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Abstract

Related-key and chosen IV attacks are well known cryptanalytic tools in crypt-
analysis of stream ciphers. Though the related-key model is considered to be much
more unrealistic scenario than the chosen IV model we show that under certain cir-
cumstances the attack assumptions may become equivalent. We show that the key
differentiation method induces a generic attack in a related-key model whose time com-
plexity in the on-line phase is less than the exhaustive key search. The case of formal
equivalency between the two scenarios arises when so-called differentiable polynomials
with respect to some subset of key variables are a part of the state bit expressions
(from which the output keystream bits are built). Then the differentiation over a key
cube has the same effect as the differentiation over the corresponding IV cube, so that
a generic nature of a related-key model is transferred into a more practical chosen IV
model. The existence of such polynomials is confirmed for the reduced round stream
cipher TRIVIUM up to some 710 rounds and an algorithm for their detection is pro-
posed. The key differentiation method induces a time/related-key trade-off (TRKTO)
attack which (assuming the existence of differentiable polynomials) can be run in a
chosen IV model. The resulting trade-off curve of our TMDTO attack is given by
T 2M2D2 = (KV )2 (V denoting the IV space), which is a significant improvement
over the currently best known trade-off TM2D2 = (KV )2 [12].

Keywords: Stream ciphers, Cryptanalysis, Chosen IV attacks, Related-key attacks,
Time-Memory-Data trade-off attacks, Differntiable polynomials, Key differentiation.

1 Introduction

The use of concepts similar to differential cryptanalysis for block ciphers was frequently
employed in cryptanalysis of stream ciphers during the eSTREAM project [14]. These
attacks are commonly referred as chosen IV or related-key attacks where the attacker
is supposed to freely choose IV values and/or different keys in order to extract certain
information about the secret state and/or key bits.

This approach has been successfully used in the cryptanalysis of the stream cipher LILI-
128 [3], where different IV’s used with a fixed secret key revealed a partial information
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about the state bits. Also a similar approach was deployed in [25] in cryptanalysis of
TURING cipher. In other direction the eSTREAM proposal Py [8] (and its tweaks PyPy
and PyPy6) was successfully cryptanalyzed using the differential cryptanalysis [24].

A general framework of differential cryptanalysis in stream ciphers was studied in [7],
where the effect of IV/key difference is analyzed through the differential characteristics
at the state variables ((∆key,∆IV ) → ∆S). In more recent papers [16, 17, 28], the
approaches based on statistical analysis or efficient application of chosen IV attacks have
been investigated. In this context we also mention a generic attack known as Cube Attack
[11], where the method of tweaking the polynomials (as a generic method applicable in a
black box scenario) may lead to efficient attacks on certain stream cipher designs. In this
approach, the attacker is supposed to heuristically find the so-called cube indices of an IV
vector so that the chosen IV attack with respect to the summation of outputs over all cube
points eventually results in linear equations. While this has been successfully applied to
TRIVIUM [10] with the KSA reduced to 672 rounds, the verfication of the algorithm [5]
has shown that the method fails in providing linear equations when the number of rounds
is increased to 735 or 770.

Related-key attacks on stream cipher are often of limited practical significance, though
there are examples of its efficient applications and it is regarded as a standard attack
scenario (cf. [7]). For instance, related-key weaknesses of the stream cipher RC4 led to a
practical attack on the WEP protocol [18]. Furthermore, a related-key approach was used
to mount a distinguishing attack on the family of stream ciphers Py, PyPy, PyPy6 and
TpyPy [27]. The output keystream sequence of these ciphers could be distinguished from
a true (pseudo)random sequence when the identical IV is used to encrypt two messages
with different and related keys. Related-key attacks have also been widely employed in
block cipher cryptanalysis, see e.g. [26, 13, 23].

Though the main idea of the above mentioned cube attacks is somewhat similar to
the approach taken in this work, there are significant differences between the two. In
the first place, our approach does not necessarily seeks for linear (low degree) equations.
The generic approach that combines the ideas of a chosen IV and a TMDTO attack only
requires the existence of so-called differentiable polynomials as a part of the keystream bit
expressions. In other words, we consider the case when the output keystream contains a
polynomial of the form d(IV,K) =

∏m
l=1(IVil + kjl)g(IV

∗,K∗), where g(IV ∗,K∗) is some
complex function in the key and IV variables but does not depend on the key variables
kj1 , . . . , kjm (and possibly does not depend on the variables IVi1 , . . . , IVim either). In
addition, if the IV cube IVi1 , . . . , IVim is not covered by some larger IV cube (where
covering has a standard notion cf. Section 2.3) the differentiation over the key cube or
alternatively over the IV cube given above leads to the cancellation of all the terms but
the polynomial g(IV ∗,K∗). Since this polynomial does not depend on the key variables
kj1 , . . . , kjm the removal of these variables induces a generic TMDTO attack with the
currently best known trade-off curve. The trade-off curve is given by T 2M2D2 = (KV )2,
where T,M,D denote respectively the time, memory and data complexity while K and
V denote the key and IV space. This is a significant improvement over the currently best
known trade-off TM2D2 = (KV )2 of Dunkelman and Keller [12].

In difference to standard cube attacks our approach does not put any further conditions
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on the degree and the complexity of the function g(IV ∗,K∗) which may be arbitrary
complex function in the remaining key and IV variables. On the other hand, our method
needs a certain justification that the scenario described above is realistic. While the
existence of such polynomials (and their identification) in the state bit expressions after
running the KSA may be highly unlikely, many ciphers initially load the key and IV
bits into the state in a linear manner. This state is called presetup state, and is further
processed through KSA to yield the initial state of the cipher. For instance, the presetup
state for TRIVIUM, SNOW 2.0 [15], GRAIN-128 [20] and many other ciphers, is formed
by loading the key and IV bits in a specific linear manner. We demonstrate that the
linear relations of the form

∏m
l=1(IVil +kjl) are indeed present in a real-life ciphers such as

TRIVIUM. TRIVIUM actually generates 66 such relations of the form (IVi+kj) in the first
66 steps of the KSA procedure (in a consecutive manner). Then, gradually, more complex
linear relations are built (containing more terms) due to its simple state update mechanism
that, apart from taking some state bits in a linear manner, takes two consecutive terms
to build a quadratic term out of these. Therefore, quite likely the state bits of TRIVIUM
may contain the expressions of the form d(IV,K) =

∏m
l=1(IVil + kjl)g(IV

∗,K∗).
Even though, in the case of TRIVIUM, we may only suspect the existence of differen-

tiable polynomials in the keystream bits satisfying the above mentioned conditions, there
is no guarantee that the linear relations generated in the early phase of the KSA are
later preserved. Therefore, a simple algorithm for the purpose of testing the unknown
keystream expressions for the existence of these differentiable polynomials is devised. No-
tice also that when in particular TRIVIUM is considered our observation may largely
reduce the search for suitable IV cubes. Indeed, if for instance moderate cube sizes are
tested, say cubes of size 15 for instance, since we are only checking the cubes with consec-
utive indices we would just check some 65 cubes (assuming 80 cube indices). In the case
of the exhaustive search

(80
15

)
= 252.5 cubes need to be checked which is infeasible, and

definitely unfavourable compared to our method. Our algorithm has proved successful in
identifying the existence of differentiable polynomials for the reduced round TRIVIUM
of up to 710 rounds. Nevertheless, due to utterly increased complexity and the form of
the state bit equations other differentiable polynomials (which are nonconsecutive with
respect to the key and IV indices in the linear product) are also discovered.

In a more restrictive model of related-key attack, using the assumption that a sub-
set of the key variables and all the IV variables are kept fixed while the remaining key
variables are varied over all possible values, we show that the key differentiation leads to
a time/related-key trade-off (TRKTO) curve rather than to a standard time-memory
trade-off (TMTO) curve [4, 19, 9, 22]. Instead of the relation T · M = N charac-
teristic for a TMTO curve, the relation T · RK = K, involving the space of related
keys RK and the key space K, is approximately satisfied. The parameters T , M and
N stands respectively for time, memory complexity and the state size. The motiva-
tion for studying this attack model, apart from a theoretical contribution and the fact
that related-key attacks are considered as a valid attack scenario, may in certain set-
tings also be justified from the application point of view. Namely, a closer inspection
of the expression d(IV,K) =

∏m
l=1(IVil + kjl)g(IV

∗,K∗), as a part of a much larger
keystream bit expression s(IV,K) (so d(IV,K) ∈ s(IV,K)), indicates that essentially
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the differentiation over a key cube (varying some key variables over all possible values)
gives identical result as the differentiation over the corresponding IV cube. That is, as-
suming that the remaining terms in s(IV,K) does not cover the above IV cube we get
⊕

IVi1
,...,IVil

b(x) =
⊕

kj1 ,...,kjl
b(x) = g(IV ∗,K∗). This means that under the conditions

described previously the two models of attack are equivalent in the sense that in both
cases the result may be a complete elimination of a certain subset of key variables. The
existence of differentiable polynomials then essentially leads to a generic TMTDO attack
which is mounted in a chosen IV model, and the resulting trade-off curve of our TMDTO
attack is given by T 2M2D2 = (KV )2, where T,M,D denote respectively the time, mem-
ory and data complexity while K and V denote the key and IV space. This is a significant
improvement over the currently best known trade-off TM2D2 = (KV )2 of Dunkelman
and Keller [12].

The paper is organized as follows. In Section 2 the main differential attack scenarios
are discussed. It is then shown that the key differentiation in general eliminates the pres-
ence of the key variables the differentiation is performed on. The notion of differentiable
polynomials is introduced in Section 3, and furthermore an algorithm for testing their
existence is given. A generic related-key attack based on the method of key differenti-
ation is described in Section 4, and its corresponding IV model is also discussed here.
Furthermore, a comparison to cube testers and chosen IV statistical analysis is given in
this section. In Section 5, we derive new TMDTO curves based on the key differentiation
method and compare our curves with the currently best known ones. The concluding
remarks are given in Section 6.

2 Key and IV differentiation attack models

In this section we give a brief overview of different attack scenarios in connection to their
algebraic representations. In particular, the key differentiation method in a related-key
model of attack is introduced.

2.1 Algebraic representation of the initialization process

Technically, given a stream cipher that allows an exact algebraic description, the cipher
is fully specified by the key/IV setup algorithm (KSA) and encryption algorithm whose
input parameters includes the key, IV, and state size.

Prior to the execution of KSA the key and IV bits are initially loaded into the state
of the cipher, thus so-called presetup state Sps = (sps0 , sps1 , . . . , spsL−1) is created. The KSA
procedure then processes these bits in an iterative and nonlinear manner. The result of
this phase is a so-called initial state S = (s0, s1, . . . , sL−1) of the cipher. For simplicity, we
assume the key and IV vector are of the same length κ, and the size of the state L ≥ 2κ
is chosen to be at least twice the key length to withstand time-memory-data trade-off
attacks, see for instance [9, 22]. Now given a fixed key K and a publicly known IV (i) the

state bits s
(i)
r , r = 0, . . . , L− 1 can be expressed as,

s(i)r = fr(IV
(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) = gr(IV
(i)
1 , . . . , IV (i)

κ , k1, . . . , kκ) + hr(k1, . . . , kκ)
(1)
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Let I,J = {1, 2, . . . , κ} denote the set of indices for the IV vector respectively the key
bits. Then another convenient algebraic representation, used in [28], is to represent the
secret bits as a collection of terms as follows,

s(i)r =

{1,2,...,κ}
⊕

I=∅

ar,IIV
(i)
I

[
⊕J

J=∅
br,I,JKJ

]
=

=
⊕

I⊂I;I 6=∅

ar,IIVI

[
⊕JJ=∅br,I,JKJ

]

︸ ︷︷ ︸

g
(i)
r

⊕ [⊕JJ=∅br,JKJ ]
︸ ︷︷ ︸

hr

, for 0 ≤ r ≤ L− 1, (2)

where ar,I , br,I,J are algorithm specific binary coefficients, and for a given subset I =
{i1, . . . , il} ⊂ I the term IVI denotes IVI = IVi1IVi2 · · · IVil and similarlyKJ = kj1kj2 · · · kjp
for some J = {j1, . . . , jp} ⊂ J . We note that treating both the key and IV (i) as variables
the coefficients ar,I , br,I,J do not depend on the specific choice of IV’s.

Given an algebraic description of the state of the cipher after running the KSA, the
attacker can try to reduce the complexities of these relations by either applying the chosen
IV attack, related key attack or alternatively to combine these two. Though similar in
their essence, the cryptanalytic aspects significantly differ depending in which scenario
the attack is performed.

2.2 Chosen IV attacks

A chosen IV attack is a very realistic scenario in which the attacker chooses a certain
subset of all possible IV’s in order to combine the relations of resulting state bits and to
hopefully derive simple relations between the state bits and secret key bits. Assume that
for a fixed key, the attacker is able to trace a certain subset of IV’bits say I∗ for which
relatively simple relations may be derived. The easiest way to understand this approach
is to fix some portion of IV bits to zero in all positions but those that correspond to some
I∗ = {i1, i2, . . . , im} that we vary over all its possible values. Thus, given such an IV and
its subset of indices I∗ such that IVi = 0 if i 6∈ I∗, any secret state bit sr, r = 0, . . . , L−1,
can be expressed as,

sr =
⊕

ξ⊂I(l)

ar,ξIV
(l)
ξ

[
⊕JJ=∅br,ξ,JKJ

]
⊕ [⊕JJ=∅br,JKJ ] = IV

(l)
i1

[
⊕JJ=∅br,i1,JKJ

]
⊕ (3)

⊕ IV
(l)
i2

[
⊕JJ=∅br,i2,JKJ

]
⊕ · · · ⊕ IV

(l)
i1

IV
(l)
i2
· · · IV

(l)
im

[⊕JJ=∅br,I∗,JKJ ]⊕ [⊕JJ=∅br,JKJ ].

Then summing over all possible values of the IV cube specified by the indices from I∗,
i.e., adding together the state bit expressions for all possible values of the IV variables
IVi1 , . . . , IVim the attacker obtains,

I∗⊕

I=∅

sr = ⊕
J
J=∅br,I∗,JKJ = g(k1, . . . , kκ).

Nevertheless, the same approach is valid in general if the differentiation is performed over
a sufficiently large IV cube such that this cube is not covered by any other IV cube, which
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essentially means that the KSA of the considered cipher has additional property that the
coefficients ar,I = 0 in (2) for any I such that I∗ 4 I. Here, we have used the covering
relation for monomials IVI∗ and IVI , where IVI∗ 4 IVI means that I∗ = {i1, . . . , im} ⊂
I = {i1, . . . , ip}. This is exactly the idea that has been used in [28], where an semi-
exhaustive search was performed over the suitable set of indices I∗ of length (weight) 6
to derive linear expressions relating keystream bits of a reduced KSA TRIVIUM [10] and
the secret key bits. This means that for the particular IV cubes found in [28] the function
g(k1, . . . , kκ) was extremely simple (essentially a linear function in the secret key bits)
which then allowed an efficient attack on a reduced round TRIVIUM. This framework has
been later generalized in [11] and [1], where the same idea was presented in a wider scope;
the attack is known as “cube attack”.

2.3 Related-key attacks

In a related-key model the attacker can observe the operation of a cipher under several
different keys whose values are initially unknown, but where some mathematical relation-
ship connecting the keys is known to the attacker. In connection to the chosen IV model
let now the set J = {j1, . . . , jp} denote the set of positions over which the key variables
are varied, while the remaining key variables are kept fixed. Then given some fixed IV
vector the equation (2) can be rewritten as follows,

s(i)r =

{1,2,...,κ}
⊕

M=∅

br,IKM = KJg(kjp+1 , . . . , kjκ) +
⊕

I;J 64I

br,IKI , r = 0, . . . , L− 1, (4)

where g does not depend on the key variables with indices from J . Then, similarly to the
chosen IV case, varying the key variables kj1 , . . . , kjp over all possible values gives,

⊕

(kj1 ,...,kjp)∈{0,1}
p

(
KJg(kjp+1 , . . . , kjκ) +

⊕

I;J 64I

br,IKI

)
= g(kjp+1 , . . . , kjκ).

The cancellation of the remaining terms in the first sum is due to the fact that KJ equals
to zero for all (kj1 , . . . , kjp) ∈ {0, 1}

p but for (kj1 , . . . , kjp) = (1, . . . , 1). On the other hand,
in the second sum due to the condition J 64 I there will always be some variable kjl such
that jl ∈ I but jl 6∈ J , which in turn implies the cancellation of such a monomial when
the summation is performed over all possible values of (kj1 , . . . , kjp) ∈ {0, 1}

p.

Example 1 Let the secret state bit sr be evaluated as sr = k1k3k4k5 ⊕ k1k3k6 ⊕ k2k5k6 ⊕
k2k6⊕ k3⊕ k1; after the IV value has been specified. Then differentiating w.r.t. k1 and k3
we have,

∑

(k1,k3)∈{0,1}2

sr = k4k5 + k6.

Note that k2 is also eliminated but only due to the particular form of sr.

It is important to notice that the differentiation over a key cube always removes the key
variables over which the differentiation is performed from any state bit polynomial which
is not the case in a chosen IV model when the differentiation is performed over an IV
cube.
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3 Differentiable polynomials

The two attack models discussed in the previous section both have certain limitations.
In a related-key model the key differentiation method is always possible which inevitably
leads to a certain reduction of the key variables, but the attack assumptions are rather
restrictive. On the other hand, in a chosen IV model the current approaches such as the
cube attack may lead to finding low degree equations in key variables (even linear) but
there is no guarantee that such equations really exist.

In what follows we introduce a notion of differentiable polynomials that will help us
to treat the state polynomials in an efficient way. For convenience, if some function that
generally depends on all the key and IV variables, which is denoted by g(IV,K), does
not depend on some subset of the key and IV variables with indices from J∗ and I∗,
respectively, we write g(K \KI∗ , IV \ IVJ∗). For simplicity, let us assume that some state
bit of the cipher is given by,

sr = (kj1 + IVi1)(kj2 + IVi2) · · · (kjm + IVim)g(k1, . . . , kκ, IV1, . . . , IVκ)

=
∏

i∈I∗,j∈J∗

(kj + IVi)g(K \KI∗ , IV \ IVJ∗) = pJ∗,I∗g(K \KI∗ , IV \ IVJ∗), (5)

where I∗ = {i1, . . . , im} ⊂ I and J∗ = {j1, . . . , jm} ⊂ J .

Definition 1 A polynomial d(K, IV ) = pJ,Ig(K\KI∗ , IV \IVJ∗) with the separation of the
key and IV variables is called differentiable with respect to the key variables kj1 , . . . , kjm
and the IV variables IVi1 , . . . , IVim .

Notice that the above polynomial d(K, IV ) may be differentiated either over the IV cube
with indices from I∗ or over the key cube with indices from J∗, that is,

I∗⊕

I=∅

d(K, IV ) =

J∗

⊕

J=∅

d(K, IV ) = g(K \KI∗ , IV \ IVJ∗).

A major difference between the two approaches that the key variables kj1 , . . . , kjm will
vanish after the differentiation over the key cube even though g does depend on these
variables, that is, if g is of the form g(K, IV \ IVJ∗), cf. Section 2.3. The next example
illustrates the case when the differentiation over an IV cube does not necessarily imply
the removal of the key variables. Such a class of polynomials is called non-differentiable
polynomials with respect to some subset of key variables.

Example 2 Let sr = k1(k1 ⊕ IV1)k2(k2 ⊕ IV2)g(k3, . . . , kκ, IV3, . . . , IVκ). Then clearly
the differentiation with respect to IV1 and IV2 cannot eliminate the presence of k1, k2 as,

⊕

IV1,IV2

sr = k1k2g(k3, . . . , kκ, IV3, . . . , IVκ).

On the other hand, if sr = (k1 ⊕ IV1)(k2 ⊕ IV2)g(k3, . . . , kκ, IV3, . . . , IVκ) then,
⊕

IV1,IV2

sr = g(k3, . . . , kκ, IV3, . . . , IVκ).
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Thus, we can only eliminate those key variables in pJ∗,I∗ that do not appear in the expres-
sions of the form kj(kj+IVi). This is the reason why the effect of the differentiation of the
above polynomial d(IV,K) was the elimination of the considered key variables regardless
of the scenario of attack.

It is completely unrealistic to expect that the state bit expressions are of the form
as d(IV,K) is, no matter how complex the function g(K \ KI∗ , IV \ IVJ∗) might be.
Nevertheless, it might be the case that d(IV,K) ∈ sr and the remaining terms are such
that for any IV cube that covers IV ∗ (IV ∗ 4 IV ) the coefficient ar,I = 0 in (2) so that the
terms (polynomials) ar,IIVI

[
⊕JJ=∅br,I,JKJ

]
are not present in the symbolic expression of

sr for any I such that IV ∗ 4 IV . This may be justified by the fact that the state update
algorithm is not sufficiently fast and nonlinear to ensure that the symbolic expressions
of the state bits behave as randomly generated functions in the key and IV variables.
This is also the main reason for the weakness of reduced round TRIVIUM where the
differentiation over relatively small sized IV cubes (of length 12) gave a rise to linear
equations. Therefore, if the attacker has some a priori knowledge about the structure
of the cipher (s)he might guess that some differentiable polynomials of the above form
constitute a part of the state bit (keystream) polynomials.

We now generalize our approach to consider arbitrary complex polynomials using the
above representation. A standard representation given by (1) and (2) was obtained by
extracting the IV monomials and the corresponding polynomials in the key bits. Instead,
we can extract a suitable maxterm of the form pJ∗,I∗ =

∏

i∈I∗,j∈J∗(kj + IVi) and the
corresponding polynomial g(K \KI∗ , IV \ IVJ∗). That is, let us assume that the output
keystream bit zt can be written as,

zt = pJ∗,I∗g(K \KI∗ , IV \IVJ∗)

{1,2,...,κ}
⊕

I=∅

ar,IIV
(i)
I

[
⊕JJ=∅br,I,JKJ

]
, ar,I = 0 if I∗ 4 I. (6)

The term pJ∗,I∗ =
∏

i∈I,j∈J(kj + IVi) is called a maxterm with respect to variables from
I as ar,I = 0 for all I∗ 4 I. Then, we have

⊕

IVi1
,...,IVim

zt = g(K \KI∗ , IV \ IVJ∗).

This means that most of the terms are cancelled leaving out only the function g that does
not depend on the key variables with indices from J∗. If for instance g is affine function
in the key and IV bits this gives one linear equation, and the whole procedure is repeated
using some other maxterms (including other key and IV variables). A special case arises
when g(K \KI∗ , IV \ IVJ∗) = 1 since in this case we cannot perform the differentiation
w.r.t. all the IV variables as we do not get any dependency on the key variables. Thus,
in this specific case we may for instance compute,

⊕

IVi2
,...,IVim

zt = kjl + IVil ,

where apart from the above assumption we also assume that the coefficient ar,I\il = 0.
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Example 3 Let the state bit sr of the cipher be given by,

sr = (k1 ⊕ IV1)(k2 ⊕ IV2)(k3 ⊕ IV3)g1(k4, . . . , kκ, IV4, . . . , IVκ) +

+ (k1 ⊕ IV1)(k2 ⊕ IV2)g2(k4, . . . , kκ, IV4, . . . , IVκ) +

+ (k1 ⊕ IV1)(k4 ⊕ IV4)g3(k5, . . . , kκ, IV5, . . . , IVκ)

The differentiation with respect to the maxterm pJ,I = (k1 ⊕ IV1)(k2 ⊕ IV2)(k3 ⊕ IV3)
yields,

⊕

IVj ;j∈J

sr = g1(k4, . . . , kκ, IV4, . . . , IVκ),

where J = {1, 2, 3}.

3.1 Differentiable polynomials of TRIVIUM

In this section we demonstrate that our description of a cipher, having a specific structure
as previously described, is justified for some real-life algorithms as the case of TRIVIUM
confirms. It might be the case that some other ciphers that mix the key and IV variables
in a linear manner also admit such a description though we do not pursue this issue further.

TRIVIUM is a hardware oriented stream cipher that reached the final third phase of
the eSTREAM project. It uses three LSFRs whose total length is 288, thus the state of
the cipher is given by S = (s1, s2, . . . , s288). The state is contained in the three LFSRs
so that the first register comprises the state bits s1, . . . , s93, the second register stores
s94, . . . , s177, and s178, . . . , s288 are kept in the third register. In the output mode the
following computations are performed:

– Define t1 = s66 ⊕ s93, t2 = s162 ⊕ s177, and t3 = s243 ⊕ s288.
– The output keystream is formed as z = t1 ⊕ t2 ⊕ t3.
– Update the ti’s according to

t1 = t1 ⊕ s91 · s92 ⊕ s171; t2 = t2 ⊕ s175 · s176 ⊕ s264; t3 = t3 ⊕ s286 · s287 ⊕ s69;

– Finally the registers are updated as follows:

(s1, . . . , s93) = (t3, s1, . . . , s92); (s94, . . . , s177) = (t1, s94, . . . , s176);

(s178, . . . , s288) = (t2, s178, . . . , s287);

The initialization loads the 80-bit key to s1, . . . , s80, and the 80-bit IV vector to the
positions s94, . . . , s173. The remaining state bits are filled with zeros apart from s286, s287
and s288 which are set to one; this way the presetup state Sps is completed. The key/IV
setup is performed by clocking the cipher 4 · 288 = 1152 times without producing the
output.

Though, there is no linear mixing in the presetup state, it can be easily verified that
after running the key/IV setup a certain number of clocks the internal state will contain
desired equations that mix the IV and key bits in a linear manner. For convenience, let

us denote the state at time i by Si = (s
(i)
1 , . . . , s

(i)
288), where S(0) = Sps. Then after the
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very first clock the update variables are computed as t1 = k66 ⊕ IV78, t2 = IV69 ⊕ IV80,

and t3 = k69. Hence, s
(1)
94 = k66 ⊕ IV78 and thereby one linear relation is obtained. It is

straightforward to check that the KSA of TRIVIUM admits 12 linear relations after the
first 12 clocks,

s
(i)
94 = k67−i ⊕ IV79−i, i = 1, . . . , 12,

which leads to the following internal state after 12 clocks:

(s
(12)
1 , . . . , s

(12)
66 , k55, . . . , k66, s

(12)
79 , . . . , s

(12)
93 , k55 ⊕ IV67, . . . , k66 ⊕ IV78, s

(12)
106 , . . . , s

(12)
288 ).

After these 12 immediate linear relations among the key and IV bits, the state bit s94 at
t = 13 is given by,

s
(13)
94 = (k54 ⊕ IV66)⊕ k79k80.

Then, during the further state updates the following recursion is valid,

s
(13+i)
94 = (k54−i ⊕ IV66−i)⊕ k79−ik80−i ⊕ k81−i, i = 1, . . . , 53.

Thus in total there are 66 linear relations among the key and IV bits k67−i ⊕ IV79−i,
for i = 1, . . . , 66. It is important to notice that the linear relations in TRIVIUM of the
form k67−i ⊕ IV79−i, i = 1, . . . , 66, are consecutive due to the selection of the update
positions (using two consecutive bits as a quadratic update term). Thus, due to the
update algorithm of TRIVIUM, the state bits of a reduced round TRIVIUM will contain
differentiable expressions of the form

(k66−i−j ⊕ IV78−i−j)(k66−i+1−j ⊕ IV78−i+1−j) · · · (k66−j ⊕ IV78−j)
︸ ︷︷ ︸

KJ

, (7)

as their subterm, where j ∈ [0, 54] and i+ 1 is then length of the IV cube. For instance,
if only 288 rounds of the KSA are used then we were able to perform differentiation over
the IV cubes of length four and to retrieve the key bits in the same manner as it was done
in [28, 11]. Moreover, the computer simulations performed on reduced round TRIVIUM
indicate that differentiable polynomials in the above form are present in the state bit
expressions if the KSA is run up to 700 rounds.

Note that the above linear relations are only a part of in general huge symbolic ex-
pressions that describe a particular state/output keystream bit. Furthermore, these linear
relations may also be multiplied with some polynomials g(IV,K) which may or may not
depend on a certain portion of the key bits. We cannot trace these huge symbolic ex-
pressions unless the number of rounds is relatively small, for instance if the initialization
process only takes some 200-300 rounds. Therefore, we need some kind of heuristic algo-
rithm to test for the presence of differentiable polynomials.

3.2 An algorithm for the determination of the existence of differentiable

polynomials

Assume that our targeted cube is specified by the indices from I∗ = {i1, . . . , im}, thus the
differentiation is performed over all possible values of IVi1 , . . . , IVim . Now, if zt is given
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by (6) the result of differentiation is g(K \K∗, IV \ IV ∗) which does not depend on the
key and IV variables with indices from J∗ and I∗, respectively. More precisely, for fixed
α ∈ IV \ IV ∗ and β ∈ K \K∗, we have

⊕

IVi1
...,IVim

zt = g(β, α) = const. ∀γ ∈ K∗.

Moreover, there are three cases that need to be considered.
(1) For a fixed α ∈ IV \ IV ∗ and some fixed value of the key variables from K∗,

say γ ∈ K∗, we can randomly choose different β ∈ K \ K∗ and check the differentiated
value,

⊕

IVi1
...,IVim

zt = g(β, α). If the values of g(β, α) is changeable then it means that

deg(g) ≥ 1, i.e, function g depends only on the key variables of K \K∗.
(2) For a fixed α ∈ IV \ IV ∗, if this constant value is equal to 0 (i.e, const=0) then it

might be the case that
⊕

IVi1
...,IVim

zt = 0 is identically zero which might indicate that the

differentiation is performed over an IV cube that is too large. This also means that there
is a possibility that zt cannot be represented in the form given by (6). Nevertheless, this
case can be checked further by taking different α ∈ IV \ IV ∗. If the differentiated value
⊕

IVi1
...,IVim

zt = g(β, α), (β ∈ K \K∗) still remains zero then with a very high probability

the output keystream bit does not contain a differentiable polynomial in the above form
with respect to the IV cube specified by the indices from I∗.

(3) For a fixed α ∈ IV \ IV ∗, we select some random different β ∈ K \K∗ and check
⊕

IVi1
...,IVim

zt = g(β, α). If the differentiated value
⊕

IVi1
...,IVim

zt = g(β, α) = 1, then

with a high probability we have g = 1.
The algorithm can be described by the following steps:

INPUT : A targeted IV cube with indices from I∗, the corresponding key cube with
indices from J∗, and a cipher to be tested.

1. Select some fixed α ∈ IV \ IV ∗ and randomly chosen different β ∈ K \ K∗ and
γ ∈ K∗.

2. For each given α ∈ IV \ IV ∗ and β ∈ K \K∗, compute
⊕

IVi1
...,IVim

zt = g(β, γ, α)

by varying many different γ ∈ K∗ and if
⊕

IVi1
...,IVim

zt = g(β, γ, α) 6= const go

back to (1) and choose another α ∈ IV \ IV ∗ and β ∈ K \K∗. If
⊕

IVi1
...,IVim

zt =

g(β, γ, α) = const for many different γ ∈ K∗, then perform the next step.

3. For each fixed α ∈ IV \ IV ∗, check
⊕

IVi1
...,IVim

zt = g(β, α) by using different

β ∈ K \ K∗. If the values of g(β, α) is changeable then report the Existence of
differentiable polynomial with α ∈ IV \ IV ∗. If the values of g(β, α) is constant,
then perform the next step.

4. If
⊕

IVi1
...,IVim

zt = g(β, α) = 0, then report the Nonexistence of differentiable

polynomial w.r.t. α ∈ IV \ IV ∗. On contrary, if
⊕

IVi1
...,IVim

zt = g(β, α) = 1, then

report the Existence of differentiable polynomial w.r.t. α ∈ IV \ IV ∗ and g = 1.
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Remark:
(1) In Step 2, to check that g(K \K∗, IV \ IV ∗) does not depend on the key variables

with indices from J∗, we may also choose a method similar to Probabilistic Neutral Bits
(PNB) method introduced in [2].

(2) In the case that g(K \KJ∗ , IV \ IVI∗) = 1, i.e, the function g itself is a constant
function and therefore it cannot be used to distinguish the correct subkey in our TMTO
attack. Nevertheless, this also indicates that the differentiation should be performed over
a smaller cube.

We give a few computer simulated examples below concerning the cubes with consec-
utive indices of the TRIVIUM cipher. Notice, that we are not restricted to consider only
the cubes with consecutive indices (cf. Example 6) as our algorithm works for any choice
of the indices.

Example 4 For a reduced round TRIVIUM, let the targeted cube be {IV67, . . . , IV78} (12
bits in total), and let the remaining IV bits be given by IVi = 1, for i ≡ 0 (mod 3),
otherwise IVi = 0. Let also the corresponding key cube be given by {k55, . . . , k66}, i.e.,
k67−i ⊕ IV79−i, i = (1, . . . , 12). Then computer simulations show that the first bit of the
output after 582 rounds of the initalization contains a differentiable polynomial.

Example 5 Similarly, if the targeted cube is {IV54, . . . , IV76} (23 bits in total) and let
the corresponding key cube be {k42, . . . , k64}, i.e., k67−i ⊕ IV79−i, for i = 3, . . . , 25.. Then
the existence of differentiable polynomials could be confirmed for TRIVIUM reduced to 632
rounds.

Example 6 For TRIVIUM reduced to 710 rounds it seems that the cubes with consecutive
indices are not necessarily preferable. Let

I∗ = {15, 19, 20, 22, 25, 28, 30, 38, 41, 47, 49, 51, 56, 58, 61, 65, 66, 68, 69, 70, 72, 76, 79},

where #I∗ = 23, and let the remaining bits of the initial vector be set to one (IVi = 1). Let
also the corresponding key cube be related to the IV bits through the relation kj = IVj−12

so that J∗ = {i− 12 : i ∈ I∗}. Our simulations show that there are IV cubes of length 22
(and the corresponding key cubes) such that we could identify the existence of differentiable
polynomials of the form

22∏

i=1

(k67−j ⊕ IV79−j)× g(K \KI∗ , IV \ IVJ∗ ,

where (ki, IVj) are pairs satisfying the relation of k67−j⊕IV79−j , j ∈ {3, . . . , 66}.) Then the
first bit of the output of 710 reduced round TRIVIUM show the existence of differentiable
polynomials.

4 Generic key differentiation attacks in a related-key model

The main idea of our approach is that the key differentiation allows for an efficient removal
of a certain subset of key variables from the state bit expressions. Under a reasonable
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assumption that the key differentiation may only be performed over a portion of the
key variables, our approach also utilizes some ideas of TMTO attacks so that the tables
storing the differentiated expressions are created in the precomputation phase. In brief,
for any possible value of a subset of the key variables of cardinality 2κ−m over which the
key differentiation is not performed a small symbolic expression in a few key variables
is stored as one entry of the table. The correct values of these key bits are identified by
comparing the evaluations of the differentials stored in the table during the precomputation
phase to the differentials evaluated via the observed keystreams. This attack is only of
theoretical significance, as it will be shown later that its complexity roughly corresponds
to an attack based on the birthday paradox of Biham [6], but since the details of the
attack are essentially the same as in the case the attack has been performed in a chosen
IV model we give a full description.

Let the secret state bits of the cipher after running the KSA be given by s0i =
fi(IV1, . . . , IVκ, k1, . . . , kκ), i = 0, . . . , L − 1. Also for t ≥ 0 let the new state be up-

dated through (st+1
0 , . . . , st+1

L−1)
S
← (st0, . . . , s

t
L−1), and the output at time t is computed

as zt = ht(st0, . . . , s
t
L−1). For convenience, for J∗ = {ki1 , . . . , kim} ⊂ K we introduce the

following notation ∆J⊂J∗

zt = zt(IV,K) + ztki∈J :1+ki←ki
(IV,K). That is, we perform a

formal key differentiation by considering the modulo two sum of the original keystream
expression and the expression obtained by replacing the key variables from the set J by
their inverted values ki + 1. To reduce the computational complexity in the precomputa-
tion phase a key guessing method prior to differentiation is deployed. The attack proceeds
as follows.

Off-line precomputation phase

1. Let G = {j1, j2, . . . , jκ−m} ⊂ {1, 2, . . . , κ} be a set of indices for which we evaluate
the si’s for all 2κ−m possible choices of the key variables kj1 , kj2 , . . . , kjκ−m

. Thus,
given an IV vector the attacker may compute symbolic expressions for the state
bit equations sti = f t

i (IV,K) to obtain sti = f t
i (kjκ−m+1 , . . . , kjκ), i = 0, . . . , L − 1,

t = 0, . . . κ for each possible value of kj1 , kj2 , . . . , kjκ−m
. This way 2κ−m×L symbolic

state bit expressions sti = f t
i (kjκ−m+1 , . . . , kjκ) are temporarily stored in a table for

each t. Each of these expressions contains no more than 2m terms (the expressions
depend on the m key variables).

2. The attacker then performs the differentiation of the output keystream expres-
sions zt = ht(st1, . . . , s

t
L−1) = h̃t(kjκ−m+1 , . . . , kjκ) with respect to some subset

D = {kjκ−m+1 , . . . , kjκ−c
} of the key bits of cardinality #D = m − c, where c is

a small positive integer, e.g. c = 1 or c = 2. The resulting differentials

⊕

J⊂D;J 6=∅

∆Jzt = h̃t,D(kjκ−c+1 , . . . , kjκ), . . . ,
⊕

J⊂D;J 6=∅

∆Jzt+d+r = h̃t+d+r,D(kjκ−c+1 , . . . , kjκ),

only depend on c key variables, and choosing d = 2c ensures that the above sys-
tem of d nonlinear equations of degree at most c can be solved using for instance
linearization (introducing new variables for the nonlinear terms) once the differen-
tials

⊕

J⊂D;J 6=∅∆
Jzt, . . . ,

⊕

J⊂D;J 6=∅∆
Jzt+d have been computed from the observed
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keystream sequences. The whole procedure can be repeated for the other subsets
of the key bits D′ = {kj′κ−m+1

, . . . , kj′κ−c
} so that the nonlinear expressions in c

key variables are disjoint with the previous expressions (different key variables are
chosen).

The computation of the above differentials is performed for each guessed value of
kj1 , . . . , kjκ−m

and the functions h̃t,D, . . . , h̃t+d+r,D are stored in a table T which is
later used in the on-line phase of the attack.

The additional r differential values
⊕

J⊂D;J 6=∅∆
Jzt+d+1, . . . ,

⊕

J⊂D;J 6=∅∆
Jzt+d+r

are stored for the purpose of identifying the right key variables kj1 , kj2 , . . . , kjκ−m
,

see Step 3. in the on-line phase below. The total storage required is therefore of
order O((r + d)2κ−m) ≈ O(2κ−m), and the time complexity is dominated by the
computation of differentials O(2κ−m2m) = O(2κ).

On-line phase

1. The attacker observes the output keystream bits zt,J , . . . , zt+d+r,J (where J ⊂ D =
{kjκ−m+1 , . . . , kjκ−c

}) generated by a fixed and known IV and different 2m−c keys
(alternatively the key is fixed and 2m−c chosen IV ’s are used if the transformation
of the attack scenario is possible). These keys are derived form a single (master) key
by varying the key variables {kjκ−m+1 , . . . , kjκ−c

} over all possible values. The data
complexity is therefore 2m−c related-key keystream sequences of length d+r ≈ 2c+κ,
see below for the specification of r.

2. From the observed keystreams zt,J , . . . , zt+d,J , J ⊂ D the attacker can evaluate the
differentials

⊕

J⊂D;J 6=∅∆
JztJ , . . . ,

⊕

J⊂D;J 6=∅∆
Jzt+d

J in time instances t, t+1, . . . , t+
d. The evaluation only uses the observed keystream bits and is performed once for
all. The time complexity is of order O(d2m−c). For instance, at time t the attacker
computes,

[
⊕

J⊂D;J 6=∅

∆Jzt]ev. = (zt|kjκ−m+1
+ zt|kjκ−m+1

+1) + (zt|kjκ−m+2
+ zt|kjκ−m+2

+1) + · · · +

+ (zt|kjκ−m+1
,kjκ−m+2

,...,kjκ−c
+ zt|kjκ−m+1

+1,kjκ−m+2
+1,...,kjκ−c

+1).

These values are used to solve 2κ−m many systems of nonlinear equations of size 2c

that are stored in the table T ,

[
⊕

J⊂D;J 6=∅

∆Jzt]ev. = h̃t,D,G(kjκ−c+1 , . . . , kjκ), . . . , [
⊕

J⊂D;J 6=∅

∆Jzt+d]ev. = h̃t+d,D,G(kjκ−c+1 , . . . , kjκ),

thus retreiving kjκ−c+1 , . . . , kjκ for each guessed key value from G. The time com-
plexity of this step is of order O(23c2κ−m), corresponding to solving 2κ−m many
systems of size 2c.

3. To identify the correct key bits kj1 , kj2 , . . . , kjκ−m
(and thereby the correct values of

kjκ−c+1 , . . . , kκ) the attacker compares the differentials of the true outputs

[
⊕

J⊂D;J 6=∅

∆Jzt+d+1]ev., . . . , [
⊕

J⊂D;J 6=∅

∆Jzt+d+r]ev.
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to the differentials

⊕

J⊂D;J 6=∅

∆Jzt = h̃t+d+1,D,G(kjκ−c+1 , . . . , kjκ), . . . ,
⊕

J⊂D;J 6=∅

∆Jzt+d+r = h̃t+d+r,D,G(kjκ−c+1 , . . . , kjκ).

The latter differentials are computed by evaluating the nonlinear equations stored
in the table T for each guessed value kj1 , kj2 , . . . , kjκ−m

. Due to the computational
complexity of Step 3. above, the parameter c is chosen so that c � κ − m. To
extract the correct key bits kj1 , kj2 , . . . , kjκ−m

and kjκ−c+1 , . . . , kjκ the constant r
must satisfy r > κ −m − c. The selection of such r then enables the extraction of
a unique correct partial key. All other key candidates are expected not to pass the
above differential test.

4. Once the correct values of kj1 , kj2 , . . . , kjκ−m
and kjκ−c+1 , . . . , kκ have been retrieved,

the remaining key bits kjκ−m+1 , . . . , kjκ−c
can be found by repeating the same pro-

cedure for different disjoint choices of these c key variables.

The complexity estimate is governed by the choice of the parameters m and c. In-
creasing m makes the attack more unrealistic as the attacker is supposed to observe 2m

sequences generated by different keys and the same IV . Both time and memory com-
plexity in the off-line precomputation phase are dominated by computing and storing the
differentials. The time complexity is of order O(2κ) and the memory complexity of this
phase is O(2κ).

In the on-line phase the attacker performs 23c2κ−m ×m/c computations, which corre-
sponds to solving 2κ−m many systems of nonlinear equations of size 2c for m/c different
disjoint subsets of the c key variables. This is the worst case complexity as these non-
linear equations may be of significantly smaller size than 2c. Thus, the time complexity
in the on-line phase is O(23c2κ−m), and the memory requirements are negligible. Still,
the attacker in the on-line phase makes use of the table T of size O(2c2κ−m). The data
complexity is 2m−c ×m/c related-key keystream sequences of length 2c + κ.

We illustrate the whole idea with an example, considering a hypothetical toy cipher.

Example 7 Let us consider a toy cipher that uses the secret key K = (k1, k2, k3, k4, k5, k6) =
(0, 1, 1, 1, 0, 0) and some known IV . Assume that the first three (secret) initial state bits
are given by,

s0 = k1k2k3 + k3k4 + k3 + k4 + k2k5 + k1k2k6 + k3k5k6,

s1 = k1k3k4 + k2 + k4 + k2k6 + k3k5k6 + k1k2k5 + k1k2k4k6 + k1k2k4k5,

s2 = k1k2k4 + k2k3k4 + k1 + k2 + k3 + k2k3k5 + k1k4k6 + k4k6 + k1k2k3k6,

and furthermore let z1 = s0+s1, z2 = s0+s2, and z2 = s0+s1+s2. The attacker for each
possible value of k5 and k6 (for a given and known IV ) evaluates symbolic expressions for
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the differentials ∆k1,k2z1, ∆
k1,k2z2, and ∆k1,k2z3 which is summarized in Table 1 below.

The computation of these differentials is only given for the case (k5, k6) = (0, 0),

z1 z2
∆k1z1 = ∆k1(s0 + s1) = k2k3 + k3k4 ∆k1z2 = ∆k1(s0 + s2) = k2k3 + k2k4 + 1
∆k2z1 = ∆k2(s0 + s1) = k1k3 + 1 ∆k2z2 = k1k3 + k3k4 + k1k4 + 1
∆k1,k2z1 = k3(1 + k1 + k2) + k3k4 + 1 ∆k1,k2z2 = k3(1 + k1 + k2) + k3k4 + k4(1 + k1 + k2)⊕

J⊂{k1,k2}
∆Jz1 = k3

⊕

J⊂{k1,k2}
∆Jz2 = k3 + k4

Also, one can compute
⊕

J⊂{k1,k2}
∆Jz3 = k3 + k4. For conciseness, we denote this

differentials by ∆symzi.

(k5, k6) = (0, 0) (k5, k6) = (0, 1) (k5, k6) = (1, 0) (k5, k6) = (1, 1) ∆Jzev.i

∆symz1 k3 k3 + k4 + 1 k3 + k4 + 1 k3 + k4 ∆Jzev.1 = 1

∆symz2 k3 + k4 k4 + 1 k3 + k4 k4 + 1 ∆Jzev.2 = 0

∆symz3 k3 + k4 1 k3 + 1 k4 ∆Jzev.3 = 0

Table 1: A table with symbolic expressions

The attacker observes the outputs z1, z2, z3 for the incremented values of the key bits
k1 and k2, thus he is able to evaluate the actual differentials (the last column in the table).
For the given values of K we may check that either (k5, k6) = (0, 0) or (k5, k6) = (1, 0)
are the partial key candidates since the differentials in the first (or the third) column give
a solvable set of equations. For instance, if (k5, k6) = (0, 0) then,

⊕

J⊂{k1,k2}

∆Jzev.1 = (z1|k1=0 + z1|k1=1) + (z1|k2=1 + z1|k2=0) + (z1|(k1,k2)=(0,1) + z1|(k1,k2)=(1,0)) =

= (1 + 1) + (1 + 0) + (1 + 1) = 1 = k3,

and similarly
⊕

J⊂{k1,k2}
∆Jzev.2 = 0 = k3+k4, and

⊕

J⊂{k1,k2}
∆Jzev.3 = 0 = k3+k4. This

system also gives the correct values for the key bits k3 = 1 and k4 = 1. Note that e.g. the
differentials in the second column exclude the value (k5, k6) = (0, 1) since the differential
w.r.t. z3 is different than the evaluated one, and the same is true for the fourth column.
To filter out the key candidate (k5, k6) = (1, 0) a few more differentials need to be stored
in the table and evaluated during the on-line phase.
In this example the key bits k1, k2 can then be either found by an exhaustive search or a
similar procedure is repeated but now the differentiation is performed over k3 and k4 .

4.1 Adopting our related-key algorithm in a chosen IV model

We now once again consider a suitable representation of the keystream polynomial in
order to discuss the formalism of translating the generic key-related attack into a chosen
IV attack. If the output bit zt may be represented as,

zt = pJ∗,I∗g(K \KI∗ , IV \ IVJ∗)

{1,2,...,κ}
⊕

I=∅

ar,IIV
(i)
I

[
⊕JJ=∅br,I,JKJ

]
, ar,I = 0 if I∗ 4 I,
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where pJ∗,I∗ =
∏m

l=1(IVil + kjl), then we already remarked that it is irrelevant whether
the differentiation is performed over the IV cube with indices from I∗ or over the key
cube with indices from J∗. This essentially means that the effect of the differentiation is
exactly the same in both cases, more precisely the key variables with indices from J∗ are
no longer present in the differentiated polynomial.

A major difference compared to standard chosen IV attacks is that the differentiation
over the IV cube corresponding to I∗ would leave a complex polynomial g as the differential
value so that no simple relations among key variables could be deduced. Indeed, the above
equation can be rewritten as,

zt = IVi1IVi2 · · · IVimg(K \KI∗ , IV \ IVJ∗)

{1,2,...,κ}
⊕

I=∅

a′r,IIV
(i)
I

[
⊕JJ=∅br,I,JKJ

]
,

where again a′r,I = 0 if I∗ 4 I.
Thus, the result of the IV differentiation is some arbitrarily complex polynomial g(K \

KI∗ , IV \IVJ∗) which due to the absence of key variables with indices from J∗ is processed
in a similar way as in the case of the related-key method.

It is important to notice that our assumption about the knowledge of the remaining IV
bits, that is the portion IV ∗ = I \ {IVi1 , . . . , IVim} may give a rise to unfair comparison
to some other trade-off attacks and therefore we consider two variants. In the first model,
the assumption is that we know the subset I\{IVi1 , . . . , IVim} of IV bits in advance which
gives a better trade-off curve. In the second scenario, this subset of bits is not known in
advance (which is more realistic assumption) and the algorithm is then supposed to create
more tables for storing computed differentials for many choices (the number of choices will
follow the birthday paradox) of these IV bits. The algorithm proceeds as follows.

Off-line precomputation phase

1. Assume that a fixed portion IV \ {IVi1 , . . . , IVim} of the IV vector is known, and
suppose the presence of a differentiable polynomial in the keystream bit

zt = ptJ∗,I∗g
t(K \KI∗ , IV \ IVJ∗)

{1,2,...,κ}
⊕

I=∅:I∗ 64I

ar,IIVI

[
⊕JJ=∅br,I,JKJ

]
,

has been detected. The attacker now performs the differentiation of the output
keystream expressions,

⊕

(IVi1
,...,IVim)∈GF (2)m

zt = gt(K \KI∗ , IV \ IVJ∗).

Thus, these differentials can be stored in a sorted table T for each possible value of
the key variables with indices in J \J∗. This way 2κ−m×d differentials are computed
at time instances t = 1, . . . , d by summing the output values for all possible choices
of the IV values in the set I. The number of differentials d, for each possible value
for the subset of key variables above, is selected so that these binary sequences of
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length d are uniquely distinguished with respect to the subkey. Since there are 2κ−m

such sequences our estimate is that d ≈ κ is sufficient.

The total storage required is therefore of order O(2κ−m), and the time complexity
is dominated by the computation of differentials, which is O(2κ−m2m) = O(2κ).

On-line phase

1. The attacker observes the output keystream bits zt,I
∗

, . . . , zt+d,I∗ generated by a
fixed secret key and for all possible values of the IV variables with indices in I∗,
whereas the remaining IV bits are known and kept fixed. This means that zt,I

∗

is
actually a sequence of bits computed for each possible value of IVi1 , . . . , IVim . The
data complexity is therefore 2m output keystream sequences of length d.

2. From the observed keystreams zt,I
∗

, . . . , zt+d,I∗ the attacker can evaluate the differ-
entials ⊕

IVi1
,...,IVim∈GF (2)m

zt,I
∗

, . . . ,
⊕

IVi1
,...,IVim∈GF (2)m

zt+d,I∗

in time instances t, t+1, . . . , t+d. The evaluation only uses the observed keystream
bits and is performed once for all. The time complexity is of order O(d2m).The
binary differential sequence of length d is then matched to the entries stored in the
table T , so that the portion of the key bits J \J of cardinality κ−m is retrieved. The
time complexity of this step is negligible, and the last step corresponds to recovering
the remainingm key bits by an exhaustive search, thus the time complexity is O(2m).

4.2 A comparison to cube testers and statistical chosen IV attacks

In 2009, the concept of the cube testers was introduced by Aumasson et. al in [1]. In
difference to the standard cube attacks, the cube testers focus on detecting the nonran-
dom behaviors of a given cipher system. These nonrandom behaviors usually include the
property of balancedness, the presence of linear/neutral variables and some other crite-
ria. It was demonstrated that the cube testers can detect the nonrandomness over 18
reduced rounds of MD6 algorithm only with 217 complexity. Moreover, cube testers can
also successfully detect nonrandomness on TRIVIUM reduced to 885 rounds with only 227

complexity (these results are current the best known records). It is clear that cube testers
only detect nonrandom behavior rather than recovering the secret key.

Unlike the cube testers, our key differentiation attacks perform a key extraction pro-
cess. Though the differentiation polynomial detection method in our attack shares a
similar principle as the neutral variables tests in cube testers, the goal of our key differen-
tiation attacks is to perform a generic TMTDO attack to recover the secret key rather than
detecting the nonrandomness of the cipher system. More precisely, let us still consider
that the output keystream bit zt can be written as,

zt = pJ∗,I∗g(K \KI∗ , IV \IVJ∗)

{1,2,...,κ}
⊕

I=∅

ar,IIV
(i)
I

[
⊕JJ=∅br,I,JKJ

]
, ar,I = 0 if I∗ 4 I. (8)

where pJ∗,I∗ =
∏

i∈I,j∈J(kj + IVi).
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For standard cube testers, the nonrandomness of g(K\KI∗ , IV \IVJ∗) =
⊕

IVi1
,...,IVim

zt

may be checked. For instance, the fact that the key variables KI∗ are not present
in
⊕

IVi1
,...,IVim

zt does not give an immediate approach for employing this result in a

key recovery attack. On the other hand, our key differentiation attack aims at recovering
these secret bits in (K \KI∗) using TMTDO methods (see also Section 5, whereas a guess
and determined attack is used for the remaining key bits. Therefore, for the recovery of
secret key bits, the key differentiation attacks have a more generic approach than cube
testers.

In 2008, Fischer et. al proposed a new method for key recovery attacks on stream
ciphers [17] based on the framework for chosen IV statistical distinguishers [16]. The
basic idea comes from the distributed algebraic structure of the encryption (Boolean)
function F (K,V ), where K and V denote the secret key bits and the initialization vector
bits, respectively. Given a partition V = (U,W ), an adversary can obtain simpler Boolean
functions C(K,W ) from F by varying over the bits in U only. If this function C(K,W )
has some nonrandom behavior, for instance imbalanced property, or there are many key
bits that have no influence on the values of C(K,W ), then the adversary can perform
a key recovery attack, where the nonrandom behavior is usually detected by using the
approximation of the polynomial description of C(K,W ), alternatively the probabilistic
neutral key bits method [2] is used. Moreover, it is shown that the attack can perform a
partial recovery of the key bits for 672 reduced rounds Trivium and to Grain-128 reduced
to 80 rounds [17].

There are two main differences between chosen IV statistical analysis in [17] and our
key differentiation attacks: (1) The distinguisher of chosen IV statistical analysis comes
from the observation of the algebraic structure of function C(K,W ). But our distinguisher
is based on the differential properties of summed output values of C(K,W ) by varying
over the bits in U , i.e., the expression of the form

∑

U C(K,W ) is considered. (2) The
distinguisher used in the chosen IV statistical analysis if a probabilistic one due to the
probabilistic approximations (with probability p < 1) of the given functions C(K,W ). On
contrary, the distinguisher in our key differentiation attacks always have probability p = 1,
which is completely determined by the function

∑

U C(K,W ). Therefore, the chosen IV
statistical analysis and our key differentiation attacks have different attack principles.

5 Time-memory trade-off attacks

Trivially, to retrieve a secret encryption key the adversary may try one of the two extreme
solutions: an exhaustive key search and a table attack. The former attack is performed on-
line in a known plaintext scenario by testing all possible keys until the key that matches a
given plaintext-ciphertext pair is found. On the other hand, in the table attack the attacker
precomputes the encryptions of a chosen plaintext using all possible keys. Then in the
on-line phase the observed ciphertext is compared to the entries in the table to identify
the key. Here, the on-line time complexity is negligible but the memory requirement is
equal to the key space. Of course, the underlying assumption for the table attack is that
the used IV is known to the attacker, otherwise a similar table must be constructed for
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all possible IV s.
The time-memory trade-off (TMTO) attacks was first introduced by Hellman in the

context of a chosen plaintext attack [21] to block ciphers, as a trade-off solution between the
two extreme approaches above. The precomputed tables that cover the whole key space are
smaller but the attack also implies a non-negligible time complexity in the on-line phase.
Denoting by K a total key space the resulting trade-off is given as TM2 = K2, where M is
the memory storage used in the precomputation phase, and T is the time complexity in the
on-line phase. A convenient choice for these parameters is M = T = K2/3 which gives a
complexity beyond the exhaustive key search. The attack also includes a precomputation
step that corresponds to K encryptions. The basic idea is to reuse the precomputed table
(which is done once for all) for retrieving secret keys in subsequent encryptions, assuming
that the same plaintext target has been encrypted. Remark that the attack is meaningful
only if M,T < K.

In the realm of stream ciphers the first TMDTO (time-memore-data trade-off) attack
was proposed independently by Babbage [4] and Golić [19]. Let N denote the size of
the internal state of the cipher (in our notation N = 2L). Then, given D data points
(keystreams produced by the same secret key and different IV s) the goal of the attacker
is to recover any secret state that corresponds to one of these D keystreams. In the
precomputation phase the attacker evaluates the function,

f : (logN)-bit state→ (logN)-bit output keystream,

and sorts the pairs (s, f(s)) with respect to the second coordinate in a table T . If N/D
such pairs are stored then by the birthday paradox one expects that one among the D
keystreams will be found in the table. The time complexity is therefore T = D and the
precomputation and memory complexity are of the same size, i.e., P = M = N/D. The
main problem with this approach is that the internal state of modern ciphers is made large
(commonly |N | ≥ 2κ) and therefore D must be very large so that the resulting attack (a
point on the trade-off curve N = T ·M) is faster than exhaustive search. In particular,
one may choose T = M = D = N1/2 which also constitutes an attack, and it suggests
that the length of the state is at least 2κ bits to achieve a theoretical κ bit security, see
[4].

The TMDTO attack of Babage and Golic was improved by Biryukov and Shamir
[9], using the Hellman’s tables in the context of stream ciphers. In this case multiple
Hellman’s tables are created, where N/D of the total internal state. The attack again
aims at recovering any of the secret states corresponding to D different keystreams. The
main benefit of this approach is an improved TMTO curve given by,

TM2D2 = N2, P = M = N/D,

which is valid for 1 ≤ D2 ≤ T . The most useful point on the curve is T = M = N1/2 and
D = N1/4. A further refinement of this approach was suggested in [22]. It was observed
that the TMTO curve is not related to the state size but rather to the effective size of the
state. Therefore, increasing the state of the cipher while keeping the sizes of the key and
IV fixed does not affect the resistance to TMTO attacks. If κ and v denote respectively
the key and IV length then a TMTO attack can be applied using T = M = 2

1
2
(κ+v) and
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D = 2
1
4
(κ+v) rather than using T = M = N

1
2 and D = N

1
4 , where the state space N = 2L

can be significantly larger than 2κ+v. For κ = v, the on-line phase of the TMTO attack is
T = M = 2κ and the precomputation phase is P = 2κ+v/D = 2

3
2
κ.

Prior to the work of Dunkelman and Keller [12], all the TMTO attacks against stream
ciphers have treated the initialization vector as a part of secret material. That is, the
function to be inverted was of the form f : (K, IV ) → Output Prefix, where “Output
Prefix” is a portion of the keystream of length κ + v generated by the cipher. As argued
in [12], in the context of a chosen IV attack, this treatment is not necessarily optimal.

Let V = 2v denote the number of all possible IV s and let D be the number of
keystreams generated by the same secret key and different IV s. The attacker may in
advance select a portion of all possible IV ’s, of cardinality V/D, and for each IV in this
set he prepares Hellman’s tables. But this time, since IV s are known, the function to
be inverted is f : K → Output Prefix. The resulting trade-off curve using this approach
turns out to be,

TM2D2 = (KV )2.

Thus, the curve is essentially the same as the original curve of Biryukov and Shamir, but
the difference lies in its extended range of applicability. Namely, the restriction on the
parameters in the original curve T ≥ D2 is removed which gives more flexibility to select
the trade-off parameters.

In the sequel we compare the performance of our attack to the standard TMDTO
attacks mentioned above. Since the method of key differentiation is applicable in a related-
key and chosen IV scenario, we consider the two cases separately. While in a related-key
model our trade-off curve coincides with the key collision attack of Biham [6], in a chosen
IV scenario our method yields a better trade-off curve than the above approaches.

5.1 TMDTO attack in a related-key model

The basic assumption of our related-key model is that the IV is known in advance (or even
not used) while the keys to be used in encryptions are related in a known (incremental)
manner. This means that in a classical TMTO attack the function to be inverted is of
the form f : (K,fixed IV)→ Output Prefix, where due to the increment of a subset of m
key variables only the remaining κ−m key bits are to be considered as unknown. As no
multiple data points, in a standard sense, are used (the IV is fixed) the Hellman’s tables
is given by TM2 = K2, where we set D = 1.

As already noticed, our attack induces a trade-off curve given by MT = K or alter-
natively MD = K, as D = T . In the related-key model the collision attack of Biham
[6], which is essentially an application of the birthday paradox, seems to be the most
appropriate method for the sake of comparison. Instead of precomputing the encryptions
under all possible keys, in this method encryptions under 2κ−m randomly chosen keys are
stored in a table. Then if the attacker observes 2m many encryptions with different keys,
by the birthday paradox one expects that one of these keys will match to one of the keys
stored in a table. The method is very simple and the resulting TMDTO curve is given by
M · T = K, where M = 2κ−m is the memory complexity and T is the on-line time com-
plexity. The data complexity equals to time complexity D = T as for each different key
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the attacker only needs to perform a single table look-up, i.e. T = 1 for each data point.
In our case the attack assumption is more restrictive, that is we assume that a portion
of the secret key is incremented in different sessions. This means that the keys are not
random. For both attacks, once the master key has been found all the other derived keys
are compromised as well. However, if IV is not fixed better methods than the collision
attack exist.

5.2 TMDTO attack in a chosen IV model

In the sequel we compare the TMDTO curve of Dunkelman and Keller to the trade-off
curve that will be derived for our method. It turns out that our curve will be defined by
T 2M2D2 = (KV )2, which then implies a better performance of our attack.

In the approach of Dunkelman and Keller, the attacker chooses V/D many IV s in
advance and given the D keystreams generated by different IV s with probability 40% the
secret key will be found in the precomputed Hellman’s tables. When the key differentiation
is equivalent to the IV differentiation (the effect of elimination of a certain subset of key
variables), we assume that a targeted subset of IV bits of cardinality m is incremented
during different sessions, whereas the remaining part of the IV bits of size v −m is fixed
and has to be known in advance. The knowledge of these v−m IV bits would then favour
our attack, and the resulting trade-off curve would be given by MT = K as in the case of
the related-key attack. Indeed, the memory requirement is of size O(2κ−m) and the time
complexity is O(2m), which then gives MT = K.

Therefore, to make a fair comparison between the two methods, we assume the attacker
has no a priori knowledge of this subset of IV bits (which is a more reasonable assumption
by the definition of an IV ). Now, the attacker is supposed to create 2(v−m)/2 tables for
randomly chosen IV s, where only a portion of v−m bits of these IV s is to be matched to
the v−m bits of the IV used in encryption. Then, if 2(v−m)/2 many sessions with different
IV s are observed, then by the birthday paradox there will be a prepared table to match
one of these IV s at these v−m positions. This obviously implies a certain increase of the
storage, namely by factor 2(v−m)/2 (compared to the known IV case), that is,

M ′ = 2(v−m)/2M = 2(v−m)/22(κ−m).

Similarly, D′ = 2(v−m)/2D = 2(v−m)/22m, while the time complexity remains the same
T ′ = T = 2m. Indeed, the attacker observes the used IV s and performs no operations
until the portion of some IV gives a match. Then he computes the differentials for that
session, retrieve κ−m secret key bits and find the remaining key bits using an exhaustive
search.

It is straightforward to deduce that our attack induces the following TMDTO curve,

T ′M ′D′ = KV, or T ′2M ′2D′2 = (KV )2.

This attack scenario can be employed in the applications that use a new value for
a portion of the IV bits in each encryption session, while the remaining IV bits are
incremented for the encryption of each new frame, message etc.. Therefore, multiple data
points D′ = 2(v−m)/22m = DsDV are collected, where DV denotes encryptions under the
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same secret keys and different and related IV s, and Ds is the number of different sessions
that use different values for the subset of v −m IV bits.

In the above scenario, the method in [12] can also be adopted to take advantage of
the known portion of the IV bits. The attacker only needs to consider v − m IV bits
while the remaining m bits can be set to arbitrary value (due to the assumption that
the encryption in any single session exhaust all possible values of these bits). Thus, it
suffices to construct Hellman’s tables for 2(v−m)/2 randomly chosen IV values, where
for each IV t tables of size s are constructed. Therefore, the memory requirement is
st2(v−m)/2. The t tables store the start and the end value of the repeated computation,
x→ fi(x)→ f2

i (x) = fi(fi(x)) · · · → f t
i (x), for i = 0, . . . , t−1, for some s random starting

points x. Here, fis are small modifications of function f to be inverted. Given the IV
vector for which the Hellman’s tables are created, to find the value of the secret key in
the table (that is to find x given some f(x)) the t2 calls to fis are needed, which is the
time complexity of the attack. In order to cover the whole key space the size of Hellman’s
tables must satisfy st2 = K. Using these relations, the following trade-off curve can be
derived,

TM2 = t2s2t22(v−m) = K2V 2−m ⇒ TDV M
2 = K2V.

Compared to the original TMDTO curve of Dunkelman and Keller given by TM2D2 =
(KV )2, the modification of the attack scenario yields a certain improvement.

Let us compare the performance of the algorithms taking into account these modifi-
cations. Obviously our time complexity is 2m which cannot be reached by the TMDTO
of Dunkelman and Keller unless the memory usage is unreasonably high. For m = 40,
|IV | = |K| = 80, the following trade-off parameters are obtained for our method,

M = 260, T = 240, D = DsDV = 220240 = 260.

If we now allow even for a larger memory storage M = 270 the trade-off parameters of
Dunkelman and Keller are given as,

K = st2,M = st2(v−m)/2 ⇒ t = 230, s = 220 ⇒ T = 260

which is clearly inferior to our trade-off.
Another comparison (and many others can be given) relates to the particular instance

used in [12]. The authors consider an application of their method to a stream cipher with
parameters |K| = 64, and |V | = |IV | = 40. For this instance, they select the following
point on their TMDTO curve, T = M = 248, D = 232.

Fixing the memory storage M = 240 and m = 30, the modified TMDTO curve
TDV M

2 = K2V , that compensates for a partial knowledge of the IV bits, gives in this
case,

K = st2,M = st2(v−m)/2 ⇒ t = 229, s = 26 ⇒ T = 258.

If m = 30 is chosen in our attack, then the corresponding trade-off is,

M = 2(v−m)/2 · 2κ−m = 239, T = 2m = 230, D = 2(V −m)/22m = 235.
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6 Conclusions

We have developed a theoretical framework for using the technique of key differentiation
in the cryptanalysis of certain stream cipher designs. The attack is generic in a related-key
model while in a more realistic chosen IV model the key differentiation process may only be
performed if the presence of so called differentiable polynomials is identified in keystream
expressions. We leave the question of finding other suitable stream cipher algorithms
susceptible to this attack open.
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