[MACR(W ′) = T ′ ∧W ′ 6= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}`.

Theorem 2.4 ([KR09]). For any message length d and tag length v, there exists an efficient family of
(ddv e2

−v)-secure MACs with key length ` = 2v. In particular, this MAC is ε-secure when v = log d +
log(1/ε).

More generally, this MAC also enjoys the following security guarantee, even if Eve has partial in-
formation E about its key R. Let (R,E) be any joint distribution. Then, for all attackers A1 and
A2,

Pr
(R,E)

[MACR(W ′) = T ′ ∧W ′ 6= W |W = A1(E), (W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v−H∞(R|E).

(In the special case when R ≡ U2v and independent of E, we get the original bound.)

XOR-universal hash functions. We recall the definition of XOR-universal-hashing [CW79].

Definition 2.5 (ρ-XOR-Universal Hashing). A family H of (deterministic) functions h : {0, 1}u →
{0, 1}v is a called ρ-XOR-universal hash family, if for any x1 6= x2 ∈ {0, 1}u and any a ∈ {0, 1}v we
have Prh←H[h(x1)⊕ h(x2) = a] ≤ ρ. When ρ = 1/2v, we say that H is (perfectly) XOR-universal. The
value log |H| is called the seed length of H.

A simple construction of XOR universal hash family (for v 6 u) with seed length u sets hy(x) =
[x · y]v, where x and y are interpreted as elements of finite field GF [2u], x · y is field multiplication, and
[b]v denotes the v least significant bits of b. Using standard polynomial hash [Sti94], one can also get a
u
v·2v -XOR-universal family with seed length at least v.

2.1 Privacy Amplification

We define a privacy amplification protocol (PA, PB), executed by two parties Alice and Bob sharing
a secret X ∈ {0, 1}n, in the presence of an active, computationally unbounded adversary Eve, who
might have some partial information E about X satisfying H∞(X|E) > k. Informally, this means
that whenever a party (Alice or Bob) does not reject, the key R output by this party is random and
statistically independent of Eve’s view. Moreover, if both parties do not reject, they must output the
same keys RA = RB with overwhelming probability.

More formally, we assume that Eve is in full control of the communication channel between Alice
and Bob, and can arbitrarily insert, delete, reorder or modify messages sent by Alice and Bob to each
other. In particular, Eve’s strategy PE actually defines two correlated executions (PA, PE) and (PE , PB)
between Alice and Eve, and Eve and Bob, called “left execution” and “right execution”, respectively.
We stress that the message scheduling for both of these executions is completely under Eve’s control,
and Eve might attempt to execute a run with one party for several rounds before resuming the execution
with another party. However, Alice and Bob are assumed to have fresh, private and independent random
tapes Y and W , respectively, which are not known to Eve (who, by virtue of being unbounded, can
be assumed deterministic). At the end of the left execution (PA(X,Y ), PE(E)), Alice outputs a key
RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special symbol indicating rejection. Similarly, Bob outputs a key
RB ∈ {0, 1}m∪{⊥} at the end of the right execution (PE(E), PB(X,W )). We let E′ denote the final view
of Eve, which includes E and the communication transcripts of both executions (PA(X,Y ), PE(E)) and
(PE(E), PB(X,W ). We can now define the security of (PA, PB). Our definition is based on [DLWZ11].
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Definition 2.6. An interactive protocol (PA, PB), executed by Alice and Bob on a communication
channel fully controlled by an active adversary Eve, is a (k,m, ε)-privacy amplification protocol if it
satisfies the following properties whenever H∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧ RA 6=⊥ ∧ RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness, which states that even
if Eve is active, Pr[RA 6= RB ∧ RA 6=⊥ ∧ RB 6=⊥] 6 ε.

The stronger notion of post-application robustness is defined similarly, except Eve is additionally
given the key RA the moment she completed the left execution (PA, PE), and the key RB the
moment she completed the right execution (PE , PB). For example, if Eve completed the left
execution before the right execution, she may try to use RA to force Bob to output a different key
RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be ⊥ if r =⊥, and otherwise replace
r 6=⊥ by a fresh m-bit random string Um: purify(r) ← Um. Letting E′ denote Eve’s view of the
protocol, we require that

∆((RA, E′), (purify(RA), E′)) ≤ ε and ∆((RB, E′), (purify(RB), E′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string to Eve.

The quantity k−m is called the entropy loss and the quantity log(1/ε) is called the security parameter
of the protocol.

Source Privacy. Following Bouman and Fehr [BF11], we now add the source privacy requirement
for privacy amplification protocols. Our definition is actually stronger than the definition on [BF11],
who only required that the final transcript E′ does not reveal any information about the source X. We
additionally require that the entire tuple (E′, RA, RB) does not leak any information about the source
X. Indeed, Alice and Bob might end up using their keys in application that leaks (portions of) these
keys to Eve. We require that even in this case the privacy of our source X is not compromised. To
define this property, we let FullOutput(X,E) denote the tuple (E′, RA, RB), where Alice and Bob share
a secret X and output keys RA and RB, respectively, and Eve starts with initial side information E
and ends with final view E′ at the end of the protocol.

Definition 2.7 (Source Privacy). An interactive protocol (PA, PB), executed by Alice and Bob on a
communication channel fully controlled by an active adversary Eve, is a (k, ε)-private, if for any two
distributions (X0, E) and (X1, E), where H∞(X0|E) ≥ k and H∞(X1|E) > k, we have

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ ε

Using the equivalence between entropic-security and indistinguishability [DS05], the above definition
also implies that FullOutput(X,E) does not reveal any a priori specified function of our source X any
better than what can be predicted from the initial side information E alone, provided H∞(X|E) > k+2.

We will use the following fact throughout the paper.

Fact 2.8. Extraction with a fresh random seed is source-private.

More precisely, consider the following simple protocol: Alice chooses a fresh random seed Y for a
(k, ε) extractor Ext, sends Y to Bob (who outputs nothing), and outputs Ext(X;Y ). This protocol is
(k, 2ε)-private by triangle inequality, because both FullOutput(X0, E) and FullOutput(X1, E) are ε-close
to (E, Y, U). Note, however, that if Bob also extracts from X using the received seed Y ′, then the
protocol is no longer source-private, because Eve can give Bob a nonrandom Y ′ of her choice.

We remark here that for some applications, one might be interested in an interactive (n, k,m, ε)
message authentication protocol iMAC as defined in [DW09] as follows:
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Definition 2.9. Alice starts with a message µA ∈ {0, 1}m and at the end of the protocol, Bob outputs
a received message µB ∈ {0, 1}m ∪ {⊥}. The two properties required are:

Correctness: If the adversary is passive, then for any source message µA, Pr(µA = µB) = 1.

Security: If H∞(X|E) > k then, for any source message µA, and any active adversarial strategy of
Eve, Pr[µB /∈ {µA,⊥}] 6 ε.

We note that almost all protocols that appear in the literature, starting from [RW03], and in
particular, all protocols in this paper achieve interactive message authentication (as an intermediate goal
before extracting RA, RB) with essentially the same (k, ε) for which we get pre-application robustness.

3 New Private Protocols

3.1 One Round Private Protocol

Dodis et al [DKK+12] gave a construction of robust extractors with pre-application and post-application
robustness using which they gave one-round (k,m, ε)-secure privacy amplification protocols for k >
n/2 +O(log (1/ε)).

They give a protocol that achieves post-application robustness with entropy loss k − m = n
2 +

O(log (1/ε)). In the same paper, they give another protocol that achieves pre-application robustness,
but with smaller entropy loss n − k + O(log (1/ε)). We observe that both their protocols are private.
We argue here the source privacy of only the first protocol. The protocol is depicted as follows, where
X ′, X ′′ are interpreted as elements of F2n/2 and the strings Y X ′ + X ′′ and Y ′X ′ + X ′′ are interpreted
as bitstrings in {0, 1}

n
2 . For any string w, by [w]ji , we denote the substring from i-th to j-th position.

Alice: X Eve: E Bob: X

X = X ′‖X ′′ X = X ′‖X ′′
Sample random Y ∈ F2n/2

T = [Y X ′ +X ′′]v1
Y, T −−−−−−−−→ Y ′, T ′

If T ′ 6= [Y ′X ′ +X ′′]v1 reject
RA = [Y X ′ +X ′′]n/2v+1 RB = [Y ′X ′ +X ′′]n/2v+1

Protocol 1: 1-round Privacy Amplification Protocol for H∞(X|E) > n/2 from [DKK+12].

The privacy of this protocol follows from the following observations. It was also shown in [DKK+12]
that for any y ∈ F2n/2 \ {0}, yX ′ + X ′′ is ε-close to uniform when H∞(X) > n/2 + 2 log (1/ε). Thus,
(Y, Y X ′+X ′′) is (ε+2−n/2)-close to uniform or, equivalently, (RA, Y, T ) is (ε+2−n/2)-close to uniform.
For proving robustness of the protocol, it was shown in [DKK+12] that with probability at least 1− ε,
RB = RA if (Y ′, T ′) = (Y, T ) and RB = ⊥, otherwise. Thus, the knowledge of RB doesn’t provide
any additional information than what can be concluded from (RA, Y, T ), except with probability ε.
Therefore, for any two sources X0 and X1 with min-entropy k > n/2,

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ 2ε+ 2−n/2 .

For the other protocol in [DKK+12] that achieves better entropy loss for pre-application robustness,
the argument for source-privacy is similar. We thus get the following result.

Theorem 3.1. For k > n/2, there is an explicit polynomial-time, one-round (k, 2ε + 2−n/2)-private,
(k,m, ε)-secure privacy amplification protocol with pre-application robustness and entropy loss k−m =
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n − k + O(log (1/ε)). We get post-application robustness at the cost of increasing the entropy loss to
n/2 +O(log (1/ε)).

3.2 Two Round Private Protocol with Optimal Entropy Loss

In this section, we give a two round protocol that achieves optimal entropy loss O(log (1/ε)) for pre-
application robustness. For post-application robustness, the entropy loss is about n/2, but we show
how to improve it to O(log (1/ε)) in Section 4 at the cost of 1 additional round.

3.2.1 Non-private Protocol from [DW09]

Dodis and Wichs [DW09] showed a two-round protocol for privacy amplification with optimal (up to
constant factors) entropy loss, assuming a non-malleable extractor (defined below), a regular extractor
Ext (see Definition 2.2) with optimal entropy loss and any asymptotically good one-time message-
authentication code MAC (see Definition 2.3).

Definition 3.2 (Non-Malleable Extractors). An efficient function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is
an (average-case) (k, ε)-non-malleable extractor, if for all X ∈ {0, 1}n, Z ∈ Z such that H∞(X|Z) ≥ k,
and any function A : {0, 1}d ×Z such that A(y, z) 6= y for all y, z, we have

∆(nmExt(X;Y ), Um | Z, Y, nmExt(X;A(Y, Z)) 6 ε

where Y ≡ Ud denotes the coins of nmExt.

Using these, their protocol is depicted as Protocol 2.

Alice: X Eve: E Bob: X

Sample random Y
Y −−−−−−−−→ Y ′

Sample random W ′

K ′ = nmExt(X;Y ′)
T ′ = MACK′(W ′)
Set final RB = Ext(X;W ′)

(W,T )←−−−−−−−− (W ′, T ′)

K = nmExt(X;Y )
If T 6= MACK(W ) reject
Set final RA = Ext(X;W )

Protocol 2: 2-round Privacy Amplification Protocol for H∞(X|E) > n/2 from [DW09].

There have been some recent constructions of non-malleable extractors [DLWZ11, Li12c, CRS12].
Using the non-malleable extractor from [Li12c] with seed length d = n and m = Ω(n) for k > n

2 (1 −
α) +O(log (1/ε)) for some small universal constant α, we get the following:

Theorem 3.3 ([DW09, Li12c]). Assuming error ε < 1/n and min-entropy k ≥ n
2 (1−α) + Θ(log (1/ε)),

there exists is a polynomial-time, two-round (k,m, ε)-secure privacy amplification protocol with entropy
loss k −m = O(log (1/ε)) for pre-application robustness.

Observe that this protocol is not source-private: if Eve uses Y ′ 6= Y , then K ′, and therefore T ′, may
contain useful information about X.
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Alice: X Eve: E Bob: X

Sample random Y
Y −−−−−−−−→ Y ′

Sample random W ′, S′ 6= Y ′

K ′ = anmExt(X;Y ′)
T ′ = MACK′(W ′)
P ′ = anmExt1..`(X;S′)
C ′ = T ′ ⊕ P ′
Set final RB = Ext(X;W ′)

(W,S,C)←−−−−−−−− (W ′, S′, C ′)

If Y = S reject
K = anmExt(X;Y )
P = anmExt1..`(X;S)
If C ⊕ P 6= MACK(W ) reject
Set final RA = Ext(X;W )

Protocol 3: New 2-round Source-Private Privacy Amplification Protocol for H∞(X|E) > n/2

3.2.2 Our Two Round Private Protocol

Idea: Our protocol, depicted as Protocol 3 makes the protocol of [DW09] (given in Section 3.2.1)
private, using the same idea as [BF11]: we will apply a one-time pad P ′ to the tag sent by Bob in
the second round, T ′, where the pad P ′ is derived from X. However, how the pad is derived will be
different from [BF11]. Specifically, Bob will derive the pad using a fresh random seed S′ to extract it
from X; he will then send S′ to Alice. Source privacy is now clear from Fact 2.8 (assuming robustness
holds, which ensures that RA = RB or ⊥, and Eve knows with high probability whether RA = ⊥):
Eve sees only random seeds Y,W ′, and S′, the value RB that was extracted from X using a random
W ′, and the value C ′ that was extracted from X using S′ and then shifted by some T ′ (of which S′

is independent). However, robustness of privacy amplification itself is not obvious anymore. We show
that privacy amplification can still be achieved as long as the extractor to obtain the one-time pad is
what we call an adaptive non-malleable extractor, which we define below.

Adaptive Non-malleable Extractors: As mentioned above, we will need a stronger notion of non-
malleability than used in previous works, in which A is allowed to see Y,Z, and additionally either
anmExt(X;Y ) or R ≡ Um before producing the modified seed Y ′.

Definition 3.4 (Non-Malleable Extractors). An efficient function anmExt : {0, 1}n×{0, 1}d → {0, 1}m
is an (average-case) (k, ε)-adaptive non-malleable extractor, if for all X ∈ {0, 1}n, Z ∈ Z such that
H∞(X|Z) ≥ k, and any function A : {0, 1}d × Z × {0, 1}m → {0, 1}d such that A(y, z, r) 6= y for all
(y, z, r), we have

∆
((
P, anmExt(X;A(Y, Z, P ))

)
,
(
R, anmExt(X;A(Y, Z,R))

)
| Y,Z

)
6 ε ,

where Y ≡ Ud denotes the seed for anmExt, R ≡ Um, P = anmExt(X;Y ).

Dodis and Yu [DY13] informally introduced the notion of adaptive non-malleable extractors as a
special case of a family of (q, δ)-wise independent hash functions. They constructed a non-malleable
extractor for k > n

2 +O(log (1/ε)), and observed that it is also an adaptive non-malleable extractor. (The
same construction was independently discovered by [Li12c], but the proof there does not immediately
give adaptive non-malleability.)

Here we show how to get an adaptive non-malleable extractor from any non-malleable extractor.
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Lemma 3.5. A non-malleable (k, ε) extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m is (k, ε2m) adaptive
non-malleable.

Proof. First, observe that the definition of non-malleable extractor (Definition Definition 3.2 is equiv-
alent to (a seemingly more stringent) definition in which A is a randomized algorithm that takes
randomness S, and we require

∆(P,R | Z, Y, S, nmExt(X;A(Y, Z, S)) 6 ε ,

where P = nmExt(X;Y ), and R ≡ Um. The equivalence follows by the usual argument of hardwiring
the “best” randomness S into A and the distinguisher for statistical distance. In other words, given
any randomized algorithm A that takes randomness S as input, we can replace it with a deterministic
algorithm by fixing S = s that maximizes the statistical distance. We will use this definition for the
purpose of this proof.

Using notation of Definition 3.4, take some A and D and let

Pr[D(Z, Y, nmExt(X;A(Y,Z, P ), P, P ) = 1] = p1 ,

Pr[D(Z, Y, nmExt(X;A(Y, Z,R)), R,R) = 1] = p2 ,

Suppose p1 − p2 > ε2m. Let A′(Y ) be a randomized function that chooses a uniform S and computes
A(Y, S). Define D′ as a distinguisher that checks whether the last two components of its input are
equal; if they are equal, then it invokes D, otherwise it outputs 0. Then

Pr[D′(Z, Y, nmExt(X;A(Y, Z, P )), S, P ) = 1] = p12−m ,

and

Pr[D′(Z, Y, nmExt(X;A(Y,Z,R)), S,R) = 1] = p22−m .

This D′ and A′ violate (k, ε) adaptive non-malleability of nmExt. Therefore, for any A,

∆
((
P, nmExt(X;A(Y,Z, P )

)
;
(
R, nmExt(X;A(Y, Z,R)

)
| Y, Z

)
6 ε2m .

We use this result along with the ε′-secure non-malleable extractor from [Li12c] for k > n
2 (1− α) +

O(log (1/ε)) with output length m = Θ(log (1/ε)) such that ε′ · 2m 6 ε to get the following result.

Corollary 3.6. There exists an explicit (k, ε) adaptive non-malleable extractor for k > n
2 (1 − α) +

O(log (1/ε)) that uses seed of length n, and has output length Θ(log (1/ε)).

Also, we can use the result proving the existence of non-malleable extractors from [DW09] for
k = Ω(log (1/ε)) to get the following result.

Corollary 3.7. There exists an (k, ε) adaptive non-malleable extractor for k = Ω(log (1/ε)) that uses
seed of length n, and has output length k

2 −O(log (1/ε)).

The Protocol: Let ε′ = ε/7. We will need the following building blocks:

• Let anmExt : {0, 1}n × {0, 1}t → {0, 1}2` be a (τ, ε′)-adaptive non-malleable extractor, for ` =
O(log(1/ε)), τ 6 k − 3`, and t > 2 log (1/ε). Let anmExta..b(X;Z), where 1 6 a 6 b 6 2`, denote
the sub-string of extracted bits from bit position a to bit position b.

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k − 3`, ε′)-extractor with d = O(log n log(1/ε)).
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• Let MAC be an ε′-secure one-time MAC for d-bit messages, whose key length is 2` (the output
length of nmExt). Using the construction from Theorem 2.4, we set the tag length `.

Using the above building blocks, the protocol is depicted as Protocol 3. We obtain the following result.

Theorem 3.8. Let 2−n/4 < ε < 1/n, and ε′ = ε/7. Given a (τ, ε′)-adaptive non-malleable extractor, for
k > τ + Θ(log (1/ε)) and output length Θ(log (1/ε)), there exists an explicit polynomial-time, two-round
(k, ε)-private, (k,m, ε)-secure privacy amplification protocol with pre-application robustness and entropy
loss k−m = O(log (1/ε)). Furthermore, we get post-application robustness at the cost of increasing the
entropy loss to τ +O(log (1/ε)).

Proof. We first argue 5ε′ pre-application robustness for entropy loss k−m = O(log(1/ε)). To have any
chance of breaking robustness, Eve must give Alice W 6= W ′ and S 6= Y , because if W = W ′ or S = Y ,
then either RA = RB or RA =⊥. Thus assume W 6= W ′ and S 6= Y .

If S = S′, then robustness follows from the robustness of Protocol 2. To see this, suppose Eve
breaks robustness of Protocol 3 while maintaining S = S′. Then we will build Eve′ to break robustness
of Protocol 2, except with entropy of X reduced by the length of P ′ (which is O(log(1/ε)). Specifically,
we will let the knowledge E′ of Eve′ include the value P ′ = nmExt(X;S′) on a random S′ (as well as S′

itself). The reduction is straightforward. For the first message Y , Eve′ gives up if Y = S′; otherwise, she
will compute Y ′ the same way as Eve, and send it to Bob. For the second message, Eve′ will compute
C ′ = T ′ ⊕ P ′. She will give (W ′, S′, C ′) to Eve, who will return (W,S = S′, C); Eve′ will then compute
T = C ⊕ P ′ and send (W,T ) to Alice. It is easy to see that Eve′ will succeed in violating robustness of
Protocol 2 whenever Eve succeeds, unless Y ′ = S, which happens with probability 2−t.

If W 6= W ′, S 6= Y , and S 6= S′, then given E, Y,W ′, S′, T ′ ⊕ P ′, the adversary needs to compute
W,S, P ⊕ MACK(W ) in order to break robustness. Consider a slightly modified adversarial game,
in which Eve received P upon specifying S, and only then has to specify W and MACK(W ). By
a straigthforward reduction in this modified game Eve is no weaker: whatever she can accomplish
without knowing P , she can also accomplish in this game. Thus, to break robustness, Eve needs to
compute W,MACK(W ) with probability greater than 5ε′ given E, Y,W ′, S′, T ′ ⊕ P ′, P .

Note that S′ is equal to Y with probability at most 1/(2t − 1) < ε′. This implies that conditioned
on the event that S′ is not equal to Y , Eve succeeds with probability at least 4ε′.

Since Y,W ′ are independent of X, we have using Lemma 2.1,

H∞(X|E, Y,W ′, T ′,K) > k − 3` .

Thus, using the adaptive non-malleability property of anmExt and the fact that W,S are functions
of E, Y,W ′, S′, T ′ ⊕ P ′, we have that the statistical distance between the joint distribution (T ′ ⊕
P ′, E, Y,W ′, S′, S, P,W,MACK(W )) and (U`, E, Y,W ′, S′, S, P,W,MACK(W )) is at most ε′. Since the
adversary can herself simulate U`, this implies that there is an adversary that succeeds in computing
W,MACK(W ) with probability greater than 3ε′ given E, Y,W ′, S′, S, P .

For any fixed W ′, S′, S is a deterministic function of Y and E. Using non-malleability property
of anmExt, we have that K is ε′-close to uniform given E, Y,W ′, S′, S, P . Thus, in order to win, the
adversary must output W,MACK(W ) for a random key K with probability more than 2ε′, which leads
to a contradiction.

For post-application robustness, we must analyze the case where the adversary also gets RB in
addition to the final transcript E′. Note that we can do essentially the same analysis as for pre-
application robustness, except that the non-malleable extractor should be secure even given RB, and
so the entropy bound that we need is τ 6 k − 3`−m, or in other words, k −m > τ + 3`.

The extraction property follows easily from robustness. Note that Y, S′ are independent of X. Thus,
using Lemma 2.1,

H∞(X|E, Y, S′, P ′,K ′) > k − 3` .
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Thus, using the definition of Ext, we have that RB is ε′-close to uniform given the transcript of Eve, E′.
Also, with probability 1− 5ε′, RA = RB or RA = ⊥. Thus, conditioned on the event that RA = RB or
RA = ⊥, RA is ε′ close to purify(RA). Thus,

∆((RA, E′), (purify(RA), E′)) ≤ 5ε′ + ε′ = 6ε′ .

The source privacy follows easily from the following observations: RB is ε′-close to uniform given
the transcript E, Y,W ′, S′, C ′. Also, P ′, and hence C ′ is ε′-close to uniform given E, Y,W ′, S′. Finally
note that RB = RA if W ′ = W and RA = ⊥, otherwise except with probability at most 5ε′. Thus, the
knowledge of RB doesn’t provide any additional information than what can be concluded from (RA, E′),
except with probability 5ε′. Thus

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ 5ε′ + ε′ + ε′ = 7ε′ .

We can instantiate the above result using the adaptive non-malleable extractor obtained by using
Corollary 3.6 to get the following result.

Corollary 3.9. There exists a universal constant α > 0, such that for k > n/2(1 − α), there exists
an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-secure privacy amplification protocol with
pre-application robustness and entropy loss k −m = O(log (1/ε)). We get post-application robustness
at the cost of increasing the entropy loss to n/2(1− α) +O(log (1/ε)).

Similarly, using Corollary 3.7, we get the following result.

Corollary 3.10. For k = Ω(log (1/ε)), there exists a two-round (k, ε)-private, (k,m, ε)-secure privacy
amplification protocol with post-application robustness and entropy loss k −m = O(log (1/ε)).

3.3 Privacy using Extractors and XOR-Universal Hashing

In this section, we use a ρ-XOR universal hash function family to construct a 4-round protocol for
private privacy amplification, given any 2 round privacy amplification protocol of the form Protocol 4,
where the string sent in the first round is sampled independent of X. We note that all known 2 round
protocols in the literature are of this generic form.

Alice: X Eve: E Bob: X

Sample random Y
Y −−−−−−−−→ Y ′

Sample random W ′

K ′ = f1(X,Y ′)
T ′ = f2(K ′,W ′)
Set final RB = g(X,W ′)

(W,T )←−−−−−−−− (W ′, T ′)

K = f1(X,Y )
If T 6= f2(K,W ) reject
Set final RA = g(X,W )

Protocol 4: A Generic 2-round Privacy Amplification Protocol

Let ` = log (1/ε). Let H be a ε-XOR universal family of hash functions from {0, 1}|T | to {0, 1}2`,
and let Ext : {0, 1}n × {0, 1}d 7→ {0, 1}2` be a (k − 2` − 2|K| − |RB|, ε) extractor. Using these, our
protocol is depicted as Protocol 5.

For proving the security of our generic transformation, we need the following result.
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Alice: X Eve: E Bob: X

Sample random Y
Y −−−−−−−−→ Y ′

Sample random W ′, S′

W,S ←−−−−−−−−W ′, S′

Sample random h
h −−−−−−−−→ h′

K ′ = f1(X,Y ′)
T ′ = f2(K ′,W ′)
C ′ = h′(T ′)⊕ Ext(X;S′)
Set final RB = g(X,W ′)

C ←−−−−−−−− C ′

K = f1(X,Y )
T = f2(K,W )
If C 6= h(T )⊕ Ext(X;S) reject
Set final RA = g(X,W )

Protocol 5: A Generic 4-round Private Privacy Amplification Protocol

Lemma 3.11. Given any random variables A ∈ {0, 1}u, B ∈ {0, 1}v, C ∈ C, let H : {0, 1}u → {0, 1}v
be a function chosen uniformly at random from a family of ρ-XOR-universal hash functions H. Then,

H∞(H(A)⊕B|H,C) > −1
2

log(ρ+ 2−H∞(A|C)) .

Proof. We define the probability of guessing a random variable X conditioned on another random
variable Z as Pred(X|Z) = 2−H∞(X|Z), and collision probability of X conditioned on Z as

Col(X|Z) = Ez←Z

[ ∑
x

Pr[X = x|Z = z]2
]

= Ez←Z
[
Pr[X = X ′|Z = z]

]
,

where for any z ∈ Support(Z), X ′|Z=z is independent and identically distributed as X|Z=z. It is easy
to see that

Col(X|Z) 6 Pred(X|Z) 6
√

Col(X|Z) . (1)

Using (both inequalities in) Equation 1, we see that it is enough to prove that

Col(H(A)⊕B|H,C) 6 ρ+ Col(A|C) .

For any h, c, let (A′, B′)|H=h,C=c be independent and identically distributed as (A,B)|H=h,C=c. We
have

Col(H(A)⊕B|H,C) = Ec←C,h←H
[
Pr(H(A)⊕B = H(A′)⊕B′|C = c)

]
= Ec←C

[
Pr(H(A)⊕B = H(A′)⊕B′|C = c)

]
6 Ec←C

[
Pr(A = A′|C = c)

]
+

Ec←C
[
Pr(H(A)⊕H(A′) = B ⊕B′ ∧A 6= A′|C = c)

]
6 Col(A|C) + ρ .
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Theorem 3.12. Let Protocol 4 be a 2-round (k − u,m, ε)-secure privacy amplification protocol with
pre- (resp. post-) application robustness for k − |T | − 2|K| − |RB| > 2`. Then Protocol 5 is a 4-round
(k,m,O(

√
ε))-secure (k,O(

√
ε))-private privacy amplification protocol with pre- (resp. post-) application

robustness.

Proof. The correctness of Protocol 5 follows trivially from the correctness of Protocol 4.
We argue post-application robustness of Protocol 5 assuming post-application robustness of Proto-

col 4. The argument for pre-application robustness is similar, except that RB is not revealed to the
adversary. For post-application robustness, we must analyze the case where the adversary also gets RB
in addition to the final transcript E′. To have any chance of breaking robustness, Eve must choose
W 6= W ′ and C such that RA /∈ {RB,⊥}, and so we assume that this is the case. Eve succeeds if she
can compute h(T ) ⊕ Ext(X;S), given RB, Y, S

′, h,W ′, h′(T ′) ⊕ Ext(X;S′). Let the success probability
of Eve be ε∗. Observe that since Eve fully controls the channel, she can interact with Alice and Bob
separately and does not have to respect the message order specified by the protocol. Alice and Bob,
however, do respect the message order specified by the protocol. We consider two cases.

CASE 1: Eve sends Y ′ to Bob after receiving h from Alice. In this case, S′ is independent of
h, S,K,K ′,W . Also, since X is independent of Y, S′, h,W ′, we have that

H∞(X|RB, Y, h,W ′, h′(T ′), h(T ),Ext(X,S)) > H∞(X|RB,K ′,K,Ext(X;S))
> k − 2`− 2|K| − |RB| .

Thus, using the fact that Ext is a strong extractor, we have that h′(T ′)⊕ Ext(X;S′) is ε-close to
uniform given RB, Y, S′, h,W ′, h(T ),Ext(X;S). So, Eve must be able to compute h(T )⊕Ext(X;S)
given RB, Y, S

′, h,W ′, U2` with probability ε∗ − ε.
Therefore, the success probability of the adversary in computing h(T )⊕Ext(X;S) givenRB, Y, h,W ′

is at least ε∗ − ε, since the adversary can simulate S′ and U2` herself. Using Lemma 3.11 and the
security of Protocol 4, we have that ε∗ − ε = O(

√
ε)), which implies ε∗ = O(

√
ε)).

CASE 2: Eve sends Y ′ to Bob before receiving h from Alice. In this case, h is independent of S,W, Y ′.
We give the adversary additional power by assuming that the adversary gets T ′ and Ext(X;S′) for
free. Thus, Eve succeeds in computing h(T )⊕ Ext(X;S′), given RB, Y , S′, h, W ′, T ′, Ext(X;S′)
with probability ε∗. We have that H∞(X|Ext(X;S′)) > k − 2`. Using the security of Protocol 4,
we have that

H∞(T |Y,W ′, RB,Ext(X,S′), S′, T ′) > log 1/ε .

Thus, using Lemma 3.11, we get that ε∗ = O(
√
ε)).

The extraction property follows easily from the extraction property of protocol 4 and the fact that
H∞(X|Ext(X;S′) > k−2`. As usual, we give Eve additional power by assuming that she gets Ext(X;S′)
and T ′. Thus, using the extraction property of protocol 4, RB is ε-close to uniform given Eve’s view,
since in addition to Protocol 4, Eve sees h, S′ (which are independent of RB) and Ext(X;S′) which is
of length at most 2`. Also, with probability 1 − O(

√
ε), RA = RB or RA = ⊥. Thus, conditioned on

the event that RA = RB or RA = ⊥, RA is ε-close to purify(RA). Therefore,

∆((RA, E′), (purify(RA), E′)) ≤ ε+O(
√
ε) = O(

√
ε) .

The source privacy follows easily from the following observations: RB is ε-close to uniform given
Eve’s view, and Y, S′,W ′, h are independent of source X. Also, h′(T ′)⊕Ext(X;S′) is ε-close to uniform
given RB, Y, S′, h,W ′, as argued in CASE 1, above. Furthermore, as shown above, RB = RA if W ′ = W
and RA = ⊥, otherwise except with probability at most O(

√
ε). Thus, the knowledge of RB doesn’t
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provide any additional information than what can be concluded from (RA, E′), except with probability
O(
√
ε). Therefore,

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ O(
√
ε) + ε = O(

√
ε) .

We apply this generic transformation to Li’s recent 2 round (k, ε)-secure privacy amplification pro-
tocol for k = Ω(log2(1/ε)), that achieves entropy loss O(log (1/ε)) for pre-application robustness, and
O(log2(1/ε)) for post-application robustness [Li12b]. We get the following result.

Corollary 3.13. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time, 4-round (k, ε)-private,
(k,m, ε)-secure privacy amplification protocol with pre-application robustness and entropy loss L =
k −m = O(log (1/ε)). We get post-application robustness with entropy loss O(log2(1/ε)).

In Section 4, we will see how to get a 5-round private privacy amplification protocol with post-
application robustness and entropy loss O(log (1/ε)).

Remark 1: We can apply the generic transformation to the 2 round construction of [DW09] for k >
log2 (1/ε) to decrease the residual entropy loss from O(log2(1/ε)) to O(log (1/ε)), and simultaneously
achieving source privacy. In Section 5, we will give a 2 round to 2 round generic transformation that
decreases the residual entropy loss to O(log (1/ε)) but does not achieve source privacy.

Remark 2: We note that our result in this section also achieves 4 round private “liveness test” with
optimal residual entropy loss. Liveness tests (aka “identification schemes”) are similar to iMAC for
message space of cardinality 1 (except that they must be interactive to prevent replay attacks). The
standard protocol is to send an extractor seed Y and respond with Ext(X;Y ) (or, send, a random hash
function chosen from an almost universal hash function family and respond with h(X)). But none
of these schemes achieves source privacy. Using our transformation we can achieve source privacy for
liveness tests. Though we need 4 rounds instead of 2, we can still have residual entropy loss O(log (1/ε)),
optimal upto constant factors.

4 From Pre-application to Post-application Robustness

In this section, we show a generic transformation from a t-round privacy amplification protocol P
that achieves pre-application robustness to a (t + 1)-round protocol P ′ that achieves post-application
robustness. The transformation can be described as follows.

Let ` = log (1/ε). Without loss of generality, assume that the last message in P was sent from
Bob to Alice. Let R̃A, R̃B denote the first u bits of the keys computed by Alice and Bob, respectively
(Set R̃A = ⊥ if Alice rejects, and R̃B = ⊥ if Bob rejects). We need a (k − O(`), ε)-extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m and an ε-secure one-time MAC for d-bit messages, whose key length is u.
Using these, the (t+ 1)-round protocol is depicted as Protocol 6.

Theorem 4.1. If Protocol P is (k,m, ε)-secure privacy amplification protocol with pre-application ro-
bustness and residual entropy k −O(log (1/ε)), then Protocol P ′ is a (k,m−O(log (1/ε)), O(ε)) secure
privacy amplification protocol with post-application robustness. Additionally, if P is (k, ε) private, then
P ′ is (k,O(ε)) private.

Proof. Let |RA| = |RB| = r (if Alice and Bob do not reject).
The correctness follows trivially from the correctness of Protocol P.
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Alice: X Eve: E Bob: X

←−−−−−−−−
· · ·

Protocol P
−−−−−−−−→
· · ·

←−−−−−−−−
Sample random S
T = MACR̃A

(S)
Set RA = Ext(X;S)

S, T −−−−−−−−→ S′, T ′

If T ′ 6= MACR̃B
(S′) reject

Set final RB = Ext(X;S′)

Protocol 6: (t+ 1)-round Privacy Amplification Protocol P ′ with post-application robustness.

We show 4ε post-application robustness of P ′. We assume that either one of R̃A, R̃B is ⊥, or
R̃A = R̃B. By (pre-application) robustness of P, this happens with probability at least 1− ε. If one of
R̃A or R̃B is ⊥, then, either RA or RB is ⊥. So, we assume that R̃A = R̃B = R̃ 6= ⊥. Thus, to have any
chance of breaking post-application robustness, the adversary must set S′ 6= S, and needs to compute
MAC

R̃
(S′) given Eve’s view E′ of protocol P, S, MAC

R̃
(S), and RA with probability 3ε. By using that

Ext is a strong extractor and the fact that X has entropy k−O(log (1/ε)) given E′, R̃, we have that RA
is ε-close to Ur given E′, S,MAC

R̃
(S),MAC

R̃
(S′). This implies that, since Eve can simulate Ur herself,

she should be able to compute MAC
R̃

(S′) with probability 2ε given E′, S,MAC
R̃

(S). By the security of
MAC, this is impossible.

Extraction: If RA 6= ⊥, then as seen above, RA is ε-close to uniform given E′, S,MACR(S). This
implies the extraction property for Alice.

The extraction property for Bob requires a little more work. Let R̃ = R̃B. We know from the
extraction property of P that

∆((R,E′), (purify(R), E′)) = ∆((R,E′), (Uu, E′)|R 6= ⊥) · Pr(R 6= ⊥) 6 ε . (2)

Let ∆((R,E′), (Uu, E′)|R 6= ⊥) = β. By robustness, we have that with probability 1−O(ε) either one
of RA, RB is ⊥, or RA = RB. We assume that this is the case. Further, we assume that RB 6= ⊥. This
implies that R 6= ⊥. Thus, R is β-close to uniform given E′. If RA 6= ⊥, then RA = RB, and RA, and
hence RB is ε-close to uniform. If RA = ⊥, then nothing is sent in the (t + 1)-th round by Alice, and
so Eve must guess MACR(S′) correctly which happens with probability at most β+ ε by the security of
MAC, and the fact that R is β-close to uniform. Therefore,

∆((RB, E′), (purify(RB), E′)) = ∆((RB, E′), (Ur, E′)|RB 6= ⊥) · Pr(RB 6= ⊥)
6 ε+ ∆((RB, E′), (Ur, E′)|RB = RA 6= ⊥) · Pr(RB = RA 6= ⊥) +

∆((RB, E′), (Ur, E′)|RA = ⊥, RB 6= ⊥) · Pr(RA = ⊥, RB 6= ⊥)
6 ε+ ε · Pr(RB = RA 6= ⊥) + (β + ε) · Pr(RA = ⊥, RB 6= ⊥)
6 2ε+ β · Pr(R 6= ⊥) + ε ≤ 4ε ,

where we used the fact that Pr(RA = ⊥, RB 6= ⊥) 6 Pr(R 6= ⊥), and equation 2.
Source Privacy: We need to show that FullOutput(X,E) = (RA, RB, E′, S,MAC

R̃A
(S)) is O(ε)-close

to FullOutput(Y,E), from any other source Y such that H∞(Y |E) > k. In fact a stronger statemnet
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holds, namely, FullOutput?(X,E) := (RA, RB, E′, S, R̃A, R̃B) is O(ε)-close to FullOutput?(Y,E). By
post-application robustness, we know that with probability 1−ε either one of RA, RB is ⊥, or RA = RB.
We assume that this is the case. If RA 6= ⊥, then we know that RA is ε-close to uniform given
E′, S, R̃A, R̃B. Also, given E′, S, R̃A, R̃B, it is easy to check whether any of RA or RB is ⊥. Thus, the
knowledge of RA, RB does not provide any additional information, except with probability at most ε.
Then, the source privacy follows from the source privacy of P.

Applying this generic transformation on the two round and four round protocols given by Corol-
lary 3.9, 3.13 give us the following:

Corollary 4.2. There exists a universal constant α > 0, such that for k > n/2(1 − α), there exists
an explicit polynomial-time, 3-round (k, ε)-private, (k,m, ε)-secure privacy amplification protocol with
post-application robustness and entropy loss k −m = O(log (1/ε)).

Corollary 4.3. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time, 5-round (k, ε)-private,
(k,m, ε)-secure privacy amplification protocol with post-application robustness and entropy loss k−m =
O(log (1/ε)).

Also, we can apply this generic transformation to the (non-private) two round protocol of [Li12b]
that achieves pre-application robustness for k = O(log2(1/ε)) with entropy loss O(log (1/ε)) to get the
following result.

Corollary 4.4. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time, 3-round (k,m, ε)-secure
privacy amplification protocol with post-application robustness and entropy loss k −m = O(log (1/ε)).

5 Increasing Residual Entropy

In this section we consider the task of preserving as much entropy as possible in the weak source X after
the execution of a privacy amplification protocol. This is an arguably natural goal, and in particular it
has implications in the Bounded Retrieval Model where there is a huge weak source which one wants to
use in many sequential protocol executions (see section 6). Formally, we define the residual entropy of
an interactive protocol using a weak source X as minE′ (H∞(X |E′)) where E′ is the adversary’s view
after the protocol (i.e. E′ contains the initial side-information E and the protocol transcript). We refer
to H∞(X |E)−minE′ (H∞(X |E′)) as the loss in residual entropy.

The main result of this section is the following theorem, which transforms a given privacy amplifica-
tion protocol with post-application robustness into one that achieves loss in residual entropy O(log(1/ε),
i.e. linear in the security parameter, which is optimal up to constant factors.

Theorem 5.1. Assume that there is a 2-round (k,m, ε)-secure privacy amplification protocol with post-
application robustness in which the first message is independent of the (n, k)-source X and we have
log n = O(log(1/ε)), ε ≥ 2−m/C , and k ≥ C log(1/ε) for sufficiently large C.

Then there is a 2-round (k′,m′, ε′)-secure privacy amplification protocol with residual entropy ≥
k′ − O(log(1/ε′)) provided that k′ ≥ k + C ′ log(1/ε) and ε′ ≥ ε1/C′ for sufficiently large C ′, and m′ =
k′ − O(log(1/ε′)) for pre-application robustness or m′ = k′ − k − O(log(1/ε′)) for post-application
robustness.

For the remainder of this section, every protocol under consideration will have the property that
the first message sent (which is always sent by Alice) is independent of the weak source X; we avoid
restating this in each theorem for the sake of brevity.
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5.1 A transformation via receipt protocols

To achieve the transformation of Theorem 5.1, we introduce the following notion of a receipt protocol,
which is essentially a 2-round message authentication protocol in which the party who speaks first
chooses the message. Such protocols can be defined via a single function Receipt, as follows.

Definition 5.2. A (k, `, ε)-receipt protocol (for messages of length d) is a function Receipt : {0, 1}d ×
{0, 1}r ×{0, 1}n → {0, 1}` that satisfies the following: for Y ≡ Ur, every µ ∈ {0, 1}d, every X such that
H∞(X|E) ≥ k, and every µ′ 6= µ, Y ′ chosen by an adversary given µ, Y,E,

H∞(Receipt(µ, Y,X) | Y, Receipt(µ′, Y ′, X)) ≥ log(1/ε).

Given a function Receipt satisfying this definition, one can construct a protocol as depicted in
Protocol 7. The following is immediate.

Theorem 5.3. Let Receipt be a function defining a (k, `, ε)-receipt protocol, and assume H∞(X|E) ≥ k.
Then in Protocol 7, Alice accepts with probability ≤ ε if µ′ 6= µ and accepts with probability 1 if Eve is
passive.

Alice: X Eve: E Bob: X

Choose message µ ∈ {0, 1}d
Sample random Y

(µ, Y ) −−−−−−−−→ (µ′, Y ′)

Compute T ′ := Receipt(µ′, Y ′, X)
T ←−−−−−−−− T ′

If T 6= Receipt(µ, Y,X) reject

Protocol 7: A receipt protocol

Note that Protocol 7 achieves residual entropy ≥ k− `, because only Bob’s message depends on the
weak source X.

Besides potentially being of independent interest, receipt protocols are useful because we can give
a transformation that increases their residual entropy, which we do not know how to do directly for
privacy amplification protocols. Specifically, we prove the following theorem in section 5.2.

Theorem 5.4. Assume that there exists a polynomial-time (k, `, ε)-receipt protocol for d-bit messages
such that Alice communicates ≤ ` bits and 2−C` ≤ ε ≤ 1/(C`) for sufficiently large C.

Then for any r ≤ log(1/ε)/100, there exists a polynomial-time (k, r, 2−Ω(r))-receipt protocol for d-bit
messages where Alice communicates O(`) bits.

Note that the loss in residual entropy r of the latter receipt protocol is linear in its security parameter,
and in particular for some ε′ = εΩ(1) we can obtain a (k,O(log(1/ε′)), ε′)-receipt protocol.

We now show that privacy amplification protocols can be constructed from receipt protocols, and
vice versa. In combination with Theorem 5.4, this will prove Theorem 5.1.

One direction, that post-application robust privacy amplification protocols imply receipt protocols,
is straightforward. Specifically, Alice and Bob can use the derived key of length m and a MAC with
tag length m/2 to construct an iMAC protocol (cf. section 2.1) for messages of length d in which Alice
speaks first and Bob chooses the message [DW09, Thm. 21]. Using the MAC of Theorem 2.4, this
requires only that d ≤ ε2m/2 to bound the attacker’s success probability by O(ε). Then, an iMAC
protocol immediately gives a receipt protocol with the same parameters by taking Receipt to be the
function that computes Bob’s tag, because the iMAC protocol is secure in particular for a message that
Alice chooses and sends to Bob. In summary, we have the following.
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Theorem 5.5. Assume that there exists a polynomial-time 2-round (k,m, ε)-secure privacy amplifica-
tion protocol with post-application robustness and communication complexity c.

Then there exists a polynomial-time (k, c + m/2, O(ε))-receipt protocol for messages of length d ≤
ε2m/2 in which Alice communicates ≤ c+ d bits.

The other direction, that receipt protocols imply (pre- or post-application robust) privacy amplifi-
cation protocols is slightly more involved, and is depicted in Protocol 8. The idea is that in the receipt
protocol, Alice chooses her message S uniformly at random. Bob sends the receipt for S, and uses S to
extract a key K with which he authenticates a uniformly random seed W to Alice. Finally, Alice and
Bob use W to extract the final key which is the output of the privacy amplification protocol.

Alice: X Eve: E Bob: X

Sample random S, Y
(S, Y ) −−−−−−−−→ (S′, Y ′)

Compute T ′1 := Receipt(S′, Y ′, X)
Compute K ′ := Ext1(X,S′)
Sample random W ′

Compute T ′2 := MACK′(W ′)
Set final RB := Ext2(X,W ′)

(T1, T2,W )←−−−−−−−− (T ′1, T
′
2,W

′)

If T1 6= Receipt(S, Y,X) reject
Compute K := Ext1(X,S)
If T2 6= MACK(W ) reject
Set final RA := Ext2(X,W )

Protocol 8: A 2-round privacy amplification protocol using Receipt

Theorem 5.6. Let Receipt be a (k, `, ε)-receipt for d-bit messages, Ext1 : {0, 1}n × {0, 1}d → {0, 1}4`
be a (k, 2−4`)-extractor, Ext2 : {0, 1}n × {0, 1}d′ → {0, 1}m′ be a (k − ` − d, ε′)-extractor, and MACK :
{0, 1}d′ → {0, 1}2` be a MAC with key length |K| = 4`.

Then for k′ ≥ k+O(`), Protocol 8 is a (k′,m′, ε′)-secure privacy amplification protocol with residual
entropy k−`, with ε′ = ε+O(2−`) and m′ = k′−O(`) for pre-application robustness or m′ = k′−k−O(`)
for post-application robustness.

Proof. To prove the pre-application robustness of Protocol 8, we consider two cases. If Eve changes S
(so S′ 6= S), then Alice accepts only with probability ≤ ε by the security of the receipt protocol. Note
that in attempting to forge Receipt(S, Y,X) Eve now has an additional 2` bits of information about X
given by T2, but this only decreases the entropy of X from k′ to k′ − 2` ≥ k.

If instead Eve does not change S, then the security follows from that of MAC given by Theorem 2.4.
Specifically, in this case we have K = K ′, and further K ≈2−4` U4` even conditioned on S. Note that
Eve also has another |T ′1| = ` bits of information that depend on K, but by Lemma 2.1 and the fact
that K ≈2−4` U4` we have H∞(K|T ′1) ≥ H∞(K)− ` ≥ 3`− 1. Thus by Theorem 2.4, Eve can only forge
MACK(W ) with probability at most⌈

d′

2`

⌉
· 22`−H∞(K|T ′1) ≤ O(2−`).

Note that here we are assuming W 6= W ′, as otherwise RA = RB and thus Eve would not break
robustness.
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For post-application robustness the argument is similar. The only difference is that now Eve sees
RB before modifying (T1, T2,W ), so in order to preserve the security of MAC we require that the length
m′ = |RB| of this extra information is ≤ k′ − k −O(`).

To prove the extraction property (assuming by robustness that Eve does not change W from W ′),
first note that X still has entropy k − ` even conditioned on (T ′1, T

′
2), and further W = W ′ is uniform.

However, W and X are now dependent because of T ′2. Following [DW09, Thm. 20] we break this
dependence by also giving Eve the key K ′, which decreases the entropy of X to k−`−d but conditioned
on which X and W are now independent. Thus by the property of Ext2, RA = RB is ε′-close to uniform
conditioned on Eve’s view.

Proof of Theorem 5.1. Let a 2-round (k,m, ε)-secure privacy amplification protocol with post-application
robustness be given, and let c denote its communication complexity. By Theorem 5.5, this gives a
(k, c + m/2, O(ε))-receipt protocol for messages of length d ≤ ε2m/2 in which Alice communicates
≤ c+ d bits. Then applying Theorem 5.4, we obtain a (k, `, ε′)-receipt protocol for messages of length
d where ε′ = εΩ(1) and ` = O(log(1/ε′)), provided that d ≤ m/2. Finally applying Theorem 5.6 gives
a privacy amplification protocol with residual entropy k′ − O(log(1/ε′)) and the stated parameters,
provided that we can instantiate Ext1 and Ext2.

By [GUV09, Thm. 5.12], Ext1 exists with d = O(log n + `) provided that 4` < 0.99k, which is
guaranteed by k ≥ C log(1/ε) for sufficiently large C. Note that since ` and log n are each O(log(1/ε)),
we can take d = O(log(1/ε)) ≤ m/2. By [GUV09, Thm. 5.14], Ext2 exists with d′ = log n+O(log2((k−
` − d)/ε′)) provided that m′ ≤ k − ` − d − O(log(1/ε′)), so we can take m′ ≥ k′ − O(log(1/ε′)) as
stated.

5.2 Increasing residual entropy of receipts

We now prove Theorem 5.4. The transformation that we use employs Raz’s strong two-source extractor
[Raz05], stated in Theorem 5.7. (Our use of Raz’s extractor is inspired by a recent construction of Li
[Li12b].)

Theorem 5.7 ([Raz05]). Let S be a (t, e)-source and T an independent (`, e′)-source satisfying the
following for some 0 < δ < 1/2.

• t ≥ 6 log t+ 2 log `

• e ≥ (0.5 + δ)t+ 3 log t+ log `

• e′ ≥ 5 log(t− e)

Then for every r ≤ δ · min(t/8, e′/40) − 1, there exists an explicit efficient function Raz : {0, 1}` ×
{0, 1}t → {0, 1}r such that

∆(Raz(T, S), Ur | S) ≤ 2−1.5r.

Proof of Theorem 5.4. Let Receipt be a function defining a (k, `, ε)-receipt protocol. Define t := 50`,
e′ := log(1/ε), and e := t− 2(d+ |Y |)− r ≥ t− 2`− r. Let Raz be the function given by Theorem 5.7
for t, `, e, e′, r.

We define a new receipt protocol in Protocol 9.
To show that this is a (k, r, 2−Ω(r))-receipt protocol, fix any deterministic adversary Eve and consider

the following alternate sampling of the random variables appearing in the protocol.
First, sample together µ, µ′, Y , and Y ′ according to their marginal distribution (we assume µ 6= µ′).

After this sampling, we have the following.

• By Lemma 2.1, with probability ≥ 1− 2−r over the choice of (µ, µ′, Y, Y ′) we have

H∞(S |µ, µ′, Y, Y ′) ≥ t− 2(d+ |Y |)− r = e.
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Alice: X Eve: E Bob: X

Choose message µ ∈ {0, 1}d
Sample random Y, S

(µ, Y, S) −−−−−−−−→ (µ′, Y ′, S′)

Compute T ′ := Receipt(µ′, Y ′, X)
Compute R′ := Raz(T ′, S′)

R←−−−−−−−− R′

Compute T := Receipt(µ, Y,X)
If R 6= Raz(T, S) reject

Protocol 9: The transformed receipt protocol

• T and T ′ are now deterministic functions of X.

• X and S are (still) independent, conditioned on the sampling of (µ, µ′, Y, Y ′).

Next, sample T ′ according to its marginal distribution induced by the sampling of (µ, µ′, Y, Y ′)
above. We have now sampled all variables from the original protocol except T = Receipt(µ, Y,X).
Note that by the security of the original protocol, we have H∞(T |T ′, µ, µ′, Y, Y ′) ≥ log(1/ε) = e′.
Further, since before we sampled T ′ it was the case that T and T ′ were deterministic functions of X
and that X and S were independent, fixing T ′ does not affect the independence of T and S, i.e. T
and S remain independent even conditioned on the choice of T ′. Lastly note that we still have that
H∞(S |T ′, µ, µ′, Y, Y ′) ≥ e.

Thus by Theorem 5.7 and the above analysis, we have

∆((Raz(T, S), S), (Ur, S) | T ′, µ, µ′, Y, Y ′) ≤ 2−1.5r.

Finally, because S′ and R′ are deterministic functions of S conditioned on the variables sampled so far,
we have

∆((Raz(T, S), S, S′, R′), (Ur, S, S′, R′) | T ′, µ, µ′, Y, Y ′) ≤ 2−1.5r.

Therefore, Eve can only guess the correct value of Raz(T, S) with probability ≤ 2−r + (2−r + 2−1.5r) =
2−Ω(r), which completes the proof.

Finally, we obtain the following corollary by instantiating Theorem 5.1 using the 2-round privacy
amplification protocol with post-application robustness due to Dodis and Wichs [DW09, Cor. 4], which
requires k = Ω(log2(1/ε)).

Corollary 5.8. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time 2-round (k,m, ε)-secure
privacy amplification protocol with post-application robustness that achieves m = Ω(log(1/ε)) and resid-
ual entropy k −O(log(1/ε)).

6 Applications to the Bounded Retrieval Model

In the Bounded Retrieval Model (BRM) [CLW06, Dzi06], Alice and Bob share an (intentionally) very
large secret key X. The idea is that the size of X makes it infeasible for an attacker Eve to learn the
entire string, even if she has infiltrated either Alice or Bob’s storage device, because of limits on the
amount of data that can be transmitted out of the device. Thus as in previous sections we assume that
Eve has some adversarially chosen side information E about X, but that k := H∞(X|E) is not too
small. Specifically here we think of k = αn for some constant 0 < α < 1.
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Since reading the entire string X would be prohibitively inefficient, any function used by Alice or
Bob that takes X as input must only read a small number of positions, i.e. it must be locally computable.
Dodis and Wichs observe [DW09, Sec. 5] that their privacy amplification protocol, used in Corollary
5.8 above, has the property that each function taking X as input is a standard extractor (as opposed
to non-malleable — recall that the protocol uses look-ahead extractors, which are constructed from
standard extractors). These can be replaced with the constructions of locally computable extractors
due to Vadhan [Vad04], and thus the protocol works even in the BRM.

One downside of the [DW09] protocol is that the second message (which depends on X) has length
Ω(log2(1/ε)), and thus the loss in residual entropy is Ω(log2(1/ε)) = Ω(m2). It would be more desirable
to have loss in residual entropy O(m), as then Alice and Bob could derive a total of Ω(k/m) secret keys
from the weak source X, as opposed to only O(k/m2) keys. (Deriving many short keys from a single
long-term secret is a prominent use case for the BRM; note that post-application robustness is therefore
the right notion of security in this setting.)

Corollary 5.8 shows that the loss in residual entropy can be reduced to O(m), allowing Alice and
Bob to derive Ω(k/m) keys which is optimal up to constant factors. This protocol remains locally
computable and thus applicable to the BRM, because still every function that takes X as input is
a standard extractor and can be replaced by a locally computable extractor. Specifically, each such
function is either an extractor from the [DW09] protocol, or one arising from the transformation of
Theorem 5.6. In summary, we have the following.

Theorem 6.1. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time 2-round (k,m = Ω(log(1/ε)), ε)-
secure privacy amplification protocol in the BRM with post-application robustness and residual entropy
k −O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be derived.

At the expense of moving from two to four rounds, we can obtain a BRM protocol that additionally
has source privacy by instead plugging the [DW09, Cor. 4] protocol into the transformation of Theorem
3.12. The resulting protocol also has optimal residual entropy because the final message of length
O(log(1/ε)) is the only one depending on X, and is “BRM friendly” because again the only functions
that touch X are standard extractors. (Note that Bob’s computation in the [DW09, Cor. 4] protocol
has the two-stage form depicted in Protocol 4, and thus Theorem 3.12 is applicable.)

Theorem 6.2. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time 4-round (k,m = Ω(log(1/ε)), ε)-
secure (k, ε)-private privacy amplification protocol in the BRM with post-application robustness and
residual entropy k −O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be derived.
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