
On Fair Exchange, Fair Coins and Fair Sampling∗

Shashank Agrawal, Manoj Prabhakaran

Abstract

We study various classical secure computation problems in the context of fairness, and relate
them with each other. We also systematically study fair sampling problems (i.e., inputless
functionalities) and discover three levels of complexity for them.

Our results include the following:

• Fair exchange cannot be securely reduced to the problem of fair coin-tossing by an r-round
protocol, except with an error that is Ω(1

r).

• Finite fair sampling problems with rational probabilities can all be reduced to fair coin-
tossing and unfair 2-party computation (or equivalently, under computational assump-
tions). Thus, for this class of functionalities, fair coin-tossing is complete.

• Only sampling problems which have fair protocols without any fair setup are the trivial
ones in which the two parties can sample their outputs independently. Others all have an
Ω(1

r) error, roughly matching an upper bound for fair sampling from [22].

• We study communication-less protocols for sampling, given another sampling problem as
setup, since such protocols are inherently fair. We use spectral graph theoretic tools to
show that it is impossible to reduce a sampling problem with common information (like
fair coin-tossing) to a sampling problem without (like “noisy” coin-tossing, which has a
small probability of disagreement).

The last result above is a slightly sharper version of a classical result by Witsenhausen
from 1975. Our proof reveals the connection between the tool used by Witsenhausen, namely
“maximal correlation,” and spectral graph theoretic tools like Cheeger inequality.

∗Research supported in part by NSF grants 1228856 and 0747027.

1 Introduction

Despite wide interest in the problem of fairness, our understanding of some of the most fundamental
questions about it is greatly lacking. In this work, we study fair-exchange, fair coin-flipping, and
more generally fair sampling, to understand the relation between these primitives. In the process,
we also obtain a sharper version of a classical information theory result from the 70’s on common
information of correlated random variables.

Fair coin-flipping and fair-exchange are two classical problems in cryptography, with a long
history of results, both positive and negative. The most influential, and perhaps the most important
negative result, dates back to the work of Cleve [9], in which a deceptively simple argument was
used to prove a result of great consequence: irrespective of what computational assumptions are
used, any 2-party coin-flipping protocol is vulnerable to a simple attack which can produce a bias
that is inversely proportional to the number of rounds of the protocol (rather than being negligible,
as one would have preferred).

Our first result relates fair coin-flipping to fair-exchange. It is easy to see that a fair exchange
functionality can be directly used to obtain a fair coin-flipping protocol (and thus Cleve’s impossi-
bility for fair coin-flipping implies impossibility of fair-exchange as well). We ask if fair coin-flipping
and fair-exchange are equivalent, possibly under some computational assumption. That is, given
access to a fair coin-flipping functionality, can we implement a fair-exchange protocol?

The answer turns out to be negative: we show that an efficient attack can break the security
of any fair-exchange protocol that has access to fair coin-flipping, in the same way Cleve’s attack
could break the security of any fair coin-flipping protocol. Our attack, like Cleve’s, is a simple
fail-stop attack, and does not rely on any computation other than running the steps of the protocol
itself. However, it differs from Cleve’s in some essential ways, in order to handle the presence of
the fair coin-flipping functionality. (In particular, one of our attacks requires the adversary to run
a particular round of the protocol twice, to “look-ahead” before actually accessing the coin-flipping
functionality.)

Our other results relate to the problem of fair sampling. This is a generalization of the fair coin-
flipping problem, in which it is not necessary that Alice and Bob output the same bit, but instead
they are required to produce outputs that are correlated in a specified manner. While somewhat
more subtle than the problem of fair coin-flipping, one can use a natural (standalone) simulation
based security definition to get the right definition of fair and secure sampling. Surprisingly, we
show that fair coin-flipping is at least as “complex” as generating correlated outputs from various
distributions like noisy coin-flipping (where each party gets an unbiased coin, but with probability
say, 0.1, their coins do not agree), random-OT (where Alice gets two random bits (x0, x1) and Bob
gets (b, xb) for a random b). That is, all these fair sampling problems can be solved with access to
a fair coin-flipping functionality (under standard computational assumptions, or alternately, with
access to unfair 2-party computation functionalities). On the other hand, we believe the converse
does not hold in general. We give results (including one of independent interest) that show that
somewhat restricted protocols cannot give fair coin-flipping from fair sampling functionalities if the
distribution does not provide any common information (as formalized by [12]) to the two parties.

Two points are worth highlighting here. In standard (unfair) secure 2-party computation, the
“complexity” of coin-flipping and that of say, noisy coin-flipping are inverted. Indeed, noisy coin-

1

flipping is a complete functionality for unfair 2-party computation in the information-theoretic
setting, whereas coin-flipping is not (see for e.g. [19]). The second point is that, noisy coin-flipping
and random OT, though possibly strictly simpler than coin-flipping itself, still turn out to be im-
possible to fairly and securely implement, irrespective of any computational assumptions or setups.
We emphasize that these are sampling problems, and should not be confused with (automatically
fair) functionalities like OT (with inputs). We generalize the proof of Cleve to show that unless a
2-party distribution is trivial (i.e., the outputs for the two parties are independent of each other), it
does not have a fair protocol. In fact, our proof leads to a slight simplification of Cleve’s argument,
but without yielding any quantitative improvements.

Finally, an important contribution of our work on fair sampling is a deeper understanding of
common information, a concept introduced by Gács and Körner [12], and since then widely studied in
the information theory literature. Roughly speaking, common information of a 2-party distribution
is a piece of information two parties can agree on, after they obtain a sample from the 2-party
distribution (with each party obtaining only its part of the output). Distributions like noisy coin-
flipping, and random OT have no common information. Gács and Körner showed that, even if a
large number of samples from such a distribution are given to the two parties, if they must agree
on a common output without further communication, then the entropy rate of their outputs must
be zero. Our interest in this setting, where the parties have to agree on an output without any
communication, is because such a protocol is inherently fair (provided the access to the samples are
fair). The original proof of Gács and Körner used tools from ergodic theory to show that the number
of independent random bits that Alice and Bob can agree on is o(n) if they access n samples from
a distribution with zero common information. Witsenhausen used maximal correlation [13, 23] to
show that they cannot agree on an output with any positive entropy (not entropy rate) except by
suffering a constant probability of disagreement [24]. We reprove this result using tools from spectral
graph theory. Technically, our proof is quite similar to that in [20] who refined Witsenhausen’s proof
that used maximal correlation. However, by identifying the connection with spectral graph theory,
we are able to obtain a slightly sharper result, afforded to us by Cheeger’s inequality [6].

Our Results. We provide a collection of results on fair 2-party computation (all of which also
extend to the case of multi-party computation without honest majority). Our focus is on studying
certain important and representative tasks, rather than attempting to exhaustively characterize
fairness of all the tasks. The following three canonical problems can be used to explain our main
results.

• Fair exchange Fexch. Alice and Bob exchange a single bit.
• Fair coin-tossing Fcoin. Alice and Bob obtain a common coin.
• Fair sampling of a random instance of oblivious transfer FrOT: Alice gets a pair of random

bits (x0, x1) and Bob gets (b, xb) where b is a random bit.

We show that these three functionalities have decreasing complexity in the context of fairness:

1. Fexch > Fcoin: In Section 3, we show that Fexch cannot be reduced to Fcoin, irrespective of
what computational assumptions are made. We show that for any r-round protocol for Fexch
using Fcoin, there is an efficient fail-stop adversary for which the simulation error is Ω(1

r). On
the other hand, it is well-known that Fcoin can be reduced to Fexch.

2. Fcoin ≥ FrOT: In Section 4 we show that FrOT can be reduced to Fcoin (and an unfair
2-party computation problem). This protocol involves no communication between the two

2

parties, except for them both accessing an unfair sampling functionality, and Fcoin. This
protocols extends beyond FrOT, and shows that Fcoin is complete with respect to fair and
secure reductions at least for a class of “nice” sampling tasks (including FrOT).

3. Fcoin > FrOT? We do not completely rule out a reduction of Fcoin to FrOT. However, we
present important partial negative results in Section 5. In particular, we show that there is no
logarithmic round reduction from coin flipping to a distribution with zero common information.
(Also see below.)

4. FrOT non-trivial: Though FrOT is at the bottom of this list, in Section 6 we show that it
cannot be fairly sampled either (irrespective of the computational assumptions used). Here
we have a tight characterization: only distributions that can be fairly sampled are the ones
in which there is no correlation between Alice’s and Bob’s outputs. Our result is also tight in
that the bias we obtain closely matches a positive result from [22].

In Section 5 we investigate a sub-class of protocols for fair sampling, in which the two parties
access samples from a setup functionality, and then, without any communication, produce their
outputs. Such protocols are inherently fair. The question of when such protocols are possible
presents interesting combinatorial and information-theoretic questions.

Using tools from spectral graph theory to analyze an appropriately defined graph product (or
rather, bipartite graph product), we show that even with an unbounded number of samples from
FrOT, any such protocol for Fcoin will have a constant amount of error. Specifically, we give a tight
bound on the second eigenvalue of the normalized Laplacian of G1 �G2 in terms of that of G1 and
G2, where � is a natural bipartite graph product that we define. Our result sharpens a classical
result on “common information” from information theory, originally proven by Gács and Körner [12]
using techniques from ergodic theory and subsequently improved by Witsenhausen [24] using the
“maximal correlation” measure [13, 23]. As it turns out, our spectral graph theoretic proof is very
similar to the one using maximal correlation as reformulated in [20], but we can make a slightly
sharper statement relating the error when using one sample from FrOT versus using an unbounded
number of samples, thanks to Cheeger inequality.

This result also goes beyond FrOT, and in fact gives a tight characterization of which sampling
problems allow Fcoin to be reduced to them, and which ones do not: any 2-party distribution (i.e.,
a pair of correlated random variables) which has non-zero “common information” can be used to
implement Fcoin, where common information is as was defined in the seminal work of [12].

We believe the explicit connection between spectral graph theory and tools in information theory
is of independent interest, and holds promise for other problems.

An Emerging Picture. While the focus on this work has been to study specific functionalities, our
results suggest a certain hierarchy of “complexity” of functionalities. Firstly, in general fair functions
with input (like XOR) can be strictly more complex than fair sampling problems. We leave it open
to study distinctions within functions with input (e.g., both parties having input vs. only one party
having input). Our other results have explored variations among fair sampling problems. There
are three apparent classes here: trivial problems (which can be sampled trivially, by both parties
independently generating their outputs), non-trivial problems with zero common information (which
includes FrOT and noisy coin-flip), and problems with non-zero common information (which includes
Fcoin). Indeed, the last class is complete for all sampling problems with rational probabilities. The
qualitative separation between problems with and without common information is formalized in the

3

setting of protocols without communication.

Related Work. The problem of fairness in multi-party computation goes back to the work of
Even and Yacobi [11] where exchange of digital signatures is informally proved to be impossible.
The first rigorous proof of the impossibility of fairly computing a functionality comes from Cleve’s
work [9]. He showed that a very basic functionality, that of tossing a coin, cannot be realized fairly.
Subsequent works like that of [10] which considered stronger attacks, relied on computationally
unbounded adversaries.

A recent series of results has renewed interest in the area of fairness. Starting with the work
of Gordon et al. [15], where they show that several functionalities of interest can be realized with
complete fairness, there has been a series of results in this area. In [22], Moran et al. solve a long
standing open problem in fairness. They show that Cleve’s lower bound on the bias of coin tossing
protocols can be achieved (up to a factor of 2) by a protocol. Beimel et al. [3] extend their results
to the multi-party model when less that 2/3 of the parties are corrupt. In [16], Gordon et al. study
the question of reductions among fair functionalities. They show that no short primitive is complete
for fairness. They also establish a fairness hierarchy for simultaneous broadcast. Further in [14], a
definition of partial fairness is proposed, and it is shown that any two-party functionality, at least
one of whose domains or ranges is polynomial in size, can be realized fairly under this definition.
Beimel et al. [2] study partial fairness in the multi-party setting. Asharov et al. [1] provide a
complete characterization of functions that imply fair coin tossing, and hence cannot be computed
fairly due to Cleve’s impossibility result. The negative results in this work relied on computationally
unbounded adversaries.

Separations of the kind we consider (impossiblity of reducing XOR to coin-flipping) was also
considered in the context of security with abort, but in the computationally unbounded setting [21].
We remark that such a result does not hold in the computationally bounded setting.

The notion of common information was introduced by [12], and further developed in [25, 17, 24]
and many later works. The problem of obtaining isoperimetric inequalities of graph products has
been studied, but for notions of graph products different from the bipartite product we study (e.g.
[8], also see [7]).

2 Preliminaries

2.1 Secure two-party computation with complete fairness

We are interested in (possibly randomized) two-party secure function evaluation with complete
fairness (in contrast to security with abort). The functionalities we consider are all finite and their
domains and ranges remain constant, irrespective of the security parameter. All entities considered
are probabilistic polynomial time (PPT). They are given the security parameter n as an auxiliary
input, and their total running time is polynomial in n.

Fairness is modeled by specifying the ideal functionality F to be fair: it delivers the out-
put to both parties together. A corrupt party controlled by the adversary may explicitly in-
struct the ideal functionality to abort (or, provide ⊥ as its input) without receiving any in-
formation from the functionality; but if both parties provide valid inputs, then the functional-

4

ity will evaluate a specified function of the inputs and provide the results to the parties. Let
idealF ,S(n) = (viewF ,S(n),outF ,S(n)) be the random variable that denotes the output of the
adversary and the output of the honest party in the ideal world.

In the real world, instead of outsourcing the computation, parties run a protocol π which enables
them to compute F . While the honest party follows the instructions of π, the corrupt party
controlled by the adversary may deviate arbitrarily. Let realπ,A(n) = (viewπ,A(n),outπ,A(n)) be
the random variable that denotes the view of the adversary and the output of the honest party.

A more detailed description of the ideal and real executions is provided in Appendix A. In
proving our negative results, we use the following weak simulation based security definition.

Definition 1 (Weak Security). A protocol π is said to be a weak ε-secure realization of a two party
functionality F if for every PPT adversary A in the real world, there exists a PPT adversary S in
the ideal world such that

∆ (idealF ,S(n),realπ,A(n)) ≤ ε(n).

We say that π is a weak secure realization of F , if it is a weak ε-secure realization of F for a
negligible function ε(n).

Our definition is similar to the one given in [14], except that we do not require security to hold in
the presence of auxiliary information, which makes our definition weaker. Note that using a weaker
security definition only strengthens the impossibility results. On the other hand, we remark that
our positive results, i.e., constructions, are in fact UC secure [5].

2.2 Normal Form of a Protocol

We shall use the following normal form for a 2-party protocol π between Alice and Bob. The
number of rounds of the protocol will be denoted by r(n), where n is the security parameter. In
this protocol, parties may also have access to a setup functionality G. We shall often refer to such
a setup functionality as an oracle. Without loss of generality, we assume that the ith round in π
consists of the following steps, for 1 ≤ i ≤ r(n):

• Alice sends a message to Bob; if Alice aborts without sending this message, Bob produces an
output, denoted by the random variable Yi−1.
• the functionality G is invoked; if this invocation is aborted, Alice and Bob would produce

outputs.
• then Bob sends a message to Alice; if Bob aborts without sending this message, Alice produces

an output, denoted by the random variable Xi.
• G is invoked once again; again, if this invocation is aborted, Alice and Bob would produce

outputs.

In all our results, the functionality G will be an inputless function, and the particular attacks
we use do not involve aborting its invocation. So we have not given any names for the random
variables corresponding to the outputs if G’s invocation is aborted. If multiple setups, say G1 and
G2, are available, they will be invoked one after the other in every round.

We remark that what makes proving our impossibility results harder is that the protocol π can
access Fcoin throughout its execution, rather than only in a pre-processing phase. Indeed, it has

5

been observed before by Ishai et al. [18] that the impossibility results for fair deterministic function
evaluation in the plain model continue to hold in a pre-processing model.1

3 Fair Exchange from Fair Coin-Flipping

In this section, our goal is to show that two parties cannot exchange their bits fairly, even when
given access to fair coin-flipping functionality. The Fcoin functionality does not take any input and
provides a bit uniformly distributed in {0, 1} to the two parties. The Fexch functionality is also
simple to state: if x, y ∈ {0, 1}, then Fexch(x, y) = (y, x); but if one of the parties aborts or sends
an invalid input to it, the functionality substitutes its input by a default value, say 0.2 Recall our
convention that this is a fair functionality, so the adversary cannot prevent the delivery of output
to the honest party.

We define another functionality Fxor which takes inputs x and y from the two parties. If
x, y ∈ {0, 1}, then Fxor(x, y) = (x ⊕ y, x ⊕ y); but if one of the parties aborts or sends an invalid
input, the functionality substitutes its input by a default value, say 0 (similar to what Fexch does
above). The functionality Fxor is “isomorphic” to Fexch: that is, each functionality can be (UC)
securely reduced to the other using a protocol that involves no other communication other than a
single invocation of the latter functionality. Then it is easy to see that the fair functionality Fexch
can be (weakly) securely realized (using any set up) if and only if the fair functionality Fxor can
be (weakly) securely realized (using the same set up). This allows us to prove that Fexch cannot
be reduced to Fcoin by showing instead that Fxor cannot be reduced to Fcoin.

The result of this section follows. A formal proof is given in Appendix B. Here we provide a
sketch which describes the main ideas involved in the proof. We point out that the result is tight
up to a constant, since [14] shows that Fxor can be computed ε-securely in O(1/ε(n)) rounds even
without access to Fcoin.

Theorem 1. For any weakly ε-secure protocol πFcoin that realizes the functionality Fxor and runs
in r(n) rounds, r(n) ∈ Ω(1

ε(n)).

Proof sketch: Similar to Cleve’s approach [9], we shall consider a collection of fail-stop adversaries
that corrupt either Alice or Bob. We shall also consider the case when neither party is corrupt. We
seek to argue that at least for one of these adversaries, the outcome in the real experiment cannot
be simulated within a Ω(1

r) error by any simulator in the ideal world, where r is the number of
rounds in πFcoin . (r is a function of the security parameter n, but for the sake of readability, we
write r instead of r(n).)

We start off along the same lines as Cleve: we note that at the end of the protocol, the parties will
agree on their outcome (except with at most ε probability). On the other hand, in the beginning of

1The observation in [18] considers not just deterministic function evaluation. However in the general case, the
impossibility of fairness there holds only under a stricter requirement, that the correctness of the protocol should
hold conditioned on the randomness of the pre-processing phase. In particular, Fcoin does not reduce to Fcoin in such
a pre-processing model. Our results are not restricted to the pre-processing model, nor depend on such a security
requirement.

2An alternate formulation would be that if (x, y) 6∈ {0, 1}2, then Fexch(x, y) = (⊥,⊥) where ⊥ is a special symbol
indicating abort. It can be easily seen that these formulations are “isomorphic” to each other (see following text).

6

the protocol, the variables Y0 andX1 are independent of each other; also, by considering an adversary
who forces an abort right at the beginning, each of Y0 and X1 should be close to uniformly random.
So Y0 and X1 are equal with probability only about half. Thus there must be a round i such that
Pr[Xi = Yi]−Pr[Xi = Yi−1] = Ω(1

r) (or Pr[Xi+1 = Yi]−Pr[Xi = Yi] = Ω(1
r); w.l.o.g, we can consider

the former to be the case).

In Cleve’s case, where the protocol he considers does not have access to any setup, we can consider
two adversaries that corrupt Alice, and selectively abort at round i as follows. (See Section 2 for the
numbering of the rounds.) The first adversary forces Bob to output Yi−1 if Xi = 0 and otherwise
forces him to output Yi; the second adversary does the same for Xi = 1. To ensure that Bob’s
output is unbiased under these two attacks requires that

Pr[Yi−1 = 0 ∧Xi = 0] ≈ Pr[Yi = 0 ∧Xi = 0],

Pr[Yi−1 = 1 ∧Xi = 1] ≈ Pr[Yi = 1 ∧Xi = 1].

This contradicts the assumption that Pr[Xi = Yi]−Pr[Xi = Yi−1] = Ω(1
r). A crucial element in this

proof is that Alice can compute Xi first and then selectively force Bob to output Yi−1.

Unfortunately, but not surprisingly, this breaks down when the parties have access to the Fcoin
oracle as in our case. To compute Xi, Alice must obtain the first coin in round i. But after
that she cannot force Bob to output Yi−1: he will output only Yi (note that aborting an access to
Fcoin cannot help, because w.l.o.g, the protocol can instruct a party to substitute it with a coin
it generates). Indeed, we cannot expect Cleve’s argument to go through when an Fcoin oracle is
present, because fair coin-flipping is trivially possible given access to Fcoin.

The reason we can expect to have an attack nevertheless, has to do with the fact that there is an
additional correctness requirement in the case of Fxor that is not present in the case of coin-flipping.
For instance, if the parties were to output a coin they obtain in round i as their final output, while
none of the attacks can bias this outcome, when the execution is carried out without any corruption,
the output will be different from the XOR of the input with probability 1

2 .

We leverage this fact in a somewhat non-obvious manner. Suppose we want to run Cleve’s
attacks as well as we can. The two adversaries described above can proceed right up to the point
before accessing Fcoin in round i. Then, without invoking Fcoin, the attacker can check what the
value of Xi would be for each of the two possible outcomes from Fcoin (by feeding one value of the
coin to the honest protocol execution, then rewinding it, and feeding the other value of the coin).
If in both cases the outcome is the same, then the adversary manages to find Xi without invoking
Fcoin at all. Let EAi denote this event that in an honest execution of the protocol, at the point
before invoking the first access to Fcoin in round i, the value of Xi already gets determined.

But what happens if the complement event EAi occurs? In this case, Xi is a 0 with probability 1
2

and 1 with probability 1
2 . Further, this happens independently of Yi−1. Note that Yi could very well

be correlated with Xi, since it is influenced by the same coin that decides Xi as well as messages
sent by Alice after determining Xi. On the other hand, the final output of Bob, Yr must be (almost)
independent of Xi, since it must (mostly) equal the XOR of the inputs, which is fixed well before
the coin from Fcoin is accessed. Thus, Xi is correlated almost the same way (i.e., uncorrelated)
with both Yi−1 and Yr.

This gives us a way to emulate the effect of forcing the outcome to be Yi−1 when Xi comes out
a particular way, provided EAi occurs: instead of trying to force Bob to output Yi−1 (for which it is

7

too late), let the protocol run to completion and force his outcome to be Yr.

Somewhat surprisingly, this intuition can be turned into a concrete argument. We employ
adversaries for each round which check if the event EAi occurs, and adopt one of the above strategies.
Note that the adversary can efficiently determine if the event EAi occurs (without accessing the
corresponding instance of Fcoin). �

In the Appendix B, we actually prove a generalization of Theorem 1. We show that no δ-
balanced function [1] can be securely reduced to Fcoin. The XOR function, which is δ-balanced
with δ = 1/2, is therefore not reducible to Fcoin either.

Remark. The proof and the result readily extends to the case when the protocol has access to
other unfair non-reactive functionalities as well as Fcoin, since in that case Alice can determine
whether the event EAi occurs (using an unfair access to the functionalities) and act accordingly.
Also, a corollary of the generalization of Theorem 1 is that access to any fair functionality that can
be securely realized using access to (polynomially many invocations of) a δ-balanced function is not
sufficient to obtain a secure fair XOR protocol.

4 Fair sampling from Fair Coin-flipping

We shall say that a functionality F is complete for fair function evaluation if for any fair function
evaluation task there is an (information theoretically) secure protocol that uses F and optionally,
some unfair functionality G. Allowing access to an unfair functionality eliminates the need to base
the completeness result on computational assumptions. (Equivalently, one could define it in terms
of a reduction to F that is secure in the probabilistic polynomial time setting, and assume the
existence of oblivious transfer protocol.)

In [16] it was shown that no finite functionality is complete for fair computation, even restricted
to finite functionalities. We pose the same question, but restricted to finite sampling functionalities
(i.e., functionalities without input).

Surprisingly, we show that fair coin-flipping functionality Fcoin is in fact complete for this class
of problems. We mention a caveat in our result: our protocol for fair sampling requires that the
probability values in the target distribution are rational numbers. Note that since the functionalities
are finite, there is only a finite constant set of probabilities in question, independent of the security
parameter. We say that such distributions are “nice.” If the target distribution involves probabilities
that are not rational, then even though one could approximate them to negligible error using rational
numbers, an initial unfair secure computation phase in our protocol would involve exponentially
large outputs. However, even in this case, the number of accesses to Fcoin is still only polynomial.

Let pXY denote a joint distribution over two random variables X and Y which take values in the
finite domains X and Y respectively. Our goal is to construct an information-theoretic, UC secure
protocol for the functionality which takes no input, but samples (X,Y) according to pXY and gives
X to Alice and Y to Bob. This functionality is modeled as a fair functionality as described in
Section 2. The protocol has access to an arbitrary unfair 2-party computation problem (in fact, a
2-party sampling problem suffices) and the fair coin tossing function Fcoin.

The basic idea of the protocol is fairly simple: first use an unfair secure computation phase
to generate two lists A and B such that if a uniformly random i is picked then (Ai, Bi) will be

8

distributed according to the target distribution. This computation will give the list A to Alice and
B to Bob. Then, use (many accesses to) fair coins to sample an index i; if either party aborts
mid-way, the other party simply tosses the remaining coins on its own. Alice’s output will be Ai
and Bob’s output will be Bi. The list A could contain many indices i such that Ai = x for some
character x, such that not all of these indices have the same value of Bi. For security of this protocol,
it is important that if Alice receives i such that Ai = x, she learns nothing more about Bob’s output
Bi, than what x reveals. This is ensured by randomly permuting the lists A and B.

It remains to describe how the lists A and B can satisfy the above requirements. For this, first,
for each (x, y) ∈ X × Y, express the probability p(x, y) as rational number Px,y/Q, where Q is the
same for all (x, y). Note that this is where we assume that the distribution pXY is nice. Then, for
each pair (x, y), add Px,y copies of (x, y) to a list L. The size of this list will be Q. Then randomly
permute L to obtain a list ((a1, b1), · · · (aQ, bQ)). A is defined to be the list (a1, · · · , aQ) and B the
list (b1, · · · , bQ).

Simulation to prove the security of this protocol is straightforward and omitted.

Despite the restriction to nice distributions, we note that the consequences of this protocol
are already quite powerful. The sampling problems mentioned in the introduction — noisy coin-
flipping with noise probability 0.1 or random oblivious transfer distribution (in which one of 8
different possibilities occur with the probability 1/8 each) — are covered by this protocol.

We also point out another feature of this protocol: Alice and Bob do not interact with each
other, except by accessing two sampling functions: the first one which produces the lists A and B
(unfairly) and the second one which gives fair coins.

5 Impossibility of Fair Coin Flip from Fair Sampling

In this section we ask if it is possible to have a fair coin flipping protocol given access to a setup
for fairly sampling from a 2-party distribution. As we shall see, this depends on whether the setup
distribution gives non-zero common information to the two parties. Our definition of common
information of a 2-party distribution, adapted from Gács and Körner [12], is best understood in
terms of the characteristic bipartite graph representation of a 2-party distribution.

Characteristic Bipartite Graph. Consider a distribution which samples a pair of symbols
(u, v) ∈ U × V with probability p(u, v) and gives u to Alice and v to Bob. The characteristic
bipartite graph (or simply the graph of a distribution) of this distribution is a weighted graph
G = (U, V,w) with U and V as the two partite sets, and with weight of the edge between u ∈ U
and v ∈ V defined to be w(u, v) = p(u, v). Edges with weight 0 are considered absent, and only
nodes with at least one edge incident on them are retained in G.

Common Information. In the above setting, consider a function C which maps a sample (u, v)
to the index of the connected component in G that contains the edge (u, v) (after removing 0-weight
edges). We define the common information of a 2-party distribution as the entropy of the random
variable C(u, v) when (u, v) is sampled from the distribution. In particular, the distribution has
zero common information iff G has a single connected component (after removing 0-weight edges
and isolated nodes).

For example, 2-party coin flipping has 1 bit of common information, whereas a noisy coin flipping

9

which gives an unbiased coin each to Alice and Bob which are equal only with probability say 0.9,
has zero common information.

Conjecture 1. For the class of finite 2-party distributions, the ones that are complete with respect
to fair and secure reductions are exactly the ones that have positive common information.

We do not completely resolve this conjecture, but we provide the following results in its evidence:

1. In the positive direction, the conjecture is equivalent to stating that coin flipping is complete
(since, as can be easily seen, any distribution with positive common information can be used to
obtain fair coins). Our result in Section 4 proves this, restricted to the class of “nice” distributions.

2. In the negative direction, we show that there is no logarithmic round reduction from coin
flipping to a distribution with zero common information. We present this proof in Appendix C.

3. We show that there is no reduction from coin flipping to a distribution with zero common
information using a protocol that has (an unbounded number of) rounds which access the setup,
followed by a polynomial number of communication rounds in Appendix E.3. (Our proof does not
apply if the accesses to the setup are interspersed with communication.) This can be shown using
Theorem 2 below, which deals with the special case when the protocol involves no communication
at all.

Theorem 2. [24] Let pUV be a 2-party distribution with zero common information. Then for every
constant δ > 0 there is a constant ε > 0 (depending on pUV) such that for any 2-party protocol
in which the parties are given an arbitrary number of samples from pUV , but they do not exchange
any messages and the entropy of the output of at least one of the parties is at least δ, then with
probability at least ε the output of the two parties will be different.

In Appendix D we give a new proof for this result, originally due to [24]. Note that the error
probability ε does not decrease with the number of coin samples the protocol is allowed access
to. Further, Lemma 2 in Appendix D, implies that the error ε0 achievable using a single sample
from pUV is (for the same δ) O(

√
ε). That is, using more than one sample can decrease the error

probability at most quadratically. To the best of our knowledge, this final result was not known
previously.

6 Secure Sampling

In this section we consider the task of sampling from a joint distribution (X,Y), where X and Y
are distributed over finite domains X and Y respectively. Two parties Alice and Bob wish to sample
from this distribution such that Alice learns only the value of X and Bob learns only the value of Y .
The functionality for secure sampling Fss is very simple: it does not take any input and produces
a sample from the distribution (X,Y).

Let X × Y denote the product distribution of X and Y , i.e., Pr[X × Y = (x, y)] = Pr[X =
x] · Pr[Y = y] for all x ∈ X and y ∈ Y. We show:

Theorem 3. For any weakly ε-secure protocol π that realizes the functionality Fss and runs in r(n)

10

Adversary Ai,x:
Simulate Alice for i− 1 rounds
if Xi = x then
abort at round i+ 1

else
abort at round i

end if

Adversary Bi,y
Simulate Bob for i− 1 rounds
if Yi = y then
abort at round i+ 1

else
abort at round i

end if

Adversary Ai
Simulate Alice for i− 1 rounds
Abort

Adversary Bi
Simulate Bob for i− 1 rounds
Abort

Figure 5 Adversaries for round i, where 1 ≤ i ≤ r.

rounds,

r(n) ≥ ∆((X,Y), X × Y)− 3ε(n)

2(|X |+ |Y|)ε(n)
, (1)

r(n) ≥ αXY − 3ε(n)

4ε(n)
, (2)

where αXY = max(x,y)∈(X ,Y) |Pr[(X,Y) = (x, y)]− Pr[X × Y = (x, y)]|.

In general, the two bounds are incomparable: the nature of joint distribution decides which one
is stronger (for examples, see Appendix E.2). Our first bound closely matches an upper bound from
[22], who give an ε-secure sampling protocol with ∆((X,Y),X×Y)

2ε(n) + c rounds, where c is a positive
constant. We prove this bound in Appendix E.1. Here we prove the second bound in the above
theorem. Our proof is a natural generalization (and perhaps a slight simplification/clarification) of
Cleve’s proof for fair coin-tossing.

Proof of (2). Consider a weakly ε-secure protocol π for secure sampling that runs in r(n) rounds.
In a single round, Alice sends a message to Bob followed by Bob sending a message to Alice. Recall
the definitions of Xi and Yi−1 for 1 ≤ i ≤ r(n) + 1 from Section 2. Since we are working in the
plain model here (without any oracle set-up), Alice (resp. Bob) can compute the value of Xi (resp.
Yi) before sending the message for round i.

For simplicity in the following, we omit the security parameter n. We also assume that Alice
and Bob always output a value from X and Y respectively when the other party aborts (for more
discussion, see Appendix E.1). Fix a pair (x, y) ∈ X × Y, and define four adversaries as shown in
Figure 5 for each 1 ≤ i ≤ r.

Let us first consider the probability that Bob outputs y when Alice is corrupted by Ai,x in the
real world.

Pr[outπ,Ai,x = y] = Pr[Xi = x ∧ Yi = y] + Pr[Xi 6= x ∧ Yi−1 = y]

= Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y] + Pr[Yi−1 = y].
(3)

When Ai corrupts Alice, Pr[outπ,Ai = y] is simply Pr[Yi−1 = y].

11

On the other hand, since the sampling functionality is inputless, no matter what strategy the
adversary adopts in the ideal world, the output of Bob is distributed according to the marginal
distribution Y . Therefore, for all SAi,x ,SAi , we have

Pr[outFss,SAi,x
= y] = Pr[outFss,SAi

= y] = Pr[Y = y], (4)

where SA denotes the ideal world counterpart of a real world adversary A. Hence,

∆
(
outπ,Ai,x ,outFss,SAi,x

)
+ ∆

(
outπ,Ai ,outFss,SAi

)
≥ |Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y]| . (5)

Similarly, by considering the real and ideal world outputs of Alice when Bob is corrupted by
adversaries Bi,y and Bi, for all SBi ,SBi,y , we have

∆
(
outπ,Bi,y ,outFss,SBi,y

)
+ ∆

(
outπ,Bi ,outFss,SBi

)
≥ |Pr[Yi = y ∧Xi+1 = x]− Pr[Yi = y ∧Xi = x]| . (6)

Adding (5) and (6) for all 1 ≤ i ≤ r, we have that the sum of 4r statistical difference terms is
at least |Pr[Xr+1 = x ∧ Yr = y]− Pr[X1 = x ∧ Y0 = y]|. Hence, there exists an adversary A (among
the 4r adversaries) such that for any ideal world adversary S,

∆(outπ,A,outFss,S) ≥ |Pr[Xr+1 = x ∧ Yr = y]− Pr[X1 = x ∧ Y0 = y]|
4r

(7)

We want to lower bound the above quantity in terms of X and Y . To this end, observe that
when neither party is corrupt, the joint distribution of Alice and Bob’s outputs in the ideal world
is given by (X,Y), and in the real world it is given by (Xr+1, Yr). Then, the ε-security of π implies
that

|Pr[(X,Y) = (x, y)]− Pr[(Xr+1, Yr) = (x, y)]| ≤ ε. (8)

We can also obtain the following from the ε-security of π:

|Pr[(X1, Y0) = (x, y)]− Pr[X × Y = (x, y)]| ≤ 2ε (9)

(see Lemma 4 in Appendix E.1). Combining (7) with (8) and (9), we get:

∆(outπ,A,outFss,S) ≥ |Pr[(X,Y) = (x, y)]− Pr[X × Y = (x, y)]| − 3ε

4r
. (10)

However, since π is an ε-secure protocol, the above quantity can be at most ε. Choosing a pair
(x, y) that maximizes |Pr[(X,Y) = (x, y)]− Pr[X × Y = (x, y)]|, we obtain the desired bound:

r ≥ αXY − 3ε

4ε
.

The above theorem shows that unless the sampling distribution is trivial (i.e., the output of the
two parties are independent of each other), there does not exist a fair protocol to realize it.

12

Acknowledgments
We thank Vinod Prabhakaran for pointing out that Theorem 2 was proven in [24], and for pointing
us to [20]. We also thank the anonymous referees for helpful suggestions and pointers.

References

[1] G. Asharov, Y. Lindell, and T. Rabin. A full characterization of functions that imply fair coin
tossing and ramifications to fairness. In TCC, pages 243–262, 2013. 4, 8, 15, 16

[2] A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty computation without
honest majority and the best of both worlds. In CRYPTO, pages 277–296, 2011. 4

[3] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority.
In CRYPTO, pages 538–557, 2010. 4

[4] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” available at the ECCC archive
TR01-016. Extended abstract in FOCS 2001. 13

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of [4]. 5

[6] J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis,
625:195–199, 1970. 2

[7] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Mathematics,
No. 92). American Mathematical Society, 1996. 4, 23

[8] F. R. K. Chung and P. Tetali. Isoperimetric inequalities for cartesian products of graphs.
Combinatorics, Probability & Computing, 7(2):141–148, 1998. 4

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In J. Hartmanis, editor, STOC, pages 364–369. ACM, 1986. 1, 4, 6

[10] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete control processes.
Manuscript, 1993. http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps. 4

[11] S. Even and Y. Yacobi. Relations among public key signature systems. Technical report,
Technical Report 175, Technion, Haifa, Israel, 1980. 4

[12] P. Gács and J. Körner. Common information is far less than mutual information. Problems of
Control and Information Theory, 2(2):149–162, 1973. 1, 2, 3, 4, 9, 23

[13] H. Gebelein. Das statistische problem der korrelation als variations und eigenwertproblem und
sein zusammenhang mit der ausgleichungsrechnung. Zeitschrift für angew. Math. und Mech.,
21:364–379, 1941. 2, 3

[14] S. Gordon and J. Katz. Partial fairness in secure two-party computation. Journal of Cryptology,
25(1):14–40, 2012. Preliminary version in EUROCRYPT 2010. 4, 5, 6

13

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

[15] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. J. ACM, 58(6):24:1–24:37, Dec. 2011. Preliminary version in STOC 2008. 4

[16] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete primitives for
fairness. In D. Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science,
pages 91–108. Springer, 2010. 4, 8

[17] R. M. Gray and A. D. Wyner. Source coding for a simple network. Bell System Technical
Journal, 53:1681–1721, 1974. 4

[18] Y. Ishai, R. Ostrovsky, and H. Seyalioglu. Identifying cheaters without an honest majority. In
TCC, pages 21–38, 2012. 6

[19] J. Kilian. More general completeness theorems for secure two-party computation. In F. F. Yao
and E. M. Luks, editors, STOC, pages 316–324. ACM, 2000. 2

[20] G. Kumar. Binary renyi correlation: A simpler proof of Witsenhausen’s result and a tighter
upper bound. Manuscript, available at http://www.stanford.edu/~gowthamr/research/binary_
renyi_correlation.pdf, 2010. 2, 3, 13

[21] H. K. Maji, P. Ouppaphan, M. Prabhakaran, and M. Rosulek. Exploring the limits of common
coins using frontier analysis of protocols. In Y. Ishai, editor, TCC, volume 6597 of Lecture
Notes in Computer Science, pages 486–503. Springer, 2011. 4

[22] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In TCC 2009, volume 5444 of
Lecture Notes in Computer Science, pages 1–18. Springer, March 2009. 1, 3, 4, 11

[23] A. Rényi. On measures of dependence. Acta Math. Hung., 10:441–451, 1959. 2, 3

[24] H. S. Witsenhausen. On sequences of pairs of dependent random variables. SIAM Journal of
Applied Mathematics, 28:100–113, 1975. 2, 3, 4, 10, 13

[25] A. D. Wyner. The common information of two dependent random variables. IEEE Transactions
on Information Theory, 21(2):163–179, 1975. 4

A Preliminaries: More Details

We consider two parties P1 and P2 (also called Alice and Bob) who have inputs x ∈ X and y ∈ Y
respectively. They want to compute a randomized function F(x, y, r) = (f1(x, y, r), f2(x, y, r)),
where r is the randomness for the function, and f1(x, y, r) and f2(x, y, r) are outputs of P1 and P2

respectively. An adversary corrupts neither, one or both of the parties.

We describe how the computation of this functionality would proceed in the ideal and real
worlds, when exactly one of the parties is corrupt. (The execution when neither party is corrupt is
similar but simpler; when both parties are corrupt, the security requirement will be trivially met,
and can be omitted from consideration.)

Execution in the ideal world:

Inputs: Parties P1 and P2 hold inputs x and y respectively.

14

http://www.stanford.edu/~gowthamr/research/binary_renyi_correlation.pdf
http://www.stanford.edu/~gowthamr/research/binary_renyi_correlation.pdf

Send inputs to the trusted party: The honest party sends its input to the trusted party. The
corrupt party controlled by S sends an input of its choice. Let x′ and y′ be the inputs received by
the trusted party from P1 and P2 respectively. (An invalid input is substituted by an appropriate
default value.)

Trusted party sends outputs: The trusted party computes F(x′, y′, r), where r is chosen ran-
domly from a prescribed distribution, and it sends f1(x′, y′, r) to P1 and f2(x′, y′, r) to P2.

Send outputs to the environment: The honest party outputs whatever it receives from the
trusted party. The adversary S outputs an arbitrary function of its view.

Let idealF ,S(n) = (viewF ,S(n),outF ,S(n)) be the random variable that denotes the output
of the adversary and the output of the honest party, when the security parameter is n.

Execution in the real (or hybrid) world: In this world, instead of outsourcing the computation
to a trusted party, the parties P1 and P2 run a protocol π between them. The protocol may
involve access to some setup functionalities (fair or unfair). While the honest party sends messages
according to the protocol π, the corrupt party controlled by an adversary A can send arbitrary
messages. Let realπ,A(n) = (viewπ,A(n),outπ,A(n)) be the random variable that denotes the
view of the adversary and the output of the honest party, when the security parameter is n.

B δ-balanced Functions from Fair Coin

We prove here a generalization of Theorem 1 to the case of δ-balanced functions, defined recently
by Asharov et al. in the context of fairness [1]. Consider a boolean function f : {x1, x2, . . . , xm} ×
{y1, y2, . . . , yn} → {0, 1}. Define an m × n matrix Mf corresponding to the function f such that
M [i, j] = f(xi, yj) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Further, call a vector p = (p1, p2, . . . , pl) a
probability vector if Σl

i=1pi = 1 and pj ≥ 0 for 1 ≤ j ≤ l. Lastly, let 1k denote the all 1 vector of
size k.

In the following, we restrict ourselves to the family of finite boolean functions which map two
inputs to one output (as discussed above). We first formally define a δ-balanced function.

Definition 2 (δ-balanced function [1]). A function f : {x1, x2, . . . , xm}× {y1, y2, . . . , yn} → {0, 1}
is a δ − balanced function (0 ≤ δ ≤ 1) if there exist two probability vectors p = (p1, p2, . . . , pm) and
q = (q1, q2, . . . , qn) such that both the following conditions hold

p ·Mf = δ · 1n
Mf · qT = δ · 1Tm,

where AT denotes the transpose of a matrix A.

Furthermore, the function f is strictly balanced if it is δ-balanced for some 0 < δ < 1.

Let us define a fair functionality Ff corresponding to a function f : X ×Y → {0, 1}. Ff obtains
inputs x and y from Alice and Bob respectively. If x /∈ X , it is substituted by a default element in
X . Similarly, if y /∈ Y, it is substituted by a default element in Y. Now, Ff computes f(x, y) and
gives the result to both the parties.

15

Theorem 4. Every two-party protocol with ideal access to Fcoin requires Ω(1/ε(n)) rounds to ε-
securely realize the functionality Ff for a strictly balanced function f .

In other words, no functionality Ff corresponding to a strictly balanced function f can be
reduced to Fcoin. This should be contrasted with the result of Asharov et al. [1]: Fcoin can be
reduced to Ff if (and only if) f is a strictly balanced function. Hence, we have a class of functions,
namely the class of strictly balanced functions, wherein Fcoin can be reduced to any member of the
class but not the other way around.

With p = q = [1/2, 1/2], it is easy to see that Fxor is strictly balanced with δ = 1/2. Theorem 1
can now be seen as a corollary of Theorem 4. For more examples and discussion on δ-balanced
functions and variants, see [1].

B.1 Proof of Theorem 4

Fix a two-party protocol πFcoin and a strictly balanced function f : {x1, x2, . . . , xm} × {y1, y2, . . . , yn}
→ {0, 1}. Let us say that given input n, πFcoin runs in r(n) rounds. Our goal is to show that if
πFcoin ε-securely realizes Ff then r(n) ∈ Ω(1/ε(n)). We make the following notational changes for
simplicity and convenience: we omit the security parameter; we write πFcoin simply as π; and, we
drop the subscript f from Ff .

Let p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qn) be two probability vectors that make f δ-
balanced for some 0 < δ < 1. Assume that Alice and Bob choose their inputs from the distributions
p and q respectively (independent of each other). That is, Alice chooses xi with probability pi
and Bob chooses yj with probability qj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Now, from the δ-balanced
property of f it follows that in the ideal world, no matter how the adversary chooses the input for
corrupt party, the honest party’s output is 1 with probability δ and 0 with probability 1− δ.

Without loss of generality, we can assume that the protocol π is in the normalized form (Sec-
tion 2). This means that the ith round of π consists of the following steps: Alice sends a message
to Bob; the coin oracle is invoked; Bob sends a message to Alice; and, the coin oracle is invoked
again. If Alice aborts without sending her message for this round, then Bob’s output is denoted by
Yi−1. Likewise, if Bob aborts without sending his message, then Alice’s output is denoted by Xi.
We assume that a party always outputs either 0 or 1 when the other party aborts. This means that
Xi, Yi−1 ∈ {0, 1} for 1 ≤ i ≤ r + 1. (If this is not true for π, one can construct a modified protocol
π′ where every output symbol different from 0 and 1 is mapped to 0 (or 1). The following proof
would then hold for π′. However, since π′ cannot be less secure than π, the lower bound on the
number of rounds for π′ would carry over to π.)

Let out denote the distribution on f(x, y) when x and y are chosen according to p and q
respectively. We know that when neither party is corrupt, Alice and Bob output Xr+1 and Yr
respectively. The ε-security of π immediately allows us to say the following about these variables:

Pr[Xr+1 = out] ≥ 1− ε, (11)
Pr[Yr = out] ≥ 1− ε, (12)

Pr[Xr+1 = Yr] ≥ 1− ε. (13)

In general, though, an adversary A may corrupt one of the parties in π. However, the ε-security
of π ensures that there exists an adversary S in the ideal world such that the two distributions

16

Adversary Ai,1
Simulate Alice for i− 1 rounds
if EAi occurs and Xi = 1 then
abort at round i+ 1

else
abort at round i

end if

Adversary A′i,1
Simulate Alice for i rounds
if EAi occurs and Xi = 1 then
abort at round i+ 1

else
continue simulating Alice

end if

Adversary Ai,0
Simulate Alice for i− 1 rounds
if EAi occurs and Xi = 0 then
abort at round i+ 1

else
abort at round i

end if

Adversary A′i,0
Simulate Alice for i rounds
if EAi occurs and Xi = 0 then
abort at round i+ 1

else
continue simulating Alice

end if

Figure 10 Adversaries corrupting Alice

idealF ,S(n) and realπ,A(n) are ε-close to each other. While the distributions consist of the
output of the adversary as well as the output of the honest party, it will suffice to only consider the
latter here. In proving our results, we will crucially use the fact that the output of the honest party
in the ideal world has a fixed distribution.

Before describing our adversaries, we define two events EAi and EBi for each round i. Let EAi
(resp. EBi) denote the event where irrespective of the oracle’s output in the first (resp. second) coin
toss in round i, the value of Xi (resp. Yi) is the same. Observe that when the adversary corrupts
Alice, it can check whether the event EAi occurs or not before sending Alice’s ith round message.
Similarly when Bob is corrupted, it can be checked whether EBi occurs or not before sending Bob’s
ith round message.

For 1 ≤ i ≤ r, we define four types of adversaries which corrupt Alice in Figure 10. The
corresponding adversaries for Bob would be denoted by Bi,1, B′i,1, Bi,0 and B′i,0. Their description is
analogous to that of Alice’s adversaries, so we do not state it explicitly here. This gives us a total
of 8r adversaries. Notice that the adversaries are simple fail-stop adversaries: they either follow the
prescribed protocol or abort prematurely.

Let us first consider the probability that Bob outputs 1 when Alice is attacked by Ai,1 in the
real world:

Pr[outπ,Ai,1 = 1]

= Pr[EAi ∧Xi = 1 ∧ Yi = 1] + Pr[EAi ∧Xi = 0 ∧ Yi−1 = 1] + Pr[E
A
i ∧ Yi−1 = 1]

= Pr[EAi ∧Xi = 1 ∧ Yi = 1] + Pr[EAi ∧ Yi−1 = 1]− Pr[EAi ∧Xi = 1 ∧ Yi−1 = 1]

+ Pr[E
A
i ∧ Yi−1 = 1]

= Pr[EAi ∧Xi = 1 ∧ Yi = 1]− Pr[EAi ∧Xi = 1 ∧ Yi−1 = 1] + Pr[Yi−1 = 1].

17

On the other hand, no matter what strategy an adversary adopts in the ideal world, the output of
Bob is 1 with probability δ (and 0 with probability 1− δ). Hence, for all SAi,1 , we can write

Pr[outπ,Ai,1 = 1]− Pr[outF ,SAi,1
= 1]

= Pr[EAi ∧Xi = 1 ∧ Yi = 1]− Pr[EAi ∧Xi = 1 ∧ Yi−1 = 1] + Pr[Yi−1 = 1]− δ, (14)

where SA denotes the ideal world counterpart of a real world adversary A.
Now, consider the probability that Bob outputs 1 when Alice is attacked by A′i,1 in the real

world:

Pr[outπ,A′i,1 = 1]

= Pr[E
A
i ∧Xi = 1 ∧ Yi = 1] + Pr[E

A
i ∧Xi = 0 ∧ Yr = 1] + Pr[EAi ∧ Yr = 1]

= Pr[E
A
i ∧Xi = 1 ∧ Yi = 1] + Pr[E

A
i ∧ Yr = 1]− Pr[E

A
i ∧Xi = 1 ∧ Yr = 1]

+ Pr[EAi ∧ Yr = 1]

= Pr[E
A
i ∧Xi = 1 ∧ Yi = 1]− Pr[E

A
i ∧Xi = 1 ∧ Yr = 1] + Pr[Yr = 1].

Comparing the above with the output of Bob in the ideal world, for all SA′i,1 , we have

Pr[outπ,A′i,1 = 1]− Pr[outF ,SA′
i,1

= 1]

= Pr[E
A
i ∧Xi = 1 ∧ Yi = 1]− Pr[E

A
i ∧Xi = 1 ∧ Yr = 1] + Pr[Yr = 1]− δ. (15)

In a manner similar to above, we can obtain the following equations for all SAi,0 and SA′i,0 , by
computing the probability that Bob outputs 0 in the real and ideal worlds when Alice is attacked
by Ai,0 or A′i,0:

Pr[outπ,Ai,0 = 0]− Pr[outF ,SAi,0
= 0]

= Pr[EAi ∧Xi = 0 ∧ Yi = 0]− Pr[EAi ∧Xi = 0 ∧ Yi−1 = 0] + Pr[Yi−1 = 0]− (1− δ) (16)

Pr[outπ,A′i,0 = 0]− Pr[outF ,SA′
i,0

= 0]

= Pr[E
A
i ∧Xi = 0 ∧ Yi = 0]− Pr[E

A
i ∧Xi = 0 ∧ Yr = 0] + Pr[Yr = 0]− (1− δ). (17)

Adding equations (14), (15), (16) and (17), we obtain∑
b∈{0,1}

Pr[outπ,Ai,b
= b]− Pr[outF ,SAi,b

= b] + Pr[outπ,A′i,b = b]− Pr[outF ,SA′
i,b

= b]

= Pr[Xi = Yi] + Pr[EAi ∧Xi = Yi−1]− Pr[E
A
i ∧Xi = Yr]

= Pr[Xi = Yi]− Pr[Xi = Yi−1] + Pr[E
A
i ∧Xi = Yi−1]− Pr[E

A
i ∧Xi = Yr]

(18)

18

We would like to obtain a lower bound on the above quantity. For this purpose, we claim that the
following two equations hold:

Pr[Xi = Yi−1 | E
A
i] = 1/2 (19)

Pr[Xi = out | EAi] = 1/2. (20)

For the first part, note that fixing the random tapes of the honest party and the adversary, and
fixing the outcome of all oracle calls up to round i − 1, determines the value of Yi−1, yet Xi is
uniformly distributed in {0, 1} since Fcoin is a fair coin oracle and the event EAi occurs. The second
equality follows from the fact once the inputs of the parties are fixed, the outcome of the function
out is determined, but arguing similarly as above, Xi is uniformly distributed.

Using (19) and (20) along with (12), we can lower bound (18) to obtain the following inequality
for all SAi,b

and SA′i,b (b ∈ {0, 1}):∑
b∈{0,1}

Pr[outπ,Ai,b
= b]− Pr[outF ,SAi,b

= b] + Pr[outπ,A′i,b = b]− Pr[outF ,SA′
i,b

= b]

≥ Pr[Xi = Yi]− Pr[Xi = Yi−1]− ε. (21)

We can now consider the output of Alice in the real and ideal worlds when Bob is attacked by
adversaries Bi,1, B′i,1, Bi,0 or B′i,0. In a manner similar to above, we can show that for all SBi,b and
SB′i,b (b ∈ {0, 1}),∑

b∈{0,1}

Pr[outπ,Bi,b = b]− Pr[outF ,SBi,b = b] + Pr[outπ,B′i,b = b]− Pr[outF ,SB′
i,b

= b]

≥ Pr[Yi = Xi+1]− Pr[Yi = Xi]− ε. (22)

The inequalities (21) and (22) hold for every 1 ≤ i ≤ r. Summing up over all i, P ∈ {A,B} and
b ∈ {0, 1}, and observing that the statistical difference between two binary distributions is at least
the difference in their probabilities of being 1 (or 0), we have

r∑
i=1

∑
P∈{A,B}

∑
b∈{0,1}

∆
(
outπ,Pi,b

,outF ,SPi,b

)
+ ∆

(
outπ,P ′i,b ,outF ,SP′

i,b

)
≥ Pr[Xr+1 = Yr]− Pr[X1 = Y0]− 2rε. (23)

To find an upper bound on Pr[X1 = Y0], note that X1 and Y0 are independent random variables
because they are computed without any communication between Alice and Bob. Hence, we can say
that

Pr[X1 = Y0] = Pr[X1 = 0] Pr[Y0 = 0] + Pr[X1 = 1] Pr[Y0 = 1]

≤ max {Pr[Y0 = 0],Pr[Y0 = 1]}.
(24)

Using the above bound and the one from (13), we can rewrite (23) as

r∑
i=1

∑
P∈{A,B}

∑
b∈{0,1}

∆
(
outπ,Pi,b

,outF ,SPi,b

)
+ ∆

(
outπ,P ′i,b ,outF ,SP′

i,b

)
≥ 1− ε−max {Pr[Y0 = 0],Pr[Y0 = 1]} − 2rε. (25)

19

Finally, we consider one more adversary A which corrupts Alice. Its strategy is very simple:
abort without sending any message whatsoever. When this adversary attacks Alice, Bob outputs
Y0 in the real world. In the ideal world, though, it outputs 1 with a fixed probability δ. Hence, we
have

∆ (outπ,A,outF ,S) = 1/2 |Pr[Y0 = 1]− δ|+ 1/2 |Pr[Y0 = 0]− (1− δ)|
≥ max {Pr[Y0 = 0],Pr[Y0 = 1]} −max {δ, 1− δ}.

(26)

We now have a total of 8r+ 1 adversaries. Summing (25) and (26), we can say that there exists an
adversary A∗ such that for all SA∗ ,

∆
(
outπ,A∗ ,outF ,SA∗

)
≥ 1− ε− 2rε−max {δ, 1− δ}

8r + 1
.

For the protocol to be ε-secure, this quantity should be at most ε. This gives us the following lower
bound on the number of rounds r:

r ≥ 1−max {δ, 1− δ}
10ε

− 1

5
.

Since δ lies strictly between 0 and 1, we have that r ∈ Ω(1/ε).

C Lower bound on the number of rounds

Let π be an ε-secure coin flipping protocol. Let W = (U, V) be a distribution with zero common
information, where U and V take values in finite sets U and V respectively. We know that the
characteristic bipartite graph of W has a single connected component (after removing 0-weight
edges and isolated nodes). Let 0 < c ≤ 1 be the minimum weight of an edge in this graph. Also,
let FW be the functionality which draws a sample (u, v) according to the distribution W , and gives
u to Alice and v to Bob. We will prove the following theorem in this section.

Theorem 5. Any protocol πFW requires at least Ω(log ε(n)) rounds to ε-securely realize the func-
tionality Fcoin.

Assume that the protocol πFW runs in r(n) rounds. Once again, recall the variables Xi and
Yi−1 for 1 ≤ i ≤ r(n) + 1 defined in Section 2. We assume that these variables take only binary
values. As in section Section 3, we define events EAi and EBi for every value of i. The event EAi
(resp. EBi) occurs when the value of Xi (resp. Yi) is the same for all possible outputs of FW when
it is accessed for the first (resp. second) time in round i.

For the sake of readability in the following, let us omit the security parameter n. Let us also
denote πFW simply by π, keeping in mind that the protocol π has ideal access to FW . We first
prove the following lemma using induction.

Lemma 1. Let

δj =

{
Pr[Xr+1−j/2 = Yr−j/2] if j is even
Pr[Xr−(j−1)/2 = Yr−(j−1)/2] otherwise

for 0 ≤ j ≤ 2r. Then, δj ≥ 1− ε
(

4
c

)j.
20

Proof. The base case Pr[Xr+1 = Yr] ≥ 1 − ε is easy to see. Let j be even and i = r + 1 − j/2.
Then, we want to show that Pr[Xi = Yi−1] ≥ 1− ε(4/c)2(r−i+1). Consider the case when the event
EAi does not occur. Then the value of Xi is different for different outputs of FW . Let U0 and
U1 be the subsets of U for which Xi is 0 and 1 respectively. Neither of the two sets are empty
because the event EAi occurs. Further, let V0 and V1 be the subsets of V for which Yi is 0 and 1
respectively. Since the characteristic bipartite graph of W has a single connected component, there
exists a (u, v) ∈ U0 × Y1 ∪ U1 × Y0 such that Pr[U = u ∧ V = v] ≥ c (recall that c is the minimum
weight of an edge in the graph). Hence, Pr[Xi 6= Yi | EAi] ≥ Pr[U = u ∧ V = v] ≥ c. We now have
that

Pr[Xi = Yi] = Pr[Xi = Yi | EAi] · Pr[EAi] + Pr[Xi = Yi | EAi] · Pr[EAi]

≤ (1− Pr[EAi]) + (1− c) · Pr[EAi]

= 1− c · Pr[EAi].

But by induction we know that Pr[Xi = Yi] ≥ 1 − ε(4/c)2(r−i)+1. Therefore, Pr[EAi] ≤ (ε/c)
(4/c)2(r−i)+1.

Consider the adversaries Ai,1 and Ai,0 defined in Figure 10. Although the set-up in Appendix B
was different, we can borrow the following relations from there:

Pr[outπ,Ai,1 = 1] = Pr[EAi ∧Xi = 1 ∧ Yi = 1]− Pr[EAi ∧Xi = 1 ∧ Yi−1 = 1] + Pr[Yi−1 = 1],

Pr[outπ,Ai,0 = 0] = Pr[EAi ∧Xi = 0 ∧ Yi = 0]− Pr[EAi ∧Xi = 0 ∧ Yi−1 = 0] + Pr[Yi−1 = 0].

On the other hand in the ideal world, the output of the honest party is uniformly distributed in
{0, 1} irrespective of the adversary’s strategy. Hence, for all SAi,1 and SAi,0 ,

Pr[outF ,SAi,1
= 1] = Pr[outF ,SAi,0

= 0] = 1/2.

Therefore, for all SAi,1 and SAi,0 , we have

∆
(
outπ,Ai,1 ,outF ,SAi,1

)
+ ∆

(
outπ,Ai,0 ,outF ,SAi,0

)
≥ Pr[EAi ∧Xi = Yi]− Pr[EAi ∧Xi = Yi−1].

But the ε-security of π implies that the above quantity can be at most 2ε. Hence,

Pr[EAi ∧Xi = Yi−1] ≥ Pr[EAi ∧Xi = Yi]− 2ε

= Pr[Xi = Yi]− Pr[Xi = Yi | EAi] · Pr[EAi]− 2ε

≥ 1− ε
(

4

c

)2(r−i)+1

−
(ε
c

)(4

c

)2(r−i)+1

− 2ε

≥ 1− ε

c2(r−i+1)
(42(r−i)+1 + 42(r−i)+1 + 2)

≥ 1− ε ·
(

4

c

)2(r−i+1)

.

Now, Pr[Xi = Yi−1] ≥ Pr[EAi ∧Xi = Yi−1] ≥ 1− ε(4/c)2(r−i+1). This completes the induction step
for the case where j is even. The induction step for odd j will proceed in a manner similar to above
– the main difference being that one would consider adversaries corrupting Bob instead of Alice –
and is hence omitted. This completes the proof of Lemma 1.

21

The above lemma gives us that δ2r = Pr[X1 = Y0] ≥ 1− ε(4/c)2r. However, since X1 and Y0 are
independent random variables, Pr[X1 = Y0] ≤ 1/2. Therefore, r ≥ 1/2 logc/4 2ε, where c is positive
constant. This proves Theorem 5.

D A Spectral Graph Theoretic Proof of Theorem 2

Firstly, we define a natural notion of bipartite graph product, to capture the bipartite characteristic
graph resulting from multiple independent samples from a 2-party distribution.

Definition 3. If G1 = (U1, V1, w1) and G2 = (U2, V2, w2) are two weighted bipartite graphs, we
define their bipartite tensor product G1 � G2 = (U, V,w) as a weighted bipartite graph with U =
U1 × U2, V = V1 × V2 and w((u1, u2), (v1, v2)) = w1(u1, v1) · w2(u2, v2).

Also, for all positive integers k we define G�k = G�k−1 � G, where G�0 = K1,1 (a single edge
with weight 1).

To prove Theorem 2, we shall see that it suffices to lowerbound the “Cheeger constant” of G�k

(for all k ∈ N). Before defining the Cheeger constant, we note that we can consider a weighted
bipartite graph G = (U, V,w) as a general (not necessarily bipartite) weighted graph G′ = (T,w),
where T = U ∪V , by extending its weight function (originally defined over U ×V) to cover all pairs
of nodes in the graph, in a natural way: for (v, u) ∈ V ×U , w(v, u) = w(u, v); for (x, x′) ∈ U2 ∪V 2,
w(x, x′) = 0. Also, as a matter of convenient notation, for every node x ∈ T , we define w(x) =∑

y∈T w(x, y). Also, for S ⊆ T , let w(S) =
∑

x∈S w(x) and w(S, S) =
∑

(x,y)∈S×S w(x, y).

Definition 4 (Cheeger Constant). For a weighted graph G = (T,w), the Cheeger constant h(G) is

h(G) = min
S⊆T

w(S, S)

min(w(S), w(S))
. (27)

We prove the following lemma in Appendix D.1.

Lemma 2. Given a weighted bipartite graph G, for all non-negative integers k, t, h(G�k�K2,2
�t) ≥

1
2h

2(G), where K2,2 denotes the complete bipartite graph with weight 1
4 on all four edges.

Here we describe how this lemma can be used to prove Theorem 2. Let G = (U, V,w) be the
characteristic bipartite graph of pUV . G�k = (Uk, V k, w(k)) denotes the graph corresponding to k
independent samples from pUV , where w(k)((u1, · · · , uk), (v1, · · · , vk)) =

∏k
i=1w(ui, vi). Alice gets

a node in Uk as her part of the sample from pkUV (i.e., k independent samples from pUV), and Bob
gets a node in V k. Further, Alice and Bob may use private random coins, say t of them. The
characteristic bipartite graph for t pairs of independent coins is K2,2

�t. Thus G�k�K2,2
�t denotes

the entire view of the two parties in the protocol. Now, the output of each party is a deterministic
function of its view.

W.l.o.g., we assume that each party is outputting a single bit (if necessary, by partitioning the
outputs into two appropriately chosen parts, while retaining a constant amount of entropy in the
outputs). Let A0 ⊆ Uk × {0, 1}t be the set of views on which Alice outputs 0. Similarly define A1,
and also define the sets B0 and B1 for Bob. Let w∗ be the weight function for G�k �K2,2

�t.

22

Then, the probability that Alice outputs 0 is pA0 =
∑

a∈A0
w∗(a). Similarly pA1 =

∑
a∈A1

w∗(a),
and pB0 =

∑
b∈B0

w∗(b) and pB1 =
∑

b∈B1
w∗(b). W.l.o.g, assume that pA0 + pB0 ≤ pA1 + pB1 (inter-

changing 0 and 1 if necessary). Then, let S = A0 ∪ B0 and S = A1 ∪ B1. Since we required the
output of at least one party to have constant entropy, it must be the case that pA0 + pB0 ≥ α for
some constant α > 0. The probability that Alice and Bob disagree on their outputs, p∗ is given by
the weight of the edges that go across S and S: i.e., p∗ =

∑
x∈S,y∈S w

∗(x, y). By definition of the
Cheeger constant, we have

h(G�k �K2,2
�t) ≤

∑
x∈S,y∈S w

∗(x, y)

pA0 + pB0
≤ p∗

α
.

That is, p∗ ≥ αh(G�k �K2,2
�t) ≥ αh

2(G)
2 . Since pUV has zero common information, its bipartite

characteristic graph G has a single connected component, and h(G) is positive. Thus, we can set
ε = αh

2(G)
2 to complete the proof of Theorem 2.

Remark 1. Gács and Körner [12] also considered the case when the setup distribution has non-
zero common information. Our proof readily extends to this setting, showing that the entropy of a
common output conditioned on this common information will have to be o(1) (when the disagreement
probability is required to be o(1)).

D.1 Bounding the Cheeger constant of graph products

In this section, we prove Lemma 2. We shall rely on the fact that the Cheeger constant of a graph
can be lowerbounded by lowerbounding the second eigenvalue of the normalized Laplacian matrix
associated with the graph. The normalized Laplacian LG of a bipartite graph G = (U, V,w) is a
|U ∪ V | × |U ∪ V | matrix defined as follows:

LG(u, v) =


1 if u = v

− w(u,v)√
w(u)w(v)

if (u, v) 6∈ U2 ∪ V 2

0 otherwise.

An eigenvalue of LG is a number λ such that LGα = λα for some vector (an eigenvector) α.
Since LG is a real symmetric n× n matrix, it is well-known that there is an orthogonal basis of Rn
consisting only of eigenvectors of LG. The multi-set of n eigenvalues for the vectors in such a basis
is called the eigenvalue spectrum of LG. We state the following facts that we shall use about the
eigenvalues of LG, when G is a weighted bipartite graph which has a single connected component.
(See, for e.g., [7] for more details.)

Proposition 1. If G is a weighted bipartite graph with a single connected component (ignoring
edges and nodes of weight 0), then

1. the eigenvalues of LG are in the range [0, 2] with both the minimum and maximum possible
values achieved (with “multiplicity” 1);

2. let λ1 be the smallest positive eigenvalue of LG; then the second largest eigenvalue is 2− λ1.

23

3. (Cheeger’s inequality): λ1
2 ≤ h(G) ≤

√
2λ1

We shall prove the following.

Lemma 3. Let G1 and G2 be weighted bipartite graphs with λ1 and λ2 as the smallest positive eigen-
values of LG1 and LG2 respectively. Then the smallest positive eigenvalue of LG1�G2 is min{λ1, λ2}.

Proof. Let Λ1 and Λ2 be the sets of the eigenvalues of LG1 and LG2 respectively (without considering
multiplicity). We shall prove that the set of eigenvalues of LG1�G2 is the same as that of I − (I −
LG1)⊗ (I − LG2), which in turn is (by standard results on ⊗ product of matrices)

Λ = {1− (1− λ1)(1− λ2)|λ1 ∈ Λ1, λ2 ∈ Λ2}.

Then the smallest positive value in this set is obtained by maximizing (1 − λ1)(1 − λ2) (short of
making it 1), which is obtained when one of λ1 and λ2 is 0, and the other is the smallest positive
value it can take (or, equivalently when one of them is 2, and the other is the second largest value
it can take; the equivalence is a consequence of Proposition 1). The smaller of the two ways this
can be done gives min{λ1, λ2} as the smallest positive value in Λ.

It remains to prove that the set of eigenvalues of LG1�G2 is the same as that of I − (I −LG1)⊗
(I−LG2). It will be convenient to work with the matrices of the formMG = I−LG, instead of LG.
Then we need to show that the set of eigenvalues ofMG1�G2 is the same as that ofMG1 ⊗MG2 .
Firstly, note that if G = (U, V,w) is a weighted bipartite graph, then LG can be written as

LG = I −
[

0 B
BT 0

]
where I is the |U | + |V | dimensional identity matrix, and B is a |U | × |V | “normalized” adjacency
matrix of G with B(u, v) = w(u,v)√

w(u)w(v)
. LetMGi =

[
0 Bi

BT
i 0

]
, where Bi is the normalized adjacency

matrix of Gi = (Ui, Vi, wi), for i = 1, 2. Then

MG1 ⊗MG2 =


0 0 0 X
0 0 Y 0
0 Y T 0 0
XT 0 0 0

 MG1�G2 =

[
0 X
XT 0

]

where X = B1 ⊗ B2 and Y = B1 ⊗ BT
2 . The rows and columns of MG1 ⊗MG2 are indexed by

(U1 ∪ V1)× (U2 ∪ V2), whereas that ofMG1�G2 are indexed by (U1 ×U2)∪ (V1 × V2). Let π denote
a projection that restricts a vector indexed by the former coordinates to the latter coordinates, so
thatMG1�G2 = π(MG1 ⊗MG2)πT .

Now, note that any eigenvector ofMG1�G2 (with coordinates indexed by (U1×U2)∪ (V1×V2))
can be extended to an eigenvector ofMG1 ⊗MG2 with the same eigenvalue by inserting 0s into the
missing coordinates. Conversely, if α is an eigenvector ofMG1 ⊗MG2 with an eigenvalue λ, then,

writing α =

[
αUU

αUV

αV U

αV V

]
(with the entries in αUU indexed by U1 × U2 and so on), we have


0 0 0 X
0 0 Y 0
0 Y T 0 0
XT 0 0 0



αUU

αUV

αV U

αV V

 = λ


αUU

αUV

αV U

αV V

 ⇒ XαV V = λαUU and XTαUU = λαV V .

24

Thus MG1�G2πα =
[

0 X
XT 0

] [
αUU

αV V

]
= λ

[
αUU

αV V

]
= λπα. Thus the eigenvectors of MG1�G2 are

exactly those obtained as πα where α is an eigenvector ofMG1 ⊗MG2 , with the same eigenvalue.
In particular, the set of eigenvalues ofMG1�G2 is the same as that ofMG1 ⊗MG2 , as required to
show.

As a corollary of this lemma, we have the following.

Corollary 6. Let G be a weighted bipartite graph other than K1,1, with λ1 as smallest positive
eigenvalue of LG. Then for all integers k > 0, t ≥ 0, the smallest positive eigenvalue of LG�k�K2,2

�t

is also λ1.

Proof. This follows from Lemma 3 and the fact that K2,2 has 1 as its smallest positive eigenvalue,
where as the smallest positive eigenvalue of LG is at most 1 (given that G is not K1,1).

To prove Lemma 2, note that if G is a connected bipartite graph, so is G�k �K2,2
�t; then the

second eigenvalue of LG�k�K2,2
�t is the same as its smallest positive eigenvalue, since the eigenvalue

0 has multiplicity 1 (see Proposition 1). By the above corollary (for k > 0, G 6= K1,1), this is the
same as the second eigenvalue of LG. By the Cheeger inequality, then it follows that h(G�k �
K2,2

�t) ≥ 1
2h

2(G). (The lemma holds for the special cases of G = K1,1, or k = 0 as well: then
h(G�k �K2,2

�t) = 1 and h(G) ≤ 1.)

E Secure sampling

E.1 Proof of Theorem 3 (1)

Let π be a two-party ε-secure protocol for sampling from a joint distribution (X,Y) that runs in
r(n) rounds. Our goal is to show that

r(n) ≥ ∆((X,Y), X × Y)− 3ε(n)

2(|X |+ |Y|)ε(n)
, (28)

where X×Y is the product distribution of X and Y (i.e., Pr[X×Y = (x, y)] = Pr[X = x]×Pr[Y =
y]). We would be working with the same set of adversaries as defined in Figure 5, except that we
now have adversaries not only for every value of 1 ≤ i ≤ r(n), but also for every x ∈ X and every
y ∈ Y.

For simplicity in the following, we omit the security parameter. We also assume that Alice and
Bob always output a value from X and Y respectively when the other party aborts. We will see
later why this assumption does not affect the generality of our proof.

Let us first consider the output of Bob when Alice is corrupted by Ai,x in the real world. For
y ∈ Y , we have

Pr[outπ,Ai,x = y] = Pr[Xi = x ∧ Yi = y] + Pr[Xi 6= x ∧ Yi−1 = y]

= Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y] + Pr[Yi−1 = y].
(29)

25

When Ai corrupts Alice, Pr[outπ,Ai = y] is simply Pr[Yi−1 = y]. On the other hand, no matter
what strategy an adversary adopts in the ideal world, the output of Bob is distributed according to
the marginal distribution of Y . Therefore, for all SAi,x and SAi , we have

Pr[outFss,SAi,x
= y] = Pr[outFss,SAi

= y] = Pr[Y = y], (30)

where SA is the ideal world counterpart of real world adversary A. So, we obtain the following:

∆
(
outπ,Ai,x ,outFss,SAi,x

)
=

1

2

∑
y∈Y
|Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y]

+ Pr[Yi−1 = y]− Pr[Y = y]|

∆
(
outπ,Ai ,outFss,SAi

)
=

1

2

∑
y∈Y
|Pr[Yi−1 = y]− Pr[Y = y]| .

Therefore, we can say that

∆
(
outπ,Ai,x ,outFss,SAi,x

)
+ ∆

(
outπ,Ai ,outFss,SAi

)
≥ 1

2

∑
y∈Y
|Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y]| . (31)

Note that the above equation holds for every x ∈ X . Summing over all x ∈ X , we have that for
all SAi and SAi,x (x ∈ X),

|X | ·∆
(
outπ,Ai ,outFss,SAi

)
+
∑
x∈X

∆
(
outπ,Ai,x ,outFss,SAi,x

)
≥ ∆ ((Xi, Yi)) (Xi, Yi−1). (32)

Similarly, for all SBi and SBi,y (y ∈ Y), we can obtain the following inequality by considering the
real and ideal world outputs of Alice when Bob is corrupted by adversaries Bi and Bi,y (y ∈ Y):

|Y| ·∆
(
outπ,Bi ,outFss,SBi

)
+
∑
y∈Y

∆
(
outπ,Bi,y ,outFss,SBi,y

)
≥ ∆ ((Xi+1, Yi), (Xi, Yi)) . (33)

Now, sum the inequalities (32) and (33) over all 1 ≤ i ≤ r. The left hand side of the resulting
inequality is the sum of statistical distance terms corresponding to 2r(|X |+ |Y|) adversaries. Hence,
there must exist an adversary A such that for any ideal world adversary S,

∆(outπ,A,outFss,S) ≥ ∆ ((Xr+1, Yr), (X1, Y0))

2r(|X |+ |Y|)
. (34)

The ε-security of π implies that ∆((X,Y), (Xr+1, Yr)) ≤ ε and ∆(X × Y , (X1, Y0)) ≤ 2ε, where
the first inequality follows by considering the joint outputs of Alice and Bob when neither party is
corrupt, and the second inequality is proved in Lemma 4. Using these inequalities to lower bound
(34), we have

∆(outπ,A,outFss,S) ≥ ∆((X,Y ,X × Y)− 3ε

2r(|X |+ |Y|)
.

26

But the ε-security also implies that the above statistical difference could be at most ε. Thus, we
have the desired bound.

Before concluding the proof, note that the protocol π may not satisfy our assumption that Alice
and Bob always output a value from X and Y respectively. In this case, one can construct a modified
protocol π′ where Alice (resp. Bob) outputs a fixed x∗ ∈ X (resp. y∗ ∈ Y) whenever the protocol
π instructs it to output a symbol not in X (resp. not in Y). The protocol π′ does satisfy our
assumption and the foregoing proof would give a lower bound on the number of rounds in it. If π′

is ε′-secure with r′(n) rounds, then we have

r(n) = r′(n) ≥ ∆((X,Y ,X × Y)− 3ε′(n)

2(|X |+ |Y|)ε′(n)
≥ ∆((X,Y ,X × Y)− 3ε(n)

2(|X |+ |Y|)ε(n)
,

since π′ is at least as secure as π. Therefore, (28) holds for π as well.

Lemma 4. ∆(X × Y , (X1, Y0)) ≤ 2ε.

Proof. Consider the two adversaries A1 and B1 (Figure 5) which abort without sending any message.
When B1 corrupts Bob, the output of Alice in the real world is distributed according to X1, whereas
in the ideal world it is distributed as X (irrespective of the adversary’s strategy). Since π is an
ε-secure protocol, we have ∆(X,X1) ≤ ε. On the other hand, when A1 corrupts Alice, the ε-security
of π gives us ∆(Y, Y0) ≤ ε. Now,

2 ·∆(X × Y , (X1, Y0))

=
∑

(x,y)∈X×Y

|Pr[X × Y = (x, y)]− Pr[(X1, Y0) = (x, y)]|

=
∑

(x,y)∈X×Y

|Pr[X = x] · Pr[Y = y]− Pr[X1 = x] · Pr[Y0 = y]|

=
∑

(x,y)∈X×Y

|Pr[X = x](Pr[Y = y]− Pr[Y0 = y]) + Pr[Y0 = y](Pr[X = x]− Pr[X1 = x])|

≤
∑
x∈X

Pr[X = x]
∑
y∈Y
|Pr[Y = y]− Pr[Y0 = y]|+

∑
y∈Y

Pr[Y0 = y]
∑
x∈X
|Pr[X = x]− Pr[X1 = x]|

≤ 2ε
∑
x∈X

Pr[X = x] + 2ε
∑
y∈Y

Pr[Y0 = y]

= 4ε,

where the second equality uses the fact that X1 and Y0 are independent random variables since they
are computed without any communication between Alice and Bob.

E.2 Comparison of bounds

First note that in this paper we are concerned with finite functionalities only. Hence, in asymptotic
sense, the two bounds in Theorem 3 are same: both imply that the number of rounds should be
Ω(1/ε(n)). However, if we do not ignore constants, the following example shows that the bounds
are incomparable in general.

27

Consider two distributions (X1, Y1) and (X2, Y2) over the set X × Y, where |X | = |Y| =
{1, 2, . . . , 2m}:

• Pr[(X1, Y1) = (x, y)] = 1
2m2 if x ≡ y (mod 2), and 0 otherwise;

• Pr[(X2, Y2) = (x, y)] = 1
2 + 1

8m2 if (x, y) = (1, 1), and 1
8m2 otherwise.

For the distribution (X1, Y1), the first lower bound is 1−6ε
16mε , whereas the second is 1

16m2ε
− 3

4 . Hence,
in this case the first bound is stronger. On the other hand, for the distribution (X2, Y2), the second
bound is 1

4ε

(
1
2 −

1
4m

)2 − 3
4 , whereas the first bound can be at most 1−3ε

8mε only.

E.3 Communicating parties

Let us consider a protocol π that realizes the functionality Fcoin. In this protocol, parties have
ideal access to a sampling functionality FW which gives samples drawn according to a distribution
W with zero common information. The protocol π has two phases: in the first phase, parties can
only access FW , but they can do so an unbounded number of times; in the second phase, parties
exchange messages but access to FW is no longer available. Our goal is to show that if π is ε-secure
then it must have at least Ω(1/ε(n)) rounds in the second phase.

We number the rounds of protocol π starting from the first round in the second phase. Hence,
in the following when we use the random variables Xi and Yi−1 for 1 ≤ i ≤ r(n) + 1 defined in
Section 2, we should keep in mind that they refer to the second phase of π. In order to lower bound
the number of rounds in π, we follow the proof in Appendix E.1. That proof considers adversaries
defined in Figure 5 for every x ∈ X and y ∈ Y. Note that in our case, the interpretation of these
adversaries is slightly different. For instance, the first line of the code of Ai,x now means that Alice
is simulated honestly throughout the first phase and for i− 1 rounds in the second phase.

It is easy to see that the inequality (34) can be derived for the protocol π following the proof in
Appendix E.1. This allows us to say that there exists an adversary A such that for any ideal world
adversary S,

∆(outπ,A,outFcoin,S) ≥ Pr[Xr+1 = Yr]− Pr[X1 = Y0]

8r
, (35)

since |X | = |Y| = 2. We know that Pr[Xr+1 = Yr] ≥ 1− ε. However, due to the presence of a first
phase in π, X1 and Y0 are not independent of each other (this was used in the proof of Lemma 4).
Fortunately, since the parties access a distribution W in the first phase which has no common
information, X1 and Y0 must disagree with a constant probability. The ε-security of π gives us that
Pr[X1 = 0] and Pr[Y1 = 0] are at least 1/2− ε. Hence, from Theorem 2 and its proof (see the part
just above the Remark 1), it follows that

Pr[X1 6= Y0] ≥
(

1

2
− ε
)
h2(GW),

where GW is the characteristic bipartite graph of W , and h(GW) is positive since W has a single
connected component. This allows us to lower bound (35) and obtain:

∆(outπ,A,outFcoin,S) ≥ 1

8r

[(
1

2
− ε
)
h2(GW)− ε

]
.

28

But the ε-security of π implies that the above quantity can be at most ε. Hence, we obtain the
following bound on the number of rounds:

r ≥ 1

8

(
1

2ε
− 1

)
h2(GW)− 1

8
.

29

	Introduction
	Preliminaries
	Secure two-party computation with complete fairness
	Normal Form of a Protocol

	Fair Exchange from Fair Coin-Flipping
	Fair sampling from Fair Coin-flipping
	Impossibility of Fair Coin Flip from Fair Sampling
	Secure Sampling
	Preliminaries: More Details
	-balanced Functions from Fair Coin
	Proof of [thm:deltaFromCoin]Theorem 4

	Lower bound on the number of rounds
	A Spectral Graph Theoretic Proof of [thm:disagreement]Theorem 2
	Bounding the Cheeger constant of graph products

	Secure sampling
	Proof of [thm:sd]Theorem 3 (1)
	Comparison of bounds
	Communicating parties

