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Abstract. In this article, we investigate the use of limited-birthday dis-
tinguishers to the context of hash functions. We �rst provide a proper un-
derstanding of the limited-birthday problem and demonstrate its sound-
ness by using a new security notion Di�erential Target Collision Resis-
tance (dTCR) that is related to the classical Target Collision Resistance
(TCR) notion. We then solve an open problem and close the existing
security gap by proving that the best known generic attack proposed at
FSE 2010 for the limited-birthday problem is indeed the best possible
method.

Moreover, we show that almost all known collision attacks are in fact
more than just a collision �nding algorithm, since the di�erence mask
for the message input is usually �xed. A direct and surprising corollary
is that these collision attacks are interesting for cryptanalysis even when
their complexity goes beyond the 2n/2 birthday bound and up to the
2n preimage bound, and can be used to derive distinguishers using the
limited-birthday problem. Interestingly, cryptanalysts can now search for
collision attacks beyond the 2n/2 birthday bound.

Finally, we describe a generic algorithm that turns a semi-free-start col-
lision attack on a compression function (even if its complexity is beyond
the birthday bound) into a distinguisher on the whole hash function when
its internal state is not too wide. To the best of our knowledge, this is
the �rst result that exploits classical semi-free-start collisions on the com-
pression function to exhibit a weakness on the whole hash function. As
an application of our �ndings, we provide distinguishers on reduced or
full version of several hash functions, such as RIPEMD-128, SHA-256,
Whirlpool, etc.

Key words: hash function, compression function, distinguisher, limited-
birthday, semi-free-start collision, di�erential target collision resistance.



1 Introduction

A hash functionH is a function that takes an arbitrarily long messageM as input
and outputs a �xed-length hash value of size n bits. Classical security require-
ments for a cryptographic hash function are collision resistance and (second)-
preimage resistance. Namely, it should be impossible for an adversary to �nd a
collision (two distinct messages that lead to the same hash value) in less than
2n/2 hash computations, or a (second)-preimage (a message hashing to a given
challenge) in less than 2n hash computations. Most standardized hash functions
are based upon the Merkle-Damgård paradigm [37, 11] and iterate a compression
function h with �xed input and output size to handle arbitrarily long messages.
The compression function itself should ensure equivalent security properties in
order for the hash function to inherit from them. When the internal state size
of the compression is the same as for the hash function, then the construction is
called narrow-pipe, otherwise it is called a wide-pipe.

The SHA-3 competition organized by the NIST [51] eventually ended in early
October 2012 with the selection of KECCAK [16] as sole winner and new hash
function standard. During the last decade, due to this competition and to the
cryptanalysis breakthroughs [56, 57] that provoked this reaction from the NIST,
hash functions have been among the most active topics in academic cryptogra-
phy. This infatuation is justi�ed by the fact that these primitives are utilized
tremendously in practice, with applications ranging from digital signatures, mes-
sage authentication codes, to secure storage of passwords databases. However, a
hash function is also seen as the �swiss knife� of cryptography: many protocols
use the random oracle paradigm [3] to check and even prove that they present
no structural �aw, and while there is no such thing as a random oracle, design-
ers use hash functions to �simulate� its behavior. Overall, even if collision and
(second)-preimage resistance are their most important security properties, cryp-
tographers are therefore also expecting hash functions to present no structural
�aw whatsoever, i.e. to be indistinguishable from a random oracle. NIST, for ex-
ample, clearly speci�ed in its SHA-3 call for candidates [51] that the submitted
proposals have to support randomized hashing and not present any �non-random
behavior�.

On the cryptanalysis side, many various distinguishers have been proposed
in the recent years, mainly against AES or SHA-3 candidates. One can cite
for example zero-sums distinguishers [2], rotational distinguishers [26] or sub-
space distinguishers [28]. Limited-birthday distinguishers have been introduced
by Gilbert and Peyrin [15] as a tool to distinguish 8 rounds of the AES block
cipher from an ideal permutation in the known-key model, and it was later used
against other symmetric key primitives [42, 39, 13, 23]. It consists in deriving
pairs of plaintext/ciphertext couples (P,C), (P ′, C ′) (or input/output couples
(M,H(M)), (M ′, H(M ′)) for a one-way function) with an input xor di�erence
belonging to a set IN of 2I elements and an output xor di�erence belonging to a
set OUT of 2O elements, i.e. P ⊕P ′ ∈ IN and C⊕C ′ ∈ OUT (orM ⊕M ′ ∈ IN
and H(M) ⊕ H(M ′) ∈ OUT ). What is the best generic attack complexity in
the case of an ideal permutation (or function) ? When IN and/or OUT are big



enough then this problem is equivalent to a classical birthday paradox prob-
lem (i.e. with complexity min

{
2(n−O)/2, 2(n−I)/2

}
), but the idea underlying the

limited-birthday is that when IN and OUT are small an attacker might not be
able to use the birthday paradox as much as he would like to. Indeed, he will have
to perform several independent smaller birthday searches instead of a single big
one, and therefore the process will require much more computations. Gilbert and
Peyrin [15] proposed the best known generic algorithm for the limited-birthday
problem, whose complexity is max

{
min

{
2(n−I+1)/2, 2(n−O+1)/2

}
, 2n−I−O+1

}
for a permutation and max

{
2(n−O+1)/2, 2n−I−O+1

}
for a function4. However,

its optimality is yet unknown and it was only conjectured that their attack is the
best possible. As of today, only Nikoli¢ et al. [41] provided a formal lower bound
proof, which is min

{
2n/2−2, 2n−(I+O)−3}. Unfortunately this bound is not tight

and only applies to permutations. For example, in the case of I = O = 0, the
attack complexity in [15] is 2n−I−O+1 = 2n+1 while the proven bound in [41]
only reaches 2n/2−2.

Some might argue that the limited-birthday problem can trivially be solved
by choosing a random input pair (X,Y ) and computing IN = {X ⊕ Y } and
OUT = {H(X) ⊕ H(Y )}. However, these pathological attackers, that we call
�cheating adversaries�, are meaningless: since hash functions are not processing
any secret and are completely public (unlike other primitives in cryptography),
formalizing security notions requires some kind of challenge, in order to avoid
these cheating adversaries (the same is true concerning the chosen-key model for
block ciphers). For example, there always exists an adversary that can output a
collision with a single operation and negligible memory (i.e. the adversary that
just prints a known collision). In general, this obstacle is avoided by considering
that a hash function is part of a family indexed by a key input (for exam-
ple its Initial Value (IV)), or by formalizing the human ignorance [45]. These
pathological cases of cheating adversaries are present for all distinguishers with-
out challenges, even for the subspace distinguisher for hash functions [28] or
q-multicollisions for block ciphers in the chosen-key model [5].

Our contributions. To start, we provide in Section 2.1 a proper understanding
of limited-birthday distinguishers for the hash function setting. Namely, we dis-
cuss potential issues arising from security notions for a public function without
challenge and describe various tricks to avoid pathological cheating adversaries.
We also show that limited-birthday distinguishers for hash functions can be
used to attack a security notion very similar to the classical Target Collision Re-
sistance (TCR) property, which we call di�erential Target Collision Resistance
(dTCR).

Secondly, we provide in Section 2.2 a proof that the currently best known
generic attack for the limited-birthday problem (proposed by Gilbert and Peyrin
at FSE 2010 [15]) is indeed the best possible. More precisely, we show that the

4 There is obviously a trade-o� between the complexity and the success probability,
which here is about 0.63. The original paper [15] missed `+1's in the exponents,
which was �rstly corrected by [39]



computation complexity to solve the limited-birthday problem is bounded by
max

{
2(n−O+1)/2, 2n−I−O+1

}
. We can directly conclude that if for a collision

attack (i.e., O = 0) the set IN of possible message di�erence of the hash function
is limited to one or a few elements regardless of the randomization input, then
one can obtain a limited-birthday distinguisher on the function, even with a
complexity well beyond the birthday bound. It is to be noted that this condition
on the message di�erence mask is veri�ed for almost all known collision attacks,
as for example with the recent advances on SHA-1 [56]. Overall, most known hash
function collision attacks are in fact more then just collision �nding algorithms
since the message di�erence mask is constrained and, as a consequence, they are
now surprisingly becoming interesting even with a complexity beyond the 2n/2

birthday bound. Our work indicates that concerning distinguishing attacks the
security of many hash functions needs to be reevaluated accordingly.

We then move to the case of a compression function, naturally easier to break
than the whole hash function. Namely, we provide in Section 3 a generic algo-
rithm that can transform a semi-free-start collision attack on the compression
function into a limited-birthday distinguisher for the entire hash function. Be-
cause it is based on a meet-in-the-middle approach, this algorithm gets more in-
teresting for the attacker as the internal state of the hash function gets narrower.
To the best of the authors knowledge, this conversion is the �rst result turning
a classical semi-free-start collision attack on the compression function into some
weakness on the whole hash function (a previous work from Leurent [30] also
provides such a conversion, but it is only applicable in the very uncommon case
where the average semi-free-start collisions cost is lower than a single operation).

Finally, we provide in Section 4 some applications of our �ndings against real-
world hash functions, such as AES-based hash functions (Section 4.1), HAS-160
(Section 4.2), LANE (Section 4.3), RIPEMD-128 (Section 4.4), SHA-256 (Sec-
tion 4.5) and Whirlpool (Section 4.6).

2 Limited-birthday problem

Throughout this paper, we discuss limited-birthday distinguishers for one-way
functions, i.e., in our security model querying input values to obtain the corre-
sponding output values is allowed, but the opposite is forbidden.

In Sect. 2.1, we �rstly explain that validating distinguishers without any
challenge is hard due to cheating adversaries. We then explain that the ambiguity
of the validity does not exist if adversaries are challenged, and the limited-
birthday problem is useful even in such a challenged setting. In Sect. 2.2, we
formally prove that the previous generic attack that was conjectured as the best
attack is indeed optimal. Finally, several remarks are given in Sect. 2.3.

2.1 Importance of the limited-birthday problem in cryptography

Cheating adversaries. Collision resistance is the only un-challenged notion
of the three classical security properties expected from a cryptographic hash



function (collision, preimage, second-preimage), and, as such, the one that proved
to be the most di�cult to analyze. One of the di�culty that arises for example
(and which is true for any un-challenged security property on a public function)
is that there is always an adversary that can output a collision immediately,
by simply hard-coding it. Rogaway [45] proposed a potential solution to this by
formalizing the so-called notion of human ignorance.

However, the existence of another type of pathological cheating adversary
has been often utilized as criticism of the limited-birthday distinguishers for-
malization: the adversary �rst chooses a random input pair (X,Y ), computes
IN = {X ⊕ Y } and OUT = {H(X) ⊕ H(Y )}, and then claims that he can
solve the limited-birthday problem with sets IN and OUT (where IN and OUT
are actually de�ned at the end of the attack). It is to be noted that such is-
sues already exist in the case of collision resistance and actually for any security
de�nition regarding a public function with an adversary that is not challenged
whatsoever.

Let's come back to our collision resistance case for example. Security en-
gineers obviously understand that collision is an important security de�nition,
but for theoreticians collision is nothing more than a certain output di�erence
∆ which is equal to zero. Collision resistance therefore belongs to a more generic
problem that we could name di�(∆) and which asks for the adversary to exhibit
an input pair (X,Y ) such that H(X) ⊕ H(Y ) = ∆. All members of this set
are equally hard with regards to generic attacks. Collision resistance is actually
di�(0), but cheating adversaries exist for di�(∆): by just choosing a random
input pair (X,Y ) and trivially claiming that we can solve di�(H(X)⊕H(Y )).

Similarly, one can design cheating adversaries for the recent q-multicollision
problem [5] used on AES: de�ne the problem q-multi-di�(∆1, . . . ,∆q) that asks
for the attacker to exhibit q input pairs (X1, Y1), . . . , (Xq, Yq) such that H(X1)⊕
H(Y1) = δ ⊕∆1, . . . ,H(Xq)⊕H(Yq) = δ ⊕∆q. Then the q-multicollision prob-
lem is nothing else than q-multi-di�(0, . . . , 0) with a prede�ned δ, yet obvi-
ous cheating adversaries exist for q-multi-di�: just pick q random input pairs
(X1, Y1), . . . , (Xq, Yq), and claim that you can solve q-multi-di�(H(X1)⊕H(Y1)⊕
δ, . . . ,H(Xq) ⊕H(Yq) ⊕ δ). The same reasoning applies to the subspace distin-
guishers [28] as well.

As a direct analogy, the limited-birthday problem LBP(IN,OUT ) with fully
de�ned sets IN and OUT belongs to the more general limited-birthday prob-
lem LBP. Thus, the limited-birthday distinguishers are as valid as collision, q-
multicollision or subspace distinguishers when the sets IN and OUT are fully
de�ned, and we emphasize that in the rest of the article the sets IN and OUT
are considered to be fully de�ned before the attacker starts to actually search
for a valid pair of inputs. Yet, in addition, we propose below some solutions to
overcome any potential cheating adversaries.

Challenging the adversary. There are several cryptographic protocols that
allow users to provide some tweak to a function H. The tweak, T , plays the role
of enhancing the security, i.e., the attacker cannot obtain the target function



HT until the tweak value is determined. The limited-birthday distinguisher is
particularly useful for evaluating such a tweakable function HT . One of such
protocols is the randomized hashing [52], where a message to be signed with a
digital signature scheme is hashed after a tweak is applied in order to enhance
the security against forgery attacks. Let us �rst recall the security notion called
target collision resistance [4]. An n-bit tweakable function HT is said to be target
collision resistant if it is computationally hard to perform the following attack.

Target Collision Resistance (TCR)
1. The adversary chooses an input value I after some precomputation.
2. The value of T is chosen without any control by the adversary.
3. The adversary �nds an input value I⊕∆ such that HT (I) = HT (I⊕

∆).

The TCR notion is a base of the provable security of the randomized hashing
scheme5. In the SHA-3 competition, NIST required the submitted algorithms to
provide n bits of security for the randomized hashing scheme [51, Section 4.A].
We then slightly modify the TCR notion as follows.6

Di�erential Target Collision Resistance (dTCR)
1. The adversary chooses an input di�erence ∆ after some precompu-

tation.
2. The value of T is chosen without any control by the adversary.
3. The adversary �nds an input value I such that HT (I) = HT (I ⊕∆).

Let the tweak T be a choice of a part of the algorithm design such as constant
values, Sboxes, and IV. For such a tweak, a di�erential attack can usually choose
IN and OUT independently of T . Therefore, for such a tweak, a limited-birthday
distinguisher for the hash function setting with |IN | = 1,OUT = {0}, and with a
complexity below 2n, is an attack on the dTCR notion. In section 4, we will show
several applications to real-world hash functions that satisfy those properties
against the tweaking method of the randomized hashing. We believe that the
impact of limited-birthday distinguishers is much bigger than just identifying a
non-random behavior as several other distinguishers do.

In the case of iterative hash functions, a very simple tweak can even be
considered: randomizing the �rst message block M1. The attacker is challenged
to exhibit a non-random property on the function and with M1 as pre�x chosen
by the challenger, i.e. every message queried or used must contain message block
M1 as pre�x. In fact, the randomized hashing gives a tweak by choosing a random
string r, and processing r as a pre�x and then XORing r to each input message
block. Because a challenge is asked to the attacker preliminarily, no cheating

5 Strictly speaking, security of the randomized hashing scheme is based on the eTCR
notion [18], for which the adversary �nds input values (T ′, I⊕∆) such that FT (I) =
FT ′(I⊕∆) at Step 3 of the de�nition of TCR. Note that breaking TCR immediately
leads to breaking eTCR.

6 The two notions are similar, yet we leave as open problem the question regarding
any formal link between them.



adversary exists in this setting. Moreover, many di�erential attacks can �nd IN
and OUT independently of the tweak value.

Note also that it is important for the tweak set size to be big enough, in order
to avoid any adversary that would precompute cheating behavior for any tweak
value.

2.2 The limited-birthday problem for hash functions

De�nition 1 (The limited-birthday problem). Let H be an n-bit output
hash function, that can be randomized by some input (IV or tweak or etc.) and
that processes input messages of �xed size, m bits where m ≥ n. Let IN be a set
of admissible input di�erences and OUT be a set of admissible output di�erences,
with the property that IN and OUT are closed sets with respect to ⊕. Then, for
the limited-birthday problem, the goal of the adversary is to generate a message
pair (M,M ′) such thatM⊕M ′ ∈ IN and H(M)⊕H(M ′) ∈ OUT for a randomly
chosen instance of H.

A generic procedure to solve the limited-birthday problem in [15] is described
below. We denote by active (resp. inactive) the input bits for which the xor
di�erence can be chosen by the attacker (resp. cannot be chosen by the attacker).
Its illustration is given in Figure 2 in Appendix.

1. Choose a random value for the inactive bits.
2. For all |IN | values of the active bits, call the function oracle and obtain the

corresponding output values. Then, build
(|IN |

2

)
≈ |IN |2/2 pairs with the

queries replies received.
3. If a pair whose output di�erence is included in OUT is found, abort the

procedure. Otherwise, go back to Step 1 and choose another random value
for the inactive bits.

Note that if
(|IN |

2

)
> 2n/|OUT |, choosing

√
2n+1/|OUT | values of active bits in

Step 2 is enough.

Theorem 1. The limited-birthday attack complexity in [15] for a one-way func-
tion is

max

{√
2n+1

|OUT |
,

2n+1

|IN | · |OUT |

}
= max

{
2

n−O+1
2 , 2n−I−O+1

}
(1)

where I and O are de�ned by |IN | = 2I and |OUT | = 2O, respectively.

If |IN | is small, the complexity is 2n−I−O+1. However, even if |IN | is very big,

the complexity cannot be below 2
n−O+1

2 . Thus, the complexity is the maximum
of these two cases. It was conjectured that the above attack procedure is the
best possible. Then, based on this conjecture, presenting for a real hash function
an attack which is faster than Eq. (1) was regarded as a non-ideal behavior and
many results have been published in this context [15, 42, 13, 23]. We close an open
problem by proving below the optimality of the above generic limited-birthday
attack.



Theorem 2. The lower bound of the number of queries for the limited-birthday
distinguisher matches Eq. (1).

Proof. Let U be the attack complexity, i.e. the number of queries for the limited-

birthday distinguisher. In the case of
(
2n−I

2

)
> 2n−O, it holds that U ≥ 2

n−O+1
2

since, in this case, the situation is equivalent to the ordinary birthday attack.

Hence, it is su�cient to prove that U ≥ 2n−I−O+1 in the case of
(
2n−I

2

)
≤ 2n−O.

First, let I := {1, 2, . . . , 2n−I} and O := {1, 2, . . . , 2n−O} represent the sets
of inactive bits in inputs and outputs, respectively, and �x a set of queries by
the limited-birthday distinguisher arbitrarily. According to this set of queries,
a bipartite graph G := (I,O, E) can be de�ned as shown in Figure 1, where I
and O are partite sets and E is the edge set. In the bipartite graph G, each edge
e := (i, j) ∈ E, i ∈ I, j ∈ O, corresponds to a query with an inactive bit i ∈ I
and its output j ∈ O. Due to this correspondence, the bipartite graph G allows
multiedges which share the same end vertices. The pair of queries satisfying
limited-birthday collision corresponds to the multiedges, which we are going to
�nd.

Hereafter, we call a pair of edges which share the same vertex in I (but no
constraint for the other end vertex in O) as a valid pair. Because, for each edge,
the end vertex belonging to O is chosen according to the uniform distribution,
the probability that a randomly chosen valid pair is a solution for the limited-
birthday problem is 2−(n−O). Therefore, the total number of valid pairs, denoted
by V , should be greater than or equal to 2n−O in order to obtain a solution for
the limited-birthday problem with a good probability.

For i ∈ I, let di be the degree of the vertex i, which is the number of edges
connected to the vertex i. It is obvious that di is no more than 2I , and the
number of valid pairs incident with the vertex i is

(
di

2

)
. Hence, the total number

V of valid pairs can be expressed as

V =

2n−I∑
i=1

(
di
2

)
≈ 1

2

2n−I∑
i=1

d2i . (2)  Outputs classified by inactive bits  
limited-birthday

collision

limited-birthday

collision

(# of queries)

a valid pair

  Inputs classified by inactive bits  
Fig. 1. Graph representation of general strategy of limited-birthday attacks



Noticing that the degree of each vertex belonging to I can have at most 2I and
the total number of queries is U , we have the following constraints without loss
of generality:

2n−I∑
i=1

di = U ; 2I ≥ d1 ≥ d2 ≥ · · · ≥ d2n−I ≥ 0. (3)

Here, we also note that the above (d1, d2, . . . , d2n−I ) is determined by the set of
queries by the distinguisher, namely, it can represent arbitrary attack strategy
including the limited-birthday attack proposed in [15]. Hence, the best possible
attack can be obtained by maximizing the total number of valid pairs V .

In order to maximize V in Eq. (2) under the constraints Eq. (3), theory of ma-
jorization is useful [32]: for real valued `-dimensional vectors x = (x1, x2, . . . , x`) ∈
R` and y = (y1, y2, . . . , y`) ∈ R` arranged as decreasing order, i.e. x1 ≥ x2 ≥
· · · ≥ x` and y1 ≥ y2 ≥ · · · ≥ y`, we say that y is majorized by x, in symbols
x � y, if they satisfy

∑t
i=1 xi ≥

∑t
i=1 yi for 1 ≤ t ≤ `−1 and

∑`
i=1 xi =

∑`
i=1 yi.

We note that a function f : R` → R is said to be Schur-convex if f(x) ≥ f(y) is
satis�ed for all x,y ∈ R` with x � y. It is well known7 that a function

∑`
i=1 x

k
i

is Schur-convex on R`
+ for any k > 1.

Based on theory of majorization, the vector D∗ = (d∗1, d
∗
2, . . . , d

∗
2n−I ) de�ned

by8

d∗i =

{
2I , for 1 ≤ i ≤ U/2I
0, for U/2I < i ≤ 2n−I

(4)

attains the maximum value of V under the constraints of Eq. (3). To see this, it
is su�cient to check that the vector D∗ majorizes all vectors satisfying Eq. (3),
and the fact that the function

∑n
i=1 x

2
i is Schur-convex. Hence, substituting Eq.

(4) into (3), we can upper-bound V as

V ≤ 1

2
· 22I · U

2I
=
U · 2I

2
. (5)

As we have already seen, V ≥ 2n−O is necessary in order to �nd a limited-
birthday collision with su�ciently high probability. Combining this inequality
with Eq. (5), we obtain U ≥ 2n−I−O+1, which completes the proof. ut

2.3 Remarks

The proof in Section 2.2 can be extended to the lower bound of the query com-
plexity for the 4-sum, or in general the k-sum problem, with pre-speci�ed ad-
missible di�erence sets IN . Here, the k-sum problem �nds k distinct input val-
ues where the xor sum of their output values is 0. It is already known that

7 For instance, this fact is immediately recognized from [32, C.1. Proposition] which
states that

∑
i g(xi) is Schur convex if g(x) is convex. Obviously, g(x) = xk, x ≥ 0,

is convex for any k > 1.
8 We roughly assume that U is a power of 2.



several signature schemes [54] and several instantiations of the random oracle
[31] are badly a�ected if an underlying hash function is vulnerable against the
k-sum attack. When the degree of each input vertex is di in Figure 1, the num-

ber of valid k-tuples of edges that share the same input vertex is
∑2n−I

i=1

(
di

k

)
,

which is approximately (1/k!) ·
∑2n−I

i=1 dki . Because the function
∑

i d
k
i for any

k > 1 is Schur-convex, We can prove that D∗ which majorizes any other 2n−I -
dimensional vectors is the optimal choice to minimize the query complexity.

Finally, it is to be noted that the reasoning of our proof is only done on
the input and output set sizes. Therefore, one can use this proof even for other
properties than xor di�erence. When IN and/or OUT are not closed sets our
proof still applies, but is not tight since the algorithm from [15] can not be
utilized anymore. We leave this gap as an open problem, yet conjecturing that
the attack complexity will grow rapidly as the sets gets more opened.

3 Generic limited-birthday distinguishers

Several previous works analyzed the complex relation between the security of a
hash function and its compression function, both in a proof oriented [9] or in an
attack oriented manner [43]. For example, a well known result is that a preimage
attack for a compression function (also called pseudo-preimage attack) can be
transformed into a preimage attack on the hash function when a narrow-pipe
design is used by a meet-in-the-middle technique. In this section, we explain how
an attacker can turn a semi-free-start collision attack (even when its complexity
is beyond the birthday bound) into a limited-birthday distinguisher on the hash
function using a meet-in-the-middle approach.

Let h be a compression function taking m bits of message and k bits of
chaining variable as inputs and outputting a k-bit value. Then, let H be an
n-bit hash function (with n ≤ k), that iteratively calls h to process incoming m-
bit message words. A semi-free-start collision is a pair ((CV,M), (CV,M ′)) with
M 6= M ′ and such that h(CV,M) = h(CV,M ′). We assume that an attacker
is able to �nd 2s distinct semi-free-start collisions for h with complexity 2c

operations (by distinct we mean that at least each CV value is di�erent), with
s ≤ k/2. Let IN be the set of the possible message di�erence masks for all these
semi-free-start collisions, and we still denote its size by |IN | = 2I . We derive a
limited-birthday distinguisher on H with a simple meet-in-the-middle technique
as follows:

1. generate the 2s semi-free-start collisions ((CVj ,Mj), (CVj ,M
′
j)) on h with

2c operations and add all 2s CVj values in a list L
2. from the hash function initial value IV , pick 2k−s random message blocks
Mi. Compute their corresponding output value after application of h and
place these values in a list L′.

3. check if there is a collision between a member of L and L′, and output
as solution the corresponding input message couple ((Mi||Mj), (Mi||M ′j)),



that veri�es H(Mi||Mj) = H(Mi||M ′j). Note that collisions are propagated
when adding extra message blocks in the hash computation chain, thus the
padding constraint is always satis�ed.

First, it is clear that during the third phase we have enough elements in
both lists (2k−s and 2s) to �nd a collision with good probability. The overall
complexity is 2c + 2k−s operations and min

{
2k−s, 2s

}
memory.9 The attacker

outputs a collision for the hash function (�xed output di�erence mask to zero,
thus |OUT | = 1) with an input di�erence mask lying in a space IN of size 2I

(since the IV of the hash function is �xed for both members of the pair and
since the di�erence mask zero is applied to the �rst block Mi), and the limited-
birthday tells us that this should cost max

{
2n/2, 2n−I+1

}
in the ideal case. Since

2c+2k−s ≥ 2s+2k−s ≥ 2k/2 ≥ 2n/2, this attack will lead to a valid distinguisher
if and only if

2c + 2k−s < 2n−I+1. (6)

One may wonder why we do not simply use a parameter x = c − s that
represents the average semi-free-start collision cost instead of c and s (and then
the attack complexity would simply be 2(k+x)/2+1). The reason is that many
semi-free-start collision attacks consume a lot of freedom degrees and often the
attacker is unable to generate as many as he wants. Looking at the relation (6),
one can remark that for a particular hash function (i.e. k and n are �xed) and
for a �xed I, the attacker only has to �nd the right amount of semi-free-start
collisions that minimizes 2c + 2k−s. Also, in the best case where a semi-free-
start collision costs a single operation on average (i.e. c = s), the best for him
is to generate as many semi-free-start collisions as he can (up to 2k/2). More
generally, the cheaper are the semi-free-start collisions to generate, the closer the
distinguisher will be to the 2k/2 birthday bound. Conversely, the more expensive
are semi-free-start collisions to generate, the closer the distinguisher will be to the
2k internal preimage bound. Finally, because of its meet-in-the-middle nature,
it is only natural that the complexity of the attack reduces when the size of the
hash function internal pipe decreases. For hash candidates with double-pipe and
more (k ≥ 2n), our algorithm will never lead to a valid distinguisher, which is
yet another argument indicating that having at least a double-pipe for a hash
function increases its security.

It is to be noted that the very same reasoning can be applied even if the
semi-free-start collision attack requires several message blocks in order to be per-
formed. Moreover, one can even further generalize by looking at semi-free-start
near-collision attacks, that is �nding a pair ((CV,M), (CV,M ′)) with M 6= M ′

and such that h(CV,M) ' h(CV,M ′). However, near collisions (unlike real

9 If the cost for generating each semi-free-start collision is 1, the matching process
becomes the balanced meet-in-the-middle, and thus a memoryless attack might be
possible with a cycle method. However, in order to construct the cycle, one must
de�ne how to make the feed for the next computation and the feasibility will depend
on the details of the semi-free-start collision attack.



collisions) do not propagate when adding extra message blocks in the hash com-
putation chain. Therefore, in order to use semi-free-start near-collision attacks,
it is necessary that they have to be able to include the hash padding inside the
last message block. Then, the only e�ect compared with previous reasoning will
be that |OUT | will be slightly larger than 1.

This method shows that semi-free-start collisions on a compression function
are directly meaningful even for the hash function security itself. Even better,
cryptanalyst might now be interested in �nding semi-free-start collision attacks
beyond the birthday bound, in order to derive distinguishers on the entire hash
function. Previously, Leurent [30] also used a meet-in-the-middle technique on
Skein [14] to turn semi-free-start collisions into a collision on the whole hash,
but his method is only applicable in the uncommon situation where the average
cost of the semi-free-start collisions is strictly lower than 1 (in his article 270

semi-free-start collisions can be generated with 240 operations).

Finally, one may argue that distinguishers from a random oracle already ex-
isted for classical iterative hash functions with a rather narrow-pipe, for example
by using the very simple and well known length extension attack (for all Z, from
H(M1|| . . . ||Mi) one can compute the value of H(M1|| . . . ||Mi||Z), without even
knowingM1|| . . . ||Mi). However, such issues do not exist anymore for strengthen
constructions like the ones proposed by Coron et al. [9]. For example, utilizing a
HMAC-like construction (like it is done in the LANE hash function [21]) prevents
the length extension attack, while our limited-birthday distinguishing attack
would remain perfectly valid.

4 Applications

In this section, we show a few application examples of our generic hash function
limited-birthday distinguisher from compression function semi-free-start colli-
sions. While some of the results we will present here are quite interesting such
as the �rst result on the full LANE hash function and improved results on
RIPEMD-128 and Whirlpool, some other do not reach the full number of
rounds or do not really improve over known distinguishers. However, we em-
phasize that due to the tremendous work required to analyze the collision resis-
tance of a compression function, we mostly based our application examples on
known semi-free-start collision attacks. Therefore, since beyond-birthday com-
plexity semi-free-start collisions were not searched for so far, we expect that
several of our results can be improved by allowing this extra complexity cost.
We summarize our distinguishers in Table 1. The limited-birthday distinguisher
on the hash function with |IN | = 1, OUT = {0} can be used to attack the dTCR
notion against the randomized hashing. Our results on HAS-160, RIPEMD-128,
and SHA-256 are the cases.



Table 1. Summary of the new results for the limited-birthday distinguishers on various
hash functions. For each primitive, we compare with any type of speci�c weakness
already identi�ed and reaching the highest number of rounds of the hash function.

target rounds time memory type source

AES-DM hash func. 7/10 2125 28 preimage attack [46]

AES-DM hash func. 6/10 2113 232 limited-birthday dist. Sect. 4.1

AES-MP hash func. 7/10 2120 28 2nd preimage attack [46]

AES-MP hash func. 6/10 289 232 limited-birthday dist. Sect. 4.1

HAS-160 hash func. 68/80 2156.3 215 preimage attack [19]

HAS-160 hash func. 65/80 281 280 limited-birthday dist. Sect. 4.2

LANE-256 hash func. full 2169 288 limited-birthday dist. Sect. 4.3

LANE-512 hash func. full 2369 2144 limited-birthday dist. Sect. 4.3

RIPEMD-128 hash func. full 2105.4 negl. limited-birthday dist. [29]

RIPEMD-128 hash func. full 295.8 233.2 limited-birthday dist. Sect. 4.4

SHA-256 hash func. 42/64 2251.7 negl. preimage attack [1]

SHA-256 hash func. 38/64 2129 2128 limited-birthday dist. Sect. 4.5

Whirlpool hash func. 6/10 2481 2256 preimage attack [48]

Whirlpool hash func. 7/10 2440 2128 limited-birthday dist. Sect. 4.6

4.1 Reduced-round AES-based hash functions

AES-128 [10] is a 128-bit block cipher with 128-bit keys and the NIST's cur-
rent block cipher standard. It is composed of 10 rounds (in the last round,
the linear di�usion layer is removed) and many recent hash functions got in-
spired by this design. Classic ways to securely turn a block cipher E into a
compression function h are known for a long time e.g., the Davies-Meyer mode
(h(CV,M) = EM (CV ) ⊕ CV ) or the Miyaguchi-Preneel mode (h(CV,M) =
ECV (M) ⊕M ⊕ CV ). Concretely, we will consider compression functions built
upon AES-128 in these two modes, and placed into a Merkle-Damgård domain
extension to obtain the hash function. This was actually a proposal by Cohen [8]
and the current best attack on the whole hash function is a 7-round preimage
attack [46], but with a complexity very close to the generic one. In this Section,
we will consider truncated di�erential paths and denote an active/inactive byte
by a black/white cell.

Davies-Meyer mode: we use the following 6-round truncated di�erential path:

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

KS

SB
SR AK6



The di�erential path in the key schedule can be handled independently from
the internal cipher part, and the cost is very low (only 6 Sbox transitions to
control). Using the Super-Sbox technique from [15, 28], one can derive a pair
verifying the 3 middle-left rounds part (light gray cells) with complexity 1 on
average. The rest of the truncated di�erential path is veri�ed probabilistically
forward and backward from this middle part. 5 Sbox di�erential transitions have
to be controlled on the left, 8 + 3 = 11 have to be controlled on the right, and
for each transition we can use the best 2−6 transition probability of the AES
Sbox. Therefore, the uncontrolled part of the di�erential path will be veri�ed
with probability 2−96 and one solution for the entire path (i.e. a semi-free-start
in the Davies-Meyer mode) can be found with complexity 296.

Using parameters n = k = 128, c = 112 and s = 16 for our conversion
algorithm, we obtain a hash function limited-birthday distinguisher complexity
of 2113 computations. Since di�erence on the input message of the compression
function is fully de�ned, we have I = 0 and our limited-birthday proof tells
us that the complexity for an ideal function is 2129. A basic freedom degrees
evaluation shows that one can generate much more semi-free-start collisions that
required.

Miyaguchi-Preneel mode: we use the following 6-round truncated di�erential
path:

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

KS

SB
SR AK6

Using the Super-Sbox technique, one can derive a pair verifying the 3 middle
rounds part (light gray cells) with complexity 1 on average. The rest of the path
is veri�ed probabilistically, with probability 2−32 (two MixColumns transitions
from 4 to 2 active bytes). Therefore, one solution for the entire path can be found
with complexity 232 and obtaining a collision at the output of the Miyaguchi-
Preneel mode requires an extra 216 for a total complexity of 248 computations.

Using parameters n = k = 128, c = 88 and s = 40, we obtain a hash function
limited-birthday distinguisher complexity of 289 computations. Since the input
message can contain only one byte of random di�erence we have I = 8 and
our limited-birthday proof tells us that the complexity for an ideal function is
2128−16+1 = 2113. Note that freedom degrees not a problem since we choose any
key value and for each key we expect about 28 semi-free-start collisions.

4.2 Reduced-round HAS-160

HAS-160 is a hash function standardized by the Korean government and widely
used in Korea [50]. Its structure is similar to SHA-1. It adopts the narrow-



pipe Merkle-Damgård structure, and produces 160 bits digests. The compression
function consists of 80 steps.

Although a distinguisher on the full compression function is known [47], the
current best attack for the hash function is a 68-step preimage attack proposed
by Hong et al. [19], which is slightly faster than the brute force attack. For a prac-
tical complexity, a semi-free-start collision attack for 65 steps of the compression
function was proposed by Mendel et al. [35].

The attack in [35] can generate a semi-free-start collision with complexity 1.
Moreover, the attack has enough amount of freedom degrees to generate many
semi-free-start collisions. Using parameters n = 160, k = 160, c = 80 and s = 80,
the distinguisher on the hash function can be mounted with a complexity of 281

compression function computations and 280 memory. Since the di�erential mask
on the message input is fully �xed, we have I = 0 and the generic complexity
to solve this limited-birthday instance is 2161 computations, which validates our
distinguisher.

4.3 LANE

LANE was designed by Indesteege [21] and submitted to the NIST's SHA-3 com-
petition. Although LANE did not make it to the second round of the process,
no security weakness has been discovered yet on the hash function. It adopts a
narrow-pipe Merkle-Damgård like structure.

The current most signi�cant attack on LANE is a semi-free-start collision
attack on the full compression function by Matusiewicz et al. [34] and its im-
provement by Naya-Plasencia [38], which generates semi-free-start collisions for
LANE-256 and LANE-512 with 280 and 2224 compression function computations
respectively and a memory to store 266 states.

By using our conversion method, this semi-free-start collision attack on the
compression function can be converted into a distinguisher on the entire hash
function (which tends to indicates thus it was eventually a wise move from NIST
to remove this candidate from the competition). Having no strong restriction on
the amount of freedom degrees, with parameters n = k = 256, c = 168 and
s = 88, the complexity of our distinguisher for LANE-256 is 2169 compression
function computations and 288 memory. On the other hand, the semi-free-start
collision attack accepts any di�erence on 10 �xed byte positions, which gives
us I = 80. Our limited-birthday proof tells us that the complexity for an ideal
function is 2256−80+1 = 2177, which validates our attack.

Regarding LANE-512, by choosing parameters n = k = 512, c = 368 and
s = 144, we minimize the distinguisher complexity to 2369 computations and
2144 memory. On the other hand, the semi-free-start collision attack accepts
any di�erence on 16 �xed byte positions, which gives us I = 128. Our limited-
birthday theorem tells us that the complexity for an ideal function to �nd this
input pair is 2512−128+1 = 2385, which validates our attack.



4.4 RIPEMD-128

RIPEMD-128 [12] is a 128-bit hash function (standardized at ISO/IEC [22]) that
uses the Merkle-Damgård construction and whose compression function has the
particularity to use two parallel computation branches. Semi-free-start collisions
on the compression function can be generated with 261.6 computations and neg-
ligible memory as shown recently [29]. Moreover, a distinguisher on the full hash
function was also proposed in the same article, requiring 2105.4 computations.

Using our conversion algorithm, we utilize the semi-free-start collision attack
to derive a limited-birthday distinguisher. Namely, using parameters n = k =
128, c = 94.8 and s = 33.2, we obtain a distinguisher complexity of 295.8 com-
putations and 233.2 memory (about 233.2 semi-free-start collisions need to be
generated, which seems to not be an issue as the authors of [29] analyzed that a
lot of freedom degrees were available). Since the di�erential mask on the message
input for the semi-free-start collision attack is fully �xed, we have I = 0 and the
generic complexity to solve this limited-birthday instance is 2129 computations,
which validates our distinguisher.

4.5 Reduced-round SHA-256

SHA-256 [53] is one of the NIST approved hash functions. It is a narrow-pipe
256-bit hash function that uses the Merkle-Damgård construction and whose
compression function is composed of 64 rounds. Recently, a semi-free-start colli-
sion attack on 38-round reduced SHA-256 compression function has been pro-
posed [36] with a complexity equivalent to 237 computations. However, once a
semi-free-start collision has been found many can be obtained for free, providing
an average cost of a single operation per solution. The currently best known at-
tack on the hash function is a preimage attack [1] on 42 rounds with complexity
2251.7 computations.

We utilize the semi-free-start collision attack to derive a limited-birthday
distinguisher. Namely, using parameters n = k = 256, c = 128 and s = 128, we
obtain a distinguisher complexity of 2129 computations and 2128 memory (about
2128 semi-free-start collisions need to be generated in our case, which is possible
when studying the di�erential path provided in [36]). Since the di�erential mask
on the message input for the semi-free-start collision attack is fully �xed, we
have I = 0 and the generic complexity to solve this limited-birthday instance is
2257 computations, which validates our distinguisher.

4.6 Reduced-round Whirlpool

Whirlpool [44] is a 512-bit hash function proposed by Rijmen and Barreto
in 2000. which was standardized by ISO [22] and recommended by NESSIE
[40]. The compression function consists of a 10-round AES-based cipher in a
Miyaguchi-Preneel mode and whose key schedule also consists of AES-like rounds.
The current best attack in the hash function setting is a 6-round preimage at-
tack by Sasaki et al. [48]. Lamberger et al. presented a 7-round near-collision



attack [28]. Although it can handle the �xed IV , the attack cannot satisfy the
padding constraint and thus does not apply on the full hash function.

We propose a 7-round distinguisher by using our conversion method. The
base of our distinguisher is a semi-free-start collision attack for 7 rounds of
the Whirlpool compression function proposed by Lamberger et al. [28], which
requires 2128 compression function computations and memory to store 2128 states
to generate a semi-free-start collision. However, the amount of freedom degrees
only allows to generate 272 solutions and once a precomputation table with 2128

entries is built, the average complexity of generating a semi-free-start collision is
2120, not 2128. Therefore, we have parameters n = k = 512, c = 192 and s = 72
for our limited-birthday distinguisher.

The attack complexity is then 2440 computations and 2128 memory. Since
for Lamberger et al.'s attack, only a single byte will contain an uncontrolled
di�erence, we have I = 8 and the limited-birthday proof tells us that in the
ideal case �nding such a pair should cost 2505 computations.

Conclusion

In this article, we have explored the limited-birthday distinguishers for the case
of hash functions. We believe that this type of distinguishers is powerful, and
will provide new insights on how hash functions can simulate random oracles in
practice. Surprisingly, on both the hash or the compression function, cryptana-
lysts can now look for collision attacks beyond the birthday bound and up to the
preimage bound. Finally, our conversion algorithm is yet another argument in
favor of long-pipe hash functions, which seems to be a good protection against
compression function weaknesses turning into hash function weaknesses.

As future work, we leave the security proofs for the permutation case as an
open problem. It would also be worth analyzing other types of distinguishers,
such as the ones based on integral attacks [27], and try to derive better lower
bounds for the ideal case. Obviously, on the cryptanalysis side, it would interest-
ing to see how far can the limited-birthday distinguishers go for high-end hash
functions, and in particular to what extent can the known (semi)-free-start col-
lision attacks be extended, by allowing the attacker a computation limit up to
the preimage bound.
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8 rounds of AES

input output

Fig. 2. The limited-birthday distinguisher on AES 8 rounds by Gilbert and Peyrin [15].
Distinguishers aim to �nd a pair of values satisfying the above truncated di�erential
forms for input and output. Grey cells represent the bytes where any di�erence is
acceptable. Therefore, the number of active bits for the input state is 32 bits, namely,
I = 32. and similarly, O = 32. Inactive bits are represented by empty cells.


