
Exponentiating in Pairing Groups

Joppe W. Bos, Craig Costello, and Michael Naehrig

Microsoft Research, USA

Abstract. We study exponentiations in pairing groups for the most
common security levels and show that, although the Weierstrass model
is preferable for pairing computation, it can be worthwhile to map to
alternative curve representations for the non-pairing group operations in
protocols.

1 Introduction

At the turn of the century it was shown that elliptic curves can be used to
build powerful cryptographic primitives: bilinear pairings [36, 49, 14]. Pairings
are used in a large variety of protocols, and even when considering the recent
breakthrough paper which shows how to instantiate multilinear maps using ideal
lattices [26], pairings remain the preferred choice for a bilinear map due to their
superior performance. Algorithms to compute cryptographic pairings involve
computations on elements in all three pairing groups, G1, G2 and GT , but proto-
cols usually require many additional standalone exponentiations in any of these
three groups. In fact, protocols often compute only a single pairing but require
many operations in any or all of G1, G2 and GT [13, 28, 47]. In this work, we use
such scenarios as a motivation to enhance the performance of group operations
that are not the pairing computation.

Using non-Weierstrass models for elliptic curve group operations can give
rise to significant speedups (cf. [43, 9, 10, 31]). Such alternative models have not
found the same success within pairing computations, since Miller’s algorithm [42]
not only requires group operations, but also relies on the computation of func-
tions with divisors corresponding to these group operations. These functions are
somewhat inherent in the Weierstrass group law, which is why Weierstrass curves
remain faster for the pairings themselves [17]. Nevertheless, this does not mean
that alternative curve models cannot be used to give speedups in the standalone
group operations in pairing-based protocols. The purpose of this paper is to de-
termine which curve models are applicable in the most popular pairing scenarios,
and to report the speedups achieved when employing them. In order to obtain
meaningful results, we have implemented curve arithmetic in different models
that target the 128-, 192- and 256-bit security levels. Specifically, we have imple-
mented group exponentiations and pairings on BN curves [4] (embedding degree
k = 12), KSS curves [38] (k = 18) and BLS curves [3] (k = 12 and k = 24). We
use GLV [25] and GLS [23] decompositions of dimensions 2, 4, 6 and 8 to speed
up the scalar multiplication.

The goal of this work is not to set new software speed records, but to illustrate
the improved performance that is possible from employing different curve models
in the pairing groups G1 and G2. In order to provide meaningful benchmark
results, we have designed our library using recoding techniques [29, 21] such that
all code runs in constant-time, i.e. the run-time of the code is independent of
any secret input material. Our implementations use state-of-the-art algorithms
for computations in the various groups [24] and for evaluating the pairing [2].
For any particular curve or security level, we assume that the ratios between
our various benchmark results remain (roughly) invariant when implemented for
different platforms or when the bottleneck arithmetic functions are converted to
assembly. We therefore believe that our table of timings provides implementers
and protocol designers with good insight as to the relative computational expense
of operating in pairing groups versus computing the pairing(s).

2 Preliminaries

A cryptographic pairing e : G1 × G2 → GT is a bilinear map that relates the
three groups G1, G2 and GT , each of prime order r. These groups are defined
as follows. For distinct primes p and r, let k be the smallest positive integer
such that r | pk − 1. Assume that k > 1. For an elliptic curve E/Fp such
that r | #E(Fp), we can choose G1 = E(Fp)[r] to be the order-r subgroup of
E(Fp). We have E[r] ⊂ E(Fpk), and G2 can be taken as the (order-r) subgroup
of E(Fpk) of p-eigenvectors of the p-power Frobenius endomorphism on E. Let
GT be the group of r-th roots of unity in F∗pk . The embedding degree k is very
large (i.e. k ≈ r) for general curves, but must be kept small (i.e. k < 50) if
computations in Fpk are to be feasible in practice – this means that so-called
pairing-friendly curves must be constructed in a special way. In Section 2.1 we
recall the best known techniques for constructing such curves with embedding
degrees that target the 128-, 192- and 256-bit security levels – k is varied to
optimally balance the size of r and the size of Fpk , which respectively determine
the complexity of the best known elliptic curve and finite field discrete logarithm
attacks.

2.1 Parameterized families of pairing-friendly curves with sextic
twists

The most suitable pairing-friendly curves for our purposes come from parameter-
ized families, such that the parameters to find a suitable curve E(Fp) can be writ-
ten as univariate polynomials. For the four families we consider, we give below
the polynomials p(x), r(x) and t(x), where t(x) is such that n(x) = p(x)+1−t(x)
is the cardinality of the desired curve, which has r(x) as a factor. All of the curves
found from these constructions have j-invariant zero, which means they can be
written in Weierstrass form as y2 = x3 + b. Instances of these pairing-friendly
families can be found by searching through integer values x of an appropriate
size until we find x = x0 such that p = p(x0) and r = r(x0) are simultaneously

prime, at which point we can simply test different values for b until the curve
E : y2 = x3 + b has an n-torsion point.

To target the 128-bit security level, we use the BN family [4] (k = 12), for
which

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1, t(x) = 6x2 + 1, r(x) = p(x) + 1− t(x). (1)

At the 192-bit security level, we consider BLS curves [3] with k = 12, for which

p(x) = (x− 1)2(x4 − x2 + 1)/3 + x, t(x) = x+ 1, r(x) = x4 − x2 + 1, (2)

where x ≡ 1 mod 3, and KSS curves [38] with k = 18, which are given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21,

t(x) = (x4 + 16x+ 7)/7, r(x) = (x6 + 37x3 + 343)/73, (3)

with x ≡ 14 mod 42. At the 256-bit security level, we use curves from the BLS
family [3] with embedding degree k = 24, which have the parametrization

p(x) = (x− 1)2(x8 − x4 + 1)/3 + x, t(x) = x+ 1, r(x) = x8 − x4 + 1, (4)

with x ≡ 1 mod 3.
For the above families, which all have k = 2i3j , the best practice to construct

the full extension field Fpk is to use a tower of (intermediate) quadratic and
cubic extensions [40, 5]. Since 6 | k, we can always use a sextic twist E′(Fpk/6)
to represent elements of G2 ⊂ E(Fpk)[r] as elements of an isomorphic group
G′2 = E′(Fpk/6)[r]. This shows that group operations in G2 can be performed
on points with coordinates in an extension field with degree one sixth the size,
which is the best we can do for elliptic curves [50, Proposition X.5.4].

In all cases considered in this work, the most preferable sextic extension from
Fpk/6 = Fp(ξ) to Fpk = Fpk/6(z) is constructed by taking z ∈ Fpk as a root of the
polynomial z6 − ξ, which is irreducible in Fpk/6 [z]. We describe the individual
towers in the four cases as follows: the BN and BLS cases with k = 12 preferably
take p ≡ 3 mod 4, so that Fp2 can be constructed as Fp2 = Fp[u]/(u2 + 1),
and take ξ = u + 1 for the sextic extension to Fp12 . For k = 18 KSS curves,
we prefer that 2 is not a cube in Fp, so that Fp3 can be constructed as Fp2 =
Fp[u]/(u3+2), before taking ξ = u to extend to Fp18 . For k = 24 BLS curves, we
again prefer to construct Fp2 as Fp2 = Fp[u]/(u2 + 1), on top of which we take
Fp4 = Fp2 [v]/(v2−(u+1)) (it is easily shown that v2−u cannot be irreducible [18,
Prop. 1]), and use ξ = v for the sextic extension. All of these constructions agree
with the towers used in the “speed-record” literature [2, 48, 18, 1].

2.2 The GLV and GLS algorithms

The GLV [25] and GLS [23] methods both use an efficient endomorphism to
speed up elliptic curve scalar multiplications. The GLV method relies on endo-
morphisms specific to the shape of the curve E that are unrelated to the Frobe-
nius endomorphism. On the other hand, the GLS method works over extension

fields where Frobenius becomes non-trivial, so it does not rely on E having a
special shape. However, if E is both defined over an extension field and has a
special shape, then the two can be combined [23, §3] to give higher-dimensional
decompositions, which can further enhance performance.

Since in this paper we have E/Fp : y2 = x3 + b and p ≡ 1 mod 3, we can use
the GLV endomorphism φ : (x, y) 7→ (ζx, y) in G1 where ζ3 = 1 and ζ ∈ Fp\{1}.
In this case φ satisfies φ2 + φ+ 1 in the endomorphism ring End(E) of E, so on
G1 it corresponds to scalar multiplication by λφ, where λ2φ + λφ + 1 ≡ 0 mod r,
meaning we get a 2-dimensional decomposition in G1. Since G′2 is always defined
over an extension field herein, we can combine the GLV endomorphism above
with the Frobenius map to get higher-dimensional GLS decompositions. The
standard way to do this in the pairing context [24] is to use the untwisting
isomorphism Ψ to move points from G′2 to G2, where the p-power Frobenius
πp can be applied (since E is defined over Fp, while E′ is not), before using
the twisting isomorphism Ψ−1 to move this result back to G′2. We define ψ as
ψ = Ψ−1 ◦ πp ◦ Ψ , which (even though Ψ and Ψ−1 are defined over Fpk) can be
explicitly described over Fpk/6 . The GLS endomorphism ψ satisfies Φk(ψ) = 0
in End(E′) [24, Lemma 1], where Φk(·) is the k-th cyclotomic polynomial, so it
corresponds to scalar multiplication by λψ, where Φk(λψ) ≡ 0 mod r, i.e. λψ is
a primitve k-th root of unity modulo r. For the curves with k = 12, we thus
obtain a 4-dimensional decomposition in G′2 ⊂ E′(Fp2); for k = 18 curves, we
get a 6-dimensional decomposition in G′2 ⊂ E′(Fp3); and for k = 24 curves, we
get an 8-dimensional decomposition in G′2 ⊂ E′(Fp4).

To compute the scalar multiple [s]P0, a d = 2 dimensional GLV or d = ϕ(k)
dimensional GLS decomposition starts by computing the d−1 additional points
Pi = ψi(P0) = ψ(Pi−1) = [λiψ]P0, 1 ≤ i ≤ d−1. One then seeks a vector (ŝ0, ŝ1) ∈
Z2 in the “GLV lattice” Lφ that is close to (s, 0) ∈ Z2, or (ŝ0, . . . , ŝϕ(k)−1) ∈ Zϕ(k)

in the “GLS lattice” Lψ that is close to (s, 0, . . . , 0) ∈ Zϕ(k). The bases Bφ and
Bψ (for Lφ and Lψ) are given as (see [22, p. 229-230])

Bφ =

(
r 0
−λφ 1

)
; Bψ =

r 0 . . . 0
−λψ 1 . . . 0
...

...
. . .

...
−λd−1ψ 0 . . . 1

 . (5)

Finding close vectors in these lattices is particularly easy in the case of BLS
k = 12 and k = 24 curves [24, Ex. 3,4]. For BN curves, we can use the special
routine described by Galbraith and Scott [24, Ex. 5], which bears resemblance to
the algorithm proposed in [46], which is what we use for the GLS decomposition
on KSS curves.

To obtain the dmini-scalars s0, . . . , sd−1 from the scalar s and the close vector
(ŝ0, . . . , ŝd−1), we compute (s0, . . . sd−1) = (s, 0, . . . , 0)−(ŝ0, . . . , ŝd−1) in Zd. We
can then compute [s]P0 via the multi-exponentiation

∑d−1
i=0 [si]Pi. The typical

way to do this is to start by making all of the si positive: we simultaneously
negate any (si, Pi) pair for which si < 0 (this can be done in a side-channel

resistant way using bitmasks). We then precompute all possible sums
∑d−1
i=0 [bi]Pi,

for the 2d combinations of bi ∈ {0, 1}, and store them in a lookup table. When
simultaneously processing the j-th bits of the d mini-scalars, this allows us to
update the running value with only one point addition, before performing a single
point doubling. In each case however, this standard approach requires individual
attention for further optimization – this is what we describe in Section 3.

We aim to create constant-time programs: implementations which have an ex-
ecution time independent of any secret material (e.g. the scalar). This means that
we always execute exactly the same amount of point additions and duplications
independent of the input. In order to achieve this in the setting of scalar multi-
plication using the GLV/GLS method, we use the recoding techniques from [29,
21]. This recoding technique not only guarantees that the program performs a
constant number of point operations, but that the recoding itself is done in con-
stant time as well. Furthermore, an advantage of this method is that the lookup
table size is reduced by a factor of two, since we only store lookup elements for
which the multiple of the first point P0 is odd. Besides reducing the memory,
this reduces the time to create the lookup table.

3 Strategies for GLV in G1 and GLS in G2

This section presents our high-level strategy for 2-GLV on G1, 4-GLS in G2 in the
two k = 12 families, 6-GLS in G2 for the KSS curves with k = 18, and 8-GLS in
G2 for the BLS curves with k = 24. We use the following abbreviations for elliptic
curve operations that we require: DBL – for the doubling of a projective point, ADD
– for the addition between two projective points, MIX – for the addition between
a projective point and an affine point, and AFF – for the addition between two
affine points to give a projective point.

3.1 2-GLV on G1

For the 2-GLV routines we compute the multi-exponentiation [s0]P0 + [s1]P1.
Recoding our mini-scalars and proceeding in the naive way would give a lookup
table consisting of two elements: P0 and P0 +P1. However, the number of point
additions can be further reduced by using a large window size [16] (see [24, 23]
for a description in the context of GLV/GLS). Specifically, we can reduce the
number of point additions in the scalar processing phase by a factor of w if
we generate a lookup table of size 22w−1. Since computing an element in the
lookup table costs roughly one addition, one can compute the optimal window
size given the maximum size of the mini-scalars (see Table 3). For 2-GLV in G1,
we found a fixed window size of w = 3 to be optimal in all cases except BN curves
(where we use w = 2 due to the smaller maximum size of the mini-scalars). In
Algorithm 1 and Algorithm 2 we give the algorithms for computing the 2-GLV
lookup tables using w = 2 and w = 3, respectively. Algorithm 1 outlines how to
compute T [ba2 c+2 · b] = [a]P0 + [b]P1 for a ∈ {1, 3} and b ∈ {0, 1, 2, 3}, where T

Algorithm 1 Generating the lookup table for 2-GLV with window size w = 2
(cost: 6 MIX+ 1 AFF+ 1 DBL).
Input: P0, P1 ∈ G1.
Output: The 2-GLV lookup table, T , for window size w = 2.

t0 ← DBL(P0), T [0]← P0, T [1]← MIX(t0, P0),
T [2]← AFF(P0, P1), T [3]← MIX(T [1], P1), T [4]← MIX(T [2], P1),
T [5]← MIX(T [3], P1), T [6]← MIX(T [4], P1), T [7]← MIX(T [5], P1).

consists of eight elements. Algorithm 2 computes T [ba2 c + 4 · b] = [a]P0 + [b]P1

for a ∈ {1, 3, 5, 7} and b ∈ {0, 1, 2, 3, 4, 5, 6, 7}, where T consists of 32 elements.
For both BLS families and the KSS family, we get a simple GLV scalar

decomposition and obtain the mini-scalars by writing s as a linear function in
λφ. This has the additional advantage that both s0 and s1 are positive. For BN
curves, we use the algorithm from [46] for the decomposition. In this setting, the
mini-scalars can be negative, so we must ensure that they become positive (see
Section 2.2) before using Algorithm 1 to generate the lookup table.

3.2 4-GLS on G2 for BN and BLS curves with k = 12

In the BLS case, we have λψ(x) = x, which means |λψ| ≈ r1/4, so we get a
4-dimensional decomposition in G2 by writing the scalar 0 ≤ s < r in base |λψ|
as s =

∑3
i=0 si|λψ|i, with 0 ≤ si < |λψ| [24, Ex. 3]. On the other hand, the

mini-scalars resulting from the decomposition on BN curves in [24, Ex. 5] can
be negative.

Deciding on the best window size for 4-GLS is trivial since a window size
of w = 2 requires a lookup table of 128 entries, where generating each entry
costs an addition. This is far more than the number of additions saved from
using this larger window. In Algorithm 3, we state how to generate the lookup
table for w = 1 of size eight, which consists of the elements T [

∑3
i=1 bi2

i−1] =

P0 +
∑3
i=1[bi]Pi, for all combinations of bi ∈ {0, 1}.

Algorithm 2 Generating the lookup table for 2-GLV with window size w = 3
(cost: 29 MIX+ 2 ADD+ 1 DBL).
Input: P0, P1 ∈ G1.
Output: The 2-GLV lookup table, T , for window size w = 3.

t0 ← DBL(P0), T [0]← P0, T [1]← MIX(t0, P0),
T [2]← ADD(t0, T [1]), T [3]← ADD(t0, T [2]),

for i = 1 to 7 do
for j = 0 to 3 do
T [4i+ j]← MIX(T [4(i− 1) + j], P1)

Algorithm 3 Generating the lookup table for 4-GLS with window size w = 1
(cost: 4 MIX+ 3 AFF).
Input: P0, P1, P2, P3 ∈ G2.
Output: The 4-GLS lookup table T .

T [0]← P0, T [1]← AFF(T [0], P1), T [2]← AFF(T [0], P2),
T [3]← MIX(T [1], P2), T [4]← AFF(T [0], P3), T [5]← MIX(T [1], P3),
T [6]← MIX(T [2], P3), T [7]← MIX(T [3], P3).

3.3 6-GLS on G2 for KSS curves with k = 18

To decompose the scalar for 6-GLS on G2 for KSS curves, we use the technique1
from [46], after which we must ensure all the si are non-negative according
to Section 2.2. In this case, the decision of the window size (being w = 1)
is again trivial, since a window of size w = 2 requires a lookup table of size
211. On input of Pi corresponding to si > 0, for 0 ≤ i ≤ 5, we generate the
32 elements of the lookup table as follows. We use Algorithm 3 to produce
T [0], . . . , T [7] (using P0, . . . , P3). We compute T [8] ← AFF(T [0], P4) and T [i] ←
MIX(T [i − 8], P4) for 9 ≤ i ≤ 15. Next, we compute T [16] ← AFF(T [0], P5) and
T [i]← MIX(T [i− 16], P5) for 17 ≤ i ≤ 31.

3.4 8-GLS on G2 for BLS curves k = 24

BLS curves with k = 24 have λψ(x) = x, which means |λψ| ≈ r1/8, so one can
compute an 8-dimensional decomposition in G2 by writing the scalar 0 ≤ s < r
in base |λψ| as s =

∑7
i=0 si|λψ|i, with 0 ≤ si < |λψ| [24, Ex. 4]. We use the

8-dimensional decomposition strategy studied in [15]: the idea is to split the
lookup table (a single large lookup table would consist of 128 entries) into two
lookup tables consisting of eight elements each. In this case, we need to compute
twice the amount of point additions when simultaneously processing the mini-
scalars (see Table 3), but we save around 120 point additions in generating the
lookup table(s). Let T1 be the table consisting of the 8 entries P0 +

∑3
i=1[bi]Pi,

for bi ∈ {0, 1}, which is generated using Algorithm 3 on P0, . . . , P3. The second
table, T2, consists of the 8 entries P4 +

∑7
i=5[bi]Pi for bi ∈ {0, 1}, and can be

pre-computed as T2[j] ← ψ4(T1[j]), for j = 0, . . . , 7. With the specific tower
construction for k = 24 BLS curves (see Section 2.1), the map ψ4 : G2 → G2

significantly simplifies to ψ4 : (x, y) 7→ (cxx, cyy), where the constants cx and cy
are in Fp.

1 We note that for particular KSS k = 18 curves, large savings may arise in this
algorithm due to the fact that the α =

∑5
i=0 aiψ

i (from Section 5.2 of [46]) have
some of the ai being zero. In the case of the KSS curve we use, around 2/3 of the
computations vanish due to a2 = a4 = a5 = 0 and a1 = 1.

4 Alternate curve models for exponentiations in groups
G1 and G2

An active research area in ECC involves optimizing elliptic curve arithmetic
through the use of various curve models and coordinate systems (see [9, 31] for
an overview). For example, in ECC applications the fastest arithmetic to realize
a group operation on Weierstrass curves of the form y2 = x3+ b requires 16 field
multiplications [9], while a group addition on an Edwards curve can incur as few
as 8 field multiplications [33]. While alternative curve models are not favorable
over Weierstrass curves in the pairing computation itself [17], they can still be
used to speed up the elliptic curve operations in G1 and G2.

4.1 Three non-Weierstrass models

Unlike the general Weierstrass model which covers all isomorphism classes of
elliptic curves over a particular field, the non-Weierstrass elliptic curves usually
only cover a subset of all such classes. Whether or not an elliptic curve E falls
into the classes covered by a particular model is commonly determined by the
existence of a Weierstrass point with a certain order on E. In the most popular
scenarios for ECC, these orders are either 2, 3 or 4. In this section we consider
the fastest model that is applicable in the pairing context in each of these cases.

• W - Weierstrass: all curves in this paper have j-invariant zero and Weier-
strass form y2 = x3 + b. The fastest formulas on such curves use Jacobian
coordinates [8].
• J - Extended Jacobi quartic: if an elliptic curve has a point of order

2, then it can be written in (extended) Jacobi quartic form as J : y2 =
dx4 + ax2 + 1 [11, §3] – these curves were first considered for cryptographic
use in [11, §3]. The fastest formulas work on the corresponding projective
curve given by J : Y 2Z2 = dX4 + aX2Z2 + Z4 and use the 4 extended
coordinates (X : Y : Z : T) to represent a point, where x = X/Z, y = Y/Z
and T = X2/Z [34].
• H - Generalized Hessian: if an elliptic curve (over a finite field) has a point

of order 3, then it can be written in generalized Hessian form as H : x3 +
y3+c = dxy [20, Th. 2]. The authors of [51, 37] studied Hessian curves of the
form x3+y3+1 = dxy for use in cryptography, and this was later generalized
to include the parameter c [20]. The fastest formulas for ADD/MIX/AFF are
from [7] while the fastest DBL formulas are from [32] – they work on the
homogeneous projective curve given by H : X3 + Y 3 + cZ3 = dXY Z, where
x = X/Z, y = Y/Z. We note that the j-invariant zero version of H has
d = 0 (see Section 4.3), so in Table 1 we give updated costs that include this
speedup.

• E - Twisted Edwards: if an elliptic curve has a point of order 4, then it
can be written in twisted Edwards form as E : ax2 + y2 = 1 + dx2y2 [6, Th.
3.3]. However, if the field of definition, K, has #K ≡ 1 mod 4, then 4 | E is
enough to write E in twisted Edwards form [6, §3] (i.e. we do not necessarily

Table 1. The costs of necessary operations for computing group exponentiations on
four models of elliptic curves. Costs are reported as TM,S,d,a , where M is the cost of a
field multiplication, S is the cost of a field squaring, d is the cost of multiplication by a
curve constant, a is the cost of a field addition (we have counted multiplications by 2 as
additions), and T is the total number of multiplications, squarings, and multiplications
by curve constants.

model/ requires DBL ADD MIX AFF
coords cost cost cost cost
W / Jac. - 72,5,0,14 1611,5,0,13 117,4,0,14 64,2,0,12

J / ext. pt. of order 2 91,7,1,12 137,3,3,19 126,3,3,18 115,3,3,18

H / proj. pt. of order 3 76,1,0,11 1212,0,0,3 1010,0,0,3 88,0,0,3

E / ext. pt. of order 4, or 94,4,1,7 109,0,1,7 98,1,0,7 87,0,1,7

4 | E and #K ≡ 1 mod 4

need a point of order 4). Twisted Edwards curves [19] were introduced to
cryptography in [10, 6] and the best formulas are from [33].

For each model, we summarize the cost of the required group operations in
Table 1. The total number of field multiplications are reported in bold for each
group operation – this includes multiplications, squarings and multiplications
by constants. We note that in the context of plain ECC these models have been
studied with small curve constants; in pairing-based cryptography, however, we
must put up with whatever constants we get under the transformation to the
non-Weierstrass model. The only exception we found in this work is for the
k = 12 BLS curves, where G1 can be transformed to a Jacobi quartic curve with
a = −1/2, which gives a worthwhile speedup [34].

4.2 Applicability of alternative curve models for k ∈ {12, 18, 24}

In this section we prove the existence or non-existence of points of orders 2, 3 and
4 in the groups E(Fp) and E′(Fpk/6) for the pairing-friendly families considered in
this work. These proofs culminate in Table 2, which summarizes the alternative
curve models that are available for G1 and G2 in the scenarios we consider. We
can study#E(Fp) directly from the polynomial parameterizations in Section 2.1,
while for #E′(Fpe) (where e = k/6) we do the following. With the explicit
recursion in [12, Cor. VI.2] we determine the parameters te and fe which are
related by the CM equation 4pe = t2e + 3f2e (since all our curves have CM
discriminant D = −3). This allows us to compute the order of the correct sextic
twist, which by [30, Prop. 2] is one of n′e,1 = pe + 1 − (3fe + te)/2 or n′e,2 =
pe + 1 − (−3fe + te)/2. For k = 12 and k = 24 BLS curves, we assume that
p ≡ 3 mod 4 so that Fp2 can be constructed (optimally) as Fp2 = Fp[u]/(u2+1).
Finally, since p ≡ 3 mod 4, E(Fp) must contain a point of order 4 if we are to
write E in twisted Edwards form; however, since E′ is defined over Fpe , if e is
even then 4 | E′ is enough to write E′ in twisted Edwards form (see Section 4.1).

Proposition 1. Let E/Fp be a BN curve with sextic twist E′/Fp2 . The groups
E(Fp) and E′(Fp2) do not contain points of order 2, 3 or 4.

Proof. From (1) we always have #E(Fp) ≡ 1 mod 6. Remark 2.13 of [44] shows
that we have #E′(Fp2) = (p + 1 − t)(p − 1 + t), which from (1) gives that
#E′(Fp2) ≡ 1 mod 6. ut

Proposition 2. For p ≡ 3 mod 4, let E/Fp be a k = 12 BLS curve with sextic
twist E′/Fp2 . The group E(Fp) contains a point of order 3 and can contain a
point of order 2, but not 4, while the group E′(Fp2) does not contain a point of
order 2, 3 or 4.

Proof. From [12, Cor. VI.2] we have t2(x) = t(x)2 − 2p(x), which with (2) and
4p(x)2 = t2(x)

2 + 3f2(x)
2 allows us to deduce that the correct twist order is

n′2,2, which gives n′2,2(x) ≡ 1 mod 12 for x ≡ 1 mod 3, i.e. E′ does not have
points of order 2, 3 or 4. For E, (2) reveals that 3 | #E, and furthermore that
x ≡ 4 mod 6 implies #E is odd, while for x ≡ 1 mod 6 we have 4 | #E. The
assumption p ≡ 3 mod 4 holds if and only if x ≡ 7 mod 12, which actually
implies p ≡ 7 mod 12. Now, to have a point of order 4 on E/Fp : y2 = x3+b, the
fourth division polynomial ψ4(x) = 2x6 + 40bx3 − 8b2 must have a root α ∈ Fp,
which happens if and only if α3 = −10b ± 6b

√
3. However, [35, §5, Thm. 2-(b)]

says that 3 is a quadratic residue in Fp if and only if p ≡ ±b2 mod 12, where b
is co-prime to 3, which cannot happen for p ≡ 7 mod 12, so E does not have a
point of order 4. ut

Proposition 3. Let E/Fp be a k = 18 KSS curve with sextic twist E′/Fp3 . The
group E(Fp) does not contain a point of order 2, 3 or 4, while the group E′(Fp3)
contains a point of order 3 but does not contain a point of order 2 or 4.

Proof. From [12, Cor. VI.2] we have t3(x) = t(x)3 − 3p(x)t(x). With (3) and
4p(x)3 = t3(x)

2 + 3f3(x)
2) it follows that n′3,1(x) is the correct twist order. We

have n′3,1(x) ≡ 3 mod 12 for x ≡ 14 mod 42, i.e. E′ has a point of order 3 but
no points of order 2 or 4. For E we have #E ≡ 1 mod 6 from (3), which means
there are no points of order 2, 3, or 4. ut

Proposition 4. For p ≡ 3 mod 4, let E/Fp be a BLS curve with k = 24 and
sextic twist E′/Fp4 . The group E(Fp) can contain points of order 2 or 3 (although
not simultaneously), but not 4, while the group E′(Fp4) can contain a point of
order 2, but does not contain a point of order 3 or 4.

Proof. Again, [12, Cor. VI.2] gives t4(x) = t(x)4−4p(x)t(x)2+2p(x)2, and from
(4) and 4p(x)4 = t4(x)

2 + 3f4(x)
2 we get n′4,1(x) as the correct twist order.

For x ≡ 1 mod 6 we have n′4,1(x) ≡ 1 mod 12 (so no points of order 2, 3, or
4), while for x ≡ 4 mod 6 we have n′4,1(x) ≡ 4 mod 12. Recall from the proof
of Prop. 2 that (α, β) ∈ E′(Fp4) is a point of order 4 if we have α ∈ Fp4 such
that α3 = (−10 ± 6

√
3)b′. The curve equation gives β2 = (−9 ± 6

√
3)b′, i.e. b′

must be a square in Fp4 , which implies that (0,±
√
b′) are points of order 3 on

E′(Fp4), which contradicts n′4,1(x) ≡ 1 mod 3. Thus, E′(Fp4) cannot have points

Table 2. Optional curve models for G1 and G2 in popular pairing implementations.

G1 G2

family-k algorithm models avail. algorithm models avail. follows from
BN-12 2-GLV W 4-GLS W Proposition 1
BLS-12 2-GLV H,J ,W 4-GLS W Proposition 2
KSS-18 2-GLV W 6-GLS H,W Proposition 3
BLS-24 2-GLV H,J ,W 8-GLS E ,J ,W Proposition 4

of order 3 or 4. For E, from (4) we have #E(Fp) ≡ 3 mod 12 if x ≡ 4 mod 6, but
#E ≡ 0 mod 12 if x ≡ 1 mod 6. Thus, there is a point of order 3 on E, as well as
a point of order 2 if x ≡ 1 mod 6. So it remains to check whether there is a point
of order 4 when x ≡ 1 mod 6. Taking x ≡ 1 mod 12 gives rise to p ≡ 1 mod 4, so
take x ≡ 7 mod 12. This implies that p ≡ 7 mod 12, and the same argument as
in the proof of Prop. 2 shows that there is no point of order 4. ut

In Table 2 we use the above propositions to summarize which (if any) of the
non-Weierstrass models from Section 4.1 can be applied to our pairing scenarios.

4.3 Translating endomorphisms to the non-Weierstrass models

In this section we investigate whether the GLV and GLS endomorphisms from
Section 2.2 translate to the Jacobi quartic and Hessian models. Whether the
endomorphisms translate desirably depends on how efficiently they can be com-
puted on the non-Weierstrass model. It is not imperative that the endomor-
phisms do translate desirably, but it can aid efficiency: if the endomorphisms
are not efficient on the alternative model, then our exponentiation routine also
incurs the cost of passing points back and forth between the two models – this
cost is small but could be non-negligible for high-dimensional decompositions.
On the other hand, if the endomorphisms are efficient on the non-Weierstrass
model, then the groups G1 and/or G2 can be defined so that all exponentiations
take place directly on this model, and the computation of the pairing can be
modified to include an initial conversion back to Weierstrass form.

We essentially show that the only scenario in which the endomorphisms are
efficiently computable on the alternative model is the case of the GLV endomor-
phism φ on Hessian curves.

Endomorphisms on the Hessian model. We modify the maps given in [20,
§2.2] to the special case of j-invariant zero curves, where we have d = 0 on the
Hessian model. Assume that (0 : ± α : 1) are points of order 3 on W : Y 2Z =
X3 + α2Z3, which is birationally equivalent to H : U3 + V 3 + 2αZ3 = 0. We
define the constants h0 = ζ − 1, h1 = ζ + 2, h2 = −2(2ζ + 1)α, where ζ3 = 1
and ζ 6= 1. The map τ :W → H, (X : Y : Z) 7→ (U : V : W) is given as

U ← h0 · (Y + αZ) + h2 · Z, V ← −U − 3(Y + αZ), W ← 3X, (6)

where τ(0 : ± α : 1) = O ∈ H. The inverse map τ−1 : H → W, (U : V : W) 7→
(X : Y : Z) is

X ← h2 ·W, Z ← h0 · V + h1 · U, Y ← −h2 · (U + V)− α · Z. (7)

It follows that the GLV endomorphism φW ∈ End(W) translates into φH ∈
End(H), where φW : (X : Y : Z) 7→ (ζX : Y : Z) becomes φH : (U : V : W) 7→
(U : V : ζW). However, we note that when computing φH on an affine point, it
can be advantageous to compute φH as φH : (u : v : 1) 7→ (ζ2u : ζ2v : 1), where ζ2
is the (precomputed) other cube root of unity, which produces an affine result.

For GLS on Hessian curves, there is no obvious or simple way to perform
the analogous untwisting or twisting isomorphisms directly between H′(Fpk/6)
and H(Fpk), which suggests that we must pass back and forth to the Weierstrass
curve/s to determine the explicit formulas for the GLS endomorphism on H′.
The composition of these maps ψH′ = τ ◦ Ψ−1W ◦ πp ◦ ΨW ◦ τ−1 does not appear
to simplify to be anywhere near as efficient as the GLS endomorphism is on the
Weierstrass curve. Consequently, our GLS routine will start with a Weierstrass
point in W ′(Fpk/6), where we compute d − 1 applications of ψ ∈ End(W ′),
before using (6) to convert the d points to H′(Fpk/6), where the remainder of
the routine takes place (save the final conversion back to W ′). Note that since
we are converting affine Weierstrass points to H′ via (6), this only incurs two
multiplications each time. However, the results are now projective points on H′
meaning that the more expensive full addition formulas must be used to generate
the remainder of the lookup table.

Endomorphisms on the Jacobi quartic model. Unlike the Hessian model
where the GLV endomorphism was efficient, for the Jacobi quartic model it
appears that neither the GLV nor GLS endomorphisms translate to be of a
similar efficiency as they are on the Weierstrass model. Thus, in all cases where
Jacobi quartic curves are a possibility, we start and finish onW, and only map to
J after computing all applications of φ or ψ on the Weierstrass model. We adapt
the maps given in [31, p. 17] to our special case as follows. Let (−θ : 0 : 1) be a
point of order 2 on W : Y 2Z = X3 + θ3Z3 and let a = 3θ/4 and d = −3θ2/16.
The curve W is birationally equivalent to the (extended) Jacobi quartic curve
J : V 2W 2 = dU4 + 2aU2W 2 +W 4, with the map τ :W → J , τ : (X : Y : Z) 7→
(U : V : W) given as

U ← 2Y Z, W ← X2 −XθZ + θ2Z2, V ← 6XZθ+W − 4aZ(θZ +X), (8)

where τ((−θ : 0 : 1)) = (0: − 1: 1) ∈ J . The inverse map τ−1 : J → W,
τ−1 : (U : V : W) 7→ (X : Y : Z), is given by

X ← (2V + 2)U + 2aU3 − θU3, Y ← (4V + 4) + 4aU2, Z ← U3, (9)

where τ−1((0 : − 1: 1)) = (−θ : 0 : 1) ∈ W and the neutral point on J is OJ =
(0: 1 : 1).

Endomorphisms on the twisted Edwards model. Similarly to the Jacobi-
quartic model, endomorphisms on E are not nearly as efficiently computable as
they are on W, so we only pass across to E after the endomorphisms are applied
on W. Here we give the back-and-forth maps that are specific to our case(s)
of interest. Namely, since we are unable to use twisted Edwards curves over
the ground field (see Table 2), let W/Fpe : Y 2Z = X3 + b′Z3 for p ≡ 3 mod 4
and e being even. Since we have a point of order 2 on W, i.e. (α : 0 : 1) with
α = 3

√
−b′ ∈ Fpe , then take s = 1/(α

√
3) ∈ Fpe . The twisted Edwards curve

E : aU2W 2+V 2W 2 =W 4+dU2V 2 with a = (3αs+2)/s and d = (3αs−2)/s is
isomorphic to W, with the map τ : W → E , (X : Y : Z) 7→ (U : V : W) given as

U ← s(X−αZ)(sX−sαZ+Z), V ← sY (sX−sαZ−Z), W ← sY (sX−sαZ+Z),

with inverse map τ : E → W, (U : V : W) 7→ (X : Y : Z), given as

X ← −U(−W − V − αs(W − V)), Y ← (W + V)W, Z ← sU(W − V).

4.4 Curve choices for pairings at the 128-, 192- and 256-bit security
levels

The specific curves we choose in this section can use any of the alternative models
that are available in the specific cases as shown in Table 2. The only exception
occurs for k = 24, for which we are forced to choose between having a point
of order 2 or 3 (see Prop. 4) in G1 – we opt for the point of order 3 and the
Hessian model, as this gives enhanced performance. Note that these curves do
not sacrifice any efficiency in the pairing computation compared to previously
chosen curves in the literature (in terms of the field sizes, hamming-weights and
towering options).

The k = 12 BN curve. Since no alternative models are available for the
BN family, we use the curve that was first seen in [45] and subsequently used
to achieve speed records at the 128-bit security level [2], which results from
substituting x = −(262 + 255 + 1) into (1), and taking E/Fp : y2 = x3 + 2 and
E′/Fp2 : y2 = x3 + (1− u), where Fp2 = Fp[u]/(u2 + 1).

The k = 12 BLS curve. Setting x = 2106− 272+269− 1 in (2) gives a 635-bit
prime p and a 424-bit prime r. Let Fp2 = Fp[u]/(u2 + 1) and let ξ = u + 1.
The Weierstrass forms corresponding to G1 and G2 are W/Fp : y2 = x3 + 1
and W ′/Fp2 : y2 = x3 + ξ. Only G1 has options for alternative models (see
Table 2): the Hessian curve H/Fp : x3 + y3 +2 = 0 and the Jacobi quartic curve
J /Fp : y2 = −3

16 x
4 + 3

4x
2 + 1 are both isomorphic to W over Fp.

The k = 18 KSS curve. Setting x = 264−251+247+228 in (3) gives a 508-bit
prime p and a 376-bit prime r. Let Fp3 = Fp[u]/(u3 +2). The Weierstrass forms
for G1 and G2 are W/Fp : y2 = x3 + 2 and W ′/Fp3 : y2 = x3 − u2. Only G2

allows for an alternative model (see Table 2): the Hessian curve H′/Fp3 : x3 +
y3 + 2u

√
−1 = 0 is isomorphic to W ′ over Fp3 .

The k = 24 BLS curve. Setting x = 263−247+238 in (3) gives a 629-bit prime
p and a 504-bit prime r. Let Fp2 = Fp[u]/(u2+1) and Fp4 = Fp2 [v]/(v2−(u+1)).
The Weierstrass forms corresponding to G1 and G2 are W/Fp : y2 = x3 +4 and
W ′/Fp4 : y2 = x3 + 4v. This gives us the option of a Hessian model in G1: the
curve H/Fp : x3 + y3 + 4 = 0 is isomorphic to W over Fp. In G2 we have both
the Jacobi quartic and twisted Edwards models as options. Let θ = (u+1)v and
set a = −3θ/4 and d = (4A2 − 3θ2)/4. The curve J /Fp4 : y2 = dx4 + ax2 + 1
is isomorphic to W ′ over Fp4 . For the twisted Edwards model, we take α = θ =

(u+ 1)v, s = 1/(α
√
3) ∈ Fp4 , a′ = (3αs+ 2)/s and d′ = (3αs− 2)/s; the curve

E/Fp4 : a′x2 + y2 = 1 + d′x2y2 is then isomorphic to W ′.

5 Exponentiations in GT

For the scenarios in this paper, Galbraith and Scott [24] remark that the best
known method for exponentiations in GT ⊂ Fpk is to use the same ϕ(k)-
dimensional decomposition that is used for GLS in G2. This means the same
techniques for multi-exponentiation can be applied directly. The recoding tech-
nique (see Section 2.2) also carries across analogously, since inversions of GT -
elements (which are conjugations over Fpk/2) are almost for free [24, §7], just as
in the elliptic curve groups. For example, while the GLS map ψ on curves with
k = 12 gives ψ4(Q′)−ψ2(Q′)+Q′ = O for all Q′ ∈ G′2, in GT we use the p-power
Frobenius map πp, which gives f · π4

p(f)/π
2
p(f) = 1 for all f ∈ GT . Finally, GT

is contained in the cyclotomic subgroup of F∗pk , in which much faster squarings
are available [27, 39]. The optimal choices of window sizes for the multiexponen-
tiation in GT remain equal to those in G2 (see Section 3).

6 Results

In Table 3 we summarize the optimal curve choices in each scenario. We first note
that Jacobi quartic curves were unable to outperform the Weierstrass, Hessian
or twisted Edwards curves in any of the scenarios. This is because the small
number of operations saved in a Jacobi quartic group addition were not enough
to outweigh the slower Jacobi quartic doublings (see Table 1), and because of the

Table 3. Optimal scenarios for group exponentiations. For both GLV on G1 and GLS
on G2 in all four families, we give the decomposition dimension d, the maximum sizes
of the mini-scalars ||si||∞, the optimal window size w, and the optimal curve model.

sec. family- exp. in G1 exp. in G2

level k d ||si||∞ w curve d ||si||∞ w curve
128-bit BN-12 2 128 2 Weierstrass 4 64 1 Weierstrass

192-bit BLS-12 2 212 3 Hessian 4 106 1 Weierstrass
KSS-18 2 192 3 Weierstrass 6 63 1 Hessian

256-bit BLS-24 2 252 3 Hessian 8 63 1 twisted Edwards

Table 4. Benchmark results for an optimal ate pairing and group exponentiations in
G1, G2 and GT in millions (M) of clock cycles for the best curve models. These results
have been obtained on an Intel Core i7-3520M CPU averaged over thousands of random
instances.

sec. level family-k pairing e exp. in G1 exp. in G2 exp. in GT

128-bit BN-12 7.0 0.9 (W) 1.8 (W) 3.1

192-bit BLS-12 47.2 4.4 (H) 10.9 (W) 17.5
KSS-18 63.3 3.5 (W) 9.8 (H) 15.7

256-bit BLS-24 115.0 5.2 (H) 27.6 (E) 47.1

extra computation incurred by the need to pass back and forth between J and
W to compute the endomorphisms (see Section 4.3). On the other hand, while
employing the Hessian and twisted Edwards forms also requires us to pass back
and forth to compute the endomorphisms, the group law operations on these
models are significantly faster than Weierstrass operations across the board, so
Hessian and twisted Edwards curves reigned supreme whenever they were able to
be employed – we give the concrete comparisons below. In Table 3 we also present
the bounds we used on the maximum sizes of the mini-scalars resulting from a
d-dimensional decomposition. In some cases, like those where decomposing s
involves writing s in base λφ or λψ, these bounds are trivially tight. However,
in both the GLV and GLS on BN curves, and in the GLS on KSS curves, the
bounds presented are those we obtained experimentally from hundreds of millions
of scalar decompositions, meaning that the theoretical bounds could be a few
bits larger – determining such bounds could be done using similar techniques to
those in [41].

In Table 4 we present our timings for pairing computations and exponen-
tiations in the three groups G1, G2 and GT , for the four families considered.
We note that for 2-GLV on k = 12 BLS curves, Hessian curves gave a factor
1.23 speedup over Weierstrass curves (4.4M versus 5.4M cycles); for 6-GLS on
k = 18 KSS curves, using Hessian curves gave a factor 1.11 speedup (9.8M
versus 10.9M cycles); for 2-GLV on k = 24 BLS curves, Hessian curves gave a
factor 1.19 speedup (5.2M versus 6.2M cycles); lastly, for 8-GLS on k = 24 BLS
curves, twisted Edwards curves gave a factor 1.16 speedup (27.6M versus 31.9M
cycles). The Hessian and twisted Edwards timings include the conversion from
the Weierstrass model after the endomorphisms have been computed, and to the
Weierstrass model at the end of the scalar multiplication routine.

In [1] it was first proposed to use k = 12 BLS curves for the 192-bit secu-
rity level, by showing that pairings on these curves are significantly faster than
pairings on k = 18 KSS curves. Our pairing timings add further weight to their
claim. However, our timings also show that KSS curves are slightly faster for ex-
ponentiations in all three groups. There are many circumstances where Table 4
could guide implementers to make more efficient decisions when deploying a pro-
tocol. As one example, we refer to Boneh and Franklin’s original identity-based
encryption scheme [14, §4.1], where the sender computes a pairing between a
public element Ppub and an identities’ public key QID, i.e. the sender computes

gID = e(Ppub, QID). The sender then chooses a random exponent s and computes
gsID (which is hashed to become part of a ciphertext). In this case Table 4 shows
that the sender would be much better off computing the scalar multiplication
[s]Ppub (assuming Ppub ∈ G1, or else we could compute [s]QID) before computing
the pairing e([s]Ppub, QID) = gsID.

Acknowledgment. We thank the reviewer who pointed out that having 4 |
#E(K) and #K ≡ 1 mod 4 is sufficient to write E/K in twisted Edwards form.

References

1. D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, and F. Rodríguez-
Henríquez. Implementing pairings at the 192-bit security level. In M. Abdalla and
T. Lange, editors, Pairing, volume 7708 of LNCS, pages 177–195, 2012.

2. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit
formulas for computing pairings over ordinary curves. In K. G. Paterson, editor,
EUROCRYPT, volume 6632 of LNCS, pages 48–68. Springer, 2011.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In S. Cimato, C. Galdi, and G. Persiano, editors,
SCN, volume 2576 of LNCS, pages 257–267. Springer, 2002.

4. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In B. Preneel and S. E. Tavares, editors, Selected Areas in Cryptography, volume
3897 of LNCS, pages 319–331. Springer, 2005.

5. N. Benger and M. Scott. Constructing tower extensions of finite fields for im-
plementation of pairing-based cryptography. In M. A. Hasan and T. Helleseth,
editors, WAIFI, volume 6087 of LNCS, pages 180–195. Springer, 2010.

6. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, AFRICACRYPT, volume 5023 of LNCS, pages
389–405. Springer, 2008.

7. D. J. Bernstein, D. Kohel, and T. Lange. Twisted Hessian curves. http:
//www.hyperelliptic.org/EFD/g1p/auto-hessian-standard.html#addition-
add-2001-jq.

8. D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-
scalar multiplication. In G. Mullen, D. Panario, and I. Shparlinski, editors, Finite
Fields and Applications, volume 461, pages 1–20. Contemporary Mathematics Se-
ries, 2007.

9. D. J. Bernstein and T. Lange. Explicit-formulas database. http://www.
hyperelliptic.org/EFD, 2007.

10. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 29–50. Springer,
2007.

11. O. Billet and M. Joye. The Jacobi model of an elliptic curve and side-channel
analysis. In M. P. C. Fossorier, T. Hoholdt, and A. Poli, editors, AAECC, volume
2643 of LNCS, pages 34–42. Springer, 2003.

12. I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume 265.
Cambridge University Press, 1999.

13. D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, EUROCRYPT, volume 3494 of
LNCS, pages 440–456. Springer, 2005.

14. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

15. J. W. Bos, C. Costello, H. Hisil, and K. Lauter. High-performance scalar multi-
plication using 8-dimensional GLV/GLS decomposition. In G. Bertoni and J.-S.
Coron, editors, CHES, volume 8086 of LNCS, pages 331–348. Springer, 2013.

16. A. Brauer. On addition chains. Bulletin of the American Mathematical Society,
45:736–739, 1939.

17. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves
with high-degree twists. In P. Q. Nguyen and D. Pointcheval, editors, Public Key
Cryptography, volume 6056 of LNCS, pages 224–242. Springer, 2010.

18. C. Costello, K. Lauter, and M. Naehrig. Attractive subfamilies of BLS curves for
implementing high-security pairings. In D. J. Bernstein and S. Chatterjee, editors,
INDOCRYPT, volume 7107 of LNCS, pages 320–342. Springer, 2011.

19. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44(3):393–422, 2007.

20. R. R. Farashahi and M. Joye. Efficient arithmetic on Hessian curves. In P. Q.
Nguyen and D. Pointcheval, editors, Public Key Cryptography, volume 6056 of
LNCS, pages 243–260. Springer, 2010.

21. A. Faz-Hernandez, P. Longa, and A. H. Sanchez. Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS curves.
Cryptology ePrint Archive, Report 2013/158, 2013. http://eprint.iacr.org/.

22. S. D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, March 2012.

23. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve
cryptography on a large class of curves. J. Cryptology, 24(3):446–469, 2011.

24. S. D. Galbraith and M. Scott. Exponentiation in pairing-friendly groups using
homomorphisms. In S. D. Galbraith and K. G. Paterson, editors, Pairing, volume
5209 of LNCS, pages 211–224. Springer, 2008.

25. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphisms. In J. Kilian, editor, CRYPTO,
volume 2139 of LNCS, pages 190–200. Springer, 2001.

26. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS,
pages 1–17. Springer, 2013.

27. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryp-
tography, volume 6056 of LNCS, pages 209–223. Springer, 2010.

28. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In
M. Abe, editor, ASIACRYPT, volume 6477 of LNCS, pages 321–340. Springer,
2010.

29. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309, 2012. http://eprint.iacr.org/.

30. F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Trans-
actions on Information Theory, 52(10):4595–4602, 2006.

31. H. Hisil. Elliptic curves, group law, and efficient computation. PhD thesis, Queens-
land University of Technology, 2010.

32. H. Hisil, G. Carter, and E. Dawson. New formulae for efficient elliptic curve arith-
metic. In K. Srinathan, C. P. Rangan, and M. Yung, editors, INDOCRYPT, volume
4859 of LNCS, pages 138–151. Springer, 2007.

33. H. Hisil, K. K. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revis-
ited. In J. Pieprzyk, editor, ASIACRYPT, volume 5350 of LNCS, pages 326–343.
Springer, 2008.

34. H. Hisil, K. K. Wong, G. Carter, and E. Dawson. Jacobi quartic curves revisited.
In C. Boyd and J. M. G. Nieto, editors, ACISP, volume 5594 of LNCS, pages
452–468. Springer, 2009.

35. K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory,
volume 84 of Graduate texts in mathematics. Springer-Verlag, 1990.

36. A. Joux. A one round protocol for tripartite Diffie-Hellman. J. Cryptology,
17(4):263–276, 2004.

37. M. Joye and J. Quisquater. Hessian elliptic curves and side-channel attacks.
In Cryptographic Hardware and Embedded Systems—CHES 2001, pages 402–410.
Springer, 2001.

38. E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In S. D. Galbraith and
K. G. Paterson, editors, Pairing, volume 5209 of LNCS, pages 126–135. Springer,
2008.

39. K. Karabina. Squaring in cyclotomic subgroups. Math. Comput., 82(281), 2013.
40. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In

N. P. Smart, editor, IMA Int. Conf., volume 3796 of LNCS, pages 13–36. Springer,
2005.

41. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multi-
plication. In X. Wang and K. Sako, editors, ASIACRYPT, volume 7658 of LNCS,
pages 718–739. Springer, 2012.

42. V. S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

43. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

44. M. Naehrig. Constructive and computational aspects of cryptographic pairings.
PhD thesis, Eindhoven University of Technology, May 2009.

45. Y. Nogami, M. Akane, Y. Sakemi, H. Katou, and Y. Morikawa. Integer variable
chi-based ate pairing. In S. D. Galbraith and K. G. Paterson, editors, Pairing,
volume 5209 of LNCS, pages 178–191. Springer, 2008.

46. Y. H. Park, S. Jeong, and J. Lim. Speeding up point multiplication on hyperellip-
tic curves with efficiently-computable endomorphisms. In L. R. Knudsen, editor,
EUROCRYPT, volume 2332 of LNCS, pages 197–208. Springer, 2002.

47. B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE, editor, Proceedings of the IEEE Symposium on
Security and Privacy, 2013.

48. G. C. C. F. Pereira, M. A. Simplício Jr., M. Naehrig, and P. S. L. M. Barreto.
A family of implementation-friendly BN elliptic curves. Journal of Systems and
Software, 84(8):1319–1326, 2011.

49. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
pages 135–148, 2000.

50. J. H. Silverman. The Arithmetic of Elliptic Curves (2nd Edition). Number 106 in
Graduate texts in mathematics. Springer-Verlag, 2009.

51. N. P. Smart. The Hessian form of an elliptic curve. In Ç. K. Koç, D. Naccache,
and C. Paar, editors, CHES, volume 2162 of LNCS, pages 118–125. Springer, 2001.

