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Abstract

Identity-based encryption (IBE) has been regarded as an attractive alternative to
more conventional certificate-based public key systems. It has recently attracted not only
considerable research from the academic community, but also interest from the industry
and standardization bodies. However, while key revocation is a fundamental requirement
to any public key systems, not much work has been done in the identity-based setting.
In this paper, we continue the study of revocable IBE (RIBE) initiated by Boldyreva,
Goyal, and Kumar. Their proposal of a selective secure RIBE scheme, and a subsequent
construction by Libert and Vergnaud in a stronger adaptive security model are based on
a binary tree approach, such that their key update size is logarithmic in the number of
users. We ask the question of whether or not the key update size could be further reduced
by using a cryptographic accumulator. We show that, indeed, the key update material
can be made constant with some small amount of auxiliary information, through a novel
combination of the Lewko and Waters IBE scheme and the Camenisch, Kohlweiss, and
Soriente pairing-based dynamic accumulator.

1 Introduction

It is sometimes necessary to remove keying material from use prior to the end of its normal
cryptoperiod (or key lifetime) for reasons that include key compromise, removal of an entity
from an organization, and so on. This process is known as key revocation and is used to
explicitly revoke a symmetric key or the public key of a key pair, although the private key
associated with the public key is also revoked [5]. Public key revocation in a conventional,
certificate-based public key infrastructure (PKI) has been well studied and understood. A
widely deployed revocation mechanism is through the use of a Certificate Revocation List
(CRL) [22]. Alternatively, an Internet protocol called the Online Certificate Status Protocol
(OCSP) is used to check if a certificate has been revoked [28].

In this paper, we study public key revocation in an identity-based encryption (IBE) system.
The idea of using an identity (or identifier) as a public key was originally conceived by Shamir
[34], and subsequently realized by Cocks [15] using quadratic residues, and Boneh and Franklin
[10] using pairings on elliptic curves. One very appealing property of IBE is that it alleviates
cumbersome certificate management in a traditional PKI. To securely send a message to
an intended receiver, the sender no longer needs to look up for the public key certificate
associated with the receiver, but simply encrypts the message directly using a common set
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of public system parameters and the receiver’s identifier, such as email address. Over the
past decade, pairing-based IBE has not only received considerable attention from academic
researchers, but also attracted commercial interest from Mitsubishi, Noretech, Trend Micro,
Voltage Security, and Gemplus [18], for example. Moreover, identity-based cryptographic
techniques using pairings are currently undergoing standardization through the IEEE 1363.3
and the IETF S/MIME working groups. However, very few studies, for example [7, 14, 27, 33],
have been devoted to key revocation thus far.

1.1 Motivation

Unlike a certificate-based public key, which is simply a random-looking string, a public key
in the IBE setting is a user’s identity. This hinders “explicit” revocation of an identity-based
public key using conventional revocation mechanisms. Instead, one typically adopts a more
“implicit” approach by periodically updating the corresponding private key after a pre-defined
validity period, while letting the old private key expire automatically and keeping the public
key (identity) unchanged. One trivial way of achieving this is by encoding a current time
period into an identity during encryption. This forces a decryptor to regularly obtain her
private key (corresponding to the current time period) from a key authority [10]. However,
such an approach does not scale well because the key authority has to generate new keys for all
the remaining non-revoked users at the beginning of each time period. Further, distribution
of private keys requires establishment of secure channels between the key authority and the
users. This may not be always feasible for every user.

A more desirable approach is to let the key authority broadcast some public information,
from which the users can perform key update themselves without interacting with the key
authority. Clearly, we must ensure that the broadcast information is useful only to non-
revoked users, but meaningless to those who have been revoked. Hanaoka et al. [21] proposed
one of the first IBE schemes that supports a non-interactive key revocation approach. How-
ever, their scheme requires each user to posses a special tamper-resistant hardware device
that stores a secret helper key used for key update—a requirement that is likely to hinder
practical deployment of the scheme.

Subsequently, Boldyreva et al. [7] proposed a scheme that obviates the need for special
devices and significantly reduces the complexity of key update information from linear to log-
arithmic in the number users. They cleverly combined fuzzy IBE (FIBE) [32] with binary tree
structure, which has previously been used to improve the efficiency of certificate revocation
in a traditional PKI [1, 29]. By making use of the concept of FIBE, Boldyreva et al. gave a
construction they called revocable IBE (RIBE), in which a message is encrypted under two
attributes, namely identity id and time t. Correspondingly, the associated decryption key
comprises two components, of which the identity part is fixed (also called a long-term private
key), while the time part is updated after each time period (or epoch). In order to revoke a
user, the key authority simply stops issuing key update for that user in the next time period.
Without the latest key update, a revoked user will no longer be able to decrypt any ciphertext
generated beyond the current (expiring) time period. As with [1, 29], a binary tree can then
be used to more efficiently (logarithmically) represent all the remaining non-revoked users
than simply listing all the revoked or non-revoked users. In Boldyreva et al.’s RIBE scheme,
each user’s id is assigned to a leaf node in the binary tree and her long-term private key is
generated according to the key material on each node along the path from the user’s leaf
node to the root. To decrypt a message encrypted under id and t, the user needs an updated
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decryption key (associated with t) that can be derived from the key material associated with
any one of the nodes along the path from her id leaf node to the root. Hence, if a user has
been revoked, such key material will not be made available in the key update broadcast by
the key authority.

However, Boldyreva et al.’s scheme was proven secure in a selective security model, which is
widely accepted as a weaker model in comparison with an adaptive security model. The former
requires the adversary to announce the target identity and time at the beginning of a security
game simulated in the model, while the latter has no such restriction. Nevertheless, Libert
and Vergnaud [27] showed that adaptive security is possible. They proposed an RIBE scheme
which has key update size that is also logarithmic using a similar binary tree technique, while
proving their scheme to be adaptively secure. However, they achieved this at the expense of
increasing the size of public parameters from constant to linear in the number of users.

The goal of this paper is then to study whether or not we could further reduce the key
update size while retaining the adaptive security requirement. We give an affirmative answer
and provide a concrete construction which relies on only constant-size of key update material
along with some auxiliary information, through a novel approach that combines IBE with the
concept of a cryptographic accumulator.

1.2 Our Approach

The key component in our approach that enables efficient key revocation and update is a
pairing-based cryptographic accumulator by Camenisch et al. [13]. An accumulator, originally
introduced by Benaloh and de Mare [6] as an alternative to digital signatures for secure
decentralized and distributed protocols, is an algorithm that “compresses” a large set of
values into a single, short value with the following two basic properties:

• For each accumulated value, it is possible to compute a witness that can be used to
prove that a given value was indeed incorporated into the accumulator;

• Whenever a value is added or removed from the accumulator, all witnesses correspond
to all the remaining values in the updated accumulator need to be re-computed as well.

The accumulator proposed by Camenisch et al. [13] is designed to address the problem
of revocation of anonymous credentials—to efficiently prove that a hidden value has been
accumulated. By making use of techniques from broadcast encryption developed by Boneh
et al. [11], Camenisch et al.’s accumulator has a very nice property that allows update of
witnesses to be performed very efficiently. Only one multiplication is required for addition or
deletion of a value from the accumulator. Further, update of witnesses can be delegated to
an untrusted entities without compromising the security of an anonymous credential system.

In this work, we take a different approach from that of [13] when considering public
key revocation in the IBE setting. We combine Lewko and Waters’ IBE scheme [25] with
Camenisch et al.’s accumulator [13] in a particular way. Conventionally, an accumulator is
used for revocation of credentials or keys in an anonymous authentication system that is based
on concepts such as, group signatures or anonymous e-cash. Also, a witness is independent
of the authentication system, in the sense that it is not directly used for authentication, but
rather is typically used to convince a verifier that a user has or has not been revoked through a
zero-knowledge proof. On the other hand, in our approach, we integrate an accumulator with
a public key encryption scheme, such that the accumulator is associated with ciphertexts,
while witnesses are associated with decryption keys. Particularly, our encryption algorithm
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takes as input a message, an identity, and an up-to-date accumulator for current time period
t, such that a target recipient is able to decrypt the resulting ciphertext using an up-to-
date witness. That is, the decryption would succeed only if the recipient has not already
been revoked at time t. Here, a user’s decryption key comprises an identity-based key and a
witness. During decryption, both the witness and the ciphertext component containing the
accumulator are required to cancel out a blinding factor of the message.

Our approach of combining the IBE scheme of [25] and the accumulator of [13] requires
a careful treatment. As described, one of the basic properties of an accumulator is that a
witness can be used to prove that an associated value has been accumulated. Translating
this into our design of RIBE, it turns out that a collusion attack is possible if a decryption
key comprising a witness and an identity-based key is formed in a näıve manner. This is
because a revoked user can collude with a non-revoked user, such that a valid witness (of the
non-revoked user) can be used by the revoked user (together with her own identity-based key)
to decrypt ciphertexts that she no longer has authorized access. To address this, for each
user, we introduce a new secret component1 that is associated with the accumulator and a
witness, such that the secret component must be used to cancel out the blinding factor. We
then bind the secret component to the user’s identity-based key. Since the identity-based key
is randomized for each user, two users will no longer be able to collude to share one of their
witnesses to perform decryption.

Our key update method (to be performed by the key authority) through an accumulator
differs in two aspects from that of existing RIBE schemes [7, 27] which make use of a binary
tree. First, we simply update an accumulator according to the updated revocation list at a
new time period t′, generate a new witness associated with t′, and create a signature over the
updated accumulator. (We note that we also add t′ into the accumulator to ensure that the
accumulated value for each time period is always distinct even if there is no change in the
revocation list between two successive time periods.) However, in the binary tree method, they
first need to identify the minimal set of nodes (in the tree) for which key update needs to be
published so that only non-revoked users are able to decrypt ciphertexts generated at time t′.
For each node in the identified set, they then generate some key material required to update
a decryption key. Second, in terms of communication overhead, our key update material
comprises just a (short) accumulator, a witness, and a signature. Hence, the complexity of
the size of our key update improves significantly from O(log(n)) in the binary tree approach
for n users to O(1) with some relatively small amount of bookkeeping information by using
accumulator. (We provide further details on the efficiency of our scheme in Section 3.4.)

In our security analysis, we adopt the Waters dual system encryption methodology [35].
As with that of [7, 27], we consider two types of adversaries: Type I adversaries that are
not allowed to request for the private key of a target identity throughout the entire security
game; and Type II adversaries that are allowed to make a query on the private key of a
target identity, provided that the queried identity must subsequently be revoked before the
challenge time. However, we show that our accumulator-based approach has simpler and
tighter security proofs than those of a binary-tree method. To simulate a security game in
the latter setting, extra care needs to be taken in order to appropriately answer any private
key query that is associated with a node in the tree. Particularly, to achieve adaptive security,
the simulator has to guess the position of the target identity-time pair in the tree beforehand.

1Coincidentally, the secret component we adopt here is also used as a user private key in Boneh et al.’s
broadcast encryption scheme [11].
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This causes some loss of reduction in their security proofs. Such concerns do not exist in our
proofs.

In this paper, we also show how our accumulator-based revocation technique can be im-
proved and extended in several ways. First, we show how our RIBE system can be extended
to handle any arbitrary number of users. Second, we sketch an RIBE scheme that achieves
forward-security, in the sense that compromise of a decryption key at time t would not leak
any useful information about other decryption keys for other times t′i 6= t. Moreover, we de-
scribe how our technique can be used to construct a revocable ABE (RABE) scheme. These
are elaborated in Section 4.

1.3 Other Related Work

After the work by Boldyreva et al. [7] and Libert and Vergnaud [27], there have been proposals
on various instances of functional encryption (generalization of IBE) schemes that support
revocation, such as revocable attribute-based encryption (RABE) and revocable predicate en-
cryption (RPE) [2, 3, 19]. We note that the revocation method in the schemes of [3, 19] is
different from that of existing RIBE schemes. In the RABE schemes, the users themselves
are the ones who enforce key revocation instead of the key authority. This is known as
sender-local revocation and is achieved by taking as input a revocation list during encryption.
A receiver’s private key can decrypt a ciphertext only if her identity has not been included in
the revocation list. This way, the users are not required to perform any private key update as
with that in [7]. In [2], a key revocation system combining both approaches from [7] and [3]
was proposed.

Moreover, there exist proposals on revocable IBE schemes with mediators [4, 9, 17, 26].
Here, a mediator is a semi-trusted authority that helps users to decrypt ciphertexts. If a user
has been revoked, the mediator simply stops decrypting for the user. Such an approach, while
interesting, does not seem to be satisfactory as it requires interactions between the mediator
and the users for decryption of each ciphertext.

Recently, Chen et al. [14] proposed an RIBE scheme based on lattices under a similar
security model as [7]. Also, Seo and Emura [33] gave a pairing-based RIBE construction and
proved that it is secure under a new security model, which considers not only exposure of
long-term private keys, but also exposure of decryption keys2 (associated to each time period).

1.4 Outline

The paper is organized as follow: Section 2 introduces some background on bilinear maps
and assumptions used in our security analysis. It also describes the definitions for RIBE
and other cryptographic primitives required in our construction. In Section 3, we present
our RIBE construction and its security proofs. In Section 4, we discuss and sketch some
extensions to our scheme. We conclude and highlight some open problems in Section 5.

2In the security model of [33], an adversary is allowed to make decryption key queries, in addition to the
conventional private key queries allowed in [7].
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2 Preliminaries

2.1 Composite Order Bilinear Groups

Composite order bilinear groups, originally introduced in [12], are defined by a group generator
G which takes as input a security parameter λ and outputs the description of a bilinear map
G. This includes (N,G,GT , e), where N = p1p2p3 and p1, p2, p3 are distinct primes, G and
GT are cyclic groups of order N , and e : G×G→ GT is a bilinear map such that:

• (Bilinear) ∀g, h ∈ G, a, b,∈ ZN , e(ga, hb) = e(g, h)ab

• (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

In addition to the above properties, we also require that the group operations in G and
GT , together with the bilinear map e, are polynomial time computable with respect to the
security parameter λ. We also assume that the group descriptions of G and GT include the
group generators. For ease of exposition, we let Gp1 , Gp2 , Gp3 denote the subgroups of order
p1, p2 and p3 in G respectively. We also note the orthogonality property of our bilinear map:
that is, e(hi, hj) is the identity element in GT whenever hi ∈ Gpi and hj ∈ Gpj for i 6= j. This
property of the three subgroups will be a principal tool in our construction and proofs.

2.2 Complexity Assumptions

We now state four complexity assumptions on which our construction and security proofs
rely. The first three assumptions are the same those used in [25]. They are static (not
dependent on the number of queries made by an adversary) and can be proved using the
theorem introduced by Katz, Sakai and Waters [23]. The fourth assumption is called the
Oracle Bilinear Diffie Hellman Exponent (OBDHE) assumption, which was used in [30] to
prove the security of a broadcast encryption scheme. It is a modified version of the standard
decisional BDHE problem such that it provides the adversary with an additional query oracle.
In the assumptions below, we let Gpipj denote the subgroup of order pipj in G.

Assumption 1. (Subgroup decisional problem for 3 primes) Given a group generator
G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1.

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 1. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of
λ for any polynomial time algorithm A.

Assumption 2. Given a group generator G, we define the following distribution:
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G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G,T2

R←− Gp1p3.

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 2. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of
λ for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 3. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of
λ for any polynomial time algorithm A.

We now define the Diffie-Hellman computation oracle required for the OBDHE assump-
tion.

Definition 4. The Diffie Hellman computation oracle ODHg,e takes as inputs u, v ∈ G and
outputs w ∈ G such that e(u, v) = e(g, w).

We let prime p1 be the group order of G and define the OBDHE assumption as follow:

Assumption 4. (Oracle Bilinear Diffie-Hellman Exponent) Given a group generator
G, we define the following distribution:

G = (G,GT , e)
R←− G, α R←− ZN ,

g, f
R←− G,

D = (G, f, g, gα, gα2
, . . . , gα

`
, gα

`+2
, . . . , gα

2`
)

T1 = e(gα
`+1
, f), T2

R←− GT .

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|

given that A has access to the ODHg,e oracle.

Definition 5. We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible function of
λ for any polynomial time algorithm A.
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2.3 Revocable Identity Based Encryption

We are now ready to define RIBE [7]. Let M denote a message space, I denote an identity
space, and T denote a time space. Assume that the sizes of M, I, T are all polynomial in
the security parameter. Each algorithm within RIBE is run by either one of three types of
parties—key authority, sender or receiver. The key authority maintains a revocation list RL
and state ST. An algorithm is called stateful if it updates RL or ST. We treat time as discrete
as opposed to continuous.

Definition 6 (RIBE). An identity-based encryption scheme with efficient revocation or simply
revocable IBE (RIBE) scheme has seven PPT algorithms as follows:

• Setup(1k, n)→ (PP,MK,RL,ST) The setup algorithm takes as input a security param-
eter k and a maximal number of users n. It outputs a public parameters PP, a master
key MK, a revocation list RL (initially empty), and a state ST. (This is run by the key
authority.)

• PriKeyGen(PP,MK, id,ST)→ (SKid, ST) The private key generation algorithm takes as
input the public parameters PP, the master key MK, an identity id ∈ I, and the state
ST. It outputs a private key SKid and an updated state ST. (This is stateful and run
by the key authority.)

• KeyUpd(PP,MK, t,RL,ST) → KUt The key update algorithm takes as input the public
parameters PP, the master key MK, a key update time t ∈ T , the revocation list RL,
and the state ST. It outputs a key update KUt. (This is run by the key authority.)

• DecKeyGen(SKid,KUt)→ DKid,t The decryption key generation takes as input a private
key SKid and key update KUt. It outputs a decryption key DKid,t or a special symbol
⊥ indicating that id was revoked. (This is run by the receiver.)

• Enc(PP, id, t,M) → CTid,t The encryption algorithm takes as input the public param-
eters PP, an identity id, an encryption time t, and a message M ∈ M. It outputs
a ciphertext CTid,t. (This is run by the sender. For simplicity and without loss of
generality, we assume that id, t are efficiently computable from CTid,t.)

• Dec(PP,DKid,t,CTid,t) → M The decryption algorithm takes as input the public pa-
rameters PP, a decryption key DKid,t, and a ciphertext CTid,t. It outputs a message M .
(This is deterministic and run by the receiver.)

• KeyRev(id, t,RL,ST) → RL The key revocation algorithm takes as input an identity to
be revoked id, a revocation time t, the revocation list RL, and the state ST. It outputs
an updated revocation list RL. (This is stateful and run by the key authority.)

The consistency condition requires that for all k ∈ N and polynomials (in k) n, all PP and
MK output by setup algorithm Setup, all M ∈ M, id ∈ I, t ∈ T and all possible valid states
ST and revocation lists RL, we then have Dec(PP,DKid,t,CTid,t) = M with probability 1 if
identity id was not revoked before or at time t.

Next, we define the security of RIBE in the form of a security game played between an
adversary and a challenger.
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• Setup: It is run to generate some public parameters PP, a master key MK, a revocation
list RL (initially empty), and a state ST. Then PP is given to A.

• Query: A may adaptively make a polynomial number of queries of the following oracles
(which share state information):

– The private key generation oracle PriKeyGen(·) takes as input an identity id and
runs PriKeyGen(PP,MK, id,ST) to return a private key SKid.

– The key update generation oracle KeyUpd(·) takes as input time t and runs
KeyUpd(PP,MK, t,RL,ST) to return key update KUt.

– The revocation oracle KeyRev(·, ·) takes as input an identity id and time t, and
runs KeyRev(id, t,RL, ST) to update RL.

• Challenge: A outputs the target ID-time pair (id∗, t∗) and two messages M0,M1. The
challenger flips a random bit d and returns the output of Enc(PP, id∗, t∗,Md) to A.
After that, the adversary may continue to make queries to the oracles as with in the
Query phase.

• Guess: At the end of the game, the adversary outputs a bit d′, and succeeds if d′ = d.

The following restrictions must always hold:

1. M0,M1 ∈M and |M0| = |M1|.

2. KeyUpd(·) and KeyRev(·, ·) can be queried on a time which is greater than or equal to
all the previously queried times, i.e., the adversary is allowed to query only in non-
decreasing order of time. Also, the oracle KeyRev(·, ·) cannot be queried at time t if
KeyUpd(·) was queried on t.

3. If PriKeyGen(·) was queried on identity id∗, then KeyRev(·, ·) must be queried on (id∗, t)
for some t ≤ t∗.

If the adversary’s output d′ equals to d, we set return = 1, otherwise return = 0. We define
the adversary’s advantage as

AdvRIBEA (λ) := |Pr[return = 1]− 1

2
|.

An RIBE scheme is adaptive-ID secure if for all PPT adversaries A the function
AdvRIBEA (λ) is negligible.

3 Our Construction

3.1 Intuition

Our RIBE scheme is based on the Lewko and Waters IBE scheme [25]. In our scheme,
however, the decryption key of each user has two components: one is fixed (long-term) and
is associated with her identity id; while the other is updated at the beginning of each time
period (epoch) and corresponds to t. Particularly, the key component associated with id is
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essentially a normal identity-based key (in the IBE setting) combined with a secret value3

that is associated with an accumulator, while the key component associated with t is a witness
in the context of an accumulator.

All non-revoked users’ identities are captured through an accumulator. At the beginning
of each time period t, the key authority adds t to the accumulator and generates the corre-
sponding witness (i.e., the values contained in the up-to-date accumulator are current time
period and the identities of all legitimate users under this period). The key authority then
broadcasts the updated accumulator and witness (with respect to t) to all users, who will then
update their respective existing witnesses. We note here that the integrity of the accumulator
is protected through a standard signature. To encrypt a message intended for id at time t,
the encryptor makes use of the updated accumulator as part of the ciphertext. To decrypt
a ciphertext, on the other hand, the decryptor must possess the correct identity-based key
associated with id and updated witness corresponds to t. To revoke a user, the key authority
simply removes the identity of the user from the accumulator. A revoked user would not
be able to update his witness and therefore, would not be able to decrypt any ciphertext
generated beyond the current epoch.

3.2 Construction

In addition to the Lewko and Waters IBE scheme [25], our RIBE construction makes use
of two other building blocks: Camenisch et al.’s accumulator [13], and any standard public
key signatures scheme PKS with three algorithms: the key generation algorithm PKSGen, the
signing algorithm PKSSig and the verification algorithm PKSVer.

Let φ denote a one-to-one map from a string (id or t) to an index i. Our RIBE construction
is described as follows:

• Setup(1k, n)→ (PP,MK,RL, ST∅) The setup algorithm first chooses a bilinear group G
of order N = p1p2p3 (with 3 distinct primes), random exponents α, γ ∈ ZN , and random
group elements u, g, h ∈ Gp1 . It also computes e(g, g)α, where e : G × G → GT is a
bilinear map.

From the parameters 〈N,G,GT , e, g〉, the algorithm performs the following steps:

1. run the PKSGen algorithm to generate a private-public key pair (sk, pk);

2. calculate z = e(g, g)(γ
n+1) ∈ GT and Pi = g(γ

i) ∈ Gp1 for i = 1, 2, . . . , n, n +
2, . . . , 2n, where γ is randomly chosen from ZN ;

3. choose a random β ∈ ZN and compute gβ ∈ Gp1 .

Let U be the bookkeeping information of all the elements that have ever been added
into the accumulator (but not necessarily contained in the current accumulator), and
at the point of system setup, U = ∅. The Setup algorithm then sets the accumulator
AC∅ = 1 and state ST∅ = {U,P1, . . . , Pn, Pn+2, . . . , P2n}. The revocation list RL is
initially empty.

The public parameters PP are 〈N, u, g, h, gβ, e(g, g)α, z, pk,AC∅, P1, . . . , Pn, Pn+2, . . . , P2n〉.
The master secrete key MK is 〈α, β, γ, sk〉 and a generator of Gp3 .

3As described in Section 1.2, this is needed to circumvent a possible collusion attack.
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• PriKeyGen(PP,MK, id,STU )→ (SKid, STU∪{i}) Let V denotes the bookkeeping informa-
tion of the values that have currently been accumulated (so V is a subset of U). Given
i = φ(id) ∈ [n], the private key generation algorithm performs the following steps:

1. compute wi =
∏
j∈V,j 6=i Pn+1−j+i;

2. update the accumulator and state such that

ACV ∪{i} = ACV · Pn+1−i and

STU∪{i} = {U ∪ {i}, P1, . . . , Pn, Pn+2, . . . , P2n}.

The PriKeyGen algorithm then chooses a random r ∈ ZN , and random elements R3, R
′
3 ∈

Gp3 . The private key SKid is then:

〈K1 = grR3, K2 = gα(uidh)rP βi R
′
3, K3 = wi〉.

The PriKeyGen algorithm also prepares a set Vw, which denotes the values contained in
the accumulator when a witness wi was created (so Vw is fixed for each user and it is
also a subset of U). This set Vw is given to the user along with his private key SKid.
(We give a simple example in Appendix A illustrating how sets V and Vw are derived
and updated.)

• KeyUpd(PP,MK, t,RL,STU ) → KUt At the start of each new time period t, the key
update algorithm first updates the accumulator by performing the following steps:

1. remove l′ = φ(t′) associated with the just expired time period t′ from V ;

2. remove all i = φ(id) that corresponds to t′ in RL from V ;

3. update the accumulator, that is ACV =
∏
i′∈V Pn+1−i′ for all i′ in the updated V .

The KeyUpd algorithm then adds the new time period l = φ(t) ∈ [n] following the
same steps as before (in PriKeyGen) to obtain the latest accumulator ACV ∪{l}. It then
generates a signature σl on ACV ∪{l}. The algorithm also prepares a set ∆V , which
contains a list of recently joined and revoked users’ identities within the last (just
expired) epoch. Then the KeyUpd algorithm broadcasts KUt = 〈ACV ∪{l}, σl, wl〉,
together with the set ∆V , to all users.

• DecKeyGen(SKid,KUt) → DKid,t The decryption key generation algorithm first checks
if:

1. i = φ(id), l = φ(t) ∈ V ;

2. σl is a valid signature associated with ACV using the PKSVer algorithm and pk;

3. e(Pl,ACV )/e(g, wl) = z to ensure the correctness of ACV .

We set a Boolean flag denoted by DecKeyChk to 0 if any of the above three checks
fails. If all the three conditions are satisfied, we set DecKeyChk = 1. If DecKeyChk = 0,
then the DecKeyGen algorithm outputs a special symbol ⊥. Otherwise, DecKeyGen
replaces the existing accumulator with an up-to-date one. It then updates the witness
and computes the decryption key as follows:
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1. if i ∈ V and V ∪ Vw ⊂ U , compute

w′i = wi ·
∏
j∈V \Vw Pn+1−j+i∏
j∈Vw\V Pn+1−j+i

;

2. otherwise, output ⊥.

Set the decryption key DKid,t to be

〈K1 = grR3, K2 = gα(uidh)rP βi R
′
3, K3 = w′i〉.

• Enc(PP,M, id,ACV )→ CTid,t Given a message M and an up-to-date accumulator ACV
containing current time t, the encryption algorithm chooses s ∈ ZN randomly, and set
the ciphertext CTid,t to be

C = M
e(g, g)αs

zs
, C0 = gs, C1 = (uidh)s, C2 = (gβACV )s.

• Dec(PP,DKid,t,CTid,t)→M The decryption algorithm computes

e(C0,K2K3)

e(C1,K1)e(Pφ(id), C2)
=
e(g, g)αs

zs
.

The message M can be recovered by dividing C by the computed term.

• KeyRev(id, t,RL,STU )→ RL The key revocation algorithm adds (id, t) to the revocation
list RL if i = φ(id) ∈ STU .

Correctness. We now verify that the decryption algorithm works correctly. First we notice
that a correct accumulator is always in the form of ACV =

∏
j∈V Pn+1−j , and the witness wi

for each i ∈ V always has a value wi =
∏
j∈V,j 6=i Pn+1−j+i. Hence, the following equation

always holds:

e(Pi,ACV )

e(g, wi)
=

e(g, g)
∑

j∈V (γn+1−j+i)

e(g, g)
∑

j∈V,j 6=i(γ
n+1−j+i)

= e(g, g)(γ
n+1) = z.

Thus we have

e(C0,K2K3)

e(C1,K1)e(Pφ(id), C2)

=
e(gs, gα(uidh)rP βφ(id)R

′
3 · wφ(id))

e((uidh)s, grR3)e(Pφ(id), (gβACV )s)

=
e(gs, gα(uidh)rR′3)

e((uidh)s, grR3)
·
e(gs, P βφ(id)wφ(id))

e(Pφ(id), (gβACV )s)

=
e(g, g)αse(g, uidh)rs

e(uidh, g)rs
·
e(g, Pφ(id))

βse(g, wφ(id))
s

e(Pφ(id), g)βse(Pφ(id),ACV )s

=
e(g, g)αs

zs
.
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Remark. In comparison with the Lewko and Waters IBE scheme, our identity-based private
key component K2 has an additional secret value P βi . Moreover, our ciphertexts are different
in two aspects: the blinding factor of our ciphertext component C has an additional term
z−s, and we have an additional ciphertext component C2.

It is also worth stressing again that our scheme enforces key revocation through decryption
(at the recipient), that is, a ciphertext recipient can decrypt properly only if he uses an
updated decryption key. An encryptor may or may not know the set V (which is associated
with a revocation list),4 and hence, may not always know if a target recipient has been
revoked.

3.3 Security Analysis

3.3.1 Overview

In our security analysis, we consider the following two types of adversaries:

• Type I adversaries that never make a private key query on the target identity id∗ at
any time throughout the game.

• Type II adversaries that are allowed to make a private key query on the target identity
id∗ at some point of the game, provided that the queried identity must subsequently be
revoked before the challenge time t∗.

We then prove the security of our RIBE scheme by adopting the dual system encryption
technique by Waters [35]. In our proofs, private keys and ciphertexts take two forms: normal
or semi-functional. A normal private key could decrypt a ciphertext, which in turn, is either
normal or semi-functional; while a semi-functional private key can only decrypt a normal
ciphertext. When using a semi-functional key to decrypt a semi-functional ciphertext, the
decryption will fail. We then use a hybrid argument through a sequence of games to prove
the security of our scheme. We first change the challenge ciphertext to semi-functional,
then gradually change the private keys into semi-functional one by one. At the very last
step, we change the semi-functional ciphertext into an encryption of a random message, in
which the adversary has no advantage at all. Particularly, we prove that neither Type I nor
Type II adversary learns any useful information about the chosen message from the challenge
ciphertext, even when they are provided some information on the associated blinding factor.

3.3.2 Security proofs

We first define the semi-functional ciphertexts and semi-functional keys that will be used in
our proofs.

Semi-functional Ciphertext Let g2 denote a generator of the subgroup Gp2 . A semi-
functional ciphertext is then created as follows: first, generate a normal ciphertext
C ′, C ′0, C

′
1, C

′
2 using the encryption algorithm; then choose random exponents x, zc, zd ∈

ZN and set C to be C ′, C0 to be C ′0g
x
2 , C1 to be C ′1g

xzc
2 , and C2 to be C ′2g

zd
2 . The

resulting tuple (C,C0, C1, C2) is a semi-functional ciphertext.

4Recall that in IBE, anyone can encrypt to an identity using the appropriate public parameters (even
without having a decryption key).
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Semi-functional Key We create semi-functional key as follows: first generate a set of nor-
mal key K ′1,K

′
2,K

′
3 with the key generation algorithm; then choose random exponents

δ, zk ∈ ZN and set K1 to be K ′1g
δ
2, K2 to be K ′2g

δzk
2 , and K3 = K ′3 is kept unchanged.

The resulting tuple (K1,K2,K3) is a semi-functional key.

If a semi-functional key is used to decrypt a semi-functional ciphertext, an additional
factor e(g2, g2)

xδ(zk−zc) will hinder the decryption. If zc = zk, the decryption will still work,
in this case we call the key nominally semi-functional: it is in the semi-functional form but
still allows decryption.

Our proofs rely on Assumptions 1, 2, 3, and 4 defined in Section 2.2, and a hybrid argument
through a sequence of games: Gamereal, Gamerestricted, Gamek, and Gamefinal as defined
in [25], for 0 ≤ k ≤ q where q denotes the number of key queries the attacker makes. However,
we split Gamefinal into two games, corresponding to two types of adversaries, as follows:

Gamefinal 1 is the same as Gameq except that the challenge ciphertext is a semi-functional
encryption of a random message, embedded with an instance of the hard problem defined
by Assumption 3.

Gamefinal 2 is the same as Gamefinal 1, except that here, we embed a instance of the hard
problem defined by Assumption 4.

At the outset of the game, the simulator B flips a coin coin
R←− {0, 1} as the guess for

the type of adversary it will face: 0 for Type I and 1 for Type II. The game then proceed
from Gamereal to Gameq. After Gameq, if B faces a Type I adversary, it will proceed to
Gamefinal 1, otherwise, it will proceed to Gamefinal 2. In what follows, we prove that these
games are indistinguishable from the attacker’s viewpoint.

Lemma 1. Suppose there exists an algorithm A such that GamerealAdvA −
GamerestrictedAdvA = ε. Then we can build an algorithm B with advantage ε

2 in breaking
Assumption 2.

Proof. Given g,X1X2, X3, Y2Y3,B can simulate Gamereal with A. With probability ε,A pro-
duces identities id and id∗ such that id 6= id∗ modulo N and p2 divides id− id∗. If A fails to
do this, B will simply guess randomly. B uses these identities to produce a nontrivial factor
of N by computing a =gcd(id− id∗, N). We let b = N

a . Consider the following three cases:

1. one of a, b is p1, and the other is p2p3

2. one of a, b is p2, and the other is p1p3

3. one of a, b is p3, and the other is p1p2.

B can determine if case 1 has occurred by testing if either of (Y2Y3)
a or (Y2Y3)

b is the identity
element. If this happens, we will suppose that a = p1 and b = p2p3 without loss of generality.
B can then learn whether T has a Gp2 component or not by testing if e(T a, X1X2) is the
identity element. If it is not, then T has a Gp2 component.
B can determine if case 2 has occurred by testing if either of (X1X2)

a or (X1X2)
b is the

identity element. Assuming that B has already ruled out case 1 and neither of these is the
identity element, then case 2 has occurred. B can learn which of a, b is equal to p1p3 by
testing which of ga, gb is the identity. We assume without loss of generality that a = p2 and
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b = p1p3. Then B can learn whether T has a Gp2 component or not by testing if T b is the
identity element. If it is not, then T has a Gp2 component.
B can determine that case 3 has occurred when the tests for case 1 and 2 fail. It can learn

which of a, b is equal to p3 by testing which of Xa
3 , X

b
3 is the identity. We assume without

loss of generality that a = p3. B can learn whether T has a Gp2 component or not by testing
whether e(T a, Y2Y3) is the identity. If it is not, then T has a Gp2 component.

Lemma 2. Suppose there exists an algorithm A such that GamerestrictedAdvA −
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking Assumption
1.

Proof. B receives g,X3, T and simulates either Gamerestricted or Game0 with A. B sets
the public parameters as follows: it chooses random exponents a, b, α, β, γ ∈ ZN and sets
g = g, u = ga, h = gb; computes z = e(g, g)γ

n+1
, Pi = gγ

i
for i ∈ [2n]\{n + 1}, and sets

AC∅ = 1; and generates a public-private key pair (sk, pk) using PKSGen. B then forwards the
public parameters 〈N, u, g, h, gβ, e(g, g)α, z, pk,AC∅, Pi〉 to A.

Whenever B is asked to provide a private key for an identity idi, it chooses random
exponents ri, ti, yi ∈ ZN . Using the set V which contains the current accumulated values, B
sets K1 = griXti

3 , K2 = gα(uidih)riP βi X
yi
3 , and K3 =

∏
j∈V,j 6=i Pn+1−j+i.

If B is asked for a key update, it calculates the new accumulator (with the current sets V
and U) as AC =

∏
j∈V Pn+1−j and creates a signature σj for the accumulator using key sk.

B then publishes 〈ACV , σj , wj〉.
At the challenge phase, A sends B two messages, M0 and M1, along with a challenge

identity-time pair (id∗, t∗). B first checks the Boolean flag DecKeyChk using an up-to-date
accumulator associated with t∗ and the given target identity-time pair. If DecKeyChk = 0,
then B just guesses randomly which group the value T belongs to; otherwise B chooses
d ∈ {0, 1} randomly and sets the challenge ciphertext as:

C = Md
e(g, T )α

e(g, T )γn+1 , C0 = T, C1 = T a·id
∗+b, C2 = T β+

∑
j∈V γn+1−j

.

First note this implicitly sets gs to be equal to the Gp1 part of T , and hence the value zs is

computed as e(g, T )γ
n+1

. We note that a normal C2 component is in the form of (gβACV )s =

(gβ
∏
j∈V g

γn+1−j
)s = (gβg

∑
j∈V γn+1−j

)s = (gs)β+
∑

j∈V γn+1−j

. Thus, if T ∈ Gp1p2 , then the

ciphertext is semi-functional with zc = a · id∗+ b and zd = β+
∑

j∈V γ
n+1−j . Here the values

zc and zd modulo p2 are independent of the values of a, b, β, γ modulo p1, so they are properly
distributed. If T ∈ Gp1 , this is a normal ciphertext. Hence B can use the output of A to
distinguish T .

Lemma 3. Suppose there exists an algorithm A such that Gamek−1AdvA−GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . It sets the public parameters as with those of
Lemma 2.

If A requests for the ith key for idi where i < k, B creates a semi-functional key by choosing
random exponents ri, ti, yi ∈ ZN and setting K1 = gri(Y2Y3)

ti , K2 = gα(uidih)riP βi (Y2Y3)
yi ,

K3 =
∏
j∈V,j 6=i Pn+1−j+i. Note that this is a properly distributed semi-functional key with

gδ2 = Y ti
2 . As with Lemma 2, the values of ti and yi modulo p2 and modulo p3 are un-

correlated by the Chinese Reminder Theorem. To handle private key queries for i > k, B
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generates normal keys using random exponents ri, ti, yi ∈ ZN and setting: K1 = griXti
3 ,

K2 = gα(uidih)riP βi X
yi
3 , K3 =

∏
j∈V,j 6=i Pn+1−j+i. To answer the kth private key query,

B simply sets zk = a · idk + b, chooses a random exponent tk ∈ ZN , and sets: K1 = T ,
K2 = gαT zkP βi X

tk
3 , K3 =

∏
j∈V,j 6=i Pn+1−j+i.

At the challenge phase, A sends B two messages, M0 and M1, together a challenge identity-
time pair (id∗, t∗). B first uses the current accumulator associated with t∗ and the challenge
pair to check the value of DecKeyChk. If DecKeyChk = 0 then B just guesses randomly,
otherwise B chooses d ∈ {0, 1} randomly and sets the ciphertext as:

C = Md
e(g,X1X2)

α

e(g,X1X2)γ
n+1 , C0 = X1X2, C1 = (X1X2)

a·id∗+b, C2 = (X1X2)
β+

∑
j∈V γn+1−j

.

In this lemma, the argument that B could only make a nominally semi-functional key k
is similar to that of [25, Lemma 7]. If T ∈ Gp1p3 , then B has properly simulated Gamek−1.
If T ∈ G, then B has properly simulated Gamek. From the output of A, B could distinguish
the possibilities for T .

Lemma 4. Suppose there exists an algorithm A such that GameqAdvA−Gamefinal 1AdvA =
ε. Then we can build an algorithm B with advantage ε in breaking Assumption 3.

Proof. B first receives g, gα, X3, g
sY2, Z2, T . It sets public parameters as with those of Lemma

2 except that it sets e(g, g)α as e(gαX2, g) instead of choosing α randomly. Additionally, B
computes zs = e(g, gsY2)

γn+1
and passes it to A.

When A requests for the private key for idi, B generates a semi-functional key, chooses ran-
dom exponents ci, ri, ti, xi, yi ∈ ZN , and sets: K1 = griZxi2 X

ti
3 , K2 = gαX2(u

idih)riP βi Z
ci
2 X

yi
3 ,

K3 =
∏
j∈V,j 6=i Pn+1−j+i.

At the challenge phase, A sends B two messages, M0 and M1, together with a challenge
identity-time pair (id∗, t∗). B first checks the value of DecKeyChk. If DecKeyChk = 0, then B
just guesses randomly, otherwise B chooses d ∈ {0, 1} randomly and sets the ciphertext as:

C = Md
T

e(g, gsY2)γ
n+1 , C0 = gsY2, C1 = (gsY2)

a·id∗+b, C2 = (gsY2)
β+

∑
j∈V γn+1−j

.

This implicitly sets zc = a · id∗+ b. Note that although u = ga, h = gb and zc = a · id∗+ b,
since u, h are elements of Gp1 (meaning modulo p1) and zc is modulo p2, their values are
independent from each other.

Given the value zs = e(g, gsY2)
γn+1

, the remaining task of A is simply to distinguish the
possibilities of T . If T = e(g, g)αs, then this is a properly generated semi-functional ciphertext
with message Md. If T is a random element of GT , then the ciphertext is a semi-functional
one with a random message. Thus B could use the output of A to distinguish between the
possibilities of T .

Lemma 5. Suppose there exists an algorithm A such that GameqAdvA−Gamefinal 2AdvA =
ε. Then we can build an algorithm B with advantage ε in breaking the OBDHE assumption.

Proof. B first receives an instance of the OBDHE problem:

g, f, {Pi}i∈{1,...,2n}\{n+1}, v, T
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where f = gs for some random s ∈ ZN , Pi = gγ
i
, v = gβ, together with oracle access to ODHg,e

as specified by the assumption. B is required to distinguish if T = e(gγ
n+1

, f) or T is a random
element of GT . B then chooses random exponents a, b, α ∈ ZN and sets g = g, u = ga, h = gb.
It can compute z = e(g, g)γ

n+1
using a pair (Pn+1−i, Pi) for any i and calculate e(Pn+1−i, Pi).

It sets AC∅ = 1. Moreover, B generates a public-private key pair (sk, pk) using PKSGen and
forwards the public parameters 〈N, g, u, h, gβ, e(g, g)α, z, pk,AC∅, Pi〉 to A. Additionally, B
computes and returns e(g, g)αs = e(g, f)α to A.

When A requests for the private key for idi, B generates a semi-functional key by choosing
random exponents ci, ri, ti, xi, yi ∈ ZN , random Z2 ∈ Gp2 , X3 ∈ Gp3 . B first computes
K1 = griZxi2 X

ti
3 and K3 =

∏
j∈V,j 6=i Pn+1−j+i. To provide the key component K2 for idi, B

queries the oracle ODHg,e (Pi, v). Since v = gβ, the oracle’s output equals to P βi . Then B sets

K2 = gα(uidih)riP βi Z
ci
2 X

yi
3 .

At the challenge phase, A sends B two messages, M0 and M1, together with a challenge
identity-time pair (id∗, t∗). B first checks the value of DecKeyChk. If DecKeyChk = 0 then B
just guesses randomly, otherwise B chooses d ∈ {0, 1} and a group Gp2 element Y2 randomly,
and sets parts of the ciphertext as:

C = Md
e(g, f)α

T
, C0 = fY2, C1 = (fY2)

a·id∗+b.

To transform the ciphertext component C2 into semi-functional, B computes ω =
v
∏
j∈V Pn+1−j and makes an oracle query ODHg,e (ω, f). Upon receiving the output h′ =

(gβ
∏
j∈V Pn+1−j)

s = (gβACV )s, B chooses a random ui ∈ ZN and sets C2 = h′Y ui
2 .

Given the value e(g, g)αs = e(g, f)α, the remaining task of A is simply to distinguish the
possibilities of T . If T = e(gγ

n+1
, h) = e(g, g)γ

n+1s = zs, then this is a properly generated
semi-functional ciphertext with message Md. If T is a random element of GT , then the
ciphertext is a semi-functional one with a random message. Thus B could use the output of
A to distinguish between the possibilities of T .

Theorem 1. If Assumptions 1, 2, 3, and 4 hold, then our RIBE scheme is secure.

The proof for Theorem 1 follows from Lemmas 1 to 5.

3.4 Efficiency

We now compare the efficiency of our construction against existing pairing-based RIBE
schemes. This is illustrated in Table 1. We let ñ denote the number of users in the sys-
tem, n̂ denote the size of identity space representing ñ many users, r denote the number of
revoked users, and r′ = |∆V |, where ∆V is as defined in Section 3.2. Also, we let PP denote
public parameters, DK denote decryption key, CT denote ciphertext, KUp denote key update,
Dec denote decryption, SM denote security model, and Group denote the underlying bilinear
group. The sizes for PP, DK, CT, and KUp are measured in the number of group elements;
Dec is measured as the number of pairing operations; SM is either selective or adaptive and
Group is either prime or composite.

From Table 1, we see that all adaptively secure RIBE schemes, including ours, have
comparable DK and CT sizes, and the computational overhead of Dec. However, our scheme
has a clear advantage of having constant size KUp.
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Table 1: A comparison between existing and our RIBE schemes.

PP DK CT KUp Dec SM Group
size size size size

BGK [7] O(1) 4 4 O(log(n̂)) 4 select. prime
LV [27] O(n̂) 4 5 O(log(n̂)) 3 adapt. prime
SE [33] O(n̂) 3 4 O(log(n̂)) 3 adapt. prime
Ours O(ñ) 3 4 O(1) 3 adapt. composite

We note that during key update, the key authority of all the above considered schemes also
broadcasts some auxiliary information with respect to non-revoked/revoked user identities.
As shown in the analysis of the key update algorithm in [7], the binary tree approach is most
advantageous when r ≤ ñ

2 , in which case the complexity of key update is O(r log( ñr )). (For
the case of r > ñ

2 , we simply assume that the scheme can be “reset” to retain the efficiency
of key update.) By considering only the case of r ≤ ñ

2 , we have ñ
r ≥ 2 and log( ñr ) ≥ 1,

and thus we have O(r log( ñr )) ≥ O(r). In the BGK, LV, SE schemes, therefore, the auxiliary
information required during key update has complexity of O(r), while ours has complexity
of O(r′). In reality, we have r′ < r, or even r′ � r. Consider a concrete example by letting
r′ = |∆V | = 100 and assuming a user identity is of 32-bits, our bookkeeping information
during key update consumes only 400 bytes.

4 Extension

4.1 Supporting More Than n Users

Our scheme presented in Section 3.2 supports up to only n users. However, as shown by
Phan et al. [30] in their dynamic broadcast encryption scheme, our scheme similarly can
handle polynomially many more than n users (but still bounded) and remains secure under
a generalization [16, 30] of the decisional bilinear Diffie-Hellman Exponent (BDHE) assump-
tion [8] defined as follow:

Assumption 5. Given the input gP(x1), . . . , gP(xn) ∈ Gp1 and e(g, g)Q(x1), . . . , e(g, g)Q(xn) ∈
GT for random choices of x1, . . . , xn ∈ ZN , the generalized decisional BDHE (GBDHE) as-
sumption says that it is hard to decide between e(g, g)f(x1), . . . , e(g, g)f(xn) ∈ GT and a random
T ′ ∈ GT if polynomial f is independent of polynomials P and Q.

Recall that the decisional BDHE assumption, typically parameterized by n and denoted
by n-BDHE, is an instance of the GBDHE assumption defined as follows:

Assumption 6. Given the input g, h, {gk = gα
k}k∈{1,...,2n}\{n+1} for random g, h ∈ Gp1 and

α ∈ ZN , it is hard to decide between e(gn+1, h) and a random T ′ ∈ GT .

Hence, let m be the new upper bound of the number of supported users, the security of
our RIBE supporting more than n users (where the next user is numbered n + 2) can be
proved by considering the following assumption:

Assumption 7. Given the input h and {gk = gα
k} for k ∈ {n+1−m, . . . , n+1+m}\{n+1}

for random g, h ∈ Gp1 and α ∈ ZN , it is hard to decide between e(gn+1, h) and a random
T ′ ∈ GT .
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Note that Assumption 7 is equivalent to the following assumption:

Assumption 8. Given the input h and {gk = gα
k} for k ∈ {1, . . . , 2m}\{m} for random

g, h ∈ Gp1 and α ∈ ZN , it is hard to decide between e(gm, h) and a random T ′ ∈ GT .

We have, therefore, m ≥ n+2 being the new upper bound, since Assumption 8 is compara-
ble to the m-BDHE assumption, which in fact, is also an instance of the GBDHE assumption.

We stress that our system setup and ciphertext size are independent of the upper bound of
the number of supported users. Moreover, when m ≥ n+ 2, the private keys of new users can
be generated without requiring any update to other existing users’ private keys. We assume
that the additional new public parameters gk (for k ≥ n+ 2) can be distributed (one-off) to
all users as part of key update information broadcast by the key authority or system update
imposed by the system owner.

4.2 Forward-secure Decryption Keys

Our security model, as with that of Boldyreva et al.’s [7], considers exposure of only long-term
private keys, but not decryption keys. Given a private key SKid for a user with identity id,
an adversary attacking our RIBE scheme can easily compute the corresponding decryption
key DKid,t associated with time t from SKid and key update KUt. If a private key query is
made on a challenge identity id∗, we simply revoke id∗ such that DKid∗,t∗ for challenge time
t∗ is no longer useful to the adversary. However, if the adversary is also allowed access to
the decryption key of any user, such as that in a security model recently considered by Seo
and Emura [33], we then require the decryption keys to be forward-secure. Otherwise, given
a decryption key DKid∗,t for t 6= t∗ and without making a private key query on the challenge
id∗ (implying id∗ has still not been revoked at t∗), the adversary may be able to deduce
the decryption key DKid∗,t∗ from DKid∗,t and KUt∗ . Consequently, it will be trivial for the
adversary to win the security game.

Recall that in our current RIBE scheme, a decryption key comprises

〈K1 = grR3, K2 = gα(uidh)rP βφ(id)R
′
3, K3 = wφ(id)〉

where K1,K2 are fixed and K3 is periodically updated. However, since K3 can, in principle,
be computed by anyone who has access to the public parameters, exposure of a decryption
key DKid∗,t for time t 6= t∗ can also lead to exposure of a decryption key DKid∗,t′ for any t′,
including t′ = t∗. Clearly, the adversary can then trivially learn the challenge message.

Nevertheless, our RIBE scheme can naturally be extended to achieve forward-secure de-
cryption keys using a 2-level Lewko and Waters HIBE scheme [25]. Particularly, we let level
1 keys be users’ long-term private keys (associated with identities), and let level 2 keys be
decryption keys (associated with times). For each time period, a user “delegates” a new, fully
randomized decryption key with her long-term private key. As shown in [33], re-randomization
of decryption keys is sufficient to achieve the forward-secure property. In what follows, we
sketch a modified version of our RIBE scheme that achieves forward-secure decryption keys.

• Setup(1k, n) → (PP,MK,RL, ST∅) As before. However, we require two random group
elements u1, u2 ∈ Gp1 , instead of just u.

• PriKeyGen(PP,MK, id,STU ) → (SKid,STU∪{i}) As before. However, the private key
SKid now has an additional E2 component:

K1 = grR3, K2 = gα(uid1 h)rP βφ(id)R
′
3, K3 = wφ(id), E2 = ur2R

′′
3

19



• KeyUpd(PP,MK, t,RL,STU )→ KUt As before.

• DecKeyGen(SKid,KUt)→ DKid,t As before. In addition, the algorithm chooses a random

r′ ∈ ZN and random elements R̂3, R̂
′
3 of Gp3 . The decryption key is then set to be:

K ′1 = K1g
r′R̂3 = gr+r

′
R̃3,

K ′2 = K2(u
id
1 h)r

′
(E2)

tur
′t

2 R̂′3 = gα(uid1 u
t
2h)r+r

′
P βφ(id)R̃

′
3,

K3 = w′φ(id).

• Enc(PP,M, id,ACV )→ CTid,t As before, except a small modification to C1:

C = M
e(g, g)αs

zs
, C0 = gs, C1 = (uid1 u

t
2h)s, C2 = (gβACV )s.

• Dec(PP,DKid,t,CTid,t)→M As before.

• KeyRev(id, t,RL,STU )→ RL As before.

The security proof of our modified RIBE scheme can be obtained by combining techniques
used for our original scheme and those of [25]. The details of the proof will be provided in a
full version of this paper.

4.3 Revocable Attribute-based Encryption

Attribute-based encryption (ABE) is a generalization of IBE and Fuzzy IBE. In this subsec-
tion, we consider a variant of ABE called key-policy ABE (KP-ABE) [20], in which a message
is encrypted under a set of descriptive attributes (as compared to just a single identity in
the normal IBE setting), and a private key is associated with an access policy that specifies
which kind of ciphertexts this particular private key is able to decrypt. A private key could
decrypt a ciphertext that is associated with an attribute set only if the attribute set satisfies
the access policy associated with the key.

Boldyreva et al. [7] sketched a construction of revocable KP-ABE using the binary tree
method. Subsequently Sahai et al. [31] extended their idea and gave a complete construction
with a security proof. Similarly, our accumulator-based revocation technique can be extended
to the KP-ABE setting. Intuitively, we rely on an accumulator to capture all valid (non-
revoked) attributes such that they can be represented with a single group element. Without
loss of generality, we assume that an attribute can be a user identity. This way, we can
revoke not only a common attribute shared among multiple users, but also a unique identity
attribute to revoke a user. We now sketch a construction of revocable KP-ABE that is based
on Lewko et al.’s adaptively secure KP-ABE scheme [24].

Let U, V, Vw be sets as defined before. Let n be the total number of attributes in the
system. For simplicity, we assume that all attributes i are elements in ZN and we let S
denote the set of attributes under which a message will be encrypted.

• Setup(1k, n) → (PP,MK,RL,ST∅) As with that of our RIBE, except that it runs the
setup algorithm of the scheme of [24]. The public parameters PP are 〈N, g, gβ, e(g, g)α,
z, pk, Ti, AC∅, P1, . . . , Pn, Pn+2, . . . , P2n〉. The master secret key MK is 〈α, β, γ, sk〉 and
a generator X3 of Gp3 .
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• Enc(PP,M, S,ACV )→ CT As with that of our RIBE, except that given an attribute set
S, the ciphertext CT is set to be

C = M
e(g, g)αs

zs
, C0 = gs, C1 = (gβACV )s, Ci = T si

for all i ∈ S.

• PriKeyGen(PP,MK, (A, ρ)) → SK For each row x appears in an access matrix A, there
is a corresponding attribute i such that i = ρ(x).5 The algorithm generates the witness
for each ρ(x) ∈ A and updates the accumulator and state as with that of our RIBE. To
generate a private key, the algorithm chooses a random vector u such that 1 · u = α
(here, 1 denotes the vector with the first entry equals to 1 and the rest are all 0’s), and
a vector v such that the first entry is β while the other entries are all 0’s. For each
row Ax of A, it chooses a random rx ∈ ZN , and random elements Wx, Vx ∈ Gp3 . The
private key SK is then

K1
x = gAx·uT rxρ(x)P

Ax·v
ρ(x) Wx, K

2
x = grxVx, K

3
x = wρ(x).

• KeyUpd(PP,MK,RL,STU ) → KU As before, except that instead of adding/removing
identities and times, the algorithm adds/removes attributes into/from the accumulator.

• DecKeyGen(SK,KU) → DK As before, but instead of updating the witness for just an
identity, the algorithm updates the witness corresponding to each row of A.

• Dec(PP,DK,CT)→M If the attribute set S satisfies the access matrix A, the decryption
algorithm computes constants ωx such that

∑
ρ(x)∈S ωxAx = 1. It then computes the

blinding factor as

∏
ρ(x)∈S

(
e(C0,K

1
x)ωx

e(Cρ(x),K2
x)ωx

· e(C0,K
3
x)ωxAx·1

e(Pρ(x), C1)ωxAx·1

)
=
e(g, g)αs

zs
.

• KeyRev(i,RL,STU )→ RL As before.

We can prove the security of the above revocable KP-ABE using similar techniques as
those for our RIBE scheme and those used in [24]. Further details of the above scheme and
its security proof will be shown in a full version of this paper.

We believe that similar techniques can be applied to obtain a revocable ciphertext-policy
ABE (CP-ABE) scheme, another variant of ABE that reverses the properties of KP-ABE.
That is, it encrypts a message with an access policy and generates a private key according to
an attribute set.

5 Conclusions

In this paper, we proposed a very efficient and adaptively secure RIBE scheme based on an
accumulator. Our scheme enjoys constant-size key update, a major improvement from all
previous RIBE schemes.

5Here ρ is a map from the row Ax of A to an index i.
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One immediate open problem would be to achieve adaptive security under more standard
assumptions. Also, it would be interesting to investigate if our accumulator-based key update
technique can be applied to revocable storage ABE proposed by Sahai et al. [31] and other
variants of functional encryption.
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A Example

In this section, we provide a simple but illustrative example to show how the sets V, Vw, U
are constructed, how a user witness is generated, and how to perform key revocation and
update. For ease of exposition, we omit the private key generation process and abuse some
of the notations.

Scenario: Let’s assume that we currently have idi, id2, id3 as the legitimate users in the
system under current time period t. For simplicity and without loss of generality, let
φ(idi) = i for i = 1, 2, 3 and φ(t) = 4. We then have V = {1, 2, 3, 4} and ACV =∏
j∈V Pn+1−j = PnPn−1Pn−2Pn−3. Also, we have U = V .

Add user: Now assume that user id5, where φ(id5) = 5, joins the system within the same
time period t. The key authority (KA) first updates the set V as V = {1, 2, 3, 4} ∪ {5},
then issues a witness w5 =

∏
j∈V,j 6=5 Pn+1−j+5 = Pn+5Pn+4Pn+3Pn+2 and a unique set

Vw = {1, 2, 3, 4, 5} to user id5. Moreover, the KA updates the accumulator ACV =
PnPn−1Pn−2Pn−3Pn−4 according to the most recent set V . Also it updates U as U =
{1, 2, 3, 4}∪{5}. Note that no key update information will be broadcast to other system
users since the time period t has not elapsed yet.
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Key update by KA: Assume that user id2 has been revoked before the expiry of time
period t. At the beginning of a subsequent new time period t′, where φ(t′) = 6, the KA
performs the following steps:

1. Remove {2, 4} from V (recall 2 corresponds to user id2 and 4 corresponds to time
period t) and add {6} into V , obtaining V = {1, 3, 5, 6}; then compute a new
accumulator ACV = PnPn−2Pn−4Pn−5, and update the set U as U = {1, 2, 3, 4, 5}∪
{6}. (Recall U is the set containing all elements that have ever been added into
the accumulator.) The KA also sets ∆V to be {2, 4, 5, 6}.

2. Calculate the witness for time period t′ as w6 = Pn+6Pn+4Pn+2.

3. Generate a signature σt′ on ACV ′′ , broadcast KUt′ = 〈ACV ′′ , σt′ , w6〉 together with
the set ∆V .

Key update by user: During key update, each user first verifies the integrity and authen-
ticity of the accumulator, as described in the scheme. Then, the user derives the lat-
est set V and update his witness. For example, for user id5, he first obtains the set
V = {1, 3, 5, 6} (this could easily be calculated from the broadcast set ∆V and his
own set Vw); using his own set Vw = {1, 2, 3, 4, 5}, he then derives V \Vw = {6} and
Vw\V = {2, 4}, and updates w5 as described in the scheme to obtain the latest witness
used for decryption.

Encrypt & decrypt: The encryption and decryption algorithms are straightforward.

From the above example, one can easily verify that an accumulator is always in the form
of ACV =

∏
j∈V Pn+1−j and a witness for value i has the value wi =

∏
j∈V,j 6=i Pn+1−j+i.
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