
Anonymous HIBE from Standard Assumptions

over Type-3 Pairings using Dual System Encryption

Somindu C. Ramanna Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
e-mail: {somindu r,palash}@isical.ac.in

Abstract

We present the first anonymous hierarchical identity based encryption (HIBE) scheme using Type-3
pairings with adaptive security based on standard assumptions. Previous constructions of anonymous
HIBE schemes did not simultaneously achieve all these features. The new construction uses dual pairing
vector spaces using an identity hash earlier used by Boneh, Boyen and Goh. The proof of security
follows dual system approach based on decisional subspace assumptions which are implied by Symmetric
eXternal Diffie-Hellman (SXDH) assumption in Type-3 pairing groups.
Keywords: hierarchical identity-based encryption (HIBE), anonymous HIBE, asymmetric pairings,
dual-system encryption

1 Introduction

Identity-based encryption (IBE) allows a sender to encrypt a message using a receiver’s identity itself
as the public key. The receiver decrypts using its key obtained securely from a trusted authority called
private key generator (PKG) that distributes keys to all users. Hierarchical IBE (HIBE) enables PKG to
delegate key generation abilities to ‘lower-level’ entities, thus reducing its own computation overhead. A
well-studied interesting property of (H)IBE systems is anonymity which requires that a ciphertext does not
reveal the identity of the intended recipient. Anonymous HIBE was first formalised and studied by Abdalla
et.al [ABC+05]. These schemes also lead to constructions of protocols such as public key encryption with
keyword search (PEKS), public key encryption with temporary keyword search (PETKS) and identity-
based encryption with keyword search (IBEKS). These protocols have one common goal - to enable search
(based on some keywords) on encrypted documents along with the capability of delegating search.

Most known constructions of anonymous HIBE schemes are based on pairings. A pairing is a bilinear
map e ∶ G1 ×G2 → GT that is efficiently computable and non-degenerate. It is defined over groups G1, G2,
GT all having the same order N . N could be either composite or prime; also G1 and G2 could be the same
group. Prime-order pairings where the source groups (i.e., G1 and G2) are different (known as asymmetric
pairings) have the most compact and fast implementations, especially if there are no known isomorphism
between G1 and G2 that can be computed efficiently. Such pairings are called Type-3 pairings.

The focus of this work is anonymous HIBE schemes that can be instantiated using prime-order asym-
metric pairings. Usually, achieving anonymity is considered to be more tricky compared to non-anonymous

1



Scheme Pairing Security Assumptions Degradation

[BW06] Type-1 Selective-id DLin, DBDH O(1)
[SKOS09] Composite Selective-id h-weak BDHI*, h-composite DH O(1)
[DCIP10] Composite Adaptive-id Decisional subgroup O(q)
[Duc10] Type-3 Selective-id DBDH, P-BDH O(1)
[PL13] Type-3 Selective-id h-DBDHE, Augmented h-DLin O(1)

[LPL13] Type-3 Adaptive-id LW1, LW2, DBDH, SXDH, Asymmetric 3DH O(q)
[RS12] Type-3 Adaptive-id LW1, LW2, DBDH, A1 O(q)

This work Type-3 Adaptive-id SXDH O(q)

Table 1: Comparison of anonymous HIBE schemes based on pairings without random oracles.

HIBE. Several constructions have been proposed prior to this work. The first construction without random
oracles was given by Boyen and Waters [BW06] with a proof of security in the (weak) selective identity
model. Later constructions in [SKOS09, DCIP10] achieve the stronger notion of adaptive-identity security
but are instantiated with composite-order pairings. which are very inefficient compared to prime-order pair-
ings. On the other hand, composite order pairing has richer structure that is helpful in applying dual system
encryption [Wat09] techniques to prove adaptive security. On the other hand, prime-order pairings do not
have this structure. Schemes based on prime-order asymmetric pairings are also known [Duc10, PL13].
Both these schemes are only selectively secure. The works [LPL13, RS12] obtain adaptively secure anony-
mous HIBE using Type-3 pairings but a drawback is that security is based on some non-standard (but
static) assumptions.

Our Contribution. Our contribution is an anonymous HIBE scheme over Type-3 pairings with adaptive
security based on standard computational assumptions. The construction uses dual pairing vector spaces
introduced in [OT08, OT09]. These are mathematical structures that can be built upon Type-3 pairings
which are useful in achieving anonymity and at the same time enjoy the “nice” properties that are found
in composite order pairings suitable for dual system proofs. We combine the Boneh-Boyen-Goh [BBG05]
(BBG) technique to hash the identity and Boyen-Waters [BW06] method to enable rerandomisation during
key delegation. Security is proved using the dual system technique [Wat09, LW10], where two kinds of
ciphertexts and keys are defined - normal and semi-functional that play a major role in arguing about
adaptive security. The main challenge we faced was in defining the keys, the semi-functional space and
creating sufficient amount of randomness to generate them during simulation. We get around this problem
by working over vector spaces of dimension linear in the maximum depth of the HIBE.

Table 1 provides a comparison of our scheme with existing anonymous HIBE schemes. Here h denotes
the maximum depth of the HIBE and q is the total number of key extraction queries in the security
game. Note that in contrast to all other schemes, our scheme achieves adaptive security based on SXDH
assumption which is a standard assumption in Type-3 pairings. As a result, our scheme is the first instance
of fully secure anonymous HIBE based on standard assumptions over Type-3 pairings.

2 Preliminaries

Here we provide a few notation and preliminary definitions. The definition of HIBE and its security are
provided in Appendix A.

2



2.1 Notation

For a set X , the notation x1, . . . , xk ∈R X (or x1, . . . , xk
R←Ð X ) indicates that x1, . . . , xk are elements of X

chosen independently at random according to some distribution R. We use the two notations interchange-
ably. The uniform distribution is denoted by U. For a (probabilistic) algorithm A, x←Ð A(⋅) means that
x is chosen according to the output distribution of A (which of course may be determined by its input).
For two integers a < b, the notation [a, b] represents the set {x ∈ Z ∶ a ≤ x ≤ b}. Let G be a finite cyclic
group and G× denote the set of generators of G.

For a prime p, we denote by Zp the field of order p and Znp the vector space of all n-tuples over Zp.
Vectors over Zp will be represented by lower case letters with an arrow on top (e.g. v⃗). 0⃗ is the all-zero

vector. For vectors u⃗ = (u1, . . . , un)T and v⃗ = (v1, . . . , vn)T , ⟪u⃗, v⃗⟫ denotes their inner product ∑ni=1 uivi.
Zn×np denotes the set of all n×n matrices over Zp and GL(n,Zp), the general linear group of degree n over
Zp. Matrices over Zp are represented by bold face upper case letters (e.g. X). Let V and V∗ be vector
spaces over Zp obtained by direct product of groups G1 and G2 of order p. Vectors in V shall be expressed
as bold face letters, for example b. The asterisk symbol is used to differentiate between vectors of V and
V∗ with the same names (e.g. b and b∗). We denote matrices over Zp by bold face upper case letters (e.g.

X) and matrices over G1 (resp. G2) by blackboard bold font, e.g. A (resp. A∗). AT denotes the transpose
of matrix A.

2.2 Pairings

Definition 2.1. Let G1, G2 and GT be cyclic groups of prime order p. G1,G2 are additively written and
GT is multiplicatively written. A pairing is a tuple (p,G1,G2,GT , e, P1, P2) where G1 = ⟨P1⟩, G2 = ⟨P2⟩
and e ∶ G1 ×G2 → GT is an efficiently computable non-degenerate bilinear map i.e., for elements Q1 ∈ G1

and Q2 ∈ G2, e(Q1,Q2) = 1 iff Q1 = 0 or Q2 = 0 and for x, y ∈ Zp, e(xP1, yP2) = e(P1, P2)xy.

A bilinear map is called symmetric or a Type-1 bilinear map if G1 = G2; otherwise it is asymmetric.
Asymmetric bilinear maps are further classified into Type-2 and Type-3 bilinear maps. In the Type-2
setting, there is an efficiently computable isomorphism either from G1 to G2 or from G2 to G1 whereas in
the Type-3 setting there are no such isomorphisms known. We will denote elements of G1 by upper case
letters with subscript 1 and elements of G2 with subscript 2.

2.3 Review of Dual Pairing Vector Spaces

Dual Pairing Vector Space from Asymmetric Pairings: A typical construction for a DPVS Vn =
(p,V,V∗,GT , ē,A,A∗) is via a direct product over a pairing (p,G1,G2,GT , e, P1, P2). We consider such
constructions over asymmetric pairings, in particular, Type-3 pairings because they have more efficient
implementations both in terms of representation of group elements and pairing computation. Details of
the construction are provided below.

• V = G1 ×⋯ ×G1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

and V∗ = G2 ×⋯ ×G2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

are vector spaces of dimension n over Zp. Their vectors can

be expressed as x = (X1, . . . ,Xn) and y = (Y1, . . . , Yn) respectively, where Xj ∈ G1 and Yj ∈ G2.

• A,A∗ form the canonical bases of V,V∗ respectively i.e., A = (a1, . . . ,an) and A∗ = (a∗1 , . . . ,a∗n) with
ai = (0, . . . ,0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
i−1

, P1,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−i

)T and a∗i = (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
i−1

, P2,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−i

)T for i = 1, . . . , n.

3



• Let x = (x⃗)A and y = (y⃗)A∗ . The function ē is defined as

ē(x,y) =
n

∏
i=1
e(xiP1, yiP2) =

n

∏
i=1
e(P1, P2)xiyi = e(P1, P2)⟪x⃗,y⃗⟫,

Note that ē(xP1,yP2) = 1 iff ⟪x,y⟫ = 0.

Dual bases: For a DPVS Vn, let B = (b1, . . . ,bn) and B∗ = (b∗1 , . . . ,b∗n) be bases of V and V∗ such
that ē(bi,b∗j ) = 1 for i ≠ j and ē(bi,b∗i ) = e(P1, P2)ψ for all i ∈ {1,2, . . . , n} where ψ is an element of Z×p .
Then (B,B∗) are called dual bases of Vn. Clearly (A,A∗) are dual bases with ψ = 1. Some problems in
V (resp. V∗) (decisional subspace, for instance) are easy to solve over (A,A∗) but computationally hard
given random basis B (resp. B∗) unless some associated trapdoor information is provided. For instance,
consider the problem of deciding whether a vector v = ∑mi=1 xici for some 1 ≤ m < n or v ∈U V where V
is given by a basis C = (c1, . . . ,cn). If C = A, then the answer is straightforward as one can just check
whether the entries of v in positions m + 1 to n are zero. Instead suppose that C = B, a random basis of
V. In this case, the problem is hard to solve. However, if vectors b∗m+1, . . . ,b

∗
n of the dual basis B∗ of B

are provided, this problem becomes easy to solve - just pair a linear combination of these vectors with v
and check whether the result of the pairing is the identity in GT . These vectors form the trapdoor.

Generating dual bases: There is an efficient algorithm Dual(Vn) that returns random dual bases (B,B∗)
of Vn along with a value ψ ∈ Z×p . (B,B∗) is constructed by sampling X = (χi,j)

U←Ð GL(n,Zp), ψ
U←Ð Z×p

and transforming the canonical bases (A,A∗) as B = A(ψX) and B∗ = A∗(XT )−1. We have bj = ∑ni=1 χi,jai
and b∗j = ∑ni=1 νj,iai for 1 ≤ j ≤ n, where X−1 = (νi,j). It essentially applies a linear transformation to A
and the corresponding changes to A∗ to retain the duality property so that ē(bi,b∗i ) = e(P1, P2)ψ. Note
that these vectors can be constructed given generators P1, P2 of G1,G2.

Computing scalar multiples of vectors: Suppose one wishes to compute xbj , for some j ∈ {1, . . . , n}
and x ∈ Zp. The method of obtaining this is as follows: compute xP1 and obtain vector xai (for all i) by
just replacing P1 with xP1 in the i-th position. Now compute xbj = ∑ni=1 χi,j(xai).

3 Hardness Assumptions

Here we state subspace assumptions over asymmetric pairing-based dual pairing vector spaces. In Ap-
pendix B, we provide descriptions of discrete logarithm and decision Diffie-Hellman problems in asymmetric
bilinear maps.Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing and Vn = (p,V,V∗,GT , ē,A,A∗)
be a DPVS of dimension n over G.

Decisional Subspace. Given a DPVS Vn, define a tuple D constructed according to the following
distribution.

(F,F∗, ψ)←Ð Dual(Vn), τ1, τ2, µ1, µ2
U←Ð Zp,

u∗1 = (µ1f∗1 + µ2f∗k+1),u∗2 = (µ1f∗2 + µ2f∗k+2), . . . ,u∗k = (µ1f∗k + µ2f∗2k),
v1 = τ1f1,v2 = τ1f2, . . . ,vk = τ1fk,

w1 = (τ1f1 + τ2fk+1),w2 = (τ1f2 + τ2fk+2), . . . ,wk = (τ1fk + τ2f2k),

D = (Vn,F, f∗1 , . . . , f∗k , f∗2k+1, . . . , f∗n ,u∗1 , . . . ,u∗k, µ2),
where k,n are positive integers with 2k ≤ n. The decisional subspace problem in V (parameterised by
(n, k)) is to distinguish between (v1, . . . ,vk) and (w1, . . . ,wk) given D.

4



For a PPT algorithm A that outputs 0 or 1, its advantage in solving DS1(n, k) problem is defined as

Adv
DS1(n,k)
Vn (A ) = ∣Pr[A (D,v1, . . . ,vk) = 1] −Pr[A (D,w1, . . . ,wk) = 1]∣.

The (ε, t)-DS1(n, k) assumption holds in V if for every algorithm A running in time at most t, we have

Adv
DS1(n,k)
Vn (A ) ≤ ε. Similarly one can define the decisional subspace assumption in V∗ (DS2(n, k)). Note

that the problem is easy when F,F∗ are the canonical bases A,A∗.

Reductions. Let Vn be a DPVS obtained from an asymmetric pairing G. [CLL+12] provides a reduc-
tion from the DDH1 (resp. DDH2) problems in G to the DS1(n, k) (resp. DS2(n, k)) problems in Vn.
Theorem 3.1 below summarises the result.

Theorem 3.1. If the (ε, t)-DDH1 (resp. (ε, t)-DDH2) assumption holds in G, then the subspace assump-
tion (ε′, t′)-DS1(n, k) (resp. (ε′, t′)-DS2(n, k)) holds in Vn where ε = ε′, t = t′ + O(nkρ) and ρ is the
maximum time required for one scalar multiplication in either G1 or G2.

4 HIBE from Dual Pairing Vector Spaces

The HIBE scheme we propose is built upon dual pairing vector spaces over Type-3 pairings. The construc-
tion is presented according to the definition of HIBE given in Appendix A.1 and the security is established
under the ANO-IND-ID-CPA notion defined in Appendix A.2. We first provide a brief overview of the
construction and proof followed by the actual construction and proof.

Overview. Let h denote the maximum depth of the HIBE. Identities are variable length vectors over
Zp. A level-` (1 ≤ ` ≤ h) identity lives in Z`p. Consider a pairing G = (p,G1,G2,GT , e, P1, P2) and a dual
pairing vector space Vn = (p,V,V∗,GT , ē,A,A∗) of dimension n over G. Let (B,B∗, ψ)←Ð Dual(Vn) and k
be such that 2k ≤ n. Let B1 = (b1, . . . ,bk) and B2 = (bk+1, . . . ,bn). Similarly define B∗1 and B∗2 . We choose
V to be the ciphertext space and keys consist of vectors from V∗. The reason is that elements of G1 have
shorter representations compared to elements of G2.

The dual system technique for proving security uses two types of ciphertexts and keys – normal and semi-
functional. The requirement is that an attacker cannot distinguish between the two types of ciphertexts
(or keys). If the attacker can generate semi-functional components on its own then it could distinguish
easily. To prevent this from happening, the semi-functional space is created with some secret elements
that do not reveal any information about the type of the ciphertext (or key). Also, during simulation it
is essential to maintain this property even when these components are being generated from the problem
instance.

In order to employ the subspace assumptions to prove security within dual system framework, the
most natural method is to use B1 (resp. B∗1) to generate normal components for ciphertexts (resp. keys)
and use the remaining vectors to build the semi-functional space. Suppose now that we choose to keep
n and hence k, constant and use a BBG-type hash. Then the key will consist of O(h) elements, most of
them needed for delegation. All these elements will have semi-functional counterparts as well. But during
simulation, generating O(h) semi-functional components for a key requires O(h) amount of randomness
which is unavailable from the instance. Also the constant dimension does not allow creating this randomness
during simulation. The way out of this problem is to base the scheme on spaces with dimension linear in
h. The maximum depth of an identity is h; hence k = h + 1 vectors are needed to hash the identity (using
BBG-type hash). Since 2k ≤ n in the subspace assumptions, we need the dimension of the vector spaces
to be 2h + 2.

5



Anonymity is obtained by keeping the V∗ vectors used in creating identity-hash secret. Keeping these
secret, however, affects delegation. There would be no way to rerandomise keys during delegation. To
overcome the problem, suitably randomised copies of vectors in the key are provided within the key. The
length of the key is doubled but this enables rerandomisation during key delegation. We prove security
based on subspace assumptions in V,V∗ (DS1,DS2) which are implied by DDH assumptions in G1,G2.
There are three stages of the reduction.

Reduction 1: Here, we argue that an attacker that detects whether the challenge ciphertext is normal
or semi-functional can be used to solve DS1 problem. As mentioned earlier, ciphertext is a linear
combination of vectors in B1. Using DS1 instance, each vector bj ∈ B1 is expanded into a vector
in span⟨bj ,bh+1+j⟩, thus making the ciphertext semi-functional. The B2-vectors form the semi-
functional component.

Reduction 2: It is is argued that changing a key from normal to semi-functional is undetectable by
the attacker provided DS2 assumption holds. Here again the normal keys are expanded into semi-
functional keys but in two phases. This is because the key contains two copies of the id-hash that
must be created using two separate instances of DS2. The main challenge here is to show that the
semi-functional components of both the key and the challenge ciphertext are properly distributed in
the attacker’s view.

Reduction 3: In the anonymity game, the goal of an attacker is to distinguish between (semi-functional)
ciphertexts corresponding to challenge ‘message-identity pair’ and a random message-identity pair.
To show that DPVS-AHIBE achieves security in this sense, we provide a purely information theoretical
argument once all keys and challenge ciphertexts are made semi-functional. Linear transformations
are applied to the dual bases in such a way that the public parameters remain consistent and sta-
tistical distance between the distributions of information provided to the attacker before and after
transformation is negligibly small.

One can see that when h = 1, the scheme is equivalent to the short IBE scheme of Chen et.al. [CLL+12].
For the reader’s reference, we provide the description of this IBE in Appendix C.

4.1 Anonymous HIBE

We present the construction for our scheme DPVS-AHIBE = (Setup,Encrypt,KeyGen,Delegate,Decrypt).
Setup(κ): Let h denote the maximum depth of the HIBE. Construct a DPVS V2h+2 = (p,V,V∗,GT , ē,A,A∗)
from a Type-3 pairing (p,G1,G2,GT , e, P1, P2) (generated according to κ). Choose random dual bases

(B,B∗, ψ)←Ð Dual(V2h+2) and set w = ∑hj=1 bj+1. Pick α, (θj)j∈[1,h]
U←Ð Zp. Set the public parameters and

master secret as follows.

PP : (V2h+2, (θjb1)j∈[1,h], w, ē(b2,b
∗
2)α).

MSK: (αb∗2 , b∗1 , (θjb∗j+1)j∈[1,h]).

Encrypt(PP,M, id = (id1, . . . , id`)): Choose s
U←Ð Zp. The ciphertext consists of an element of C0 ∈ GT and

a vector c1 ∈ V computed as follows:

C0 =M ⋅ ē(b2,b
∗
2)sα, c1 = s (w +∑`j=1 idjθjb1) .

KeyGen(PP,MSK, id = (id1, . . . , id`)): Pick r
U←Ð Zp. The secret key for id, SKid is given by SKid =

(k1,k2, (d1,j ,d2,j)j∈[`+1,h]) where

6



k1 = αb∗2 + r1 (∑`j=1 idjθjb∗j+1 − b∗1) , d1,j = r1θjb∗j+1 for j = ` + 1, . . . , h,

k2 = r2 (∑`j=1 idjθjb∗j+1 − b∗1) , d2,j = r2θjb∗j+1 for j = ` + 1, . . . , h,

The vector k1 is used for actual decryption and the remaining vectors are used for delegation and re-
randomisation.

Delegate(id = (id1, . . . , id`),SKid, id`+1,PP): Define the notation id ∶ id`+1 = (id1, . . . , id`, id`+1), i.e.,
id ∶ id`+1 denotes the tuple obtained by concatenating id`+1 to the end of id.

Pick r̃
U←Ð Zp. The secret key for the identity id ∶ id`+1 is computed as follows:

k1 ← k1 + id`+1d1,`+1 + r̃1(k2 + id`+1d2,`+1),
d1,j ← d1,j + r̃1d2,j for j = ` + 2, . . . , h,
k2 ← r̃2(k2 + id`+1d2,`+1),
d2,j ← r̃2d2,j for j = ` + 2, . . . , h,

thus setting r1 ← r1+ r̃1r2, r2 = r̃2r2 for the new secret key given by SKid∶id`+1 = (k1,k2, (d1,j ,d2,j)j∈[`+2,h]).
Decrypt(C, id = (id1, . . . , id`),SKid,PP): Decryption is done as follows: M = C0/ē(c1,k1).

Correctness of decryption. The following computation shows the correctness of decryption.

ē(c1,k1) = ē
⎛
⎝
sw + s

`

∑
j=1

idjθjb1, αb∗2 + r
`

∑
j=1

idjθjb
∗
j+1 − rb∗1

⎞
⎠

= ē
⎛
⎝
s
h

∑
j=1

bj+1 + s
`

∑
j=1

idjθjb1, αb∗1 + r
`

∑
j=1

idjθjb
∗
j+1 − rb∗1

⎞
⎠

= ē (b2, b∗2)
sα ⋅

`

∏
j=1

ē (sbj+1, ridjθjb∗j+1) ⋅ ē
⎛
⎝
s

`

∑
j=1

idjθjb1, −rb∗1
⎞
⎠

= ē (b2, b∗2)
sα ⋅

`

∏
j=1

ē (bj+1, b∗j+1)
rs(idjθj) ⋅ ē (b1, b∗1)

−rs∑`
j=1 idjθj

= ē (b2, b∗2)
sα ⋅ ē (b1, b∗1)

rs∑`
j=1 idjθj ⋅ ē (b1, b∗1)

−rs∑`
j=1 idjθj

= ē (b2, b∗2)
sα

We used two properties of dual bases here – ē(bi,b∗j ) = 1T for i ≠ j and ē(b1,b
∗
1) = ē(bj ,b∗j ) for all

j ∈ [1,2h + 2].

4.2 Proof of Security

The security of this HIBE follows the dual system approach. This requires the definition of semi-functional
ciphertexts and keys. We introduce some notation. Let B = (B1,B2) and B∗ = (B∗1 ,B∗2) be the dual bases
used in the scheme, where B1 = (b1, . . . ,bh+1) and B2 = (bh+2, . . . ,b2h+2). B∗1 and B∗2 are defined in a
similar fashion.

Semi-functional ciphertext: Let (C0,c1) be a normal ciphertext for some message M and identity
vector id. The corresponding semi-functional ciphertext is obtained by modifying c1 as follows:

x⃗
U←Ð Zh+1p , c1 ← c1 +B2x⃗.

Semi-functional key: For an identity vector id of length `, let (k1,k2, (d1,j ,d2,j)j∈[`+1,h]) be a normal
key. A semi-functional key for id is computed as follows:

y⃗1, y⃗2, (z⃗1,j , z⃗2,j)j∈[`+1,h]
U←Ð Zh+1p ,

7



k1 ← k1 +B∗2 y⃗1, d1,j ← d1,j +B∗2 z⃗1,j for j ∈ [` + 1, h],

k2 ← k2 +B∗2 y⃗2, d2,j ← d2,j +B∗2 z⃗2,j for j ∈ [` + 1, h].

The set of vectors in B2 and B∗2 form the semi-functional space. The scheme itself does not use them.

Partial Semi-functional Key: Similar to semi-functional keys except that y⃗2 = z⃗2,`+1 = ⋯ = z⃗2,h = 0⃗. In
other words, only k1, (d1,j) have semi-functional components.

Nominal Semi-functionality: Decryption of a semi-functional ciphertext C with a semi-functional key
SKid for an identity id will succeed only when ⟪x⃗, y⃗1⟫ ≡ 0 (mod p). Such a pair (C,SKid) is called
nominally semi-functional.

We now present two lemmas that will be useful in the reductions that follow. These are standard results
and hence we omit the proofs.

Lemma 4.1. Let S = {(u⃗, v⃗) ∶ u⃗, v⃗ ∈ Znp and ⟪u⃗, v⃗⟫ ≠ 0}. If X
U←Ð Zn×np is invertible, then for all (x⃗, v⃗) ∈ S,

for all (r⃗, w⃗) ∈ S, and for µ, τ
U←Ð Z×p ,

Pr [(µX−1u⃗ = r⃗) ∧ (τXT v⃗ = w⃗)] = 1

∣S ∣

where ∣S ∣ = (pn − 1)(pn − pn−1) and the probability is over the choice of X, µ and τ .

Essentially, the lemma suggests that µUT u⃗ and τXT v⃗ are uniformly and independently distributed unless
⟪r⃗, w⃗⟫ = 0. This condition holds only when ⟪x⃗, v⃗⟫ = 0 which happens with probability 1/p.

Lemma 4.2. Let X
U←Ð Zn×np . Then

Pr[X ∈ GL(n,Zp)] =
∏n
i=1(pn − pi−1)

pn2 .

We now present the security proof for DPVS-AHIBE . The shorthand H`(id) will be used to denote the

quantity ∑`j=1 idjθj where id = (id1, . . . , id`). Let γn(p) =∏n
i=1(pn − pi−1)/pn

2
.

Theorem 4.1. If the (εDDH1, tDDH1)-DDH1, (εDDH2, tDDH2)-DDH2 assumptions hold and ADLP is
(εADLP, tADLP)-hard in G, then DPVS-AHIBE is (ε, t, q)-ANO-IND-ID-CPA secure where

ε ≤ 2qεADLP +
εDDH1

γh+1(p)
+ 2qεDDH2

γh+1(p)
+ 1

p

and tDDH1 = t+O(h2ρ), tDDH2 = t+O(qh2ρ), tADLP = t+O(h2ρ) where ρ is the maximum time for one scalar
multiplication in either of G1,G2.

Proof. We provide a hybrid argument over a sequence of 2q+4 games, where q is the number of key extract
queries made by the adversary. Let Gactual denote the actual IBE CPA-security game ano-ind-cpa described
in Appendix A.2. Gactual is same as Grestricted except that the following restriction is added to the game:
Ĥ̀(îdβ) /≡ H`k(idk) (mod p) for all k ∈ {1, . . . , q} where îdβ (β = 0,1) are the challenge identities and idk
is the identity provided by the adversary in the k-th key extract query. Here ̂̀

β and `k are the lengths
of the identity tuples îdβ and idk. G0,1 is just like Grestricted except that the challenge ciphertext is a
semi-functional encryption of the chosen message to the corresponding identity vector. Define Gk,0 for
k ∈ [1, q] similar to G0,1 except that the first k − 1 keys returned to the adversary are semi-functional,

8



k-th key is partial semi-functional and the rest are normal. Gk,1 proceeds the same way as Gk,0 with one
difference – k-th key is fully semi-functional. Let Gfinal be defined similar to Gq,1 except that now the
challenge ciphertext is a semi-functional encryption of a random message to a random identity vector. Let
X◻ denote the event that the adversary wins in G◻. Note that, in Gfinal, the challenge ciphertext is an
encryption of a random message and hence bit β is statistically hidden from the adversary’s view implying
that Pr[Xfinal] = 1/2.

Using lemmas 4.3, 4.4, 4.5,4.6 and 4.7, we have for any t-time adversary A against DPVS-AHIBE in
the ano-ind-cpa game, there is an algorithm B such that

Advano-ind-cpaDPVS-AHIBE(A ) = ∣Pr[Xactual] −
1

2
∣

= ∣Pr[Xactual] −Pr[Xfinal]∣
≤ ∣Pr[Xactual] −Pr[Xrestricted]∣ + ∣Pr[Xrestricted] −Pr[X0,1]∣

+
q

∑
k=1

(∣Pr[Xk−1,1] −Pr[Xk,0]∣) +
q

∑
k=1

(∣Pr[Xk,0] −Pr[Xk,1]∣) + ∣Pr[Xq] −Pr[Xfinal]∣

≤ 2qεADLP +
εDS1(n,k)

γh+1(p)
+ 2q (εDS2(n,k)

γh+1(p)
) + 1

p

where n = 2h + 2 and k = h + 1. The theorem now follows directly from Theorems 3.1 since n and k are
linear in h in the DS1(n, k),DS2(n, k) problems we consider.

In all the following lemmas, B is the simulator and A is an ano-ind-cpa attacker against DPVS-AHIBE
making q key extract queries. Also, we consider subspace assumptions with n = 2h + 2 and k = h + 1.

Lemma 4.3. ∣Pr[Xactual] −Pr[Xrestricted]∣ ≤ 2qεADLP.

We refer to [BGG94] for main ideas underlying the proof and only provide details specific to our
construction. Appendix D contains the details.

Lemma 4.4. ∣Pr[Xrestricted] −Pr[X0,1]∣ ≤ εDS1(2h+2,h+1)/γh+1(p).

Proof. The algorithm B receives (V2h+2,F,F∗1 ,u∗1 , . . . ,u∗h+1, µ2, t1, . . . , th+1) as an instance of DS1(2h+2, h+
1) problem. Here uj = (µ1f∗j + µ2f∗h+1+j) for j = 1, . . . , h + 1. If tj = τ1fj for all j ∈ [1, h + 1], we call them
“real” and when they are distributed as τ1fj + τ2fh+1+j , we call them “random”. So B’s task is to decide
whether (tj)j∈[1,h+1] are real or random. We describe how B simulates each phase of the security game.

Setup: B first chooses X
U←Ð Z(h+1)×(h+1)

p and if X ∉ GL(h + 1,Zp), aborts the game and returns a
random bit. Otherwise, it sets the dual bases (B,B∗) of the HIBE scheme as follows.

B1 = F1, B2 = F2X, B∗1 = F∗1 , B∗2 = F∗2(X−1)T .

It then chooses α, θ1, . . . , θh
U←Ð Zp and provides the following public parameters to A .

PP = (V2h+2, (θjb1)j∈[1,h], w, ē(b2,b
∗
2)α)

B knows the master secret keyMSK = (αb∗2 , b
∗
1 , (θjb∗j+1)j∈[1,h]) using which normal keys for any identity

vector can be created.

Phase 1: A makes a number of key extract queries. B returns a normal key generated using the KeyGen
algorithm for every such query.

9



Challenge: B receives the two pairs (M0, îd0) and (M1, îd1) from A . It chooses β
U←Ð {0,1} and

encrypts Mβ to îdβ = (îd1, . . . , îd̂̀) as:

C0 =Mβ ⋅ ē(t2,b∗2)α, c1 =
h

∑
j=1

tj+1 +
⎛
⎝

̂̀
∑
j=1

îdjθj
⎞
⎠

t1,

where s = τ1 is implicitly set. Ciphertext Ĉ = (C0,c1) is returned to A .

Now if tj ’s are real, Ĉ is distributed as a normal ciphertext and in this case B simulates Grestricted.
The computation shown below illustrates this fact.

c1 =
h

∑
j=1

tj+1 +
⎛
⎝

̂̀
∑
j=1

îdjθj
⎞
⎠

t1 =
h

∑
j=1

τ1fj+1 +Ĥ̀(îdβ)τ1f1 = τ1
⎛
⎝
h

∑
j=1

bj+1 +Ĥ̀(îdβ)b1
⎞
⎠
= s (w +Ĥ̀(îdβ)b1) .

Next consider the case when tj = τ1fj + τ2fh+1+j . We have

c1 =
h

∑
j=1

tj+1 +
⎛
⎝

̂̀
∑
j=1

îdjθj
⎞
⎠

t1

=
h

∑
j=1

τ1fj+1 +Ĥ̀(îdβ)τ1f1 +
h

∑
j=1

τ2fh+j+2 +Ĥ̀(îdβ)τ2fh+2

= τ1
⎛
⎝
h

∑
j=1

bj+1 +Ĥ̀(îdβ)b1
⎞
⎠
+ τ2F2(Ĥ̀(îdβ),1, . . . ,1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h

)T

= s (w +Ĥ̀(îdβ)b1) + τ2B2X
−1(Ĥ̀(îdβ),1, . . . ,1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h

)T

thus setting x⃗ = τ2X−1(Ĥ̀(îdβ),1, . . . ,1)T which has the appropriate distribution due to the choice of X
and the fact that all information provided to A are independent of X. B’s simulation is, therefore, perfect.

Phase 2: As in first phase, B returns a normal key for every query.

Guess: A returns its guess β′.

If the adversary wins the game then B returns 1; otherwise it returns 0. Let Yreal and Yrandom denote
the events that B returns 1 when tj ’s are real and random respectively. Let the event abort denote the
event that B aborts the game. Then, we have

Pr[Yreal] = Pr[Yreal∣abort]Pr[abort] +Pr[Yreal∣abort]Pr[abort]

= 1

2
Pr[abort] +Pr[Xrestricted]Pr[abort], (1)

Pr[Yrandom] = Pr[Yrandom∣abort]Pr[abort] +Pr[Yrandom∣abort]Pr[abort]

= 1

2
Pr[abort] +Pr[X0,1]Pr[abort] (2)

Recall that B aborts when X is not invertible. From Lemma 4.2 it follows that Pr[abort] = γh+1(p).
Subtracting (2) from (1) and taking absolute values, we obtain

∣Pr[Yreal] −Pr[Yrandom]∣ = ∣Pr[Xrestricted] −Pr[X0,1]∣ ⋅Pr[abort]
≥ ∣Pr[Xrestricted] −Pr[X0,1]∣γh+1(p).

10



B’s advantage in solving the DS1 problem is given by

Adv
DS1(2h+2,h+1)
V2h+2 (B) = ∣Pr[Yreal] −Pr[Yrandom]∣ ≥ ∣Pr[Xrestricted] −Pr[X0,1]∣γh+1(p).

Lemma 4.5. ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤ εDS2(2h+2,h+1)/γh+1(p).

Proof. B gets an instance (V2h+2,F1,F∗,u1, . . . ,uh+1, µ2, t
∗
1 , . . . , t

∗
h+1) of DS2(2h + 2, h + 1), where uj =

(µ1fj +µ2fh+1+j). B has to determine whether (t∗j ) are real or random – i.e., whether they are distributed
as (τ1f∗j ) or (τ1f∗j + τ2f∗h+1+j).

Setup: B samples X = (χı,)
U←Ð Z(h+1)×(h+1)

p . If X is not invertible, it aborts and returns a random bit;
otherwise it proceeds to set the dual bases (B,B∗) of the HIBE scheme as follows.

B1 = F1, B2 = F2X, B∗1 = F∗1 , B∗2 = F∗2(X−1)T .

B then picks α, θ1, . . . , θh
U←Ð Zp and sends the public parameters PP to A . MSK is known to B and

hence normal keys can be created. B knows F∗2 and hence B∗2 using which it can generate semi-functional
keys.

Phases 1 and 2: Let id1, id2, . . . , idq denote the identities for which A requests the secret keys. For
i > k, B generates a normal key for idi using the master secret and returns the resulting key to A . For
i < k, B first generates a normal key and then modifies it appropriately to obtain a semi-functional key.
The resulting key is returned to A . In case of the k-th query (i.e., i = k), B generates the key as follows.
Let idk = (id1, . . . , id`).

k1 = αf∗2 +
⎛
⎝

`

∑
j=1

idjθjt
∗
j+1 − t∗1

⎞
⎠
, d1,`+1 = θ`+1t∗`+2, . . . , d1,h = θht∗h+1.

k2, (d2,j) are created normally, as in the KeyGen algorithm. The key SKidk
= (k1,k2, (d1,j ,d2,j)j∈[`+1,h])

is returned to A .

If t∗j are real, then it is clear that SKidk
is normal with r1 = τ1 being set implicitly. In this case B

simulates Gk−1,1. Otherwise t∗j are random and the key will be semi-functional as justified below.

k1 = αf∗2 +
⎛
⎝

`

∑
j=1

idjθjt
∗
j+1 − t∗1

⎞
⎠

= αb∗2 +
⎛
⎝

`

∑
j=1

idjθjτ1f
∗
j+1 − τ1f∗1

⎞
⎠
+
⎛
⎝

`

∑
j=1

idjθjτ2f
∗
h+j+2 − τ2f∗h+2

⎞
⎠

= αb∗2 + r1
⎛
⎝

`

∑
j=1

idjθjb
∗
j+1 − b∗1

⎞
⎠
+ τ2F∗2(−1, θ1id1, . . . , θ`id`,0, . . . ,0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h−`−1

)T

= αb∗2 + r
⎛
⎝

`

∑
j=1

idjθjb
∗
j+1 − b∗1

⎞
⎠
+ τ2B∗2XT (−1, θ1id1, . . . , θ`id`,0, . . . ,0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h−`−1

)T

d1,j = θjt∗j+1 = θj(τ1f∗j+1 + τ2f∗h+j+2) = r1θjb∗j+1 + τ2θj
h+1
∑
i=1

χj+1,ib
∗
h+1+i,

11



setting r1 = τ1, y⃗1 = τ2XT (−1, θ1id1, . . . , θ`id`,0, . . . ,0)T , z⃗1,j = θjτ2(χj+1,1, . . . , χj+1,h+1) for ` + 1 ≤ j ≤ h.
Consequently, B simulates Gk,0.

Challenge: B receives (M0, îd0), (M1, îd1) from A . It chooses β ∈ {0,1} at random. Let îdβ =
(îd1, . . . , îd̂̀). B encrypts Mβ to îd as

C0 =Mβ ⋅ ē(u2,b
∗
2)α, c1 =

h

∑
j=1

uj+1 +Ĥ̀(îdβ)u1

and returns Ĉ = (C0,c1) to A . Component c1 is properly distributed since

c1 =
h

∑
j=1

uj+1 +Ĥ̀(îdβ)u1

= µ1
h

∑
j=1

fj+1 + µ1Ĥ̀(îdβ)f1 + µ2
h

∑
j=1

fh+j+2 + µ2Ĥ̀(îdβ)fh+2

= µ1
h

∑
j=1

bj+1 + µ1Ĥ̀(îdβ)b1 + µ2F2(Ĥ̀(îdβ),1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

h

)

= sw + sĤ̀(îdβ)b1 + µ2B2X
−1(Ĥ̀(îdβ),1, . . . ,1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h

)T

implicitly setting s = µ1 and x⃗ = µ2X−1(Ĥ̀(îdβ),1, . . . ,1)T .

Guess: A returns its guess β′ of β.

We argue that all information provided to A are properly distributed. This is indeed the case when
(t∗j ) are real i.e., in Gk−1. Let us take a look at the joint distribution of all the scalars in A ’s view when
Gk is being simulated.

Due to the choice of the θj ’s, X and the distribution of τ2, z⃗1,j ’s will be uniformly distributed in
Zh+1p . The (j + 1)-st row of X, χ⃗j+1, provides the randomness required to generate z⃗1,j . Also, z⃗1,j ’s are
independent of the first row of X, which provides the randomness for x⃗ and y⃗1. Therefore the semi-
functional components of d1,j ’s will be properly distributed. Next we show that in Gk, the semi-functional
components of SKidk

and Ĉ are properly distributed in A ’s view. For this, we need only argue that the
co-efficient vectors x⃗ and y⃗1 given by

x⃗ = µ2X−1(Ĥ̀(îdβ),1, . . . ,1)T and y⃗1 = τ2XT (−1, θ1id1, . . . , θ`id`,0, . . . ,0)T

are uniformly and independently distributed. Note that all the information provided to the adversary
except for the challenge ciphertext and the response to the k-th key extraction query are independent of
the matrix X. Also, observe that idk ≠ îdβ and the quantities θ1, . . . , θh are uniformly distributed over Zp.
Hence, by Lemma 4.1 it follows that the coefficient vectors are uniformly and independently distributed
unless ⟪x⃗, y⃗1⟫ = x⃗T y⃗1 = 0 (mod p) i.e., µ2τ2(Ĥ̀(îdβ) − ∑hj=1 θj idj) = 0 (mod p) i.e., H`(idk) ≡ Ĥ̀(îdβ)
(mod p). We have ruled out this possibility in Lemma 4.3.

Observe that, if B tries to generate a semi-functional ciphertext for idk (in order to determine whether
SKidk is semi-functional), the coefficient vectors of B2,B∗2 for the ciphertext-key pair will end up being
orthogonal thus resulting in a nominal semi-functionality. This provides no information to B of whether
SKidk is semi-functional and hence about the distribution of t∗j .

It remains to bound Adv
DS2(2h+2,h+1)
V2h+2 (B). If β = β′, then B returns 1; otherwise it returns 0. Let

Yreal and Yrandom denote the events that B returns 1 when (t∗j ) are real and random respectively. B’s

12



outputs a bit (depending on A ’s guess) as long as it does not abort. It is straightforward to see that
∣Pr[Yreal] − Pr[Yrandom]∣ = ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ⋅ Pr[abort]. We know from Lemma 4.2 that Pr[abort] =
γh+1(p). Therefore, we have

Adv
DS2(2h+2,h+1)
V2h+2 (B) = ∣Pr[Yreal] −Pr[Yrandom]∣ ≥ γh+1(p) ∣Pr[Xk−1,1] −Pr[Xk,0]∣ .

from which the lemma follows.

Lemma 4.6. ∣Pr[Xk,0] −Pr[Xk,1]∣ ≤ εDS2(2h+2,h+1)/γh+1(p).

The proof is similar to that of the previous lemma. The only difference is that (k1, (d1,j)) are made
semi-functional and the instance is embedded in (k2, (d2,j)).

Lemma 4.7. ∣Pr[Xq,1] −Pr[Xfinal]∣ ≤ 1
p .

Proof. Let Dq,1 and Dfinal denote the distribution of all information provided to A in Gq,1 and Gfinal
respectively.

Dq,1 = (PP, Ĉ, (SKidk
)k=1,...,q)

where Ĉ is a semi-functional encryption of Mβ under îdβ for some β ∈U {0,1} and SKidk
is a semi-functional

key for idk.
Dfinal = (PP, C′, (SKidk

)k=1,...,q)

where C′ is a semi-functional encryption of a random message to a random identity vector. The goal
here is to show that Dq,1 and Dfinal are statistically indistinguishable except with probability 1/p. A
change of basis transformation is applied to the dual bases (B,B∗) in Gq,1 keeping the public parameters
consistent. Then it is argued that A ’s view under the new bases is distinguishable from its view before
the transformation with probability atmost 1/p. Details follow.

Let B = (B1,B2) and B∗ = (B∗1 ,B∗2). Define new dual bases F = (F1,F2) and F∗ = (F∗1 ,F∗2) as:

χ⃗1, χ⃗2
U←Ð Zh+1p

Y = (χ⃗1, χ⃗2, χ⃗2, . . . , χ⃗2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

h

) ∈ Z(h+1)×(h+1)
p

F1 = B1, F2 = B2 +B1Y, F∗1 = B∗1 −B∗2Y, F∗2 = B∗2 .

Clearly (F,F∗) are dual bases and properly distributed.

Information provided to the adversary (i.e., public parameters, challenge ciphertext and responses to
key extract queries) in Gq,1 when expressed over bases (B,B∗) will be

PP = (G,w, θ1b1, . . . , θhb1, ē(b2,b
∗
2)α),

Ĉ = (C0 =Mβ ⋅ ē(b2,b
∗
2)sα,c1 = s(w +Ĥ̀(îdβ)b1) +B2x⃗) ,

SKidk
= (k(k)

1 ,d
(k)
1,`k+1, . . . ,d

(k)
1,h ,k

(k)
2 ,d

(k)
2,`k+1, . . . ,d

(k)
2,h) for k = 1, . . . , q,

with
k
(k)
1 = αb∗2 + r

(k)
1 (γ⃗(k))B∗1 + (y⃗(k)1 )B∗2 ,

d
(k)
1,j = r

(k)
1 θjb

∗
j+1 + (z⃗(k)j,1 )B∗2 for `k + 1 ≤ j ≤ h,

13



k
(k)
2 = r(k)2 (γ⃗(k))B∗1 + (y⃗(k)2 )B∗2 ,

d
(k)
2,j = r

(k)
2 θjb

∗
j+1 + (z⃗(k)j,2 )B∗2 for `k + 1 ≤ j ≤ h,

where γ⃗(k) = (−1, θ1idk,1, . . . , θ`k idk,`k ,0, . . . ,0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
h−`k

). The same information, when expressed over bases (F,F∗),

is given by
PP = (G,w, θ1f1, . . . , θhf1, ē(f2, f∗2 )α),

Ĉ = (C0 =Mβ ⋅ ē(f2, f∗2 )sα,c1 = s′w + s′′f1 + F2x⃗)
and for k = 1, . . . , q,

k
(k)
1 = αf∗2 + r

(k)
1 F∗1 γ⃗

(k) + F∗2 y⃗
′(k)
1 ,

d
(k)
1,j = r

(k)
1 θjf

∗
j+1 + F∗2 z⃗

′(k)
j,1 for `k + 1 ≤ j ≤ h,

k
(k)
2 = r(k)2 F∗1 γ⃗

(k) + F∗2 y⃗
′(k)
2 ,

d
(k)
2,j = r

(k)
2 θjf

∗
j+1 + F∗2 z⃗

′(k)
j,2 for `k + 1 ≤ j ≤ h,

where s′ = s − ⟪χ⃗2, x⃗⟫, s′′ = sĤ̀(îdβ) − ⟪χ⃗1, x⃗⟫ and

y⃗
′(k)
1 = y⃗(k)1 + r(k)1 Yγ⃗(k), z⃗

′(k)
j,1 = z⃗(k)j,1 + r(k)1 χ⃗2,

y⃗
′(k)
2 = y⃗(k)2 + r(k)2 Yγ⃗(k), z⃗

′(k)
j,2 = z⃗(k)j,2 + r(k)2 χ⃗2.

That s′ and s′′ take the form mentioned above can be seen in the following computations.

c1 = s(w +Ĥ̀(îdβ)b1) +B2x⃗

= s(
̂̀
∑
j=1

fj+1 +Ĥ̀(îdβ)f1) + (F2 − F1Y)x⃗

= F1(s(Ĥ̀(îdβ),1, . . . ,1)T −Yx⃗) + F2x⃗

= F1 (sĤ̀(îdβ),1, . . . ,1)T − (χ⃗1, χ⃗2, . . . , χ⃗2)T x⃗) + F2x⃗

= sF1(Ĥ̀(îdβ),1, . . . ,1)T − (⟪χ⃗1, x⃗⟫,⟪χ⃗2, x⃗⟫, . . . ,⟪χ⃗2, x⃗⟫)T + F2x⃗

= s′w + s′′f1 + (x⃗)F2

The public parameters are the same as in Gq,1. The additional terms in the semi-functional components
of keys are not independent but that does not change the distribution of the sf-components i.e., since

y⃗
(k)
1 , y⃗

(k)
2 , z⃗

(k)
1,j , y⃗

(k)
2,j are independent and uniformly distributed, so are y⃗

′(k)
1 , y⃗

′(k)
2 , z⃗

′(k)
1,j , y⃗

′(k)
2,j . It remains

same as in Gq,1. Let us now take a look at the challenge ciphertext. Ciphertext in our scheme is structured
in a way that the coefficient of w is the real randomiser. Over the basis (F,F∗), the coefficient of w in Ĉ
is given by s′ = s − ⟪χ⃗2, x⃗⟫. The identity hash is changed to (s′)−1s′′. Unless s′ = 0, the hash is a random
element of Zp due to the choice of χ⃗1. Also C0 is now given by

C0 =Mβ ⋅ ē(b2,b
∗
2)sα =Mβ ⋅ ē(b2,b

∗
2)⟪χ⃗2,x⃗⟫α ⋅ ē(b2,b

∗
2)−⟪χ⃗2,x⃗⟫α ⋅ ē(b2,b

∗
2)sα = R ⋅ ē(b2,b

∗
2)s

′α

where R = Mβ ⋅ ē(b2,b
∗
2)⟪χ⃗2,x⃗⟫α is a random element of GT . Observe that R and the new id-hash are

independent since they are determined by χ⃗2 and χ⃗1 (respectively) which are chosen independently at
random from Zh+1p .

Let F denote the event that s′ = 0. Since χ⃗2, x⃗ and s are all uniformly distributed, we have Pr[F] = 1/p.
Dq,1 when expressed over (F,F∗) has the same distribution as Dfinal unless F occurs. Therefore, by
difference lemma, we have ∣Pr[Xq,1] −Pr[Xfinal]∣ ≤ Pr[F] = 1

p .

14



5 Conclusion

We have presented a new construction of anonymous HIBE. This is the only known construction fully
secure under standard assumptions that can be instantiated with Type-3 pairings. On the other hand,
security under standard assumptions is obtained at the cost of working over dual pairing vector spaces of
dimension linear in the maximum depth of the HIBE, thus blowing up the size of parameters. It would be
interesting to obtain more efficient anonymous HIBE schemes that can be proved secure under standard
assumptions.

References

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable Encryption Revisited:
Consistency Properties, Relation to Anonymous IBE, and Extensions. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 205–222. Springer, 2005.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity-Based Encryption with Con-
stant Size Ciphertext. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes
in Computer Science, pages 440–456. Springer, 2005. Full version available at Cryptology ePrint
Archive; Report 2005/015.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography: The Case
of Hashing and Signing. In Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in
Computer Science, pages 216–233. Springer, 1994.

[BW06] Xavier Boyen and Brent Waters. Anonymous Hierarchical Identity-Based Encryption (Without
Random Oracles). In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 290–307. Springer, 2006.

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and
Signatures via Asymmetric Pairings. IACR Cryptology ePrint Archive, 2012:224, 2012.

[DCIP10] Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully Secure Anonymous HIBE and
Secret-Key Anonymous IBE with Short Ciphertexts. In Marc Joye, Atsuko Miyaji, and Akira
Otsuka, editors, Pairing-Based Cryptography - Pairing 2010, volume 6487 of Lecture Notes in
Computer Science, pages 347–366. Springer Berlin / Heidelberg, 2010.

[Duc10] Léo Ducas. Anonymity from Asymmetry: New Constructions for Anonymous HIBE. In Josef
Pieprzyk, editor, CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages 148–164.
Springer, 2010.

[LPL13] Kwangsu Lee, JongHwan Park, and DongHoon Lee. Anonymous HIBE with Short Ciphertexts:
Full Security in Prime Order Groups. Designs, Codes and Cryptography, pages 1–31, 2013.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes
in Computer Science, pages 455–479. Springer, 2010.

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic Encryption and Signatures from
Vector Decomposition. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing,
volume 5209 of Lecture Notes in Computer Science, pages 57–74. Springer, 2008.

15



[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical Predicate Encryption for Inner-
Products. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer
Science, pages 214–231. Springer, 2009.

[PL13] Jong Hwan Park and Dong Hoon Lee. Anonymous HIBE: Compact Construction Over Prime-
Order Groups. IEEE Transactions on Information Theory, 59(4):2531–2541, 2013.

[RS12] Somindu C. Ramanna and Palash Sarkar. Anonymous Constant-Size Ciphertext HIBE from
Asymmetric Pairings. Cryptology ePrint Archive, Report 2012/057, 2012. http://eprint.

iacr.org/.

[SKOS09] Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous Hi-
erarchical Identity-Based Encryption with Constant Size Ciphertexts. In Stanislaw Jarecki and
Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 215–234. Springer, 2009.

[Wat09] Brent Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple
Assumptions. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer
Science, pages 619–636. Springer, 2009.

A Hierarchical Identity-Based Encryption

A.1 Definition

A HIBE scheme consists of five probabilistic polynomial time (in the security parameter) algorithms -
Setup, Encrypt, KeyGen, Delegate and Decrypt.

• Setup: based on an input security parameter κ, generates and outputs the public parameters PP
and the master secret MSK.

• KeyGen: inputs an identity vector id and master secret MSK and outputs the secret key SKid

corresponding to id.

• Encrypt: inputs an identity id, a message M and returns a ciphertext C.

• Delegate: takes as input a depth ` identity vector id = (id1, . . . , id`), a secret key SKid and an identity
id`+1; returns a secret key for the identity vector (id1, . . . , id`+1).

• Decrypt: inputs a ciphertext C, an identity vector id, secret key SKid and returns either the corre-
sponding message M or � indicating failure.

A.2 Anonymous CPA-Secure HIBE

The following security game captures both anonymity and security against a chosen plaintext attack for a
HIBE scheme and will be called ano-ind-cpa.

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id,
the challenger responds with a key SKid.

16



Challenge: A provides two message-identity pairs (M0, îd0) and (M1, îd1) as challenge with the restric-
tion that neither îd0, îd1 nor any of their prefixes should have been queried in Phase 1. The challenger
then chooses a bit β uniformly at random from {0,1} and returns an encryption Ĉ of Mβ under the identity
îdβ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of îdβ.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ano-ind-cpa given by

Advano-ind-cpaHIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The HIBE scheme is said to be (ε, t, q)-ANO-IND-ID-CPA secure if every t-time adversary making at most
q queries has Advano-ind-cpaHIBE (A ) ≤ ε.

B More Assumptions

Discrete Logarithm in Asymmetric Pairing Groups. The discrete logarithm problem in asymmet-
ric pairings (ADLP) is to compute x(∈ Zp) given (G, xP1, xP2). The advantage of an algorithm A solving
ADLP is defined as

AdvADLP
G (A ) = Pr[A (G, xP1, xP2) = x ∣ x U←Ð Zp].

ADLP is (t, ε)-hard if for every t-time adversary A AdvADLP
G (A ) ≤ ε.

Decision Diffie-Hellman (DDH). Let x1, x2 ∈U Zp. The DDH problem in G1 (DDH1) is to decide,
given (G, x1P1, x2P1, Z1), whether Z1 = x1x2P1 or Z1 is a random element of G1.

Let A be a probabilistic polynomial time (PPT) algorithm that outputs either 0 or 1. Define its
advantage in solving the DDH1 problem as follows.

AdvDDH1
G (A ) = ∣Pr[A (G, x1P1, x2P1, x1x2P1) = 1] −Pr[A (G, x1P1, x2P1, P2, Y1) = 1]∣,

where Y1
U←Ð G1. We say that (ε, t)-DDH1 assumption holds in G if every algorithm A that runs in time

less than or equal to t has AdvDDH1
G (A ) ≤ ε. Similarly, one can define DDH assumption in G2 (DDH2).

C Short IBE of Chen et.al.

A description of the IBE scheme proposed by Chen et.al. [CLL+12] is provided here. We use a compact
notation to denote normal and semi-functional ciphertexts and keys. The group elements shown in curly
brackets {} are the semi-functional components. To get the scheme itself, these components should be
ignored.

The description is in terms of DPVS V4 over a Type-3 pairing (p,G1,G2,GT , e, P1, P2) and random
dual bases (B,B∗) of of V4 with B = (b1,b2,b3,b4) and B∗ = (b∗1 ,b∗2 ,b∗3 ,b∗4). The public parameters, the
master secret key, the decryption key and the ciphertext are as follows. α, s and r are uniform random
elements of Zp.
PP : (b1,b2, ē(b1,b

∗
1)α).

MSK: (α,b∗1 ,b∗2).

17



C = (C0 =M ⋅ ē(b1,b
∗
1)sα, c1 = sb1 + sidb2{+x1b3 + x2b4}).

SKid = αb∗1 + ridb∗1 − rb∗2{+y1b∗3 + y2b∗4}.

The randomisers for the semi-functional components are x1, x2 and y1, y2 in the ciphertext and key respec-
tively.

D Proof of Lemma 4.3

B is provided an instance (G, xP1, xP2) of ADLP. It constructs a DPVS V2h+2 over G and chooses

(B,B∗, ψ) U←Ð Dual(V2h+2). The game is simulated as follows.

Setup: B picks α, θ′1, . . . , θ
′
h

U←Ð Zp, δ1, . . . , δh
U←Ð {0,1} and implicitly sets

θj = { θ′j if δj = 0

xθ′j if δj = 1

Note that θjb1 can be computed as θ′j(xb1) whenever δj = 1. Also, since xP2 is provided in the instance,
θjb

∗
j+1 can be computed. B can thus generate all public parameters and master secret. It outputs the

public parameters and keeps the master secret key.

Key Extraction Phases 1 and 2: A makes queries on id1, . . . , idq and for idk, B returns to A the
output of KeyGen algorithm on idk.

Challenge: A sends two message-identity pairs (M0, îd0), (M1, îd1). Let β
U←Ð {0,1} and îd = îdβ.

Suppose that Ĥ̀(îd) ≡ H`k(idk) (mod p) for some k. B aborts the game, outputs x′ as the solution to

the instance and halts. x′ is computed as follows. Let idk = (id1, . . . , id`), îd = (îd, . . . , îd̂̀), îdj = 0 for

`∗ + 1 ≤ j ≤ h and idj = 0 for ` + 1 ≤ j ≤ h. Define a = ∑j∈[1,h]
δj=1

θ′j(îdj − idj). If a = 0, B halts with no

output. Otherwise, it computes b = a−1 (mod p) and x′ = b∑j∈[1,h]
δj=0

θ′j(idj − îdj). Let Fk denote the event

that Ĥ̀(îd) ≡H`k(idk) (mod p).

Claim D.1. Pr[a ≠ 0] ≥ 1
2 .

When a ≠ 0, the x′ value computed by B is a solution for the given instance which the following claim
asserts.

Claim D.2. Pr[Fk] ≤ 2AdvADLP
G (B) for some fixed k.

Proofs for the claims can be found in [BGG94]. Define F = ⋃qk=1 Fk. The two games Gactual and Grestricted
proceed the same way unless F occurs. By the difference lemma, we have ∣Pr[Xactual] − Pr[Xrestricted]∣ ≤
Pr[F] ≤ ∑qk=1 Pr[Fk] (by the union bound). Therefore, ∣Pr[Xactual] −Pr[Xrestricted]∣ ≤ 2qAdvADLP

G (B).

18


