
Solving shortest and closest vector problems:

The decomposition approach

Anja Becker Nicolas Gama Antoine Joux

June 13, 2014

Abstract

In this paper, we present a heuristic algorithm for solving exact, as well as approximate, shortest
vector and closest vector problems on lattices. The algorithm can be seen as a modified sieving
algorithm for which the vectors of the intermediate sets lie in overlattices or translated cosets of
overlattices. The key idea is hence to no longer work with a single lattice but to move the problems
around in a tower of related lattices. We initiate the algorithm by sampling very short vectors in
an overlattice of the original lattice that admits a quasi-orthonormal basis and hence an efficient
enumeration of vectors of bounded norm. Taking sums of vectors in the sample, we construct
short vectors in the next lattice. Finally, we obtain solution vector(s) in the initial lattice as a
sum of vectors of an overlattice. The complexity analysis relies on the Gaussian heuristic. This
heuristic is backed by experiments in low and high dimensions that closely reflect these estimates
when solving hard lattice problems in the average case.

This new approach allows us to solve not only shortest vector problems, but also closest vec-
tor problems, in lattices of dimension n in time 20.3774n using memory 20.2925n. Moreover, the
algorithm is straightforward to parallelize on most computer architectures.

Note on this version. The great part of the paper is published at ANTS 2014 under the title “A
Sieve Algorithm Based on Overlattices”. We added here the section “Example for co-cyclic lattices or
q-ary lattices” which gives a concrete example of a tower of lattices one might consider at first trial.

1 Introduction

Hard lattice problems, such as the shortest vector problem (SVP) and the closest vector problem
(CVP), have a long standing relationship to number theory and cryptology. In number theory, they
can for example be used to find Diophantine approximations. In cryptology, they were used as crypt-
analytic tools for a long time, first through a direct approach as in [20] and then more indirectly using
Coppersmith’s small roots algorithms [8, 9]. More recently, these hard problems have also been used
to construct cryptosystems. Lattice-based cryptography is also a promising area due to the simple ad-
ditive, parallelizable structure of a lattice. The two basic hard problems SVP and CVP are known to
be NP-hard 1 to solve exactly [1, 22] and also NP-hard to approximate [10, 27] within at least constant
factors. The time complexity of known algorithms that find the exact solution are at least exponential
in the dimension of the lattice. These algorithms also serve as subroutines for strong polynomial time
approximation algorithms. Algorithms for the exact problem hence enable us to choose appropriate
parameters.

A shortest vector can be found by enumeration [37, 21], sieving [3, 32, 29, 39] or the Voronoi-cell
algorithm [28]. Enumeration uses a negligible amount of memory and its running time is between

nO(n) and 2O(n2) depending on the amount and quality of the preprocessing. Probabilistic sieving
algorithms, as well as the deterministic Voronoi-cell algorithm are simply exponential in time and

1Under randomized reductions in the case of SVP.

1

1 INTRODUCTION 2

Table 1: Complexity of currently known SVP/CVP algorithms.

Algorithm Time Memory CVP SVP

Kannan-Enumeration [18] nn/2+o(n) poly(n) X proven
nn/(2e)+o(n) poly(n) X proven

Voronoi-cell [28] 22n 2n X X proven
ListSieve-Birthday [34] 22.465n+o(n) 21.233n+o(n) × X proven
GaussSieve [29] 20.415n+o(n)? 20.2075n+o(n)? ? X heuristic
Nguyen-Vidick sieve [32] 20.415n+o(n) 20.2075n+o(n) × X heuristic
WLTB sieve [39] 20.3836n+o(n) 20.2557n+o(n) × X heuristic
Three-level sieve [40] 20.3778n+o(n) 20.2833n+o(n) × X heuristic

Our algorithm from 20.4150n 20.2075n X X heuristic
to 20.3774n 20.2925n

memory. A closest vector can be found by enumeration and by the Voronoi-cell algorithm, however,
to the best of our knowledge, no sieve algorithm is known to provably solve CVP instances, and
it would be interesting to study other sieve algorithms which also work in the CVP case. Table 1
presents the complexities of currently known SVP and CVP algorithms including our new algorithm.
In particular, it shows that the asymptotic time complexity of our new approach (slightly) outperforms
the complexity of the best pre-existing sieving algorithm and that, as a bonus, it can for the same
price serve as a CVP algorithm. The high memory requirement limits the size of accessible dimensions,
for example we need 3 TB of storage in dimension 90 which we divide into 25 groups of 120 GB in
RAM, and we would need the double in dimension 96. For this reason, the algorithm, as well as other
classical sieving techniques, is in practice not competitive with the fastest memoryless methods such
as pruned enumeration or aborted BKZ. However, our experiments suggest that despite the higher
memory requirements, the sequential running time of our algorithm is of the same order of magnitude
as the Gauss sieve, but with an easier to parallelize algorithm.

A long standing open question was to find ways to decrease the complexity of enumeration-based
algorithms to a single exponential time complexity. On an LLL- or BKZ-reduced basis [24, 37] the
running time of Schnorr-Euchner’s enumeration is doubly exponential in the dimension. If we further
reduce the basis to an HKZ-reduced basis [23], the complexity becomes 2O(n logn) [21, 18]. Enumeration
would become simply exponential if a quasi-orthonormal basis, as defined in Sect. 2, could be found.
Unfortunately, most lattices do not possess such a favorable quasi-orthonormal basis. Also for random
lattices the lower bound on the Rankin invariant is of size 2Θ(n logn) and determines the minimal
complexity for enumeration that operates exclusively on the original lattice. We provide a more
detailed discussion in Sect. 2.

Our approach circumvents this problem by making use of overlattices that admit a quasi-orthonormal
basis. These overlattices are found in polynomial time by an algorithm relying on the structural reduc-
tion introduced by [14], as described in Sect. 3.3. Once we have an overlattice and its quasi-orthonormal
basis, we may efficiently enumerate short vectors at a constant factor of the first minimum in the over-
lattice. Our main task is to turn these small samples into a solution vector in the initial lattice. The
construction is very similar to an observation by Mordell [31] in 1935 which presented the first algo-
rithmic proof of Minkowski’s inequality using only finite elements. Namely, he observed that given a
lattice Li and an overlattice Li+1 ⊃ Li such that [Li+1 : Li] = r, in any pool of at least r + 1 short
vectors of Li+1, there exist at least two vectors whose difference is a short non-zero vector in Li. This
construction has also been implicitely used in worst-case to average case reductions, where a short
overlattice basis is used to sample a pool of short Gaussian overlattice vectors, which are then com-
bined by a SIS (short integer solution) oracle into polynomially longer vectors of the original lattice.
In our setting, the overlattice basis is quasi-orthonormal, which allows an efficient enumeration of the
shortest overlattice vectors. These vectors are then combined to the shortest vectors of the original

2 BACKGROUND AND NOTATION 3

lattice by a concrete, albeit exponential-time, algorithm.
The new algorithm solves SVP and CVP for random lattices in the spirit of a sieving algorithm,

except that intermediate vectors lie in overlattices or cosets of overlattices whose geometry vary from
dense lattices to quasi-orthogonal lattices. Alternatively, the algorithm can be viewed as an adaptation
of the representation technique that solves knapsack problems [4] and decoding problems [25, 5] to the
domain of lattices. Due to the richer structure of lattices, the adaptation is far from straightforward.
To give a brief analogy, instead of searching for a knapsack solution, assume that we want to find
a short vector in an integer lattice. An upper-bound on the Euclidean norm of the solution vector
provides a geometric constraint, which induces a very large search space. The short vector we seek can
be decomposed in many ways as the sum of two shorter vectors with integer coefficients. Assuming
that these sums provide N different representations of the same solution vector, we can then choose
any arbitrary constraint which eliminates all but a fraction ≈ 1/N of all representations. With this
additional constraint, the solution vector can still be efficiently found, in a search space reduced by a
factor N . From a broader perspective, this technique can be used to transform a problem with a hard
geometric constraint, like short lattice vectors, into an easier subproblem, like short integer vectors
(because Zn has an orthonormal basis), together with a custom additional constraint, which is in
general linear or modular, which allow an efficient recombination of the solutions to the subproblems.
The biggest challenge is to bootstrap the algorithm by finding suitable and easier subproblems using
overlattices. We propose a method that achieves this thanks to a well-chosen overlattice allowing an
efficient deterministic enumeration of vectors of bounded norm. In this way, we can compute a starting
set of vectors that is used to initiate a sequence of recombinations that ends up solving the initially
considered problem.

Our contribution: We present a new heuristic algorithm for the exact SVP and CVP for n-
dimensional lattices using a tower of k overlattices Li, where L = L0 ⊆ .. ⊆ Lk. In this tower,
we choose the lattice Lk at the bottom of the tower in a way that ensures that we can efficiently
compute a sufficiently large pool of very short vectors in Lk. Starting from this pool of short vectors,
we move from each lattice of our tower to the one above using summation of vectors while controlling
the growth of norms.

For random lattices and under heuristic assumptions, two Li+1-vectors sum up to an Li-vector with
probability 1

αn , where vol (Li) /vol (Li+1) = αn > 1. We allow the norm to increase by a moderate
factor α in each step, in order to preserve the size of our pool of available vectors per lattice in our
tower.

Our method can be used to find vectors of bounded norm in a lattice L or, alternatively, in a coset
x + L, x /∈ L. Thus, in contrast to classical sieving techniques, it allows us to solve both SVP or
CVP, and more generally, to enumerate all lattice points within a ball of fixed radius. The average
running time in the asymptotic case is 20.3774n, requiring a memory of 20.2925n. It is also possible
to choose different time-memory tradeoffs and devise slower algorithms that need less memory. We
report our experiments on random lattices and SVP challenges of dimension 40 to 90, whose results
confirm our theoretical analysis and show that the algorithm works well in practice. We also study
various options to parallelize the algorithm and show that parallelization works well on a wide range
of computer architectures.

2 Background and notation

Lattices and cosets. A lattice L of dimension n is a discrete subgroup of Rm than spans an
n-dimensional linear subspace. A lattice can be described as the set of all integer combinations
{∑n

i=1 αibi |αi ∈ Z} of n linearly independent vectors bi of Rm. Such vectors b1, .., bn are called
a basis of L. The volume of the lattice L is the volume of span(L)/L, and can be computed as√

det(BBt), for any basis B. Any lattice has a shortest non-zero vector of Euclidean length λ1(L)

2 BACKGROUND AND NOTATION 4

which can be upper bounded by Minkowski’s theorem as λ1(L) ≤ √n vol (L)
1/n

. We call a coset of L
a translation x + L = {x + v |v ∈ L} of L by a vector x ∈ span(L).

Overlattice and index. A lattice L′ of dimension n such that L ⊆ L′ is called an overlattice of L.
The quotient group L′/L is a finite abelian group of order vol(L)/vol(L′) = [L′ : L].

Hyperballs. Let Balln(R) denote the ball of radius R in dimension n where we omit n if it is
implied by the context. The volume Vn of the n-dimensional ball of radius 1 and the radius rn of the
n-dimensional ball of volume 1 are respectively:

Vn =

√
π
n

Γ
(
n
2 + 1

) and rn = V −1/n
n =

√
n

2πe
(1 + o(1)).

Gaussian heuristic. In many cases, when we wish to estimate the number of lattice points in a
“nice enough” set S, we can use the Gaussian heuristic. In this paper, we will quantify the Gaussian
Heuristic as follows:

Heuristic 2.1 ((Gaussian Heuristic)) There exists a constant2 GH ≥ 1 such that for all the lattices
L and all the sets S that we consider in this paper, the number of points in S ∩ L satisfies:

1

GH
· vol (S)

vol (L)
≤ #(S ∩ L) ≤ GH ·

vol (S)

vol (L)
.

In fact, it can be proved that for any bounded measurable set S, the expectation, over random
unit volume lattices drawn from the Haar distribution [2], of the number of non-zero points is always
the volume of S. Also, for any fixed lattice of unit volume and any fixed bounded measurable set
S, the expectation of the number of lattice points in t + S for uniform t modulo L is exactly vol(S).
However, fewer results are known about the the standard deviation, or whether these distributions are
concentrated enough around the expectation so that almost all instances satisfy the upper and lower
bounds.

In this paper, the geometry of lattices vary between random integer lattices of large enough volume
and quasi-orthonormal lattices. We will assume that in these lattices, the length λ1 of the shortest
vector is the one given by the Gaussian heuristic, i.e. the radius of a ball of volume vol (L): λ1(L) ≈
rn · n

√
vol (L). Furthermore, the sets S we consider in this paper are either balls of radius larger than√

3/2 rn
n
√

vol (L), and whose center is uniform modulo the lattice (i.e. far from 0), or the intersection
of two of such balls whose centers are close enough. In these cases, our experiments indicate that the
number of lattice points in these sets are almost always between 50% and 110% of vol (S)/vol (L), thus
Heuristic 2.1 holds in practice for GH = 2.

Gram-Schmidt orthogonalization (GSO). The GSO of a non-singular square matrix B is the
unique decomposition as B = µ · B∗, where µ is a lower triangular matrix with unit diagonal and
B∗ consist of mutually orthogonal rows. For each i ∈ [1, n], we call πi the orthogonal projection over
span(b1, .., bi−1)⊥. In particular, one has πi(bi) = b∗i , which is the i-th row of B∗. We use the notation
B[i,j] for the projected block [πi(bi), . . . , πi(bj)].

Rankin factor and quasi-orthonormal basis. Let B be an n dimensional basis of a lattice L,
and j ≤ n. We call the ratio

γn,j(B) =
vol(B[1,j])

vol(L)j/n
=

vol(L)
(n−j)/n

vol(πj+1(L))

2The algorithms and proofs would also work with GH = poly(n) or GH = (1+ε)n, giving slightly worse complexities.

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 5

the Rankin factor of B with index j. The well known Rankin invariants of the lattice, γn,j(L),
introduced by Rankin [35] are simply the squares of the minimal Rankin factors of index j over all
bases of L. This allows to define a quasi-orthonormal basis.

Definition 2.2 ((quasi-orthonormal basis)) A basis B is quasi-orthonormal if and only if its
Rankin factors satisfy 1 ≤ γn,j(B) ≤ n for all j ∈ [1, n].

In the above definition, we chose the upper-bound n over a general poly(n) only because we are able to
achieve this factor. More generally, any polynomial function would be sufficient for the asymptotical
analysis and for the running time. For example, any real triangular matrix with identical diagonal
coefficients forms a quasi-orthogonal basis. More generally, any basis whose ‖b∗i ‖ are almost equal is
quasi-orthogonal. This is a very strong notion of reduction, since average LLL-reduced or BKZ-reduced
bases only achieve a 2O(n2) Rankin factor and HKZ-reduced bases of random lattices have a 2O(n logn)

Rankin factor. Finally, Rankin’s invariants are lower-bounded [6, 38, 13] by 2Θ(n logn) for almost all
lattices3, which means that only lattices in a tiny subclass possess a quasi-orthonormal basis.

Schnorr-Euchner enumeration Given a basis B of an integer lattice L ⊆ Rn, Schnorr-Euchner’s
enumeration algorithm [37] allows to enumerate all vectors of Euclidean norm ≤ R in the bounded
coset C = (z + L) ∩ Balln(R) where z ∈ Rn. The running time of this algorithm is

TSE =

n∑

i=1

(πn+1−i(z + L) ∩ Balli(R)) , (1)

which is equivalent to

TSE ≈
n∑

i=1

vol(Balli(R))

vol(πn+1−i(L))
(2)

under Heuristic 2.1. The last term in the sums (1) and (2) denotes the number of solutions #C.
Thus, the complexity of enumeration is approximately TSE ≈ Õ (#C) · max

j∈[1,n]
γn,j(B). This is why

a reduced basis of smallest Rankin factor is favorable. The lower bound on Rankin’s invariant of
γn,n/2(L) = 2Θ(n logn) for most lattices therefore determines the minimal complexity of enumeration
that is achievable while working with the original lattice, provided that one can actually compute a basis
of L minimizing the Rankin factors, which is also NP-hard. If the input basis is quasi-orthonormal,
the upper-bound γn,j(B) ≤ n from Definition 2.2 implies that the enumeration algorithm runs in time

Õ (#C), which is optimal. Without knowledge of a good basis one can aim to decompose the problem
into more favorable cases that finally allow to apply Schnorr-Euchner’s algorithm as we describe in the
following.

3 Enumeration of short vectors by intersection of hyperballs

The section presents the new algorithm that enumerates βn shortest vectors in any coset t + L of
a lattice L for a constant β ≈

√
3/2. It can be used to solve the NP-hard problems SVP, CVP,

ApproxSVPβ and ApproxCVPβ : Given a lattice L, the SVP can be reduced to enumerating vectors
of Euclidean norm O(λ1(L)) in the coset 0 + L while a CVP instance can be solved by enumerating
vectors of norm at most dist(t,L) in the coset −t + L. These bounded cosets, (t + L) ∩ Balln(R) for
suitable radius R, can be constructed in an iterative way by use of overlattices. The searched vectors
are expressed as a sum of short vectors of suitable translated overlattices of smaller volume. The
search for a unique element in a lattice as required in the SVP or CVP is delegated to the problem of
enumerating bounded cosets. Any non-trivial element found by our algorithm is naturally a solution
to the corresponding ApproxSVPβ or ApproxCVPβ .

3γ2n,n(L) ≥ (n/12)n with probability ≈ 1 on random real lattices of volume 1 drawn from the Haar distribution.

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 6

We present the new algorithm solving lattice problems based on intersections of hyperballs in Sec-
tion 3.1 and the generic initialization of our algorithm as described in Section 3.3. Finally, Section 3.4
describes the cost of the first step in the algorihtm.

3.1 General description of the new algorithm

Assume that we are given a tower of k = O(n) lattices Li ⊂ Rn of dimension n where Li ⊆ Li+1 and
the volume of any two consecutive lattices differs by a factor N = dαne ∈ N>1. We also assume that
the bottom lattice Lk permits an efficient enumeration of the βn shortest vectors in any coset t + Lk
for 1 < β <

√
3/2. The ultimate goal is to find the βn shortest vectors in some coset t0 + L0 of L0.

We postpone how to find suitable lattices Li, i ≥ 1, to the following two sections.
We also assume in this section, that the Gaussian heuristic (Heuristic 1) holds. Under this as-

sumption, the problem of finding the βn shortest elements in some coset t + L is roughly equivalent
to enumerating all lattice vectors of L in the ball of radius β · rn · n

√
vol (L) centered at −t ∈ Rn.

Each step for i = k− 1 downto 0 of the algorithm is based on the following intuition: We are given
the ≈ βn shortest vectors vj in ti/2 + Li+1. By summation, we can then find vectors (vj + vl)j≤l
that lie in ti +Li+1. We select those who actually lie in ti +Li and whose norm is small enough, and
consider them as the input pool for the next step. For suitable parameters, namely α small enough
and β large enough, we thus recover the ≈ βn shortest vectors of ti + Li.

More precisely, for each i ∈ [0, k], we call Ci the bounded coset Ci that contains the βn shortest
vectors of the coset ti + Li where ti = t0/2

i ∈ Rn. More formally, let us define

Ri = β · rn n
√

vol(Li) and Ci = (ti + Li) ∩ Ball(0, Ri)

such that
#Ci ≈ vol(Ball(Ri))/vol(Li) = βn ,

which follows from the Heuristic 2.1. In addition, we recall that

Li ⊂ Li+1 where vol(Li)/vol(Li+1) = dαne .

In order to enumerate C0, our algorithm successively enumerates Ci, starting from i = k down to
zero, Figure 1 illustrates the sequence of enumerated lists.

C0

Ci

Enumerate Ck

+ check (3),(4)

+ check (3),(4)

Figure 1: Iterative creation of lists.

z
x

I

z − x

Figure 2: Vector z ∈ Ci−1 found as sum be-
tween x ∈ Ci and z−x ∈ Ci ⇔ I∩(ti+Li) 6=
∅.

During the construction of the tower of lattices, which is studied in the next sections, we already
ensure that Ck is easy to obtain. We now explain how we can compute Ci−1 from Ci. To do this, we
compute all sums x + y of vector pairs of Ci × Ci which satisfy the conditions

x + y ∈ ti−1 + Li−1 and (3)

‖x + y‖ ≤ β · rn · n
√

vol (Li) . (4)

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 7

This means that we collect the βn shortest vectors of the coset Ci−1 = ti−1 + Li−1 by going through
Ci = ti + Li. In practice, an equivalent way to check if condition (3) holds, is to use an efficient
computation for the map ϕi−1 : Ci → Li/Li−1, z → z − ti mod Li−1 and to verify that ϕi−1(x) +
ϕi−1(y) = 0. Algorithm 1 summarizes our approach.

Algorithm 1 Coset enumeration

Constants: α ≈
√

4/3, β ≈
√

3/2 Parameters: k

Input: A LLL-reduced basis B of L0 and a center t ∈ Rn
Output: Elements of t + L0 of norm ≤ R0 = βrnvol(L0)1/n

1: Randomize the input target by sampling t0 ∈ t + L. Use for example a Discrete Gaussian Distri-
bution of parameter

√
n‖B∗‖. This defines all the sub-targets ti = t0/2

i

2: Compute a tower of lattices L0, ..,Lk by use of Alg. 3 such that
- L0 ⊂ L1 ⊂ ... ⊂ Lk and vol(Li)/vol(Li−1) = N = dαne
- lattice enumeration is easy on Lk
- testing-morphisms ϕi−1 from ti + Li to Li/Li−1 are efficient to evaluate.

3: Enumerate bottom coset Ck (with Schnorr-Euchner)
4: for i = k − 1 downto 0 do
5: Ci ← Merge(Ci+1, ϕi, Ri = βrnvol(Li)1/n) (Alg. 2)
6: end for
7: return C0

A naive implementation of the merge routine that creates Ci−1 from Ci would just run through the
β2n pairs of vectors from Ci × Ci, and eliminate those that do not satisfy the constraints (3) and (4).
By regrouping the elements of Ci into αn buckets, according to their value modulo Li−1, condition (3)
implies that each element of Ci only needs to be paired with the elements of a single bucket, see
Algorithm 2. Heuristic 2.1 implies that each bucket contains at most GH(β/α)n elements, therefore
the merge operation can then be performed in time G2

H

(
β2/α

)n
.

Algorithm 2 Merge by collision

/∗ Efficiently find pairs of vectors of Ci+1 s.t. their sum is in Ci
∗/

/∗ Ci denotes (ti + Li) ∩ Ball(Ri)
∗/

Input: The bounded coset Ci+1, a testing morphism ϕi and a radius Ri
Output: The bounded coset Ci

1: Ci ← ∅
2: Reorganize Ci+1 into buckets indexed by the values of ϕi
3: for each v ∈ Ci+1 do
4: for each u in the bucket of index −ϕi(v) do
5: if ‖u + v‖ ≤ Ri then
6: Ci ← Ci ∪ {u + v}
7: end if
8: end for
9: end for

10: return Ci

Complexity and constraints for parameters α and β. We now prove the complexity and cor-
rectness of Algorithm 2.

Theorem 3.1 Assuming Heuristic 2.1, and provided that βn ≥ GH
√
n/0.692

√
1− α2/4

n
, then: Given

as input the bounded coset Ci+1, Alg. 2 outputs the coset Ci within G2
H(β2/α)n Euclidean norm com-

putations. The memory is bounded by the size of the input and output: GHβ
n n-dimensional vectors.

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 8

20.375n

20.38n

20.385n

20.39n

20.395n

20.4n

20.405n

20.41n

20.415n

20.2n 20.21n 20.22n 20.23n 20.24n 20.25n 20.26n 20.27n 20.28n 20.29n 20.3n

ti
m
e
=

(
β
2 α

) n

memory = βn

time vs. memory
α ≈ 1, β =

√
4
3

α =
√

4
3 , β =

√
3
2

Figure 3: Trade-off between memory and time for varying choices of α and β.

Proof: It is clear that at each level, conditions (3) and (4) imply that Alg. 2 outputs a subset of Ci.
We now need to prove that there exist constants α and β such that all points of Ci are present in the
output. Equivalently, all points of Ci must be expressed as the sum of two points in Ci+1, see Fig. 2
for an illustration. This geometric constraint can be simply rephrased as follows: a vector z ∈ Ci
is found if and only if there exists at least one vector x of the coset ti+1 + Li+1 in the intersection
of two balls of radius Ri+1, the first one centered in 0, and the second one in z. It is clear that
z − x ∈ Ci+1 = ti+1 + Li+1 since 2 ti+1 = ti and Li ⊆ Li+1. So if there is a point x ∈ Ci+1 in
the intersection I = Ball(0, Ri+1) ∩ Ball(z, Ri+1), we obtain z ∈ Ci as a sum between x ∈ Ci+1 and
z − x ∈ Ci+1. Under Heuristic 2.1, this occurs as soon as the intersection I of the two balls has a
volume larger than GHvol(Li+1). We thus require that vol (I) / vol (Li+1) ≥ GH . �

From Lemma A.1 and its corollary in the appendix, we derive that the intersection of two balls of
radius Ri at distance at most Ri−1 = αRi is larger than 0.692 · vol(Ball(Ri ·

√
1− (α/2)2))/

√
n. A

sufficient condition on α and β is then

(
β ·
√

1− (α/2)2
)n
≥ GH

√
n/0.692 or alternatively (5)

β
√

1− (α/2)2 ≥ (1 + εn) (6)

where εn = (GH
√
n/0.692)1/n − 1 decreases towards 0 when n grows.

Of course, for optimization reasons, we want to minimize the size of the lists βn, and the number
of steps (β2/α)n in the merge. Therefore we want to minimize β and maximize α under the above
constraint. The total running time of Alg. 1 is given by B + poly(n)

(
β2/α

)n
where B represents

the running time of the initial enumeration at level k (details in Sect. 3.4). For optimal parameters,
inequality (6) is in fact an equality. Asymptotically, the shortest running time occurs for α =

√
4/3 and

β =
√

3/2 for which a merge costs around (β2/α)n ≈ 20.3774n and the size of the lists is βn ≈ 20.2925n.

Time-memory trade-off. Other choices of α and β that satisfy (6) provide a trade-off between
running time and required memory. Figure 3 shows the logarithmic size of the lists the algorithm
needs to store depending on the time one is willing to spend. If one has access to only βn ≈ 20.21n in
memory, the time complexity increases to (β2/α)n ≈ 20.41n. In practice, we choose α > 1 and β > 0
satisfying (5) with the constraint that αn is integer.

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 9

3.2 Example for co-cyclic lattices or q-ary lattices.

We now give a simple intuition on how we could define the overlattice tower in the case of random
co-cyclic lattices and q-ary lattices. These examples help to understand the idea that even for hard
lattices, it is fairly easy to find quasi-orthonormal bases in overlattices. In the next section, we will
present a more general method to create randomized overlattices, which performs well in practice for all
types of lattices, including cocyclic or q-ary lattices, and ensures the estimated complexity as denoted
in Sect. 3.1 which is based on Heuristic 2.1.

In the following description, the tower of lattices remains implicit in the sense that we do not need
to find a basis for each of the k+1 lattices Li. We only need a description of the initial and the bottom
lattice as we test membership to a coset by evaluating ϕi.
Let L ⊆ Zn be a co-cyclic lattice given as L = {x ∈ Zn,

∑n
i=1 aixi = 0 mod M} for large M ∈ N

and random integers a1, .., an ∈ [0,M − 1]. The task is to enumerate C = (t + L) ∩ Balln(R) where
R = β · rn · vol(L)1/n for a given β > 1. For k = O(n), the connection with random subset sum
instances, as well as newer adaptations of worst-case to average case proofs (see [14]) support the
claim that random instances are hard. Choose α such that M = αnk ∈ N and define N = αn ∈ N. We
can naturally define the tower consisting of lattices

Li = {y ∈ Zn,
n∑

i=1

aiyi = 0 mod Nk−i} .

At the level k, we have Lk = Zn so that we can efficiently enumerate any coset C by use of the
Schnorr-Euchner algorithm [37] in time poly(n) · |C| as we argue in Sect. 2. The coset testing function
ϕi, which represents x− ti mod Li−1, can be implemented as 〈a,x− ti〉/Nk−i mod N .

A second example is the class of q-ary lattices. Let L be the lattice of dimension n and volume qk

such that for x ∈ Zn,

x ∈ L ⇐⇒ [(a1,1x1 + ..+ a1,nxn ≡q 0) ∧ .. ∧ (ak,1x1 + ..+ ak,nxn ≡q 0)] (7)

where ai,j are uniform in Z/qZ. For q = αn classical worst-case to average-case reductions prove
that these lattices provide difficult lattice problems on average [1]. Here, a lattice Li could be defined as
the lattice satisfying the last i equations of (7). Again, Lk is Zn , Li−1 ⊆ Li and vol (Li−1) /vol (Li) = q.
The coset testing function ϕi can be computed as 〈ai,x− ti〉 mod q.

As elegant as it may seem, these simple towers of lattices are not as efficient as one could expect,
because the top overlattice is Zn, and the Gaussian heuristic does not apply to its bounded coset
Ck = Zn∩Balln(Rk), whose radius Rk is too close to

√
n. Indeed, the number of points of Zn in a ball

of radius Rk ≈
√
n varies by exponential factors depending on the center of the ball [26]. If the target

is very close to 0, like in an SVP-setting, the coset Ck contains around 20.513n vectors4, which differs
considerably from βn ≈ 20.292n that we could expect of a random lattice. The initial coset would be
very costly to store already in moderate dimensions.

Even if we store only a fraction of the bottom coset, Heuristic 2.1 would prevent the first merge
by collision from working. Indeed, it relies on the number of points in intersections of balls of radius
Rk centered in an exponential number of different points. Unfortunately, balls of radius Rk centered
in random points contain an exponentially smaller number of integer vectors than βn, and their inter-
sections contain in general no integer point at all. Thus the collision by merge would fail to recover
Ck−1.

This means that because of the Gaussian heuristic, the Zn lattice should never be used as the
starting point of an overlattice tower. Fortunately, random quasi-orthonormal lattices are a valid
replacement of Zn, as our experiments show. Furthermore, we can still build in polynomial time a
tower of lattices ending with a quasi-orthonormal basis. We give the details of a generic generation of
a tower of lattices in the following section.

4Computation based on saddle point method as in [26] for a radius
√
β2/(2πe) · n ≈

√
0.0878 · n.

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 10

3.3 Generic creation of the tower

For any integer lattice L, the simplest choice of an overlattice is L′ = Zn. However, this creates two
problems.

1. Zn does not satisfy our quantified version of the Gaussian heuristic 2.1, as it would require an
n-exponential GH .

2. The index [Zn : L], which is the volume of L might be too large. Indeed, our sieve requires
that the index is simply exponential but an integer basis with polynomial entries may have a
superexponential volume 2poly(n).

For the first problem, it suffices to replace the square lattice Zn by a quasi-orthogonal lattice L′.
Indeed, although the expectation of the number of lattice points in a randomly centered ball of radius
rnβ vol(L′)1/n is always βn, their repartition is much more concentrated around the expectation when
the lattice is quasi-orthonormal than when it is Zn. In practice, almost all of these balls contain at
least βn/2 lattice points, and Heuristic 2.1 is valid with GH = 2. The most noticeable exception is
when the center is too close to a lattice point. In this very rare case, the number of points would
exceed the upper-bound by an exponential factor. Luckily, the lower-bound in Heuristic 2.1 is more
important than the upper-bound: the lower-bound is used an exponential number of times in Eq. (5)
to prove the correctness of the merge, whereas the upper-bound is used only with a polynomial number
of different centers, to obtain the time and memory complexities. Thus bad centers are easy to avoid.

For the second problem, one can see that the difficulty of creating the sieve is not just to find a
quasi-orthonormal overlattice (which is always possible), the difficulty is to find one of small index.
That is why we need a several overlattices instead of just one.

We now present a generic method of computing the tower of Li’s that works well in practice for
high dimensions as we have verified in our experiments. Algorithm 3 summarizes the following steps.

We take as input a randomized LLL-reduced or BKZ-30-reduced basis B of an n-dimensional lattice
L. We choose constants α > 1 and β > 0 satisfying equation (6) with the additional constraint that
N = αn is an integer.

The Gram-Schmidt coefficients of B usually decrease geometrically, and we can safely assume
that mini ‖b∗i ‖ ≥ maxi ‖b∗i ‖/

√
4/3

n
. Otherwise, the LLL-reduced basis would immediately reveal a

sublattice of dimension < n containing the shortest vectors of L. This means that there exists a

smallest integer k = O(n) such that mini∈[1,n] ‖b∗i ‖ ≥
(

vol(L)
Nk

) 1
n

= σ. The integer k determines the

number of levels in our tower and σ is the n-th root of the volume of the last overlattice Lk.

Algorithm 3 Compute the tower of overlattices

Input: B a (randomized) LLL-reduced basis of L of dimension n
Output: Bases B(i) of a tower of overlattices L = L0 ⊂ · · · ⊂ Lk. Note that given a target ti+1, the

testing morphism ϕi from ti+1 +Li+1 to ZN is implicitely defined by ϕi

(
ti+1 +

∑n
j=1 µjb

(i+1)
j

)
=

µ1 mod N
1: Let N = dαne.
2: Let k be the smallest integer s.t. Nk ≥ vol(L)/mini ‖b∗i ‖n.

3: Let σ = (vol(L)/Nk)
1
n , thus σ ≤ mini ‖b∗i ‖.

4: Apply Alg. 4 on input (B, σ) to find a basis B̂ = [b̂1, b̂2 . . . , b̂n] of L.

5: B(i) ←
[

b̂1

Ni , b̂2, . . . , b̂n

]
foreach i ∈ [0, k]

6: return B(i) for all i

It remains to find the tower (Li)i∈[1,k] of overlattices of L, together with a quasi-orthonormal basis

B(k) of Lk, given a structural condition L(i)/L(i−1) ' Z/NZ (Alg. 3). This problem is closely related
to the structural reduction, introduced in [14], which aims at finding a short basis B̄ of an overlattice

3 ENUMERATION OF SHORT VECTORS BY INTERSECTION OF HYPERBALLS 11

L̄ such that L̄/L is isomporphic to some fixed abelian group G. However, the primary goal of [14] was
to decrease the Gram-Schmidt norm of B̄ in order to sample a pool of Gaussian overlattice vectors of
norm Θ(

√
n log n‖B̄∗‖). These vectors would be too large for our purpose, since the bottom level of

our decomposition algorithm needs a pool of vectors of length Θ(
√
n n
√

vol(L̄)).
In the present paper, we prove that when the group G is large enough, the unbalanced reduction

of [14] can in fact efficienlty construct a basis C of L such that [c1/N
k, c2, . . . , cn] is quasi-orthonormal.

This naturally defines the tower of k + 1 overlattices Li, where Li is generated by the corresponding
basis B(i) = [c1

Ni , c2, . . . , cn] for i = 0, .., k. Then, the Gaussian sampling algorithm on Lk can be

replaced by Schnorr-Euchner’s enumeration – with or without pruning – using B(k), and thus, the
norm of the overlattice vectors can be decreased to rnβ

n
√

vol(Lk). For completeness, we recall in
Appendix the pseudo-code of the unbalanced reduction from [14]. Here, we prove that it allows to
produce a quasi-orthonormal basis. Compared to [14], we added the condition that σ ≤ min ‖b∗i ‖ on
the input parameters, and consequently, one of the test cases in the main loop of the algorithm in [14]
never occurs.

Theorem 3.2 and its corollary below prove that running the unbalanced reduction with a smaller
parameter σ than what is considered in [14] allows to construct a quasi-orthonormal overlattice basis
in polynomial time. Note that in [14], the goal was to find an overlattice basis whose Gram-Schmidt
length was smaller than σ without any constraints on their Rankin factors. Here, the first vector of
the overlattice basis may be larger than σ, we just ensure that the n-th root of the volume is exactly σ
and that all Rankin factors are polynomially bounded. Thus, the main Equation (10) of Theorem 3.2
cannot be directly deduced from [14], and we provide a full proof in the appendix.5

Theorem 3.2 ((Unbalanced reduction)) Let L(B) be an n-dimensional integer lattice with an
LLL-reduced basis B = [b1, .., bn]. Let σ be a target length ≤ min ‖b∗i ‖. Algorithm 4 outputs in
polynomial time a basis C of L satisfying

‖c∗i ‖ ≤ σ for all i ∈ [2, n] (8)

‖c1‖ ≤ σn · vol(L)/σn (9)

σn+1−i

vol(C[i,n])
≤ n+ 1− i for all i ∈ [2, n] (10)

Since σ is by construction the n-th root of the bottom lattice Lk, we immediately deduce the
following elementary corollary, which proves that Algorithm 3 computes a tower of overlattices suitable
for the decomposition algorithm.

Corollary 1 Given as input a LLL-reduced basis B of L such that max ‖b∗i ‖/min ‖b∗i ‖ ≤ 2O(n),
Algorithm 3 outputs a sequence of bases B(0), . . . , B(k) such that B(0) is a basis of L, B(k) is quasi-
orthogonal, and L(B(i))/L(B(i−1)) ' Z/NZ for all i ∈ [1, k].

Proof: The condition max ‖b∗i ‖/min ‖b∗i ‖ ≤ 2O(n) ensures that the number k of levels computed in
Step 2 is linear in n. Thus, σ computed in Step 3 is ≤ min ‖b∗i ‖. From the definition of B(k), we

deduce that vol(L(B(k)) = vol(L)/Nk = σn, and for all i ≥ 2, B
(k)
[i,n] = B̂[i,n]. Thus, Eq. (10) proves

that the Rankin factor γn,i(B
(k)) = σn−i/vol(B

(k)
[i+1,n]) is ≤ n− i for all i ∈ [1, n− 1]. �

The proofs of Theorem 3.2 and Alg. 4 are given in Appendix B.

5Equations (8) and (9) are in common with [14] and correspond more or less to the definition of the unbalanced
reduction algorithm

4 EXPERIMENTAL VALIDATION 12

3.4 Cost for initial enumeration at level k and pruning

The cost of a full enumeration of any bounded coset (z + Lk) ∩ Balln(rnβσ) at level k is:

TSE =

n∑

i=1

vol(Balli(rnβσ))

vol
(
B

(k)
[n+1−i,n]

) ≤ n
n∑

i=1

Vi · (rnβ)i = Õ
(
20.398n

)
(11)

where for n → ∞ the maximal term in the sum, ∼
(√

nβ√
i

)i
, appears for i = nβ2/e. It is of size

Õ
(
20.398n

)
because

√
e
β2/e ≈ 20.398n. Experiments show that the above estimate is close to what

we observe in practice as we present in Sect. 4. The number of steps in the full enumeration is an
exponential factor < 20.03n larger than the complexity of the merge. In practical dimensions ≤ 100,
the actual running time of the full enumeration is already smaller than the time for the merge by
collision in the consecutive steps, as elementary operations in the enumeration are faster than memory
access and vector additions in the merge. However, more work must be done in large dimensions. For
instance, a light pruning [15, 12] can be used to divide the running time of the initial enumeration by
a small exponential factor of 20.03n, but it will only recover a subset Sk ⊆ Ck. For instance, by use of
the linear bounding function of [15], it will recover a fraction 1/n of Ck, and since depth n+ 1− i in
the pruned enumeration only explores a subset of the i-dimensional ball of radius

√
i/nrnβσ instead

of rnβσ, the running time TSE provably decreases below

T lin.prun.
SE ≤

n∑

i=1

vol
(

Balli

(√
i
nrnβσ

))

vol
(
B

(k)
[n+1−i,n]

) ≤ n
n∑

i=1

Vi

(
rn

√
i

n
β

)i
≈ n2βn = Õ

(
20.292n

)
. (12)

Of course, there are lots of pruning trade-offs between Eqs. (11) and (12). This leads to a natural
question on the stability of the algorithm, namely if the input of the merge at level i is an incomplete
subset Si+1 containing only a constant or polynomially small fraction ν of all elements of Ci+1, is
the merge algorithm still be able to retrieve the whole set Ci. Intuitively, under some reasonable
independence heuristics, β should then be increased so that the volume of each ball intersection grows
by a factor 1/ν2. Thus condition (5) becomes βn

√
1− (α/2)2

n ≥ √nGH/0.692ν2. But on the other
hand, GH can now be decreased from some large enough constant downto almost 1, since the Gaussian
heuristic 2.1 only needs to be valid for a fraction ≥ ν of all intersections of balls, in order to get a
fraction ≥ ν of Ci in the output. Working with incomplete cosets also raises additional questions,
namely how likely are short elements to be present in the incomplete output coset, and can this
probability be increased with randomization and standard repetition arguments.

In the next section, we address these questions in our experimental results which implicitly uses
GH = 1 for efficiency reasons.

4 Experimental validation

In this section we present our experimental results of a C++-implementation of our Algorithm 1,
presented in Section 3. We make use of the newNTL [16] and fplll [7] libraries as well as the Open
MP [33] and GMP [11] library. We tested the algorithm on random lattices of dimensions up to n = 90
as input.

4.1 Overview

Tests in smaller and larger dimensions confirm the choice of parameters α and β that we computed for
the asymptotic case. We are hence able to enumerate vectors of a target coset C0 = (t0 +L0)∩Ball(R0)
and in this way we solve SVP as well as CVP. Indeed, unlike classical sieving algorithm, short elements,
i.e., either a short vector or a close vector, have a higher probability to be found than larger elements.

4 EXPERIMENTAL VALIDATION 13

Thus, even though we might miss some elements of the target coset, we almost always solve the
respective SVP or CVP. For instance, the algorithm finds the same shortest vectors as solutions for
the SVP challenges published in [36]. The memory requirement and running time in the course of
execution closely match our estimates and the intermediate helper lattices Li behave as predicted.

Besides the search for one smallest/closest vector, each run of the algorithm, with appropriate
parameters, finds a non-negligible fraction of the whole bounded coset C0. Repeating the search for
vectors in C0 several times on a randomized LLL-reduced basis will discover the complete bounded
coset. Our experiments reflect this behavior where we can use the Gaussian heuristic or Schnorr-
Euchner enumeration to verify the proportion of recovered elements of C0.

All these tasks can be performed by a single machine or independently by a cluster as a distributed
computation.

4.2 Recovering C0 in practice for smaller dimensions

For design reasons we have described an algorithm that produces the same number of elements per list in
each iteration in order to find all of C0. All lists contain #C0 = # ((t0 + L0) ∩ Balln(R0)) ≈ (1+εn)nβn

elements on average where εn can be neglected for very large dimensions, (see also (5)). For accessible
dimensions, we need to increase the radii of the balls slightly, by a small factor 1+εn, that compensates
for small variations from the heuristic estimate. We here present results for different values εn ≤ 0.08
and dimension n ∈ {40, 45, 50, 55, 60}. The larger the dimension, the better Heuristic 2.1 holds, which
means that εn can be chosen smaller, see (6). Figure 4 shows the relation between varying εn and
the fraction of found vectors of C0 for dimension n ∈ {40, 45, 50, 55, 60}. The optimal choice for εn
depends on n and the fraction of C0 we wish to enumerate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

fr
a
c
ti
o
n
 o

f
fo

u
n
d
 v

e
c
to

rs

ε

n=60

n=55

n=50

n=45

n=40

Figure 4: Fraction of vectors in C0 found for vary-
ing εn.

 50000

 100000

 150000

 200000

 250000

 300000

 340000

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
d
is

ti
n
c
t
e
le

m
e
n
ts

number of repetitions

|C0|

experiment
|C0|

|C0|*(1-(1-p)
r
)

Figure 5: Success probability after r repetitions,
n = 50, p = 0.06.

4.3 Probability of success for randomized repetitions - example: small di-
mension

The success ratio of recovering all of C0 rises with increasing n. We here present the case of smaller
dimensions n = {50, 55} to show how it evolves.

Suppose that we want to enumerate 100% of a coset C0 in dimension 50. According to Fig. 4, we
need to choose εn at least 0.07, which results in lists of size (1+εn)50β50 ≈ 29.4β50 and a running time
(1 + εn)100(β2/α)50 ≈ 867.7 (β2/α)50 on average. An alternative, which is less memory consuming, is
to choose a smaller εn, and to run the algorithm several times on randomized input bases. For instance,
if one chooses ε = 0.0535, one should expect to recover p = 6% of C0 per iteration on average. Then,
assuming that the recovered vectors are uniformly and independently distributed in C0, we expect to
find a fraction of 1− (1− p)r after r repetitions.

To confirm this independence assumption, we tested repeated execution for SVP instances with
parameters n = 50, (1 + ε)β = 1.0535

√
3/2, α =

√
4/3 . Figure 5 shows the average number of

distinct vectors of C0 recovered as a function of the number of repetition r (and the observed standard

4 EXPERIMENTAL VALIDATION 14

deviation) in comparison to the expected number of elements C0 · (1− (1− 0.06)r). The experiments
match closely the estimate.

For a random lattice of dimension n = 50 and ε = 0.0535, the size of the coset C0 is roughly 342 000.
In our experiments, we found 164 662 vectors (48%) after 10 repetitions in which we randomized the
basis. After 20 trials, we found 239 231 elements which corresponds to 70%, and after 70 trials, we
found 337 016 elements (99% of C0). We obtained the following results in dimension n = 55. After 10
trials with ε = 0.0535, we obtain 96.5% of the vectors of C0 which is significantly higher in comparison
to the 48% recovered after 10 trials in dimension 50.

 0

 10

 20

 30

 40

 50

 60

 70

 22 23 24 25 26 27 28 29 30 31

o
c
c
u
re

n
c
e
 o

f
v
e
c
to

r
fo

r
1
0
0
 b

a
s
e
s

norm of the vector

Figure 6: Correlation of occurrence of vectors and
their length.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 10 20 30 40 50

n
u
m

b
e
r

o
f
v
e
c
to

rs
 t
e
s
te

d

projection i = 1 to 55

experiment
heuristic

Figure 7: Comparison between the actual number
of nodes during enumeration and the Gaussian
heuristic predictions for dimension 55.

4.4 Shorter or closer vectors are easier to find

During the merge operations, we can find a vector v ∈ Ci if there exist vectors in the intersection
between two balls of the same radius, centered at the end points of v. As the intersection is larger
when v is shorter, see Fig. 8, we can deduce that with the practical variant, short vectors of a coset
are easier to find than longer ones.

Ri z Ri z

Figure 8: Volume of intersection varies for vectors z of different length.

As we work with cosets, this means that vectors which are closer to the target (i.e. , short lattice
vectors when the target is 0) should appear more often for different runs on randomized input basis.
We verified this observation experimentally by comparing the norm of a vector with the number of
appearances during 100 repetitions in dimension 50, with ε = 0.0535, see Fig. 6.

4.5 Parallelization

The algorithm itself is highly parallelizable for various types of hardware architectures. Of course, the
dominant operations are n-dimensional vector additions and Euclidean norm computations, which can
be optimized on any hardware containing vector instructions. Additionally, unlike sieving techniques,
each iteration of the outer for-loop of the merge algorithm (Alg. 2, line 3) can be run simultaneously, as
every vector is treated independently of the output. Furthermore, one may divide the pool of vectors
into p ≤ αn/2 groups of buckets at each level, as soon as any two opposite buckets belong to the
same group. Thus, the merge operation can operate on a group independently of all other groups.

4 EXPERIMENTAL VALIDATION 15

Table 2: Experimental results for n ∈ {70, 80}, α =
√

4/3 and β =
√

3/2.

level = i 8 7 6 5 4 3 2 1 0
n = 80 #Si in millions 253 149 132 142 163 194 230 265 336
ε = 0.044 % of Gauss. heuristic 73 43 38 41 47 56 66 76 97
n = 70 #Si in millions - 38.8 20.3 19.0 20.0 20.3 23.1 26.5 29.8
ε = 0.049 % of Gauss. heuristic 95 50 46 50 56 65 73 87
n = 70 #Si in millions - 33.1 16.0 13.4 12.3 11.4 10.7 9.7 7
ε = 0.046 % of Gauss. heuristic 95 46 38 35 32 30.6 27.8 20

This allows to efficiently run the algorithm when the available RAM is too small to store lists of size
(1 + ε)

n
βn. It also allows to distribute the merge step on a cluster. For instance, in dimension n = 90

using ε = 0.0416, storing the full lists would require 3 TB of RAM. We divided the lists into 25 groups
of 120 GB each, which we treated one at a time in RAM while the others were kept on hard drive.
This did not produce any noticeable slowdown. Finally, the number of elements in each bucket can be
estimated precisely in advance using Heuristic 2.1, and each group performs exactly the same vector
operations (floating point addition, Euclidean norm computation) at the same time. This makes the
algorithm suitable for SIMD implementation, not only multi-threading.

4.6 Experiments in low- and middle-sized dimensions

Our experiments in dimension 40 to 90 on challenges in [36] show that we find the same short vectors
as previously reported and found as shortest vector by use of BKZ or sieving. To solve SVP or CVP
by use of the decomposition technique, it is in fact not necessary to enumerate the complete bounded
coset C0 and to ensure that the lists are always of size (1 + εn)nβn as we describe in the following
paragraphs.

We give more details for medium dimensions n = 70 and n = 80 with α =
√

4/3 and β =
√

3/2 in
the following. The algorithm ran on a machine with an Opteron 6176 processor, containing 48 cores
at 2.3 GHz, and having 256 GB of RAM. Table 2 presents the observed size of the lists Si ⊆ Ci for
each level in dimension 70 and 80.

In dimension 80, we chose aborted-BKZ-30 [17] as a preprocessing. The algorithm has 8 levels and
we chose ε = 0.044 to obtain 97% of C0 after a single run. The initial enumeration on one core took
a very short time of 6.5 CPU hours (so less than 10 minutes with our multi-thread implementation of
the enumeration) while each of the 8 levels of the merge took between 20 and 36 CPU hours (so less
than 45 minutes per level in our parallel implementation).

The number of elements in lower levels lies below the heuristic estimate and we keep loosing elements
during the merge for the deepest levels. For example, in dimension 80 we start with 73% of C8 and
recover only 43% of C7 after one step. Towards higher levels, we slowly begin to recover more and
more elements. In dimension 80, the size of the lists starts to increase from level 5 on as S5, S4 and S3

cover 41%, 47% and 56% of the vectors, respectively. This continues until the final step where we find
97% of the elements of C0.

4.7 Pruning of the merge step in practice - larger dimension n = 75 and
n = 90

In Section 3.1, we obtain conditions on the parameters as we request the intersection I of two balls
to be non-empty, which means that vol(I)/vol(L) ≥ K for some number K > 1 under Heuristic 2.1.
This condition suggests that at each level, each coset element in an output list Si−1 ⊆ Ci−1 of a merge
is obtained on average about K times. If the input list Si is shorter than expected, one will indeed
recover fewer than K copies of each element, but we may still have one representative of each element
of Ci−1. Our experiments confirm this fact, see Tab. 2 and Tab. 3. To solve SVP or CVP, one may
shorten the time and memory necessary to find a solution vector by interrupting each level whenever

4 EXPERIMENTAL VALIDATION 16

Table 3: Experimental results with pruning, n ∈ {75, 80, 90}, α =
√

4/3 and β =
√

3/2.

level = i 9 8 7 6 5 4 3 2 1 0 SVP
n = 75, % of Gauss. - - 50 50 47 46 46 48 50 69
ε = 0.044 heuris. cut cut solved
todo n = 75, % of Gauss. - - 50 35 30 25 20 15 8 6.4
ε = 0.044 heuris. cut solved
n = 90, % of Gauss. 70 40 40 40 40 40 40 40 40 70
ε = 0.0416 heuris. cut cut cut cut cut cut cut cut solved
n = 90, % of Gauss. 70 33 33 33 33 33 33 33 33 61
ε = 0.0416 heuris. cut cut cut cut cut cut cut cut solved

the output list contains a sufficiently large fraction of the elements of the bounded cosets. For example,
we ran our algorithm on the 75-dimensional basis of the SVP challenge [36] with seed 38. We chose
ε = 0.044 and interrupted the merge if the size of the intermediate set Si reached 50% or 35% of #Ci
for i ∈ [1, k− 1]. Tab. 3 presents the intermediate list sizes. In the end, we recovered 69% and 6.4% of
#C0, respectively, and the shortest vector was found in both cases. The running time for the merge
in the intermediate levels decreases compared to no pruning by a factor 0.49 and 0.29, respectively, as
one would expect for lists that are smaller by at least a factor 0.5 and 0.35, respectively.

In dimension 90, we ran our algorithm on the 90 dimensional SVP-challenge with seed 11, using
ε = 0.0416. We chose to keep at most 33% of Ci for i ∈ [1, k − 1]. Despite this harsh cut, the size
of the intermediate lists remained stable after the first merge. And interestingly, after only 65 hours
on 32 threads, we recovered 61% of #C0 in the end, including the published shortest vector. Note
that as we interrupt the merge, we in fact do not read all elements of the starting list Sk. One might
hence simply not apply a full enumeration in practice but stop the Schnorr-Euchner enumeration once
enough elements are enumerated.

4.8 Notes on the Gaussian heuristic for intermediate levels

Our quasi-orthogonal lattices at the bottom level behave randomly and follow the Gaussian heuristic.
The most basic method to fill the bottom list Sk is to run Schnorr-Euchner enumeration (see Sect. 2)
where the expected number of nodes in the enumeration tree is given by (11) based on Heuristic 2.1.
Previous research has established that this estimate is accurate for random BKZ-reduced bases of
random lattices in high dimension. Here, since we work with quasi-orthogonal bases, which are very
specific, we redo the experiments, and confirm the findings also for quasi-orthogonal bases. Already
for small dimensions (n = 40, 50, 55), experiments show that the actual number of nodes in a Schnorr-
Euchner enumeration is very close to the expected value. Figure 7 shows that experiment and heuristic
estimate for dimension 55, for example, are almost indistinguishable.

We also make use of Heuristic 2.1 when we estimate the number of coset vectors in the intersection
of two balls. As the lower lattices in the tower are not ”random” enough, they have close to quasi-
orthonormal bases, we observe smaller lists in the lower levels and thus a deviation from the heuristic.
Beside the geometry of lattices, the deviation depends on the center of the balls or the center of the
intersection. Randomly centered cosets of quasi-orthonormal lattices contain experimentally an average
number of points a constant factor below (1 + εn)nβn. Zero-centered cosets contain more points, and
should be avoided. The randomization of the initial target used in Alg. 1 ensures that the centers are
random modulo Lk, even in an SVP setting. The number of vectors stays hence below, but close to the
estimate (1 + εn)nβn after the first collision steps. The following steps can only improve the situation.
The lattices in higher levels are more and more random and we observe that the algorithm recovers
the expected number of vectors. This is a sign that our algorithm is stable even when the input pools
Si are incomplete.

Finally, experiments support the claim that the number of elements per bucket during the merge by
collision corresponds to the average value (β/α)n. For example, in dimension n = 80, for parameters

5 CONCLUSION 17

α =
√

4/3, β =
√

3/2, ε = 0.044, we observe that the largest bucket contains only 10% more elements
than the average value, and that 60% of the buckets are within ±2% of the average value.

4.9 Comparison to experimental results of a parallel Gauss sieve algorithm

From a very general point of view, our algorithm can be viewed as a Sieving algorithm. The algorithm
is decomposed into a polynomial number of levels, each one corresponds to a certain upper-bound Ri
on the norm. At each level, we use an exponential pool of lattice vectors, perform linear combinations,
and select the shortest of them for the next level.

We now list the specificities of our algorithm compared to previous sieving algorithms:

• We start from short vectors (in overlattices) and at each level, the norm Ri geometrically increases
by a factor α.

• At each level, we maintain an (almost) complete set of all coset vectors of norm ≤ Ri. For this
reason, our algorithm has the stability property that short coset vectors are more likely to be
found. Classical sieving techniques satisfy the opposite: short vectors have a negligible property
to appear spontaneously. Our algorithm is compatible with pruning, and it can solve the Exact
CVP. Reducing the list sizes for classical sieving leads in general to catastrophic results.

• Our algorithm is highly parallelizable as it allows to use up to αn independent threads per merge
operation as explained in Sect. 4.5. However the accessible dimension is naturally limited by
the exponential memory requirement of order βn. There exists parallel versions of the Gauss
sieve [30, 19], which leads to faster practical running time in dimensions 70 to 96, however the
efficiency of the parallelization decreases fast when the number of threads increases because of
the list size and the communication cost [19].

• Our algorithm is essentially a CVP solver and is not specialized for SVP: if classical Sieving
algorithms were to be turned into CVP solvers, then it would obviously be impossible to regroup
each vector with its opposite, and the lists of vectors would be twice as large. Furthermore,
classical Sieving techniques rely on the fact that vectors which cannot be reduced by others,
necessarily become poles to reduce others. By replacing substractions with additions in order
to preserve the target, these two options – can a vector v be reduced by others vs. can −v be
considered as a pole – cease to be mutually exclusive, and both would have to be tested. Thus,
turning classical Sieving algorithms into CVP solvers would likely increase their running time
by a factor 4 and their memory requirement by a factor 2, with no guarantee that they would
actually find the solution.

We give some concrete timings: To solve instances in dimension 80 and 90, our algorithm takes
more time than the currently fastest implementation of the Gauss sieve algorithm [19]. Ishiguro et al.
report in [19] to solve the SVP challenge in dimension 80 in 29 sequential hours and an instance of
dimension 96 in 6400 sequential hours. Our algorithm however needs 65 sequential hours in dimension
80 and 2080 hours in dimension 90. It is slower than the Gauss Sieve used as an SVP solver, yet, the
slowdown factor remains smaller than 4, which would be expected (as a minimum) to turn it into a
CVP solver.

5 Conclusion

We have presented an alternative approach to solve the hard lattice problems SVP and CVP for random
lattices. It makes use of a new technique that is different from the ones used so far in enumeration or
sieving algorithms and works by moving short vectors along a tower of nested lattices. Our experiments
show that the method works well in practice. An open question in the case of ideal lattices is to find
a structural reduction that preserves the cyclic structure or provides an other structure for which
speed-ups can be applied.

REFERENCES 18

References

[1] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended
abstract). In STOC’98, pages 10–19, 1998.

[2] M. Ajtai. Random lattices and a conjectured 0 - 1 law about their polynomial time computable
properties. In FOCS, pages 733–742, 2002.

[3] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem.
In Proc. 33rd STOC, pages 601–610, 2001.

[4] A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard knapsacks. In Proc.
of Eurocrypt 2011, LNCS 6632, pages 364–385. Springer-Verlag, 2011.

[5] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes in 2n/20: How
1 + 1 = 0 improves information set decoding. In EUROCRYPT, volume 7237 of Lecture Notes in
Computer Science, pages 520–536. Springer, 2012.

[6] M. I. Boguslavsky. Radon transforms and packings. Discrete Applied Mathematics, 111(1-2):3–22,
2001.

[7] X. Cadé, D. Pujol and D. Stehlé. fplll 4.0.4, May 2013.

[8] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits
known. In EUROCRYPT, pages 178–189, 1996.

[9] D. Coppersmith. Finding a small root of a univariate modular equation. In EUROCRYPT, pages
155–165, 1996.

[10] I. Dinur, G. Kindler, and S. Safra. Approximating-cvp to within almost-polynomial factors is
np-hard. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
FOCS ’98, pages 99–, Washington, DC, USA, 1998. IEEE Computer Society.

[11] T. G. et al. GNU multiple precision arithmetic library 5.1.3, September 2013. https://gmplib.org/.

[12] M. Fukase and K. Yamaguchi. Finding a very short lattice vector in the extended search space.
JIP, 20(3):785–795, 2012.

[13] N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant and blockwise
lattice reduction. In CRYPTO, pages 112–130, 2006.

[14] N. Gama, M. Izabachene, P. Q. Nguyen, and X. Xie. Structural lattice reduction: Generalized
worst-case to average-case reductions. Eprint report 2014/283, 2014.

[15] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In EURO-
CRYPT, pages 257–278, 2010.

[16] N. Gama, J. van de Pol, and J. M. Schanck. Fork of V. Shoup’s number theory library NTL,
with improved lattice functionalities. http://www.prism.uvsq.fr/~gama/newntl.html, Febru-
ary 2013.

[17] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical
systems. In CRYPTO, pages 447–464, 2011.

[18] G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm (ex-
tended abstract). In Proceedings of Crypto 2007, volume 4622 of LNCS, pages 170–186. Springer-
Verlag, 2007.

REFERENCES 19

[19] T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel gauss sieve algorithm : Solving the
svp in the ideal lattice of 128-dimensions. Cryptology ePrint Archive, Report 2013/388, 2013.

[20] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. J. Cryptology, 11(3):161–
185, 1998.

[21] R. Kannan. Improved algorithms for integer programming and related lattice problems. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, STOC ’83, pages
193–206, New York, NY, USA, 1983. ACM.

[22] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–
103. Plenum Press, New York, 1972.

[23] A. Korkine and G. Zolotarev. Sur les formes quadratiques. Mathematische Annalen 6, pages
336–389, 1973.

[24] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

[25] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in 20.054n. In ASIACRYPT,
pages 107–124, 2011.

[26] J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatshefte für
Mathematik, 110:47–62, 1990.

[27] D. Micciancio. The shortest vector in a lattice is hard to approximate to within some constant.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
pages 92–, Washington, DC, USA, 1998. IEEE Computer Society.

[28] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice
problems based on Voronoi cell computations. In Proceedings of the 42nd ACM symposium on
Theory of computing, STOC ’10, pages 351–358, New York, NY, USA, 2010. ACM.

[29] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem.
In SODA, pages 1468–1480. ACM/SIAM, 2010.

[30] B. Milde and M. Schneider. A parallel implementation of gausssieve for the shortest vector problem
in lattices. In PaCT, pages 452–458, 2011.

[31] L. J. Mordell. On some arithmetical results in the geometry of numbers. Compositio Mathematica,
1:248–253, 1935.

[32] P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. J. of
Mathematical Cryptology, 2008.

[33] OpenMP Architecture Review Board. OpenMP API version 4.0, 2013.

[34] X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n. IACR Cryp-
tology ePrint Archive, 2009:605, 2009.

[35] R. Rankin. On positive definite quadratic forms. J. Lond. Math. Soc., 28:309–314, 1953.

[36] M. Schneider, N. Gama, P. Baumann, and P. Nobach. http://www.latticechallenge.org/svp-
challenge/halloffame.php.

[37] K.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Math. Program., 66:181–199, 1994.

A INTERSECTION OF HYPERBALLS 20

[38] J. L. Thunder. Higher-dimensional analogs of Hermite’s constant. Michigan Math. J., 45(2):301–
314, 1998.

[39] X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve algorithm for
shortest vector problem. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’11, pages 1–9, New York, NY, USA, 2011. ACM.

[40] F. Zhang, Y. Pan, and G. Hu. A Three-Level Sieve Algorithm for the Shortest Vector Problem.
In T. Lange, K. Lauter, and P. Lisonek, editors, SAC 2013 - 20th International Conference on
Selected Areas in Cryptography, volume Lecture Notes in Computer Science, Burnaby, Canada,
Aug. 2013. Springer.

A Intersection of hyperballs

The volume of the intersection, volI(d), of two n-dimensional hyperballs of radius 1 at distance d ∈
[0.817; 2] can be approximated for large n by the volume of the n- dimensional ball of radius D =√

1−
(
d
2

)2
, see Lemma A.1 below. If we consider the intersection of two balls of radius R, the volume

gets multiplied by a factor Rn as stated in Corollary 2.

Lemma A.1 The volume of the intersection of two n-dimensional hyperballs of radius 1 at distance
d ∈ [0.817; 2] is

2Vn−1

(n+ 1)Vn
arccos

(
d

2

)
≤ volI(d)

vol(Balln(D))
≤ 2Vn−1

(n2 + 1)Vn
arccos

(
d

2

)

where D =

√
1−

(
d
2

)2
.

Proof: The intersection of two balls of radius 1 whose centers are at distance d ∈ [0, 2] of each other
can be expressed as

volI(d) = 2 ·
∫ 1

d
2

Vn−1

(√
1− x2

)n−1

dx = 2Vn−1

∫ arccos(d/2)

0

sinn(θ) dθ

where Vn−1 equals the volume of the n − 1-dimensional ball of radius 1. For d ∈ [0.817; 2] one can
bound the sinus term in the integral:

D

arccos(d/2)
θ ≤ sin(θ) ≤ D√

arccos(d/2)

√
θ .

Therefore, we obtain bounds for the volume of the intersection:

volI(d) ≤ 2Vn−1
n
2 + 1

arccos

(
d

2

)
Dn

and

volI(d) ≥ 2Vn−1

n+ 1
arccos

(
d

2

)
Dn

which proves the lemma. �

We can use the lower-bound of Lemma A.1 and obtain a numerical lowerbound on the volume of the
intersection of balls of radius R at distance at most

√
4/3R used in our algorithm:

B PROOF OF THEOREM 3.2 AND ALGORITHM 4: 21

Corollary 2 For all dimensions n ≥ 10, the volume of the intersection of two n-dimensional hyperballs
of radius R at distance dR where d ≤

√
4/3 is lower-bounded by:

RnvolI (d) ≥ 0.692√
n
·Rnvol


Balln



√

1−
(
d

2

)2



 .

B Proof of Theorem 3.2 and Algorithm 4:

Algorithm 4 Unbalanced Reduction from [14], specialized for σ ≤ min ‖b∗i ‖
Input: A LLL-reduced basis B of an integer lattice L, and a target length σ ≤ min ‖b∗i ‖
Output: A basis C of L satisfying ‖c1‖ ≤ σnvol(L)/σn, and for all i ∈ [2, n], ‖c∗i ‖ ≤ σ and σn+1−i

vol(C[i,n])
≤

n+ 1− i.
1: C ← B
2: Compute the Gram-Schmidt matrices µ and C∗

3: Let k be the largest index such that ‖c∗k‖ > σ
4: for i = k − 1, . . . , 1 do

5: γ ←
⌈
−µi+1,i +

‖c∗
i+1‖
‖c∗

i ‖

√(
‖c∗

i ‖
σ

)2

− 1

⌉

6: (ci, ci+1)← (ci+1 + γ · ci, ci)
7: Update the Gram-Schmidt matrices µ and C∗.
8: end for
9: return C

We use the suffix “old” and “new” to denote the values of the variables at the beginning and at the
end of the “for” loop of Alg. 4, respectively. Furthermore, we call xi the value ‖b∗new

i ‖ during iteration
i. Note that xi is also ‖b∗old

i ‖ during the next iteration (of index i− 1 since i goes backwards).
For i ∈ [1, n], let ai = ‖b∗i ‖/σ. Note that ai is always ≥ 1. We show by induction over i that the

following invariant holds at the end of each iteration of Alg. 4:

aixi+1 ≤ xi ≤ aixi+1 + σai . (13)

At the first iteration (i = k − 1), it is clear that xk = ‖b∗old
k ‖ = σak . At the beginning of iteration i,

we always have ‖b∗old
i ‖ > σ, and by induction, ‖b∗old

i+1 ‖ > σ. We transform the block so that the norm
of the first vector satisfies

R ≤ ‖b∗new
i ‖ ≤ R+ ‖b∗old

i ‖ (14)

where R = ‖b∗old
i+1 ‖‖b∗old

i ‖/σ .

This condition can always be fulfilled with a primitive vector of the form bnew
i = bold

i+1 + γbold
i for some

γ ∈ Z. Since the volume is invariant, the new ‖b∗new
i+1 ‖ is upper-bounded by σ. And by construction,

Equation (14) is equivalent to the invariant (13) since ‖b∗old
i ‖ = aiσ, ‖b∗new

i ‖ = xi and ‖b∗old
i+1 ‖ = xi+1.

By developping (13), we derive a bound on x1:

x1 ≤ σ
k∑

i=1

a1 . . . ai ≤ σn
k∏

i=1

ai ≤ nσvol(L)/σn

which proves (9). Similarly, one obtains that xi ≤ (n+ 1− i)σ vol(B[i,n])/σ
n+1−i, which is equivalent

B PROOF OF THEOREM 3.2 AND ALGORITHM 4: 22

to (10). Note that the transformation matrix of the unbalanced reduction algorithm is




γ1 · · · γk−1 1 0 · · · 0

1 0 · · · 0
...

...

0
. . .

. . .
...

...
...

0 0 1 0 0 · · · 0
0 · · · · · · 0 1 0 0
...

... 0
. . . 0

0 · · · · · · 0 0 0 1




where γi is
⌈
−µi+1,i + xi+1

σ

√
1− 1

a2i

⌉
. Since each xi+1 is bounded by

n∏

j=i+1

aj =

n∏

j=i+1

max(1, ||b∗j ||2/σ) ,

all coefficients have a size polynomial in the input basis. This proves that Alg. 4 has polynomial
running time. �

Anja Becker EPFL, École Polytechnique Fédérale de Lausanne,
Laboratory for cryptologic algorithms (LACAL),
Switzerland.
anja.becker@epfl.ch

Nicolas Gama UVSQ/PRISM, Université de Versailles, France.
nicolas.gama@prism.uvsq.fr

Antoine Joux CryptoExperts,
INRIA/Ouragan,
Chaire de Cryptologie de la Fondation de l’UPMC,
Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7606, LIP 6, France.
Antoine.Joux@m4x.org

