Cryptology ePrint Archive: Report 2013/687

How to Compress (Reusable) Garbled Circuits

Craig Gentry and Sergey Gorbunov and Shai Halevi and Vinod Vaikuntanathan and Dhinakaran Vinayagamurthy

Abstract: A fundamental question about (reusable) circuit garbling schemes is: how small can the garbled circuit be? Our main result is a reusable garbling scheme which produces garbled circuits that are the same size as the original circuit {\em plus} an additive $\mathsf{poly}(\secp,d)$ bits, where $\secp$ is the security parameter and $d$ is the circuit depth. Save the additive $\mathsf{poly}(\secp,d)$ factor, this is the best one could hope for. In contrast, all previous constructions of even single-use garbled circuits incurred a {\em multiplicative} $\mathsf{poly}(\secp)$ blowup.

Our techniques result in constructions of attribute-based and (single key secure) functional encryption schemes where the secret key of a depth $d$ circuit $C$ consists of $C$ itself, {\em plus} $\mathsf{poly}(\secp,d)$ additional bits. All of these constructions are based on the subexponential hardness of the learning with errors problem.

We also study the dual question of how short the garbled inputs can be, relative to the original input. We demonstrate a (different) reusable circuit garbling scheme, based on multilinear maps, where the size of the garbled input is the same as that of the original input, {\em plus} a $\mathsf{poly}(\secp,d)$ factor. Similar to the above, this also results in attribute-based and (single key secure) functional encryption schemes where the size of the ciphertext encrypting an input $x$ is the same as that of $x$, plus $\mathsf{poly}(\secp,d)$ additional bits.

Category / Keywords: Attribute-based Encryption, Functional Encryption, Reusable Garbled Circuits, Short Secret Key, Short Ciphertext

Date: received 24 Oct 2013, last revised 9 Dec 2013

Contact author: sergeyg at mit edu

Available format(s): PDF | BibTeX Citation

Version: 20131210:024928 (All versions of this report)

Discussion forum: Show discussion | Start new discussion


[ Cryptology ePrint archive ]