
Analysis of BLAKE2

Jian Guo1, Pierre Karpman1,2, Ivica Nikolić1, Lei Wang1, and Shuang Wu1

1 Nanyang Technological University, Singapore
2 École normale supérieure de Rennes, France

{ntu.guo,pierre.karpman,wushuang83}@gmail.com, {inikolic,Wang.Lei}@ntu.edu.sg

Abstract. We present a thorough security analysis of the hash function family BLAKE2, a recently
proposed and already in use tweaked version of the SHA-3 finalist BLAKE. We study how existing at-
tacks on BLAKE apply to BLAKE2 and to what extent the modifications impact the attacks. We design
and run two improved searches for (impossible) differential attacks — the outcomes suggest higher
number of attacked rounds in the case of impossible differentials (in fact we improve the best results
for BLAKE as well), and slightly higher for the differential attacks on the hash/compression function
(which gives an insight into the quality of the tweaks). We emphasize the importance of each of
the modifications, in particular we show that an improper initialization could lead to collisions and
near-collisions for the full-round compression function. We analyze the permutation of the new hash
function and give rotational attacks and internal differentials for the whole design. We conclude that
the tweaks in BLAKE2 were chosen properly and, despite having weaknesses in the theoretical at-
tack frameworks of permutations and of fully-chosen state input compression functions, the hash
function of BLAKE2 has only slightly lower (in terms of attacked rounds) security margin than BLAKE.

Key words: BLAKE2, BLAKE, hash function, rotational cryptanalysis, impossible differential crypt-
analysis, differential cryptanalysis, internal differential, iterative differential.

1 Introduction

The BLAKE hash function [2], a variant improving from its broken predecessor LAKE [3, 11], was one of
the five finalists of the SHA-3 competition [14] that ended in November 2012, with Keccak [9] becoming
the new SHA-3 standard. Along with the other finalists, BLAKE is assumed to be a very strong hash
function [14]. Even though it was not selected as the winner, it enjoys a large security margin, very good
performance in software, and has attracted a considerable amount of cryptanalysis. BLAKE uses addition,
rotation, and XOR as building blocks for the compression function and has an iteration mode based on
HAIFA [10]. Thus it supports salt, and uses an expanding to double-pipe internal state which makes
meet-in-the-middle attacks unfeasible. The compression function applies only word permutations for the
message schedule, thus making it very simple, elegant and more importantly efficient.

BLAKE2 [5, 4, 6] is a new family of hash functions based on BLAKE. Despite being a new design, BLAKE2
has already been adopted by several software packages — for instance, it is implemented in the CyaSSL
library, and is supported in the RAR 5.0 archive format [6]. This surprisingly quick adoption of a new hash
function is most likely due to the popularity and qualities of its predecessor BLAKE. The main objective
of the new BLAKE2 is to provide a number of parameters for use in applications without the need of
additional constructions and modes (e.g., it supports parallelism, tree-hashing and prefix-MAC), and
also to speed-up even further the hash function to reach a level of compression rate close to MD5 [5]. The
designers have achieved this goal by slightly altering the original BLAKE; in particular they have modified
the initial setup of the compression function, changed the rotation constants to be optimal for software
performance, excluded constants from the round functions, etc. To implement these tweaks only a small
change in the code of BLAKE is required.

While the efficiency argument of the new BLAKE2 is undoubtedly correct and can be confirmed by a
mere comparison of the speed of software implementations of BLAKE2 and BLAKE (or MD5), the security
of the new function is unclear. The designers claim security levels similar to that of BLAKE, due to the
similarity of the two designs. However they do not provide a strict analysis. Note that no universal
method nor theory exists that can transitively prove the security of a symmetric primitive A obtained
by modifying a primitive B, excluding of course trivial modifications such as increasing the number of
rounds1. Moreover, the fact that BLAKE2 now omits constants in its round function is a major tweak that

1 On the condition that e.g. slide attacks are prevented by the design.

A shorter version appeared in J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 402–423.
c© Springer-Verlag Berlin Heidelberg 2014

might lead to exploits, as the rounds now only differ by the order in which they process the message
words.

Table 1. Summary of the analysis of BLAKE and BLAKE2.

Frameworka Type # Roundsb Complexity Reference

BLAKE-256 perm.

impossible differential
5 — [1]

6.5 — this paper, §5
differential 6 2486 [17]

boomerang 8 2232 [12]

BLAKE-512 perm. impossible differential
5c — [1]

6.5 — this paper, §5

BLAKE-256 cf.
boomerang 7 2242 [12]

near collision 4 256 [1]

BLAKE-256
collision 2.5 2112 [22]

preimage 2.5 2241 [22]

BLAKE-512
collision 2.5 2224 [22]

preimage 2.5 2481 [22]

BLAKE2s perm.
impossible differential 6.5 — this paper, §5

rotational 7 2511 this paper, §3

BLAKE2b perm.

impossible differential 6.5 — this paper, §5
rotational 12 2876 this paper, §3
differential 5.5 2928 this paper, §6

BLAKE2s cf. chosen IV collisions 10 264 this paper, §3

BLAKE2b cf. chosen IV
partial-collisions 12 261 this paper, §4

264 weak preimages 12 1 this paper, §4
BLAKE2b cf. differential 4.5 2495 this paper, §6
BLAKE2b differential 3.5 2480 this paper, §6

a The notations ‘perm.’ and ‘cf.’ stand for the permutation and compression function of the associated hash
function.

b The total number of rounds in BLAKE-256, BLAKE-512, BLAKE2s, and BLAKE2b is 14,16,10, and 12 rounds,
respectively.

c The initial analysis claimed a 6-rounds attack, but it was shown to be incorrect.

Our Contribution. In this paper we give a thorough security analysis of this new hash function. Our
main objective is to find out if the security level of BLAKE2 has dropped due to the tweaks. We try to
exploit each tweak separately, as well as in combination with the others, in order to mount attacks on
as many rounds as possible. The starting point of our analysis in the framework of permutations and
compression function with chosen IV are three promising techniques that can be highly successful against
primitives that employ low usage of constants (i.e. no addition of constants to the message words):
rotational cryptanalysis [21], internal differentials [23] (more precisely the squeeze attack [15, 16]) and
iterative differentials based on rotational trails. We show that in these frameworks, the attacker can
penetrate through all 12 rounds of BLAKE2b. Further, we focus on the previous attacks on the original
design, in particular the differential and impossible differential attacks [1]. We improve the previous results
and approaches and along the way show the impact of the new initialization used in the compression
function. We develop more advanced techniques to search for differentials — in particular, we implement
a search for the best differential characteristics from a certain subspace which is much larger compared
to all the previously analyzed ones. We show that due to the new rotations, the best result is now
a 3.5-round differential distinguisher for the hash function of BLAKE2b, while a 4.5-round differential
exists for the compression function. In the impossible differential analysis, we are able both to find and

2

confirm theoretically probability-one characteristics. In the previously published analysis the search of
characteristics was mostly experimental, and in the case of longer characteristics was actually incorrect.
Our analysis is valid for BLAKE as well, i.e. we improve the best known results for impossible differentials
for the original design. We summarize the result of our analysis of BLAKE2 and the best existing attacks
on BLAKE in Tbl. 1.

This paper is organized as follows. In § 2, we give a brief description of the BLAKE2 hash function
family. In §§ 3, 4, 5, 6, we describe our rotational, fixed points, impossible differential, and differential
analyses of BLAKE2, respectively. We conclude in § 7.

2 Description of BLAKE2

As a successor of the BLAKE family, the BLAKE2 hash functions share many similarities with the original
design. However differences occur at every level: internal permutation, compression function, and hash
function construction. In this section we give a brief specification of BLAKE2 and highlight the differences
with BLAKE. We use notations similar to [5], in particular:

– ‘←’ denotes variable assignment;
– ‘+’ denotes addition in Z232 or in Z264 (modular addition);
– ‘−’ denotes subtraction in Z232 or in Z264 (modular subtraction);
– ‘⊕’ denotes addition in Z32

2 or in Z64
2 (bitwise exclusive or);

– ‘≪ r’ denotes rotation of r bits towards the most significant bit;
– ‘≫ r’ denotes rotation of r bits towards the least significant bit;
– if not specified otherwise, numbers written in typewriter font are in base 16, e.g. f is the number 15.

The internal state of the BLAKE2 compression function is composed of 16 words of size 64 bits for
BLAKE2b, and 32 bits for BLAKE2s. The compression function takes as input an 8-word chaining value
h0, . . . , h7, 8 constant initialization vectors IV 0, . . . , IV 7, a 2-word counter t0t1 that counts the number
of bytes hashed so far, and two finalization flags f0 and f1. The flag f0 is set to ff. . .ff when the current
message block is the last, and to 00. . .00 otherwise; the f1 counter plays a similar role in tree-hashing
(and is not detailed here). The input to the compression function is initialized as (we follow the notations
of the design paper here):

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←

h0 h1 h2 h3
h4 h5 h6 h7

IV 0 IV 1 IV 2 IV 3

t0 ⊕ IV 4 t1 ⊕ IV 5 f0 ⊕ IV 6 f1 ⊕ IV 7

 .

The main differences between BLAKE2 and BLAKE at this stage are the removal of the optional salt
value, the addition of the finalization flags instead of the repeated counter words, and the fact that the
counter now counts a number of bytes rather than bits.

The initial state is then processed by 10 (resp. 12) rounds of a column and diagonal application of
the defined below G function for BLAKE2s (resp. BLAKE2b). In comparison, BLAKE-256 and BLAKE-512

functions have 14 and 16 rounds. The G functions take four state words (a, b, c, d) and two message words
mi,mj as input. The latter are defined by a position index i of the function: at round r, mi is given by
σr mod 10(2i) and mj by σr mod 10(2i+ 1), where σr mod 10 is one of the 10 permutations given in Tbl. 3
in Appendix A.

The G function of BLAKE2b G(a, b, c, d) is defined as2:

1 : a← a+ b+mi 5 : a← a+ b+mj

2 : d← (d⊕ a) ≫ 32 6 : d← (d⊕ a) ≫ 16
3 : c← c+ d 7 : c← c+ d
4 : b← (b⊕ c) ≫ 24 8 : b← (b⊕ c) ≫ 63

.

The G function of BLAKE2s G(a, b, c, d) is defined as:

2 G takes as inputs additionally two message words — we prefer to avoid writing these in order to simplify the
formulas where G is used. Whenever the message inputs play a role in the analysis, we will write them down.

3

1 : a← a+ b+mi 5 : a← a+ b+mj

2 : d← (d⊕ a) ≫ 16 6 : d← (d⊕ a) ≫ 8
3 : c← c+ d 7 : c← c+ d
4 : b← (b⊕ c) ≫ 12 8 : b← (b⊕ c) ≫ 7

.

The differences between the G functions of BLAKE2 and BLAKE are the omission in BLAKE2 of an ‘⊕’
addition between the message words and round constants in steps 1 and 5, and modified rotation constants
for BLAKE2b. We also give the definition of the inverses G−1 of the G functions in the Appendix A.

A column step of BLAKE2 computes

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15) ,

and a diagonal step computes

G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14) .

Finally, the output of the compression function h′0, . . . , h
′
7 combines the input chaining value and the

final state v0, . . . , v15 by computing

h′0 ← h0 ⊕ v0 ⊕ v8 h′4 ← h4 ⊕ v4 ⊕ v12
h′1 ← h1 ⊕ v1 ⊕ v9 h′5 ← h5 ⊕ v5 ⊕ v13
h′2 ← h2 ⊕ v2 ⊕ v10 h′6 ← h6 ⊕ v6 ⊕ v14
h′3 ← h3 ⊕ v3 ⊕ v11 h′7 ← h7 ⊕ v7 ⊕ v15

.

The only difference between BLAKE2 and BLAKE in this step is again the omission of the optional salt
value.

The BLAKE2 hash function is defined in a straightforward way from the above compression function.
We give a high-level overview of this process here, and refer to [5] for more details.

1. A ‘parameter block’ (described below) is added (⊕) with the same initialization vectors used in the
compression function, and the result is used as the first input chaining value to the compression
function.

2. The message is padded with null bytes if and only if necessary to make it a multiple of a block length
(i.e. 512 bits for BLAKE2s and 1024 bits for BLAKE2b).

3. The compression function is iterated on the padded message, and its (possibly truncated) final output
is taken as the hash value.

The ‘parameter block’ mentioned above encodes various parameters that specify an instance of the
BLAKE2 hash function. General parameters are the digest length, the optional key length, an optional salt,
and a personalization string. Additional parameters are defined for tree hashing. Again, we refer to [5]
for the full specifications. The main differences with BLAKE in this respect is the simplified padding and
the inclusion of a parameter block. Some of the optional functionalities of BLAKE (e.g. the salt) have been
moved from the compression function to the parameter block.

Current State of Security of BLAKE2. In the submission document, the designers state that BLAKE2

inherits the security level of its predecessor BLAKE-256/512. In particular, they expect that the number
of attacked rounds in BLAKE2 and BLAKE should be the same (possibly with slightly different complexities)
with regards to the published analysis. For BLAKE the designers single out three attacks that penetrate
the most number of rounds:

1. The 2.5-round preimage attack for the hash function by Ji and Liangyu [22].
2. The 6-round distinguisher for the permutation of BLAKE-256 proposed by Dunkelman and Khovra-

tovich [17].
3. The 8-round boomerang distinguisher for the permutation of BLAKE-256, and the 7-round boomerang

distinguisher for the compression function of BLAKE-256 by Biryukov et al. [12].

However, it seems the designers have overlooked the fact that the setup of the initial state of BLAKE2, i.e.
the initialization, gives less degrees of freedom to the attacker and more importantly fixes completely the
values of six state words v8, v9, v10, v11, v14, v15. Hence the boomerangs for the compression function of
BLAKE cannot be trivially extended to BLAKE2. In particular, as the 3-round characteristic used at the top
of the 6-round boomerang of BLAKE has differences in the words of the third row, it cannot be applied to
BLAKE2s. After a careful examination of all the characteristics given in [12], and under the assumption
that characteristics with similar probabilities can be found in BLAKE2, boomerangs could be launched for
5 rounds (2 + 3 rounds) of BLAKE2s, and 5.5 rounds (2 + 3.5) of BLAKE2b.

4

Our Attack Frameworks. The previous published analysis of BLAKE target the keyed permutation3,
the compression function, and the hash function of BLAKE. In this paper we show attacks on round-reduced
versions of all of these three primitives. We assume a standard generic security level for them, for example
the cipher BLAKE2s is a 512-bit block cipher with 512-bit key, thus an exhaustive key recovery attack
requires 2512 encryptions.

In the hash function framework we assume that the initial state is fixed, i.e. v0, v1, . . . , v15 are some
predefined constants. The compression function framework is similar, but this time we allow freedom
in v0, v1, . . . , v7, v12, v13, while v8, . . . , v11, v14, v15 remain fixed (as they correspond to IV 0, IV 1, IV 2,
IV 3, IV 6, IV 7), i.e. we assume the attacker can control the chaining value and the counters t0, t1. We
also analyze the case when the attacker can control the IV — the so called chosen IV model. Finally, in
the framework of permutations, we assume we can fully control the plaintext, thus all vi can be chosen,
however the key (the message) is unknown. The reader should be aware that the importance of the attacks
drops as one goes from the framework of hash functions to the one of permutations.

3 Rotational Analysis and Internal Differentials

BLAKE2 is an ARX primitive, i.e. the only operations used are modular and bitwise addition, as well as
bitwise rotations on various amounts. Moreover, due to the absence of constants in the G function (which
were present in BLAKE), it is a good target for rotational attacks. Recall that in such attacks, one starts
with rotational pairs of inputs (x, x≪ r), and checks if the output of the primitive F is also rotational,
i.e. if F (x) ≪ r = F (x ≪ r). In [21] it was shown that the probability of a rotational output for ARX
primitive (i.e. the probability that the previous expression holds for a random input x) depends only on
the number of modular additions used in F .

The function G in BLAKE2 has 6 additions. To maximize the probability we fix the rotation amount
to 1, thus the rotational probability of modular addition becomes around 2−1.4. Hence, for the whole
G function we obtain 26·(−1.4) ≈ 2−8.4. Experiments show that the actual probability is slightly lower,
i.e. around 2−9.1. As one round of BLAKE2 has eight G function, the rotational probability of a round is
28·(−9.1) ≈ 2−73.

The permutation of BLAKE2b has 12 rounds, thus the rotational probability for the whole permutation 4

is 212·(−73) = 2−876. Hence in a related-key framework, where the second key is a rotation by 1 of the
first key, we can distinguish the permutation. Similarly, for the 10-round permutation of BLAKE2s we can
attack 7 rounds with a complexity slightly faster than the exhaustive search of a 512-bit key. Converting
the distinguisher into a key-recovery attacks is possible as well. We can use the knowledge of the plaintext
and ciphertext, to recover 4 · 1.4 ≈ 6 bits at the top and the same amount at the bottom, thus from a
rotational pair of plaintext/ciphertext we can reduce the entropy of the key by 12 bits.

Let us try to apply to above distinguisher to the compression function of BLAKE2. Note that the
constants IV 0, . . . , IV 3 used in the initialization are non-rotational 5. To overcome this issue, we can try
to obtain rotational pairs after the first half round of BLAKE2, and use the message freedom of the second
half round to probabilistically satisfy the rest of the rotational trail on t rounds. The first half round is
composed of four applications of the function G with independent inputs that can be rotational for three
of the four arguments. That is, for each input IV i, we have to find a pair of triplets (a1, b1, d1), (a2, b2, d2)
such that

G(a1, b1, IV i, d1,m1,m2) ≪ 1 = G(a2, b2, IV i, d2,m1 ≪ 1,m2 ≪ 1). (1)

In total, we have 8 words of freedom to satisfy a 4-words equation, thus it seems that a solution should
exist. Surprisingly, this is not the case for a randomly chosen value of IV i. A simple analysis shows that
the above problem (1) can be reduced to the problem of finding solution to the equation

(X + Y + IV i) ≪ 1 = X ≪ 1 + Y ≪ 1 + IV i (2)

3 Obviously, the keyed permutation is a block cipher. Further we use the terms (keyed) permutation and block
cipher interchangeably, when we want to refer to analysis in the secret key model.

4 Note that this keyed permutation has a 1024-bit key and 1024-bit state.
5 A constant C is rotational (with respect to r), if C ≪ r = C.

5

Hence, IV i needs to be highly structured, i.e. it has to be the sum of a fully rotational word and two
rotational errors. Thus we obtain a rather strange fact, that the simplicity of the function G6 prevents
straightforward application of rotational distinguishers. We note that one can try to obtain rotational
pairs after the first full round of BLAKE2, but then the problem becomes much more complex, while the
message freedom drops.

The absence of constants in the function G can also be used to launch a distinguisher on the per-
mutation of BLAKE2 based on internal differentials introduced by Peyrin [23]. More precisely, we use the
‘squeeze attack’ variant from Dinur et al., that was recently used to attack Keccak [15]. We note that a
similar distinguisher was already applied to the permutations of Salsa and ChaCha [7, 8] — two ciphers
that inspired the design of BLAKE.

Let the four columns at the input of the permutation of BLAKE2 be equal, i.e. (v0, v4, v8, v12) =
(v1, v5, v8, v13) = (v2, v6, v10, v14) = (v3, v7, v11, v15), and let all the message words (the words of the key)
be the same. Then after the column step, all columns remain equal. Moreover, in the diagonal step, the
first input is always taken from the top row (with all elements the same), the second from the second row,
etc., thus after the diagonal step, all the columns remain identical. Hence, a round of BLAKE2 preserves
this property of the state. We can use the above property to launch a distinguishing attack for the
permutation of BLAKE2. We need only a single query to the permutation, then for a plaintext composed
of four identical columns, we check if the ciphertext has four such columns as well. Thus for a version
of the permutation with w-bit words, there are 2w keys (one key word is arbitrarily chosen, the rest are
equal) for the BLAKE2 permutation that can be distinguished with only one chosen plaintext. If all the
inputs to the compression function could be chosen then the above approach could be used to produce
collisions using the squeeze attack: 1) fix all the message words to some arbitrary value; 2) compress 22w

different inputs, with the first column arbitrarily chosen, and the remaining three columns equal to the
first. If there is a collision in one of the columns at the output, then the rest of the columns have to collide.
As a column has 4w bits, 22w trials should be sufficient to produce collisions for the compression function
— this is equivalent to 2128 calls for BLAKE2b, and 264 for BLAKE2s. Similarly, it is possible to speed-up
the search for preimages of a weak class of digests which are produced from the symmetric states — the
size of the class is 22w. Again, the freedom in the input state and the message words is sufficient for
the attacker to target digests from this class by only considering symmetric preimages, in time 22w. We
would like to emphasize that in BLAKE2 the initialization once again prohibits this type of trivial attacks
as IV 0 6= IV 1 6= IV 2 6= IV 3, thus the above attack is not applicable to the compression/hash function
of BLAKE2.

4 Fixed Points and Iterative Rotational Differentials for Search of Collisions
and Preimages

The approach of § 3 can be enhanced further with the use of fixed points and iterative one-round dif-
ferential characteristics 7. Assume P is a fixed point for the round function of BLAKE2b when all the
message words are equal. Then, as there are no constants in the function G, and the message per-
mutation for each round produces the same set of message words, P is a fixed point for any num-
ber of rounds of BLAKE2b. Further, let ∆ → ∆ be a one-round iterative characteristic with a low
hamming weight difference. If for the pair of states (P, P ⊕ ∆) the one round differential holds, i.e.
BLAKE2b1 round(P) ⊕ BLAKE2b1 round(P ⊕ ∆) = ∆, then the differential would hold for any number of
rounds. Hence at the output we will end up with a low hamming weight difference in the states and thus a
partial-collision. To apply this technique to BLAKE2b we have to be able to: 1) find an iterative one-round
characteristic with probability 2−p, p < 256, and, 2) find 2p fixed points. However, as all the message
words are identical, we have only 264 different permutations and approximately the same number of fixed
points, hence we must have p < 64.

First, let us show how to find fixed points for one round of BLAKE2b. We can accomplish this by
finding fixed points for the function G and repeating the same value in all columns of P . In fact, this
leads to a fixed point after only one half of the round, which in return results in a fixed point for the

6 If G were a random function, the solution would exist for any IV i.
7 An attack exploiting fixed points in simplified version of BLAKE (without message permutations and constants)

was given in [24] – that analysis is not applicable to unmodified version of BLAKE2.

6

whole round. Let (a, b, c, d,m1,m2) be the inputs of the function G. We are looking for values such that
G(a, b, c, d,m,m) = (a, b, c, d) (note that we need the message words to coincide). From the definition of
G (and further reduction), this is equivalent to solving the following system of equations:

(−d)⊕ a = d≫ 16 (3)

a+ b+m+ (c⊕ b≪ 1) +m = a (4)

b⊕ (c− d) = (c⊕ b≪ 1) ≫ 24 (5)

d⊕ (a+ b+m) = (−d) ≫ 32 (6)

With basic algebraic transformations the system can be reduced to:

a = d≫ 16⊕ (−d) (7)

b+ 2m = −(c⊕ b≪ 1) (8)

b⊕ (c− d) = (c⊕ b≪ 1) ≫ 24 (9)

b+m = [(−d) ≫ 32⊕ d]− a (10)

Let V = [(−d) ≫ 32⊕ d]− a. Then we get:

a = d≫ 16⊕ (−d) (11)

c = (b− 2V)⊕ b≪ 1 (12)

b⊕ (c− d) = (c⊕ b≪ 1) ≫ 24 (13)

m = V − b (14)

If in (13) we replace the value of c from (12), we obtain

b⊕ [((b− 2V)⊕ b≪ 1)− d] = (b− 2V) ≫ 24 (15)

Lemma 1. The solution for the equation

X ⊕ [((X +A)⊕X ≪ 1) +B] = (X +A) ≫ 24 (16)

where X is unknown, and A,B are constant 64-bit words, can be found on average in 225 time.

Proof. The proof is given in the Appendix B.

We can now present the algorithm for solving the system:

1. Fix a random value for d. Compute a from (11), and the value of V according to the above formula.
2. Compute the value of b from (15).
3. Compute the value of c from (12).
4. Compute the value of m from (14).

Thus we can find one fixed point with around 225 computations. Note that d can take any 64-bit value,
thus the number of fixed points is around 264. For each of these inputs, the 12-round compression function
of BLAKE2b (with modified IV) has the form:

a a a a
b b b b
c c c c
d d d d

 12 rounds−−−−−−→

a a a a
b b b b
c c c c
d d d d

 feedforward−−−−−−−→
(
c c c c
d d d d

)
. (17)

Next, let us focus on finding iterative one-round characteristics — a problem that has already been
discussed for BLAKE-256 in the work of Dunkelman and Khovratovich [17]. The new rotation constants
in BLAKE2b allow to apply their analysis without any significant modifications. However, straightforward
use of their one-round characteristic based on two characteristics (with probabilities 2−12, 2−21) for the
function G is impossible. The problem lies in the condition p < 64:

– If we use the two characteristics and take four different values for columns in the state (fixed point)
P then the probability of the first half round would be 2−2·12−2·21 = 2−66 < 2−64.

7

– If we take only two different column values, then the probability of the first half round is 2−12−21 =
2−33, and the same for the second half round. One can reduce the probability of the second half
only with a special type of fixed points — instead of independent fixed points for each column (each
function G) in the first half, one needs to deal with values that somehow depend on each other, but
it is not clear if such values exist at all.

– If we take the same value for all four columns, then we get a contradiction from the characteristics
— in the first half round there is one characteristic while in the second another. No value can satisfy
both characteristics as in the first modular addition (a+b+m), we want 4 and 8 to cancel in the first
characteristic (thus 4 should produce carries), while we want to stay at 4 in the second (no carries).

Hence we need to find a high probability one-round differential characteristic that can be used in combi-
nation with fixed points. We have implemented our own search based on the analysis of the above authors,
and found that none of these type of characteristics are compatible — there is no iterative characteristic
∆ → ∆ for G, and all two round characteristics ∆1 → ∆2, ∆2 → ∆1 are incompatible, i.e. they do not
hold for the same value of the input (and we want the value to be the same as we work with fixed points).

We can nonetheless produce iterative differentials but based on the rotational property of the function
G. Assume (P1, P2) is a rotational input pair for G producing the rotational output pair (Q1, Q2), i.e.
P2 = P1 ≪ 1, Q2 = Q1 ≪ 1. If P1 is a fixed point for G, then for the second pair of input-output
we get: P2 = P1 ≪ 1, Q2 = Q1 ≪ 1 = P1 ≪ 1 = P2, i.e. the second input is also a fixed point.
Therefore for these fixed points the iterative differential has the input (as well as the output) difference
P1 ⊕ P2 = P1 ⊕ P1 ≪ 1. Now recall that we want to minimize the hamming weight of this difference in
order to produce partial-collisions on as many bits as possible. In fact from (17) it is clear that we want
to minimize only the hamming weight of the difference in c and d. As we work with rotation on 1 to the
left, it follows that if the value of c (or d) has zeroes in t most significant bits then c⊕ c≪ 1 has zeroes
in at least t − 1 most significant bits. This gives a hint of how to choose the fixed point P1 using the
above algorithm for finding fixed points:

1. Choose an arbitrary value of d that has zeroes in 27 MSBs.
2. Compute the values of a, b, c, d,m using the algorithm.
3. Check if c has zeroes in 27 MSBs.
4. If not, go to step 1.
5. Check if the input (a≪ 1, b≪ 1, c≪ 1, d≪ 1,m≪ 1) is a fixed points.
6. If not, go to step 1.

The correct value of c at step 3 will be found after around 227 different trials of d. As the rotational
probability of the G function is 2−9.1, after 29.1 good values of c one can find the second fixed point.
Step 1 will be repeated 227+9.1 ≈ 236 times, hence we have enough degrees of freedom in d (there are
264−27 = 237 possible values). The total complexity of the algorithm is 225 ·227 ·29.1 ≈ 261. The hamming
weight of the differences in both c and d will be at most 26 bits, and hence we can produce partial-
collisions8 on 8 ·26 = 208 bits. However this is with chosen IV. That is, we can produce the collisions only
when the values of the IV correspond to our discovered values for fixed points. Note as the original IV
used in BLAKE2b do not coincide, our approach cannot be applied to the compression function of BLAKE2b.
Nonetheless, this shows that the choice of IV is sensitive to certain attacks.

A similar strategy can be applied for search of preimages for a special type of digests with h′0 = h′1 =
h′2 = h′3 = H1 and h4 = h5 = h6 = h7 = H2. Let us assume that (h0, h1, H1, H2) is a fixed point (along
with some message word m) for the function G. Then the full 12-rounds compression function of BLAKE2b
(with modified IV) can be described as:

h0 h0 h0 h0
h1 h1 h1 h1
H1 H1 H1 H1

H2 H2 H2 H2

 12 rounds−−−−−−→

h0 h0 h0 h0
h1 h1 h1 h1
H1 H1 H1 H1

H2 H2 H2 H2

 feedforward−−−−−−−→
(
H1 H1 H1 H1

H2 H2 H2 H2

)
.

Hence, if we can find the corresponding h0, h1,m, we will be able to recover the preimage of the target
digest. For this purpose, we use the system (7) – (10):

1. Set c = H1 and d = H2.

8 Lately, collisions on some particular bits have been called partial-collisions.

8

2. Compute the value of a from (7).
3. Compute the value of b from (9) — it is a system of linear equations.
4. Compute the value of ma from (8), and mb from (10).
5. If ma = mb then h0 = a, h1 = b,m = ma is the preimage.

The condition ma = mb holds with probability 2−64 and therefore among all the possible 2128 digests from
the class (recall that |H1| = |H2| = 64), preimage based on a fixed point can be found for 2128−64 = 264

of them with a negligible effort.

5 Impossible Differential Analysis

In this section we perform an impossible differential (ID) analysis for the permutation of all members of
the BLAKE and BLAKE2 families. A similar analysis was done for the original BLAKE by Aumasson et al. at
FSE 2010 [1], where the authors claimed a 5-round ID for BLAKE-256 and a 6-round ID for BLAKE-512.
However these IDs were mainly found experimentally, and some of the presented characteristics had
probabilities less than 1. Hence the analysis from [1] does not seem to cover more than five rounds for
both BLAKE-256 and BLAKE-512.

We carry a similar analysis on the four permutations of BLAKE-256, BLAKE-512, BLAKE2s and BLAKE2b.
Note that in contrast to the rotational analysis, the bitwise addition of constants plays no role in these
impossible differentials, while the value of the rotation amounts is of importance. Hence the analysis of
BLAKE-256 and BLAKE2s is identical as their respective permutations only differ in constant addition. On
the other hand, the analysis must be performed independently for BLAKE-512 and BLAKE2b. Our result
is a 6.5-round impossible differential for all the four permutations of BLAKE and BLAKE2. As we need to
insert differences in the message words, which play the role of the key when the permutations are seen
as block ciphers, the analysis is performed in the related-key framework. The IDs are found by using the
miss-in-the-middle technique that connects a forward and a backward characteristic with incompatible
probability-one differences. The forward characteristic is on 2.5 rounds and it can be extended for an
additional half round, while the backward characteristic is on 3.5 rounds. As in the original analysis,
our approach heavily relies on the good (from an attacker point of view) properties of the different σr
message words permutations, which allow to delay the propagation of differences for 1.5 rounds in both
forward and backward directions.

The analysis in this paper is innovative in the way it uses additive differences to cancel a difference
in the message word of G−1 with probability one. Besides being an interesting result on the G−1 function
itself, this is an important part of extending the ID to more rounds. Moreover, we also formally checked
the validity of our probability-one characteristics and we were able to prove they are correct — this was
not fully done in [1] and was a cause of invalid IDs. This check was performed by a simple (although
rather verbose and a bit tedious) manual computation that propagates the probability-one differences
through the whole differential paths, as done similarly in [19].

We now detail the probability-one differential characteristics used in the ID. Differences are expressed
with a subset of the generalized constraints of De Cannière and Rechberger [13]. In particular we use:

– ‘-’ to denote that two bits are equal;
– ‘0’ to denote that two bits are identical and equal to zero; similarly, we can define ‘1’.
– ‘x’ to denote that two bits are different;
– ‘n’ to denote that two bits are different, and the first bit is zero;
– ‘u’ to denote that two bits are different, and the first bit is one;
– ‘?’ to denote that both bits can take an arbitrary value; we refer to this one as a ‘trivial’ difference.

5.1 Forward Characteristic on 2.5 Rounds

The forward characteristic starts at round 39 and is based on the fact that the message word m13 is used
in the first half of a column-step call in round 3, and is not used again before the second half of a diagonal
step in round 4. Consequently, we can introduce a difference in m13 and cancel it immediately with a
difference in v2; no difference will be introduced again for 1.5 rounds.

9 We start indexing the rounds from 0, so as to match the indexing of the σ permutations.

9

If we note MSB an ’x’ difference in the most significant bit, the initial differences in this characteristic
are then MSB for m13 and v2, and no difference in any other state or message word.

In the diagonal step of round 4, a difference is introduced in the state by the difference in m13. This
difference quickly propagates to every state word, but some non-trivial differences occur with probability
one. After the column step of round 5, i.e. at round 5.5, the state words for which there are non-trivial
probability-one differences are listed below along with their differences (in the following, the leftmost
constraint is for the MSB).
For BLAKE2b we have:

v0: ??x-------
v3: ??x-----------------------
v7: ???x-------?
v11: ??x-------
v12: ????????x-------??
v15: ----------------??x-------

For BLAKE-512 we have:

v0: ???x------
v3: ???x----------------------
v7: ????x------???
v11: ???x------
v12: ?????????x------??
v15: ----------------???x------

For BLAKE2s and BLAKE-256 we have:

v0: ????????????????????????????x---
v3: ????????????????????x-----------
v7: ???x---?????????????????????????
v11: ????????????????????????????x---
v12: ????x---????????????????????????
v15: --------????????????????????x---

5.2 Backward Characteristic on 3.5 Rounds

The backward differential characteristic starts in the diagonal step of round 8. As we want to use this
characteristic to mount a miss-in-the-middle with the previous forward characteristic, we need to use
differences in the message words consistent with the ones used in the latter. Hence we use a single
difference in the MSB of m13. This message word is used in the second half of a G−1 call in the inverse of
the diagonal step of round 8, and is not used again before the second half of a G−1 call in the inverse of
a column step in round 7.

In order to delay the propagation of differences as much as possible, we want to proceed as for the
forward characteristic and cancel the difference introduced by the message at round 8 by specifying an
appropriate state difference. It is again possible to do so with probability one; in this case however, the
difference will be somewhat more complex.
For BLAKE2b, we do so by using the following initial differences in the state at the beginning of the inverse
of round 8:

v4 (input a to G−1): x-------------------------------0-----------------------n-------

v9 (input b to G−1): -------x-------x---------------x---------------x-------n--------

v14 (input c to G−1): --------n-------n---------------n1--------------n-------0-------

v3 (input d to G−1): --------n-------n---------------00--------------n---------------

One should note two things about this input difference. The first one is that the signed differences ‘n’
can all be replaced together with a signed difference ‘u’ of opposite sign: the only important fact is that
all differences are signed similarly. Moreover, some ‘0’ and ‘1’constraints in the difference for v3 and v14
are here to avoid a carry propagation in the update of c in G−1, which is c ← c − d. However, this is
a sufficient condition only, and the same result can be achieved by specifying alternative differences. In
other words, these differences only make a subset of the state difference we were looking for. We do not
specify the whole set in here, as the existence of a subset already serves our purpose.
Similarly, for BLAKE-512, we use the following state difference:

v4 (input a to G−1): x-------------------------------0------------------------n------

v9 (input b to G−1): ----n---------------x------x---------------x---------------x----

v14 (input c to G−1): ---------n------n---------------n1--------------n--------0------

v3 (input d to G−1): ---------n------n---------------00--------------n---------------

Finally, for BLAKE2s and BLAKE-256 we use:

10

v4 (input a to G−1): x---------------0-----------n---

v9 (input b to G−1): ---n-------x---x-------x-------x

v14 (input c to G−1): ----n---n-------n1------n---0---

v3 (input d to G−1): ----n---n-------00------n-------

As for the forward characteristic, the difference in m13 again introduces a difference that propagates
to the rest of the state. However, due to the slower diffusion of G−1 with respect to G, it is possible to keep
non-trivial differences of probability one for more rounds. We then get the following differences after the
inverse of the diagonal step of round 5, i.e. at round 5.5 (only the differences occurring on state words
for which there were non-trivial differences after the forward characteristic are listed, but note that there
were additional ones which are omitted here).
For BLAKE2b we have:

v0: ??x---------------
v3: ----------------????????????????????????????????x---------------
v7: ??x---------------
v12: ??x---------------
v15: --

In this case, the differences for BLAKE-512 are actually identical.
Similarly, for BLAKE2s and BLAKE-256, we have:

v0: ????????????????????????x-------
v3: --------????????????????x-------
v7: ????????????????????????x-------
v12: ????????????????????????x-------
v15: --------------------------------

5.3 Mounting the Miss-in-the-Middle

Now that we have established probability-one differences obtained at round 5.5 from two different char-
acteristics, we show that these characteristics are incompatible. The result is immediate, when noticing
that the differences on state words v0, v3, and v15 are incompatible for all four permutations of BLAKE2b,
BLAKE-512, BLAKE2s, and BLAKE-256, and the differences on word v7 are further incompatible for BLAKE2b.

As one characteristic goes in the forward direction and one in the backward, inverse direction, this
incompatibility consists in effect in a miss-in-the-middle which gives a 6-rounds impossible differential.
This family of ID goes from round 3 to round 8, and is specified by the differences in the message word
m13 and in the state v2 (at round 3), and v3, v4, v9 and v14 (at round 8), from the two families of
characteristics presented above.

5.4 Extending by One More Half-Round

The 2.5-rounds forward characteristic used in the above can easily be extended for one more half-round
for all the permutations of BLAKE2 and BLAKE, thereby increasing the number of rounds reached by the
ID to 6.5. The extension works as follow.

First note that the message wordm13 is not used in the diagonal step of round 2. Thus no difference will
be introduced by the message words in that step. Second, we use one of the probability-one differential
characteristics for G mentioned in [1]. This characteristic has no differences in the message word, and
simply maps through G the state input difference (MSB, 0, MSB, MSB ⊕ (MSB ≪ r), 0, 0) to the
state output difference (MSB, 0, 0, 0). It is straightforward to check that this happens with probability
one, where r is 32 for BLAKE2b and BLAKE-512, and 16 for BLAKE2s and BLAKE-256. As the output
difference of this characteristic is precisely the input difference of the forward characteristic used in the
ID, it is therefore possible to join the two characteristics together. The initial differences of this new
forward characteristic starting at round 2.5 are then MSB for m13, v2, and v8, and MSB ⊕ (MSB ≪ r)

for v13, with all other words having no differences.

6 Differential Analysis

In this section we show differential attacks on BLAKE2. The target of our attacks are be the compression
function and the hash function BLAKE2b only — the analysis applies to BLAKE2s as well, but the number
of attacked rounds is lower. To build high probability differential characteristics we expand the analysis

11

of Guo and Matusiewicz [18] (see also [1]) and Dunkelman and Khovratovich [17] of BLAKE-256. In both
of these papers, the difference is of a special rotational type and is chosen to cancel the effects of the
rotations on 16, 12, 8, and 7 bits in the function G of BLAKE-256. The first authors note that among the
four rotations in G, only the last one (on 7 bits) is not divisible by 4. Thus they choose to work with
the difference 88888888 and analyze only the characteristics where before the last rotation the difference
in b is 0. They linearize G, assume each modular addition involving differences has a probability of 2−7

(the difference in MSB saves one 2−1), and with a computer search find that the best characteristic is
on 4 rounds. Although their characteristic has rather high probability of 2−56, they could not go more
as no characteristics exist on higher number of rounds due to the condition that no difference enters
the rotation on 7. The authors argue that one can consider the special case of a difference entering this
rotation resulting in twice difference (i.e. 11111111) at the output, and then canceling it in the next G

function, but state that their experiments show that in this case the probability of the characteristics drops
significantly. Dunkelman and Khovratovich choose to work with the difference 04040404 (the probability
of modular addition increases to around 2−4) and consider characteristics where no difference enters the
rotation on 12 bits10. Moreover, they consider two additional type of differences obtained by multiplying
the initial difference by 2 and 3 — this way they can allow difference in rotation on 7. The authors run a
full search of round-reduced characteristics with all possible configurations for the difference in the state
(i.e. in each of the 16 words, the difference can be 0, 04040404, 08080808, 0c0c0c0c), and no difference
in the message words. The characteristics they find are on more rounds, but have lower probability.

The new rotation amounts of 32,24,16 and 63 bits in the function G of BLAKE2b are very similar to the
rotations from BLAKE-256. Hence we can apply the technique of finding round-reduced characteristics from
the previous two papers by considering the 64-bit differences 0404040404040404 and 0004000400040004.
We also use the following improvements for the search methods:

1. In the first search we work with δ = 0404040404040404 and with two additional differences 08080

80808080808, 0c0c0c0c0c0c0c0c, that is the difference in the words can be 0, δ, 2 × δ, and 3 × δ.
This helps us to overcome the rotation on 63, i.e. instead of the condition that no difference enters
≫ 63 now we can allow δ to be at the input of this rotation which results in 2× δ at the output.

2. In the second search we work with ∇ = 0004000400040004 and again with two additional differences
2×∇, 3×∇. As in the analysis of Dunkelman and Khovratovich, we require no difference at the input
of rotation on 24 bits, but improve their search by considering two possibilities for the difference in
each of the message words (instead of one: no difference).

The choice of 4 differences (instead of only 2) leads to the situation where in the modular addition,
for the same input there are possibly several outputs. For example, δ + const can give both δ and 3× δ.
Hence after the linearization, for fixed input differences to G, this function can produce several output
differences. Dunkelman and Khovratovich note11 that they get 276 possible differentials for G when the
differences in a, b, c, d are one of the four (0, 2 × ∇, 3 × ∇), and there is no difference in the message
words. As we allow the differences 0, δ (or 0,∇) in the messages (see below), in the first search we end
up with 4531 differentials for G, and with 1192 in the second. There are 1024 possible input differences
(each of a, b, c, d can take 4 different values, while the message words can take 2), hence on average in the
first search, we have 4 outputs per single input, while only one in the second. In theory (without taking
into account the probabilities) this results in around 22·8 = 216 outputs for the whole round that can be
obtained from a single input in the first search, while in the second this number is 1. Thus to keep the
first search practical we cannot have too many input differences. We note that the probabilities of the
differentials12 range from 2−8 to 2−75 in the first search, and 2−4 to 2−36 in the second.

In both of our searches we try to maximize the number of starting differences in the state and in the
message words. We can do this up to a certain extent. For example, there are 16 message words, thus
if we want to try all four possible starting differences, we will end up with 216·2 = 232 starting points
(without considering any difference in the state). To make the searches feasible, in certain cases we restrict
the differences to only 0, δ (or 0,∇). Note that the initializations in BLAKE2 differs from BLAKE, and in
particular no difference can be introduced in v8, v9, v10, v11, v14, v15. We follow strictly the definition of

10 This type of characteristics were mentioned by Guo and Matusiewicz, but no detailed analysis was provided
in [18].

11 Guo and Matusiewicz work with only 2 difference, 0 and δ, thus modular additions in G are uniquely determined
and for each input they get a single output.

12 The probability of the trivial differential with zero input-output difference is 1.

12

BLAKE2 and do not allow starting differences in any of these six words13. As we will see further, this
has a major impact on the maximal number of rounds the best characteristics can cover in the case of
compression functions.

One final note on the message modification. In our searches we assume the attacker can always pass
for free the modular additions that involve the message words in the function G, of the first round only.
This is reasonable as he always controls the message and to pass these additions he needs to fix only a
small amount of bits in the message words per active bit, and can use the remaining degrees of freedom
in the message to go through the rest of the rounds probabilistically. Recall that in the first round all
the message words are independent. More advanced message modification techniques might be available,
however, as we do not know in advance the best characteristic, it is hard to predict which of the remaining
modular additions in the first round can be passed for free. Using message modification anywhere but in
the first round is very hard due to the condition on the fixed IV, i.e. once a state has been fixed in some
middle round, the attacker should be sure that after going backwards the resulting initial state complies
with the initialization, i.e. has correct values for v8, v9, v10, v11, v14, v15.

We have run the second search (with the main difference ∇ = 0004000400040004) and obtained the
following results:

– For the hash function of BLAKE2b, when the difference in the message words can take any of the values
0,∇, 2×∇, 3×∇ (in total 216·2 = 232 starting differences), the best characteristic is only on 2 rounds
and holds with probability 2−198.

– For the compression function of BLAKE2b, when the difference in the chaining values and the counters
can take 0,∇, 2×∇, 3×∇, and the difference in the message words is 0 or ∇ (in total 210·2+16·1 = 236

starting differences), the best characteristics is on 3 rounds with probability 2−336.

The first search (with the main difference δ = 0404040404040404) requires much more computational
power as we are dealing with average forking on 4, i.e. for each input of G there are 4 outputs. We had to
optimize the code significantly in order to try all possible inputs. The outcome of this search is as follow:

– For the hash function of BLAKE2b, when the difference in the message words can take any of the
values 0 or δ (in total 216 starting differences), the best characteristic is on 3 rounds and holds with
probability 2−344.

– For the compression function of BLAKE2b, when the difference in the chaining values, the counters, and
the message words can take 0, δ (in total 210·1+16·1 = 226 starting differences), the best characteristics
is on 4 rounds with probability 2−366.5.

Note that in both of the cases (hash and compression), the first search produced better characteristics.
Moreover, note that although we have matched the number of attacked rounds in the case of compression
function (both BLAKE2 and BLAKE have differentials on 4 rounds), the probability of the characteristic of
BLAKE2 is only 2−366.5 whereas the best known characteristics for BLAKE hash function is of 2.5 rounds with
probability 2−56. Therefore, despite launching a search with much higher number of starting differences,
the new initialization used in BLAKE2 significantly limits the freedom14 of the attacker against this type of
differentials attacks. Thus the tweaked initialization seems to have much better security properties.

We are able to extend for one half round each of the differentials for the compression and the hash
function. In the case of former, we allow any difference in the last rotation on 63 bits (our search prohibits
this, thus it was not able to find it). We end up with a differential characteristic on 4.5 rounds for the
compression function of BLAKE2b that holds with probability 2−494.5 — see Appendix C for the details.
Similarly, we can go for an additional half round for the hash function BLAKE2b. We get low probability
characteristic, however by using neutral bits we should be able to find a pair of messages that conform
to the differential with a complexity of around 2480 hash function calls — in Appendix D we give the
method to achieve this. Without the initialization limitations, we extend similar characteristics search to
the permutation and obtain a result on 5.5 round with probability 2−928, shown in Appendix E.

7 Conclusion

A comparison of the security of BLAKE2 and BLAKE against the attacks we have examined in this paper
is given in Tbl. 2. Based on our findings we can deduce several important facts about the impact of the

13 We have seen in the previous sections that when the attacker can fully control the input state, then attacks on
the full-round BLAKE2 are possible.

14 No difference can be introduced in v8, v9, v10, v11, v14, v15.

13

Table 2. Comparison of the attacks on BLAKE2 and BLAKE.

Attack
BLAKE2 BLAKE

perm. cf. chosen IV perm. cf. chosen IV

Rotational 12 - 7 - - -

Collisions with Internal Differentials 12 - 12 - - -

Near-Collisions - 3 12 4 4 4

Weak-class of keys/preimages 12 - 12 - - -

Impossible differentials 6.5 - - 6.5 - -

Boomerangs 5.5 5.5 5.5 8 7 8

Differentials 5.5 4.5 12 4 4 4-6

Hash function differentials 3.5 2.5

tweaks in BLAKE2:

1. The absence of constants in the function G has a major impact on the basic building block, i.e. the
keyed permutation of BLAKE2, and this cipher can be fully attacked. We can launch a key recovery
rotational attack on all 12 rounds of the permutation BLAKE2b with a high complexity, and a distin-
guisher based on internal differentials that holds for 264 keys of BLAKE2b (232 for BLAKE2s) based on
a single query. Thus one should be careful when using this permutation in applications. Note that
neither of these attacks is applicable to BLAKE.

2. The change of rotation amounts in BLAKE2b does matter against certain types of attacks. The dif-
ferentials we have presented in § 6 are based in particular on the fact that all rotations are either
divisible by 8 or are close to being divisible by 8 (e.g. 63). In fact, the same search of differential
characteristics applies to BLAKE2b and BLAKE-256, however the latter is a 256-bit function while the
former is 512-bit, and thus permits characteristics with lower probabilities.

3. In the initialization, omitting the double use of the counter, as well as introducing constants IV
reduces the number of attacked rounds, i.e. increases the security of the compression function. Note
that in the differential attacks, we were able to match (and advance more) the number of rounds as in
BLAKE only because we used a much more complex search of differential characteristics and we were
dealing with 512-bit hash. For instance, if the initialization in BLAKE2 were the same as in BLAKE,
most likely we could penetrate more rounds in the differential attack (we could not run the search
for this version as it requires significant amount of computations). In fact, the new initialization is
crucial as if one used the same as in BLAKE, then collisions (respectively partial-collisions) could be
produced with only 2128 (respectively 261) compression function calls.

4. The complete absence of constants in G makes the security of the compression function highly depen-
dent on the right choice of IV (this is not the case of BLAKE). That is, even with the new initialization
but different IV, one could still launch attacks — see §§ 3 and 4. The ‘weak’ IV on the other hand
are highly structured (either rotational, all equal, or some particular values). The random choice of
IV as in BLAKE2 makes these weaknesses impossible to exploit.

To summarize, based on our results, we have shown that the tweaks introduced by BLAKE2, if analyzed
separately, reduce the security of the version in certain theoretical attack frameworks as our analysis
suggests existence of several efficient attacks on the basic building block of BLAKE2. However, taken
together the tweaks do not have a significant impact on the security of the hash/compression function,
aside from the one round increase (resulting in a 3.5 round attack) against the hash function and a half
round in the case of compression function. Thus BLAKE2, similarly to its predecessor BLAKE, has a very
high security margin against all known attacks even after reducing the number of rounds by four.

Acknowledgments

The work in this paper was partially supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06). We would also like to thank the anonymous reviewers from SAC2013 and
CT-RSA2014 for their helpful comments.

14

References

1. Aumasson, J.P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential and Invertibility Properties
of BLAKE. [20] 318–332

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE, version 1.3 (2008) Available
online at https://131002.net/blake/.

3. Aumasson, J.P., Meier, W., Phan, R.C.W.: The Hash Function Family LAKE. In Nyberg, K., ed.: FSE.
Volume 5086 of LNCS., Springer (2008) 36–53

4. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler, Smaller, Fast as MD5.
In Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R., eds.: ACNS. Volume 7954 of Lecture Notes in
Computer Science., Springer (2013) 119–135

5. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler, smaller, fast as MD5 —
version 2013.01.29 (2013) Available online at https://blake2.net/.

6. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: The BLAKE2 website (May 2013) https:

//blake2.net.

7. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008) Available online at http://cr.yp.to/chacha.html.

8. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In Robshaw, M.J.B., Billet, O., eds.: The eSTREAM
Finalists. Volume 4986 of Lecture Notes in Computer Science. Springer (2008) 84–97 Available online at
http://cr.yp.to/snuffle.html.

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (January 2011) Available online
at http://keccak.noekeon.org/.

10. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. IACR Cryptology ePrint
Archive 2007 (2007) 278

11. Biryukov, A., Gauravaram, P., Guo, J., Khovratovich, D., Ling, S., Matusiewicz, K., Nikolic, I., Pieprzyk, J.,
Wang, H.: Cryptanalysis of the LAKE Hash Family. In Dunkelman, O., ed.: FSE. Volume 5665 of LNCS.,
Springer (2009) 156–179

12. Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In Joux, A., ed.: FSE. Volume 6733 of
Lecture Notes in Computer Science., Springer (2011) 218–237

13. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In Lai,
X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Computer Science., Springer (2006) 1–20

14. Chang, S.j., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-Round Report
of the SHA-3 Cryptographic Hash Algorithm Competition. NIST Interagency Report 7896 (2012)

15. Dinur, I., Dunkelman, O., Shamir, A.: Self-Differential Cryptanalysis of Up to 5 Rounds of SHA-3. IACR
Cryptology ePrint Archive 2012 (2012) 672

16. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized
Internal Differentials. In: FSE. (2013)

17. Dunkelman, O., Khovratovich, D.: Iterative Differentials, Symmetries, and Message Modification in BLAKE-
256. In: ECRYPT2 Hash Workshop. (2011)

18. Guo, J., Matusiewicz, K.: Round-reduced near-collisions of BLAKE-32. In: WEWoRC. (2009) Available
online at http://guo.crypto.sg/blake-col.pdf.

19. Guo, J., Thomsen, S.S.: Deterministic Differential Properties of the Compression Function of BMW. In
Biryukov, A., Gong, G., Stinson, D.R., eds.: Selected Areas in Cryptography. Volume 6544 of LNCS., Springer
(2010) 338–350

20. Hong, S., Iwata, T., eds.: Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul, Korea,
February 7-10, 2010, Revised Selected Papers. In Hong, S., Iwata, T., eds.: FSE. Volume 6147 of Lecture
Notes in Computer Science., Springer (2010)

21. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. [20] 333–346

22. Li, J., Xu, L.: Attacks on Round-Reduced BLAKE. IACR Cryptology ePrint Archive 2009 (2009) 238
https://eprint.iacr.org/2009/238.

23. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In Rabin, T., ed.: CRYPTO. Volume 6223
of Lecture Notes in Computer Science., Springer (2010) 370–392

24. Vidali, J., Nose, P., Pasalic, E.: Collisions for variants of the BLAKE hash function. Inf. Process. Lett.
110(14-15) (2010) 585–590

A Additional Specification Parameters of BLAKE2

We give here the definition of the inverses G−1 of the G functions. With notations similar as in § 2, the
G−1 function of BLAKE2b G-1(a, b, c, d) is defined as:

15

1 : b← (b≪ 63)⊕ c 5 : b← (b≪ 24)⊕ c
2 : c← c− d 6 : c← c− d
3 : d← (d≪ 16)⊕ a 7 : d← (d≪ 32)⊕ a
4 : a← (a−mj)− b 8 : a← (a−mi)− b

.

The G−1 function of BLAKE2s G-1(a, b, c, d) is defined as:

1 : b← (b≪ 7)⊕ c 5 : b← (b≪ 12)⊕ c
2 : c← c− d 6 : c← c− d
3 : d← (d≪ 8)⊕ a 7 : d← (d≪ 16)⊕ a
4 : a← (a−mj)− b 8 : a← (a−mi)− b

.

We also give the permutations used for the message expansion of BLAKE and BLAKE2 in Tbl. 3.

Table 3. Permutations of {0,. . ., 15} used in the BLAKE and BLAKE2 families.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

B Proof of Lemma 1

The lemma claims that we can find the solution of

X ⊕ [((X +A)⊕X ≪ 1) +B] = (X +A) ≫ 24 (18)

in 225 time, for the 64-bit words X,A,B. We achieve this by eliminating the rotation at the right side.
Let X = x63 . . . x0, A = a63 . . . a0, B = b63 . . . b0, (X +A) ≫ 24 = H = h63 . . . h0, be the bit values of

the words of the equation. We start by guessing the 24 bits x47 . . . x24 and the carry at position 24 from
the addition (X + A) (this process will be repeated for all possible values), hence we can determine the
value of h23 . . . h0. From (18) we can immediately find x63 = a0⊕ b0⊕ h0. Let us try to solve (18) for the
first 24 bits of X, i.e. let us find the solution of the equation:

X ′ ⊕ [((X ′ +A)⊕X ′ ≪ 1) +B] = H ′, (19)

on 24-bit words X ′ = x23 . . . x0, etc. This is a T-function and a solution can be found efficiently by
solving it from the least to the most significant bit. Further we sketch the method. By analyzing the
above equation for bit position 1 we can determine the value of x0 as well as the values of the carries
r0, t0 from the modular additions (X ′ +A), ((X ′ +A)⊕X ′ ≪ 1) +B. The condition on the bit i can be
expressed as:

x1 ⊕ x1 ⊕ a1 ⊕ r0 ⊕ x0 ⊕ b1 ⊕ t0 = hi, (20)

where r0 = x0a0, t0 = (x0 ⊕ a0 ⊕ x63)b0. Thus (20) becomes:

x0(1⊕ a0 ⊕ b0) = a0b0 ⊕ x63b0 ⊕ h0 (21)

Depending on the values of a0, b0, h0, x63 the above equation can have no solution, one or two solutions.
If there is at least one solution, we store into a table the values for x0 and the values of the carries r0, t0.

16

Further we move to the next bit, i.e. position 2, and obtain an equation similar to (20). When determining
r1, t1 we take all possible values for r0, t0 from the table of stored values, and determine the set of possible
values of x1 and r1, t1 (and store them). This procedure is repeated for each bit. Obviously, the solution
is linear in the number of bits (i.e. 24), hence we can easily find all solutions. On average there would be
one solution (recall that at some bit positions there will be no solutions for (21)).

Once we find the value of X ′, determining the rest of the bits of X is trivial. Note that solving the
initial equation (18) for the bits 24-47 is easy as we have already guessed the values of x47, . . . , x24 at the
beginning. Hence from (18) we can determine the remaining 16 bits of X (the left side is constant), i.e.
x63, . . . , x48. Finally, we can determine an additional 24-bits of X on the right side and use it as a filter
for incorrect solutions (or as soon as we determine all bits of X we immediately check if it is a solution
for the equation). As this is 25-bit filter, after repeating the whole procedure for all possible x47, . . . , x24
and the carry, we will find on average 1 solution. Thus the total complexity is as claimed.

C An Example of 4.5-round Differential Characteristics for the Compression
Function of BLAKE2b

Here we give the best differential characteristic on 4 rounds found by the first search. With the mes-
sage modification in the first round, the probability of the characteristic is 2−45.8·8 ≈ 2−366.5. We can
extend it for one additional half round to obtain a 4.5-round differential characteristic for the compres-
sion function of BLAKE2b with probability 2−61.8·8 ≈ 2−494.5. We use 1, 2, 3 to denote the differences
0404040404040404, 2 · 0404040404040404, 3 · 0404040404040404, while the difference at output of v5
(i.e. 2 ≫ 63) is defined as (2 · 0404040404040404) ≫ 63. The difference in the message words is
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0. Note that the characteristic starts at the first round (i.e. round 0),
and goes for 4.5 rounds. We give the values of the differences after each half round. The numbers above
the arrows denote the probability, while below, the differences in the message words used in the four G

functions of the half round.

Round 0:

0 0 1 1
1 0 0 0
0 0 0 0
1 0 0 0

 2−2·8(with MM)−−−−−−−−−−→
10 00 10 10

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 2−2·8(with MM)−−−−−−−−−−→
00 00 00 00

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

Round 1:

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 2−4·8

−−−−−−−→
00 10 00 01

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 2−3·8

−−−−−−−→
00 10 00 00

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Round 2:

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 2−4·8

−−−−−−−→
00 01 00 00

0 1 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 2−7·8

−−−−−−−→
00 01 00 01

0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0

Round 3:

0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0

 2−6·8

−−−−−−−→
00 00 00 00

0 1 0 1
0 0 0 2
0 0 0 0
0 0 0 1

 2−17.8·8

−−−−−−−→
01 00 11 00

0 0 3 0
2 2 2 0
3 0 0 0
1 2 1 1

Round 4:

0 0 3 0
2 2 2 0
3 0 0 0
1 2 1 1

 2−(6+2+5+3)·8

−−−−−−−−−→
01 00 01 00

1 0 3 1
0 2 ≫ 63 0 0
2 0 2 1
2 0 2 0

D Differential Attack on 3.5 rounds for the Hash Function of BLAKE2b

Below we present the best differential characteristic on 3 rounds (from round 6 to 9) found as well with
the first search, that has a probability of 2−43·8 ≈ 2−344 (using the message modification to pass for free
some of the additions in the first round). We can extend it for one additional half round to obtain a

17

3.5-round characteristic for the hash function of BLAKE2b with probability 2−67.8·8 ≈ 2−542.5. Although
the probability is below 2−512 by using neutral bits in the first round we can find a pair that follows the
characteristic. Note that the last G function in round 1, has no input/output differences. Hence, if we
find a pair for the first seven G functions of this round, then we can use the freedom in the two message
words of the last G function, to produce another 2128 pairs for free. As for the remaining 3 rounds we
need around 2480 pairs, we have to repeat the first round around 2480−128 = 2352 times. Thus the total
complexity to find a pair that follows the whole 3.5 characteristic is 2352+(2+6)·8 + 2480 ≈ 2480.

Round 6:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 2−2·8(with MM)−−−−−−−−−−→
11 00 00 00

1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 2−6·8(with MM)−−−−−−−−−−→
01 11 01 00

1 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0

Round 7:

1 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0

 2−10·8

−−−−−−−→
00 10 10 10

1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 2−6·8

−−−−−−−→
10 00 01 10

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

Round 8:

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 2−7·8

−−−−−−−→
10 00 01 00

1 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

 2−12·8

−−−−−−−→
11 01 00 01

0 1 0 1
2 0 2 2
0 1 1 1
1 1 1 0

Round 9:

0 1 0 1
2 0 2 2
0 1 1 1
1 1 1 0

 2−(7+4+6.8+7)·8

−−−−−−−−−−→
01 00 11 01

0 0 3 0
2 0 2 2
2 1 2 3
3 0 3 1

E Differential Attack on 5.5 rounds for the Permutation of BLAKE2b

Below, we present the 5.5-round characteristic for the permutation with probability 2−928, from round
0 to 5. Note that this characteristic is no longer under compression function limitation, e.g., differences
can appear in any input state and message words. It is meaningful in a much broader setting, i.e., the
underlining primitive is a 1024-bit block cipher with 1024-bit key. Under such setting, one has immediate
distinguishers for a set of 264 weak keys with full rounds, while this characteristic is useful for key recovery

18

with no restriction on the key set.

Round 0:

1 1 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 2−(1+3+0+3)·8

−−−−−−−−−→
10 11 00 10

0 1 0 0
0 0 0 0
0 1 0 0
0 1 0 1

 2−(3+1+3+3)·8

−−−−−−−−−→
00 10 00 10

1 0 1 1
0 0 0 0
1 0 1 0
0 0 0 0

Round 1:

1 0 1 1
0 0 0 0
1 0 1 0
0 0 0 0

 2−(4+0+3+4)·8

−−−−−−−−−→
11 00 00 01

0 0 1 1
0 0 0 0
1 0 0 1
0 0 0 0

 2−(0+4+3+4)·8

−−−−−−−−−→
00 11 00 01

0 0 1 1
0 0 2 0
0 1 0 1
1 0 0 0

Round 2:

0 0 1 1
0 0 2 0
0 1 0 1
1 0 0 0

 2−(3+3+6+3)·8

−−−−−−−−−→
00 01 01 00

1 0 1 1
0 0 0 0
1 1 1 0
0 0 0 0

 2−(4+4+3+3)·8

−−−−−−−−−→
11 11 00 00

0 1 1 1
0 0 0 0
0 0 1 1
0 0 0 0

Round 3:

0 1 1 1
0 0 0 0
0 0 1 1
0 0 0 0

 2−(0+1+3+4)·8

−−−−−−−−−→
00 10 00 01

0 0 1 0
0 0 0 2
0 0 0 1
0 0 0 1

 2−(2+3+6+0)·8

−−−−−−−−−→
11 01 01 00

0 0 1 0
0 0 0 0
1 0 0 1
0 0 0 0

Round 4:

0 0 1 0
0 0 0 0
1 0 0 1
0 0 0 0

 2−(3+0+1+3)·8

−−−−−−−−−→
01 00 10 10

0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0

 2−(4+0+3+1)·8

−−−−−−−−−→
10 00 10 10

0 0 1 0
0 2 0 0
0 0 0 0
0 0 0 1

Round 5:

0 0 1 0
0 2 0 0
0 0 0 0
0 0 0 1

 2−(4+6+1+3)·8

−−−−−−−−−→
10 11 10 01

0 1 0 0
2 0 0 2
0 1 0 0
1 0 0 1

19

