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Abstract Circular security is an important notion for public-key encryption schemes and is needed by
several cryptographic protocols. In circular security the adversary is given an extra “hint” consisting
of a cycle of encryption of secret keys i.e., (Epk1(sk2), . . . , Epkn(sk1)). A natural question is whether
every IND-CPA encryption scheme is also circular secure. It is trivial to see that this is not the case
when n = 1. In 2010 a separation for n = 2 was shown by [ABBC10,GH10] under standard assumptions
in bilinear groups.
In this paper we finally settle the question showing that for every n there exist an IND-CPA secure
scheme which is not n-circular secure.
Our result relies on the recent progress in cryptographic obfuscation.

1 Introduction

Public-key encryption schemes allow anyone to take a plaintext and create a corresponding ciphertext that
carries little or no information about the encrypted plaintext, in the eyes of everyone else but the owner of
the secret key.

One might think that for an encryption scheme all plaintexts are equal, but it turns out that some
plaintexts are more equal than others. In particular, secret-keys (or functions of them) are a very special
kind of plaintexts.

But why would you want to encrypt a secret key? A prime example is fully-homomorphic encryption
(FHE): At the heart of virtually every fully-homomorphic encryption scheme there is a technique called
“bootstrapping” that requires users to publish, in their public key, an encryption of the secret key [Gen09].
For another example think of two cryptographers, Alice and Bob, who get married and decide they should
not keep any secret from each other and therefore decide to share their secret keys with each other. To do
so Alice sends an encryption of her secret key skA to Bob using his public key pkB , while Bob sends an
encryption of his secret key skB to Alice using her public key pkA. This is not a far fetched example and
there are applications where this is actually done, see [CL01].

Suppose now that the the evil eavesdropper Eve gets to see these encryptions of secret keys: is the
encryption scheme still secure, or can Eve use this extra information to break its security?

Circular Security. In the FHE example, a secret key was encrypted under its own public key and we
call this a 1-cycle i.e., Eve learns Epk(sk). When Alice and Bob both encrypt their secret keys under the
other party’s public key, we get a 2-cycle i.e., Eve learns EpkA(skB) and EpkB (skA). In general, we are
interested in what happens when Eve learns the encryptions of n secret keys (sk1, . . . , skn) under public
keys (pk2, . . . , pkn, pk1) respectively. If an encryption scheme is still secure when the adversary is given such
a cycle of encryptions of secret keys, we say that the scheme is n-circular secure3. This notion was first

? Work done while visiting Aarhus University.
3 There are different ways of defining circular security. The interested reader can check [CGH12] and reference

therein for a discussion on the definitions. In this paper we will show a scheme where the adversary (given a cycle
of encryption of secret keys) can recover all the secret keys, thus breaking even the weakest notions of circular
security. Therefore the actual definition used is irrelevant for us.



defined in [CL01, BRS02]. Since then it has been an open problem to understand the relationship between
the standard definition of security for public key encryption schemes (namely indistinguishability under
chosen-plaintext-attack or IND-CPA for short) and n-circular security.

IND-CPA Security 6⇒ 1-Circular Security. It is quite easy to show that IND-CPA security does not
imply 1-circular security. Take any IND-CPA secure scheme (G,E,D) and construct (G,E′, D) as follows: on

input m, the modified encryption scheme E′pk(·) first checks if m
?
= sk.4 If so, E′ outputs m, else it outputs

Epk(m). The modified scheme is still IND-CPA secure (as it behaves exactly like E for all m 6= sk), but
since E′pk(sk) = sk it is clear that it would be a very bad idea to let Eve learn this value.

Pairing Assumptions ⇒ (IND-CPA Security 6⇒ 2-Circular Security). Surprisingly, it was quite
harder to show that there are IND-CPA schemes that are not 2-circular secure. The reason for this is that
the secret keys are generated independently and therefore the encryption algorithm does not have a way of
distinguishing a secret key from a message (in fact, every message could be a secret key). This problem has
been open for about a decade until it was finally solved in 2010 by [ABBC10,GH10]. Both these results hold
under the assumption that some problems are hard in bilinear groups. The counterexample is obtained by
embedding some extra elements in the ciphertexts. These extra values do not help the adversary to break
the IND-CPA game but, when combined together using a bilinear map, allow to effectively decrypt one of
the two “circular” ciphertexts and recover a secret key.

Obfuscation ⇒ (IND-CPA Security 6⇒ Circular Security). In this paper, we show that IND-CPA
security does not imply n-circular security for any n. More precisely, for every n, we can construct a scheme
that is not n′-circular secure for every n′ < n. We can show our result assuming that software obfuscation is
possible, as defined by [BGI+01,BGI+12].

(False ⇒ True)? One might now object that our theorem is trivial: the same paper that defined obfuscation
also proved that this notion is impossible to achieve! However [BGI+01, BGI+12] “only” proved that there
exist no single obfuscator that can obfuscate every circuit under the strongest possible notion of obfuscation
– namely “virtual black box” (VBB) obfuscation – and during the last decade obfuscators for limited class
of circuits have been shown, such as [CD08,Wee05,CRV10,HRSV11].

In a surprising turn of event – and thanks to the recent breakthrough on a candidate for multilinear
maps [GGH13a] – the first candidate cryptographic obfuscation was presented in [GGH+13b]. The obfusca-
tion of [GGH+13b] does not contradict the impossibility result of [BGI+01,BGI+12], as it achieves a weaker
notion called indistinguishability obfuscation (iO). Yet, this arguably very weak notion of obfuscation allows
for a long list of unexpected applications [SW13,HSW13,GGHR14,BZ13,PPS13,KNY14], and one could say
that the result in [GGH+13b] is “an impractical obfuscation for all practical purposes”5.

Following this result, even a candidate VBB obfuscator has been proposed in [BR13]. This result over-
comes the impossibility result of [BGI+01, BGI+12], by proving the security of the scheme in the generic
graded encoding scheme model : this can be thought as the analogue of the generic group model for discrete
logarithm, extended to the case of multilinear maps.

In Section 2 we show how to separate IND-CPA and circular security using VBB obfuscation, as this
powerful tool allows for very simple and intuitive constructions. Then, in Section 3 we show the same result
using the weaker (and therefore more realistic) assumption that an iO obfuscator exists.

4 Note that it is always possible to check if m = sk by, for example, encrypting a bunch of random messages using
Epk(·) and decrypting them using m i.e., the encryption algorithm checks if Dm(Epk(r)) = r for enough random
values r. If the results are all correct, one can assume whp that m = sk.

5 Cit. Yuval Ishai.
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Relation to [KRW13]. In October 2013 Koppula, Ramchen and Waters [KRW13] posted on ePrint a
similar result with a proof of security under indistinguishability obfuscation. On the same day, we posted a
draft of our result which only showed a counterexample under the assumption of VBB obfuscation (Section
2). Subsequently, in February 2014 we updated our draft with Section 3, which is a simple application of
the punctured programming technique from [SW13] to our construction of Section 2. Thus that addition
achieves a counterexample based only on indistinguishability obfuscation. While recognizing that [KRW13]
were first in showing the separation using iO only, we believe that our counterexample has some advantages.

Circular Security of Bit-Encryption. In the previous discussion on circular security, we made the implicit
conjecture that the secret keys are element of the plain-text space (or how could it be possible to encrypt
them?). It has been conjectured that every IND-CPA bit-encryption scheme (that is, an encryption scheme
that can only encrypt messages in {0, 1}) is also circular secure. Rothblum [Rot13] shows an IND-CPA bit
encryption scheme which is not 1-circular secure assuming the existence of multilinear maps in which the
SXDH assumption holds. Koppula, Ramchen and Waters [KRW13] give a different separation, based on the
existence of iO obfuscation.

The good news. While our work provides strong evidence for the fact that not all IND-CPA secure public
key encryption schemes achieve circular security, there are a number of encryption schemes that can be proven
secure even under these attacks. We refer the interested reader to [BHHO08,CGH12,Hof13,BGK11,BG10]
and references therein.

1.1 Technical Overview

The simplest way of constructing a public-key encryption scheme in a world where obfuscation exists is
probably the following: a secret key is just a random string s and a public key is a circuit P that outputs

1 on input s and ⊥ otherwise. We write s
P→ 1 for compactness. We can think of a plaintext m as a circuit

1 → m. Now to encrypt m under public key P one can construct a ciphertext C with the functionality

s
C→ m by composing the two circuits s

P→ 1 → m. Correctness is trivial to check and security follows from
the fact that the circuits are obfuscated and can therefore only be used as “black-boxes”.

To break the circular security of the scheme, we add another circuit to the ciphertexts that “recognizes”
circular encryptions without otherwise affecting the security of our scheme. Using the public key P we define
a new circuit Q which takes as input a string y and a program B: Q evaluates B(y) and checks if the result
is equal to s using P and, if so, outputs s. In other words, Q only outputs s to someone that already knows
it.

When creating a ciphertext we append a circuit R to the ciphertext, where R is an obfuscation of Q with
the first input fixed to m. Following the definition of Q, the circuit R provides the following functionality:
On input a ciphertext C, the circuit R tries to decrypt C with m and, if the output is s, releases the secret
key s. So, if Q1 is the circuit made from public key P1 and then its first input is fixed to s2, the ciphertext
will now contain a circuit R1,2 that can recognize encryptions of s1 under the key s2. So, our new scheme is
not 2-circular secure!

The next observation is that any two circuits x
A→ y and y

B→ z can be composed into a circuit x
C→ z. In

particular, from a set of n encryptions si
Ci→ s(i+1 mod n) for i = 1, . . . , n one can compute n circuits

s(i+1 mod n)
C∗

i→ si

Clearly the size of these circuits grows with n, but this is not a problem as long as we set the input size of
Q to be big enough.

This concludes the intuitive description of our “attack”. To see that the scheme is IND-CPA secure,
consider an intermediate game where we replace the real public key P with a circuit that always outputs
⊥. If this can be done in an indistinguishable way, then we are done: if P always outputs ⊥, then also C,Q
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output ⊥ on any input, and therefore contain no information whatsoever about m (at least in the ideal world
where the simulator only has oracle access to the circuits).

Now it is easy to see that if VBB obfuscators exist, we can replace P with a circuit that always output ⊥
and the adversary will only distinguish if he queries the oracles on the secret key s. However, iO obfuscation
does not allow to perform this replacement, as it only guarantees that obfuscations of circuits computing the
same functions are indistinguishable. To fix that, we replace the public key P with a a string p = PRG(s): this

still allows the other circuits C,Q to check if their input is equal to the secret key by computing p
?
= PRG(x),

and at the same time it allows us to replace p with an indistinguishable uniform random string (for which no
secret key exists) in the hybrid game. Then, when p is a uniform random string, C and Q always output ⊥ and
we can therefore use iO obfuscation to argue that encryptions of m0 are indistinguishable from encryptions
of m1.

1.2 Preliminaries

In this section, we state the notation and conventions used in the rest of the work. To keep the paper self
contained, we will also recall some relevant definitions and theorems.

Notation and Conventions: We use lowercase letters s, x, y for strings in {0, 1}n. We use uppercase letters
P,C,Q,R for “plaintext” circuits and P ,C,Q,R for obfuscated circuits. We call P the set of all polynomial-
size circuits. We use the notation P (x ∈ X) ∈ Y when we want to say that a circuit P takes input from
X ∪ {⊥} and returns a value in Y ∪ {⊥}. We write Pa→b for a circuit P that outputs b if x = a and ⊥
otherwise, and P∗→⊥ for the circuit that outputs ⊥ on any input. For all circuits we define P (⊥) = ⊥.

If S is a set s← S is a uniformly random sample from S. If A is a randomized algorithm, x← A is the
output of A on a uniformly random input tape.

Definition 1 (Pseudorandom generator). We say that a function PRG : {0, 1}k → {0, 1}y (with y > k)
is a secure pseudorandom generator if no PPT adversary A can distinguish between a random string c ←
{0, 1}y and the output of the PRG(s) on a uniformly random point s ∈ {0, 1}k.

Definition 2 (IND-CPA). Let Π = (Gen,Enc,Dec) be a public key encryption scheme. Let us define the
following experiment (parametrized by a bit b) between an adversary A and a challenger:

IND-CPAb
Π(A, k) :

1. The challenger runs (sk, pk)← Gen(1k) and gives pk to A.
2. A outputs two messages (m0,m1) of the same length.
3. The challenger computes Enc(pk,mb) and gives it to A
4. A outputs a bit b′ (if it aborts without giving any output, we just set b′ ← 0). The challenger returns

b′ as the output of the game.

We say that Π is secure against a chosen plaintext attack if for any k and any PPT adversary A

Adv(A)
def
=
∣∣∣Pr

[
IND-CPA1

Π(A, k) = 1
]
− Pr

[
IND-CPA0

Π(A, k) = 1
] ∣∣∣ ≤ negl(k).

Definition 3 (Virtual Black-Box Obfuscator [BGI+01, BGI+12]). Let C = {Cn}n∈N be a family of
polynomial-size circuits, where Cn is a set of boolean circuits operating on inputs of length n. And let O be a
PPT algorithm, which takes as input an input a length n ∈ N, a circuit C ∈ Cn, a security parameter k ∈ N,
and outputs a boolean circuit O(C) (not necessarily in C).
O is a (black-box) obfuscator for the circuit family C if it satisfies:

Preserving Functionality: For every n ∈ N, every C ∈ C and every x ∈ {0, 1}n, with all but negl(k)
probability over the coins of O: (

O(C, 1n, 1k)
)

(x) = C(x)
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Polynomial Slowdown: For every n, k ∈ N and C ∈ C, the circuit O(C, 1n, 1k) is of size at most
poly(|C|, n, k).

Virtual Black-Box: For every (non-uniform) polynomial size adversary A, there exists a (non-uniform)
polynomial size simulator S, such that for every n ∈ N and for every C ∈ C:∣∣∣∣ Pr

O,A

[
A
(
O(C, 1n, 1k)

)
= 1
]
− Pr
S

[
SC(1|C|, 1n, 1k) = 1

]∣∣∣∣ ≤ negl(k)

Definition 4 (Indistinguishability Obfuscation [GGH+13b]). Given a circuit class {Ck}, a (uniform)
PPT machine O is called an indistinguishability obfuscator (iO) for {Ck} if it satisfies:

Preserving Functionality: For every k ∈ N and C ∈ Ck,

Pr[C ′(x) = C(x)|C ′ ← O(k,C)] = 1 ∀x

Indistinguishability: For any (non necessarily uniform) distinguisher D, all security parameters k and all
couples C0, C1 ∈ Ck such that C0(x) = C1(x) for all inputs x, we have that∣∣∣Pr[D(O(k,C0) = 1]− Pr[D(O(k,C1)) = 1]

∣∣∣ ≤ negl(k)

Recently candidate obfuscators for every circuits have been presented: [BR13] shows that VBB obfuscation
is possible under appropriate assumptions in a “generic group model” while [GGH+13b] shows that iO
obfuscation is possible under strong (but falsifiable) assumptions.

2 Separating IND-CPA Security from Circular Security

2.1 PKE from Obfuscation

We start by constructing a very simple IND-CPA public-key encryption scheme Gen,Enc,Dec based on
obfuscation, and show some of its interesting property. In the next subsection, we will modify it in order to
render it insecure under n-circular security attacks.

Key Generation: The algorithm Gen(1k) chooses a random secret key s ← {0, 1}k. The public key is an
obfuscated circuit P ← O(P ) where P is defined as follows:

def P (x ∈ {0, 1}k) ∈ {0, 1}:
1. if (x

?
= s) output 1; else output ⊥.

Encryption: The algorithm Enc(P ,m) on input a public key P ∈ P and a message m ∈ {0, 1}k outputs an
obfuscated circuit C ← O(C) where C is defined as follows:

def C(x ∈ {0, 1}k) ∈ {0, 1}k:

1. if (P (x)
?
= 1) output m; else output ⊥.

Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a ciphertext C ∈ P outputs
m′ = C(s).

It is easy to check that if (s, P )← Gen, then:

Dec(s,Enc(P ,m)) = m

Theorem 1. If O is a VBB obfuscator for P according to Definition 3, then the scheme (Gen,Enc,Dec)
described above is IND-CPA secure according to Definition 2.
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To see that the scheme is IND-CPA secure, notice that thanks to the VBB property one can replace
the public key P with an obfuscated version of P∗→⊥ without the adversary noticing. Then, for every m,
Enc(pk,m) = P∗→⊥, so in the ideal world (where the simulator only has oracle access to them) the ciphertexts
contain no information at all about the messages. A formal argument follows.

Proof. We prove the the theorem by an hybrid argument. Let us define the following games:

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public key pk to be an obfuscation

(of proper size) of P∗→⊥.
Game 2: this is the same as the previous one, but in step 3 instead of an encryption of m1 we give A an

obfuscation of P∗→⊥.
Game 3: this is the same as Game 4, but in step 1 we set the public key pk ← O(P∗→⊥).
Game 4: this is the same as IND-CPA1(A, k).

Proving that no adversary can distinguish between two consecutive games with more than negligible proba-
bility implies the security of our scheme.
We first prove that Game 0 and Game 1 (and similarly Games 4 and 3) are indistinguishable assuming the
VBB property of O. Assume by contradiction that there exists an adversary A such that |Game0(A, k) −
Game1(A, k)| is greater than any negligible function of k. Then we can build an adversary A′ against the
VBB property of O for the class of circuits Pk = {Ps→1|s ∈ {0, 1}k} ∪ {P∗→⊥} as follows. A′ gets in input
a circuit pk ← Pk, and runs A simulating the IND-CPA game against it. Its goal is to distinguish whether
pk = P∗→⊥ (and output 1) or not (and output 0); it works as follows:

A′(pk, k) :
1. Runs A giving it pk as the public key.
2. A outputs two messages (m0,m1) of the same length.
3. A′ computes Enc(pk,m0) and gives it to A
4. When A outputs a bit b′, A′ outputs 1 if b′ = 0 and 0 otherwise.

It is easy to see that, from A’s point of view, this game is exactly like Game 1 when pk = P∗→⊥, and exactly
like Game 0 in the other case. Therefore (by contradiction) A′ can distinguish between P∗→⊥ and any other
circuit in Pk with more than negligible advantage. However, no simulator (in the ideal world) can do this
given only oracle access to pk, as this would imply querying the oracle for pk on input the only random point
x such that pk(x) 6= 1, which can only happen with probability 1

2k
.

As a final step, we prove that no adversary can distinguish between Games 1 and 2 (2 and 3 respectively)
with more than negligible probability. The distribution of the view of A is identical in both games up to
step 3, where it receives a direct obfuscation of P∗→⊥ in Game 2, and an encryption Enc(pk,m0) in Game
1. However, since we are using an obfuscation of P∗→⊥ as a public key in both games, the ciphertexts given
to the adversary are both functionally equivalent6 to (obfuscations of) P∗→⊥. Therefore, by the security
property of the obfuscator (as in the ideal world we are giving the same oracle to the simulator in both
cases), A cannot distinguish between the two distributions and therefore between the two games. ut

2.2 Properties of Our Scheme

The scheme (Gen,Enc,Dec) defined in the previous section has an interesting property, namely that it is
possible to combine ciphertexts together in order to achieve some flavour of proxy re-encryption, namely it
is possible to delegate to someone the power to transform ciphertexts encrypted under a public key P1 into
ciphertexts encrypted under a different public key P2 without having to release the corresponding secret key
s1. To see how this is possible, think of a proxy who is given two public keys (P1, P2) and

C1→2 = Enc(P2, s1)

6 This means that they have the same input/output behaviour on all inputs. We also note that by this property
this part of the proof also works if we assume indistinguishability obfuscation instead of the VBB one.
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(i.e., an encryption of secret key 2 using public key 1). It will be convenient now to say that a circuit C (not
necessarily an output of Enc) is an encryption of m under key i if Dec(si, C) = m.

Then the proxy, using C1 s.t. Dec(s1, C1) = m and C1→2 s.t. Dec(s2, C1→2) = s1, can compute an
encryption of m under key P2 by creating an obfuscated circuit C2 ← O(C2) where C2 is defined as follows:

def C2(x ∈ {0, 1}k) ∈ {0, 1}k
1. Output C1(C1→2(x));

It is now easy to check that C2(s2) = m and that, due to the property of the VBB obfuscator O, nothing
else can be computed from C2.

2-cycle from n-cycle: Using this property, we can go from a cycle of n encryptions to n−1 cycles of length
2. Namely, let Ci→(i+1) = Enc(Pi, si+1) for all i ∈ {1, . . . , n} (where all additions are modulo n). Then one
can create circuits

C∗(i+1)→i = C(i+1)→(i+2) ◦ . . . ◦ C(i−1)→i

Note that in this case we are not even interested in re-obfuscating the concatenation of the circuits (like
in the proxy re-encryption application) and the circuit C∗(i+1)→i is a “functional ciphertext” in the sense that
it is a circuit which decrypts to si on input si+1. The only difference between C∗ and “regular” ciphertext is
that the size of C∗ grows with n. Given an obfuscator O, it is possible to find an upper bound βn = poly(k, n)
s.t. the size of C∗(i+1)→i is less than βn.

2.3 A PKE that is not n-Circular Secure

In this section, we add a new element to the ciphertexts to make the scheme from the previous section
insecure under circular attacks. Let B be the set of circuits of size at most βn defined above, then we define
the following circuit:

def Q(y ∈ {0, 1}k, B ∈ B) ∈ {0, 1}k:

1. If (P (B(y)) = 1), output B(y); else output ⊥.

Key Generation: The keys s and P are defined as above.

Encryption: An encryption of m now is a pair (C,R) where C is defined as above and R(·)← O(Q(m, ·)).
Decryption: Unchanged.

Circular (in)Security of Our Scheme: In our new scheme an encryption contains a circuit R which
“remembers” the message m and then, on any circuit B, it tests whether B(m) is equal to the secret key
and, if so, it outputs it.

It is easy to see that this new scheme is not 1-circular secure, as R(C) = Q(s,Enc(P , s)) = s. The scheme
is also insecure under 2-circular attacks: let s1, s2 be two secret keys and P 1, P 2 their respective public keys.
The output of Enc(P 1, s2) is (C1, R1,2). That is, R1,2 is a circuit that accepts as input any circuit C of size
at most βn, and if C(s2) = s1 it outputs s1.

Therefore if the adversary is also given an encryption (C2, R2,1) ← Enc(P 2, s1), he can invoke R1,2(C1)
and R2,1(C2) to recover s1, s2 respectively. As described in the previous section, from any longer cycle of
size up to n one can compute a functionally working encryption of s1 under key 2 i.e., a circuit that on input
s2 outputs s1, that can be fed as well to R to recover the secret key. Therefore the attack generalizes to
n-circularity (as long as the concatenation of n ciphertexts has length less than βn).
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IND-CPA Security of Our Scheme: The modified scheme is still IND-CPA secure: Unless one knows
an encryption of the secret key, R cannot be exploited. More formally, we prove the following:

Theorem 2. If O is a VBB obfuscator for P according to Definition 3, then the modified scheme (Gen,Enc,Dec)
described in this section is IND-CPA secure.

Proof. The proof is very similar to the one of the corresponding Theorem 1, the main difference being that
in this case we need to “substitute” the two parts of the challenge ciphertext separately (and thus we need
two more hybrid games):

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public key pk ← O(P∗→⊥).
Game 1.5: this is the same as the previous one, but in step 3 instead of giving A a complete encryption

(C,R) of m0 we substitute R with an obfuscation (of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).
Game 2: this is the same as the previous one, but in step 3 instead of an encryption (C,R) of m0 we give
A two obfuscations (O(P∗→⊥),O(P∗→⊥)) (of proper size).

Game 2.5: this is the same as Game 3, but in step 3 instead of giving A a complete encryption (C,R) of
m1, we substitute R with an obfuscation (of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Game 3: this is the same as Game 4, but in step 1 we set the public key pk to be an obfuscation (of proper
size) of P∗→⊥.

Game 4: this is the same as IND-CPA1(A, k).

An adversary that distinguishes Game 1 and Game 1.5 (resp. Game 3 and game 2.5) can be used to break
the indistinguishability between two different obfuscations of P∗→⊥: in Game 1, the circuit R always outputs
⊥ as pk = P∗→⊥, while in Game 1.5 P∗→⊥ is obfuscated directly. Indistinguishability between the other
games follows from the same arguments as Theorem 1. ut

3 Separation from Indistinguishability Obfuscation

To prove that our simple encryption scheme is IND-CPA secure, we had to argue that an obfuscation of a real
public key Ps→1 is indistinguishable from an obfuscation of P∗→⊥. However indistinguishability obfuscation
only guarantees that an adversary cannot tell the difference between the obfuscation of two circuits computing
the same function.

To fix this, change our simple scheme in the following way: let PRG : {0, 1}k → {0, 1}2k be a pseudo-
random generator, then we compute the public key pk as pk = PRG(s). Note that in the simple public key
encryption scheme we only used the obfuscated program P to check if we had the right secret key. This
can be done using the new public key as well, by evaluating the PRG. At the same time, this will allow us
to replace a real public key with an (indistinguishable) uniformly random string for which (with very high
probability) no secret key exists, and therefore all ciphertexts will be functionally equivalent to P∗→⊥.

3.1 The Technical Details

Key Generation: The algorithm Gen(1k) chooses a random secret key s← {0, 1}k and computes a string
p = PRG(s) ∈ {0, 1}2k.

Encryption: The algorithm Enc(p,m) on input a public key p ∈ {0, 1}2k and a message m ∈ {0, 1}k outputs
an obfuscated circuit C ← O(C) and R(·)← O(Q(m, ·)). where C,R are defined as follows:

def C(x ∈ {0, 1}k) ∈ {0, 1}k:

1. if (PRG(x)
?
= p) output m; else output ⊥.

def Q(y ∈ {0, 1}k, B ∈ B) ∈ {0, 1}k:
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1. If (PRG(B(y)) = p), output B(y); else output ⊥.

Decryption: The algorithm Dec(s, C,R) on input a secret key s ∈ {0, 1}k and a ciphertext (C,R) ∈ P
outputs m′ = C(s) (and ignores R).

It can be easily verified that this scheme is also not circular secure, and we can argue that it is still
IND-CPA secure.

Theorem 3. If O be a iO obfuscator and PRG a secure pseudorandom generator, then (Gen,Enc,Dec)
described in this section is IND-CPA secure.

Proof. This proof is very similar to the one of Theorem 2. The only difference is that we use a uniformly
random string (instead of an obfuscation of P∗→⊥) as a fake public key. The hybrids are as follows:

Game 0: this is the same as IND-CPA0(A, k).
Game 1: this is the same as the previous one, but in step 1 we set the public key pk ← {0, 1}2k.
Game 1.5: this is the same as the previous one, but in step 3 instead of giving A a complete encryption

(C,R) of m0 we substitute R with an obfuscation (of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).
Game 2: this is the same as the previous one, but in step 3 instead of an encryption (C,R) of m0 we give
A two obfuscations (O(P∗→⊥),O(P∗→⊥)) (of proper size).

Game 2.5: this is the same as Game 3, but in step 3 instead of giving A a complete encryption (C,R) of
m1, we substitute R with an obfuscation (of proper size) of P∗→⊥ and give him (C,O(P∗→⊥)).

Game 3: this is the same as Game 4, but in step 1 we set the public key pk ← {0, 1}2k.
Game 4: this is the same as IND-CPA1(A, k).

An adversary A distinguishing between Games 0 and 1 could be used to build an adversary A′ against the
security of the PRG as follows:

A′(pk ∈ {0, 1}2k, 1k) :

1. Runs A giving it pk as the public key.
2. A outputs two messages (m0,m1) of the same length.
3. A′ computes Enc(pk,m0) and gives it to A
4. When A outputs a bit b′, A′ outputs 1 if b′ = 0 and 0 otherwise.

From A’s point of view, this game is exactly the same as Game 0 in the case where pk is computed as
pk ← PRG(s) from a uniformly random seed s← {0, 1}k, while it is exactly like Game 1 if pk is uniformly
random.
Note that, in the case where pk ← {0, 1}2k is uniformly random, with all but negligible probability there
exists no s such that PRG(s) = pk, and therefore the circuits C,R contained in the ciphertexts of all other
hybrids are always functionally equivalent to P∗→⊥. Therefore those hybrids are indistinguishable under the
assumption that O is an indistinguishability obfuscator. ut

Acknowledgements: The authors would like to thank Amit Sahai for the mantra “When you cannot solve
a problem, try obfuscation” and Matthew Green for helpful comments.
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