
Automated Security Proofs for Almost-Universal Hash
for MAC verification?

Martin Gagné1, Pascal Lafourcade2, and Yassine Lakhnech2

1 Department of Computer Science, Saarland University, Germany
2 Université Grenoble 1, CNRS,VERIMAG, France

Abstract. Message authentication codes (MACs) are an essential primitive in
cryptography. They are used to ensure the integrity and authenticity of a message,
and can also be used as a building block for larger schemes, such as chosen-
ciphertext secure encryption, or identity-based encryption. MACs are often built
in two steps: first, the ‘front end’ of the MAC produces a short digest of the
long message, then the ‘back end’ provides a mixing step to make the output
of the MAC unpredictable for an attacker. Our verification method follows this
structure. We develop a Hoare logic for proving that the front end of the MAC is an
almost-universal hash function. The programming language used to specify these
functions is fairly expressive and can be used to describe many block-cipher and
compression function-based MACs. We implemented this method into a prototype
that can automatically prove the security of almost-universal hash functions. This
prototype can prove the security of the front-end of many CBC-based MACs
(DMAC, ECBC, FCBC and XCBC to name only a few), PMAC and HMAC. We
then provide a list of options for the back end of the MAC, each consisting of only
two or three instructions, each of which can be composed with an almost-universal
hash function to obtain a secure MAC.

1 Introduction

Message authentication codes (MACs) are among the most common primitives in
symmetric key cryptography. They ensure the integrity and provenance of a message,
and they can be used, in conjunction with chosen-plaintext (CPA) secure encryption,
to obtain chosen-ciphertext (CCA) secure encryption. Given the importance of this
primitive, it is important that their proofs of security be the object of close scrutiny.
The study of the security of MACs is, of course, not a new field. Bellare et al. [5]
were the first to prove the security of CBC-MAC for fixed-length inputs. Following
this work, a myriad of new MACs secure for variable-length inputs were proposed ([4,
7–9, 17]). None of these protocols’ proofs have been verified by any means other than
human scrutiny. Automated proofs can provide additional assurance of the correctness
of these security proofs by providing an independent proof of complex schemes. This
paper presents a method for automatically proving the security of MACs based on block
ciphers and hash functions.

Contributions: To analyze the security of MACs, we first decompose the MAC
algorithms into two parts: a ‘front-end’, whose work is to compress long input messages
? This work was partially supported by ANR project ProSe and Minalogic project SHIVA.

into small digests, and a ‘back-end’, usually a mixing step, which obfuscates the output
of the front-end. We present a Hoare logic to prove that the front-ends of block-cipher
based and hash based MACs are almost-universal hash functions in the ideal cipher
model and random oracle model respectively. We then make a list of operations which,
when composed with an almost-universal hash function, yield a secure MAC. We can
then attest the security of MACs by first proving the security of the front end using our
logic, and then by manually verifying that the back end of the MAC belongs to our list.

Our result differs significantly from previous works that used Hoare logic to generate
proofs of cryptographic protocols (such as [12, 15]) because those results proved the
security of encryption schemes. Proving the security of MACs proved to be singularly
more challenging: the security of encryption schemes could be simply proven by showing
that the ciphertext is indistinguishable from a random value, whereas the unforgeability
property required of MACs cannot, to our knowledge, be captured by their predicates.
As a result, we have to consider the simultaneous execution of the program, define a
dedicated semantics to capture these executions, and introduce appropriated predicates
that keep track of equality and inequality of values between the two executions.

In contrast to the previous results that only deal with schemes that had fixed-length
inputs, we are able to analyze for-loops, which allows us to prove the security of protocols
that can take arbitrary strings as an input. We describe two heuristics that can be used
to discover stable loop invariants and apply them to one example. These heuristics
successfully find stable invariants for all the hash functions analyzed in this paper.

Finally, we implemented our method into a prototype [14] that can be used to
verify the security of the front-end of several well-known MACs, such as HMAC [4],
DMAC [17], ECBC, FCBC and XCBC [8] and PMAC [9], and could be used to verify
the security of other hash functions based on the same primitives. We also give a
predicate filter that enables us to discard unnecessary predicates, which speeds up our
implementation and facilitates the discovery of loop invariants. Our prototype goes
through the programs from beginning to end, instead of the more common backward
approach, to avoid an exponential blowout in the number of possibilities to examine, due
to the many choices of rules that can cause certain predicates caused by the presence of
the logical or connector in our Hoare logic.

Related Work: The idea of using Hoare logic to automatically produce proofs of
security for cryptographic protocols is not new. Courant et al. [12] presented a Hoare
logic to prove the security of asymmetric encryption schemes in the random oracle
model. A Hoare logic was also used by Gagné et al. [15] to verify proofs of security of
block cipher modes of encryption. Also worth mentioning is the paper by Corin and Den
Hartog [11], which presented a Hoare-style proof system for game-based cryptographic
proofs.

Fournet et al. [13] developed a framework for modular code-based cryptographic
verification. However, their approach considers interfaces for MACs. In a way, our work
is complementary to theirs, as our result, coupled with theirs, could enable a more
complete verification of systems.

In [1], the authors introduce a general logic for proving the security of cryptographic
primitives. This framework can easily be extended using external results, such as [12],
to add to its power. Our result could also be added to this framework to further extend it.

2

Other tools, such as Cryptoverif [10] and EasyCrypt [3, 2], can be used to verify the
security of cryptographic schemes, but they are far less convenient than our method for
proving the security of MACs. Cryptoverif does not support loop constructs, which are
an important part of our result, and is generally used for proving the security of higher
level protocols, assuming the security of primitives such as MACs. As for Easycrypt, it
relies on a game-based approach and requires human assistance to enter the sequence
of games. Our result is complementary to these approaches: we offer a method for
proving the security of MACs that are assumed to be secure low level primitive in such
tools. Combining our results would enable a more complete analysis of cryptographic
protocols. Moreover, our method requires only the description of the program as input,
and automatically outputs a proof, removing the need for human assistance.

Outline: In Section 2, we introduce cryptographic background. The following section
introduces our grammar, semantics and assertion language. In Section 4, we present our
Hoare logic and method for proving the security of almost-universal hash functions, and
we discuss our implementation of this logic and treatment of loops in Section 5. We then
obtain a secure MAC by combining these with one of the back-end options described in
Section 6. Finally, we conclude in Section 7.

2 Cryptographic Background

In this section, we introduce a few notational conventions, and we recall a few crypto-
graphic concepts.

Notation and Conventions
We assume that all variables range over domains whose cardinality is exponential

in the security parameter η and that all programs have length polynomial in η. We say
that a function f : N→ R is negligible if, for any polynomial p, there exists a positive
integer n0 such that for all n ≥ n0, f(n) ≤ 1

|p(n)| .

For a probability distribution D, we denote by x $←− D the operation of sampling

a value x according to distribution D. If S is a finite set, we denote by x $←− S the
operation of sampling x uniformly at random among the values in S.

MAC Security
A message authentication code ensures the authenticity of a messagem by computing

a small tag τ , which is sent together with the message to the intended receiver. Upon
receiving the message and the tag, the receiver recomputes the tag τ ′ using the message
and his own copy of the key, and he accepts the message as authentic if τ = τ ′. More
formally:

Definition 1 (MAC). A message authentication code is a triple of polynomial-time
algorithms (K, MAC, V), where K(1η) takes a security parameter 1η and outputs a
secret key sk, MAC(sk,m) takes a secret key and a message m, and outputs a tag, and
V (sk,m, tag) takes a secret key sk, a message m and a tag, and outputs a bit: 1 for a
correct tag, 0 otherwise.

We say that a MAC is secure, or unforgeable if it is impossible to compute a new
valid message-tag pair for anybody who does not know the secret key, even when given

3

access to oracles that can compute and verify the MACs. This way, when one receives
a valid message-tag pair, he can be certain that the message was sent by someone who
possesses a copy of his secret key.

Definition 2 (Unforgeability [5]). A MAC (K,Mac, V) is unforgeable under a chosen-
message attack (UNF-CMA) if for every polynomial-time algorithm A that has oracle
access to the MAC and verification algorithm and whose output message m∗ is different
from any message it sent to the Mac oracle, the following probability is negligible

Pr[sk $← K(1η); (m∗, tag∗)
$← AMac(sk,·),V (sk,·,·) : V (sk,m∗, tag∗) = 1]

A standard method for constructing MACs is to apply a pseudo-random function, or
some other form of ‘mixing’ step, to the output of an almost-universal hash function [18,
19]. We assume that a MAC is constructed in this way.

Definition 3 (Almost-Universal Hash). A family of functionsH = {hi} indexed with
key i ∈ {0, 1}η is a family of almost-universal hash functions if for any two distinct
strings M and M ′, Prhi∈H[hi(M) = hi(M

′)] is negligible, where the probability is
taken over the choice of hi inH.

It is much easier to work with this definition than with the unforgeability definition
because of the absence of an adaptive adversary, and the collision probability is taken
over all possible choices of key.

Block Cipher Security
Many MAC constructions are based on block cipher, so we quickly recall the defini-

tion of block ciphers and their security definition.
A block cipher is a family of permutations E : {0, 1}K(η) × {0, 1}η → {0, 1}η

indexed with a key k ∈ {0, 1}K(η) whereK(η) is a polynomial. A block cipher is secure
if, for a randomly sampled key, the block cipher is indistinguishable from a permutation
sampled at random from the set of all permutations of {0, 1}η. However, since random
permutations of {0, 1}η and random functions from {0, 1}η to {0, 1}η are statistically
close, and that random functions are often more convenient for proof purposes, it is
common to assume that secure block ciphers are pseudo-random functions.

Definition 4 (Pseudo-Random Functions). Let P : {0, 1}K(η) × {0, 1}η → {0, 1}η
be a family of functions and let A be an algorithm that takes an oracle and returns a bit.
The prf-advantage of A is defined as follows.

AdvprfA,P =
∣∣∣Pr[k $←− {0, 1}K(η);AP (k,·) = 1]− Pr[R $←− Φη;AR(·) = 1]

∣∣∣
where Φη is the set of all functions from {0, 1}η to {0, 1}η. We say that P is a family
of pseudo-random functions if for every polynomial-time adversary A, AdvprfA,P is a
negligible function in η.

Since all the schemes in this paper require only one key for the block cipher, to
simplify the notation, we write only E(m) instead of E(k,m), but it is understood that a
key was selected at the initialization of the scheme, and remains the same throughout.

4

Random Oracle Model
For MACs that make use of a hash function, we assume that the hash function

behaves like a random oracle. That is, we assume that the hash function is picked at
random among all possible functions from the given domain and range, and that every
algorithm participating in the scheme, including all adversaries, has oracle access to this
random function. This is a fairly common assumption to provide a heuristic argument
for the security of cryptographic protocols [6].

Indistinguishable Distributions
Given two distribution ensemblesX = {Xη}η∈N andX ′ = {X ′η}η∈N, an algorithm

A and η ∈ N, we define the advantage of A in distinguishing Xη from X ′η as the
following quantity:

Adv(A, η,X,X ′) =
∣∣∣Pr[x $← Xη : A(x) = 1]− Pr[x $← X ′η : A(x) = 1]

∣∣∣ .
We say that X and X ′ are indistinguishable, denoted by X ∼ X ′, if Adv(A, η,

X,X ′) is negligible as a function of η for every probabilistic polynomial-time algorithm
A.

3 Model

In this section, we introduce the grammar for the programs describing almost-universal
hash function. We present the semantics of each commands, and introduce the assertion
language that will be used in for our Hoare logic.

3.1 Grammar

We consider the language defined by the BNF grammar below, where p and q are positive
integers.

cmd ::= x := E(y) | x := H(y) | x := y | x := y ⊕ z | x := y‖z | x := ρ(i, y)
| for l = p to q do: [cmdl] | cmd1; cmd2

We refer to individual instructions as commands and to lists of commands as programs.
Each command has the following effect:

– x := E(y) denotes application of the block cipher E to the value of y and assigning
the result to x.

– x := H(y) denotes the application of the hash function H to the value of y and
assigning the result to x.

– x := y denotes the assignment to x of the values of y.
– x := y ⊕ z denotes the assignment to x of the xor or the values of y and z.
– x := y||z denotes the assignment to x of the concatenation of the values of y and z.
– x := ρ(i, y) denotes the computation of the function ρ on input i (an integer) and

the value of y and assigning the result to x.
– c1; c2 is the sequential composition of c1 and c2.

5

– for l = p to q do: [cmdl] denotes the successive execution of cmdp; cmdp+1; . . . ;
cmdq when p ≤ q. If p > q, the command has no effect.

The function ρ is used to process the tweak in a common construction for tweakable
block ciphers [16]. A fixed-input-length almost-universal function is often sufficient, but
exact implementations vary from one scheme to the next, and we want to allow for the
possibility of functions that have additional properties. When a scheme uses a function
ρ, the properties of the function ρ required for the proof will be added to the initial
conditions of the verification procedure using the predicates of Section 3.3. We do not
any other assumptions about ρ other than it is a function with fixed output length.

Definition 5 (Generic Hash Function). A generic hash function Hash on message
blocks m1, . . . , mn with output cn, is represented by a tuple (FE ,FH, Hash(m1‖ . . .
‖mn, cn) : var x; cmd), where FE is a family of pseudorandom permutations (usually a
block cipher), FH is a family of cryptographic hash functions, and Hash(m1‖ . . . ‖mn,
cn) : var x; cmd is the program of the hash function, where x is the set of all the
variables in the program that are neither input variables mi, output variable cn, or the
special variable k (used to hold a secret key), and the program cmd is in the language
described by our grammar.

The secret key sk of the generic hash is a combination of the value of the special
variable k and the choice of the block cipher E in the family FE .

We assume that, prior to executing the MAC, the message has been padded using
some unambiguous padding scheme, so that all the message blocks m1, . . . ,mn are of
equal and appropriate length for the scheme, usually the input length of the block cipher.
We also assume that each variable in the program cmd is assigned at most once, as it is
clear that any program obtained from our language can be transformed into an equivalent
program with this property, and that the input variables m1, . . . ,mn never appear on the
left side of any command since these variables already hold a value before the execution
of the program. For simplicity of exposition, we henceforth assume that all the programs
in this paper satisfy these assumptions.

HashCBC(m1‖ . . . ‖mn, cn) :
var i, z2, . . . , zn, c1, . . . , cn−1;
c1 := E(m1);
for i = 2 to n do:

[zi := ci−1 ⊕mi; ci := E(zi)]

We present to the right the program for
HashCBC , the hash function that is used as a
running example in this paper. We give the pro-
gram for other hash functions that can be verified
with our method in in Appendix A.

3.2 Semantics

In our analysis, we consider the execution of a program on two inputs simultaneously.
These simultaneous executions will enable us to keep track of the probability of equality
and inequality of strings between the two executions, thereby allowing us to prove that
the function is almost-universal.

Each command is a function that takes a configuration and outputs a configurations.
A configuration γ is a tuple (S, S′, E ,H,LE ,LH) where S and S′ are states, E is a block
cipher,H is a hash function (that will be modeled as a random oracle), and LE and LH
are sets of strings.

6

A state is a function S : Var→ {0, 1}∗ ∪⊥, where Var is the full set of variables in
the program, that assigns bitstrings to variables (the symbol ⊥ is used to indicate that no
value has been assigned to the variable yet). A configuration contains two states, one for
each execution of the program.

The set LE records the values for which the functions E was computed. The set
is common for both executions of the program. Every time a command of the type
x := E(y) is executed in the program, we add S(y) and S′(y) to LE if they are not
already present. We define LH for the hash functionH similarly.

Let Γ denote the set of configurations and DIST(Γ) the set of distributions on con-
figurations. The semantics is given below, where S{x 7→ v} denotes the state which
assigns the value v to the variable x, and behaves like S for all other variables and ◦
denotes function composition. The semantic function cmd : Γ → Γ of commands can
be lifted in the usual way to a function cmd∗ : DIST(Γ) → DIST(Γ) by point-wise
application of cmd. By abuse of notation we also denote the lifted semantics by [[cmd]].

[[x := E(y)]](S, S′, E ,H,LE ,LH) =
(S{x 7→ E(S(y))}, S′{x 7→ E(S′(y))}, E ,H,LE ∪ {S(y), S′(y)},LH)

[[x := H(y)]](S, S′, E ,H,LE ,LH) =
(S{x 7→ H(S(y))}, S′{x 7→ H(S′(y))}, E ,H,LE ,LH ∪ {S(y), S′(y)})

[[x := y]](S, S′, E ,H,LE ,LH) = (S{x 7→ S(y)}, S′{x 7→ S′(y)}, E ,H,LE ,LH)
[[x := y ⊕ z]](S, S′, E ,H,LE ,LH) =

(S{x 7→ S(y)⊕ S(z)}, S′{x 7→ S′(y)⊕ S′(z)}, E ,H,LE ,LH)
[[x := y||z]](S, S′, E ,H,LE ,LH) =

(S{x 7→ S(y)||S(z)}, S′{x 7→ S′(y)||S′(z)}, E ,H,LE ,LH)
[[x := ρ(i, y)]](S, S′, E ,H,LE ,LH) =

(S{x 7→ ρ(i, S(y))}, S′{x 7→ ρ(i, S′(y))}, E ,H,LE ,LH)

[[for l = p to q do: [cmdl]]]γ =

{
[[cmdq]] ◦ [[cmdq−1]] ◦ . . . ◦ [[cmdp]]γ if p ≤ q
γ otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

The set of initial distributions DIST0(H), where H = (FE ,FH, Hash(m1‖ . . .
‖mn, cn) : var x; cmd) is a generic hash, contains all the following distributions:

D(M,M ′)
0 = [E $← FE(1η);H

$← FH(1η);u
$← {0, 1}η :

(S{k 7→ u,m1‖ . . . ‖mn 7→M}, S′{k 7→ u,m1‖ . . . ‖mn 7→M ′}, E ,H, ∅, ∅)]

where M and M ′ are any two n block messages and k is a variable holding a secret
string needed in some MACs (among our examples, HashPMAC and HashHMAC

need it). Note that FE , FH, the domain Var of the states and the length n of the input
messages are defined in H. These distributions capture the initial situation of Definition
3 where the variables mi contain the blocks of M and M ′ in S and S′ respectively.

The set DIST(H) is obtained by executing a program on one of the initial distributions.
It contains all the distributions of the form [[cmd]]X0, where X0 ∈ DIST0(H) and cmd
is a program.

A notational convention. It is easy to see that commands never modify E or H.

Therefore, we can, without ambiguity, write (Ŝ, Ŝ′,L′E ,L′H)
$← [[c]](S, S′,LE ,LH)

instead of (Ŝ, Ŝ′, E ,H, L′E ,L′H)
$←− [[c]](S, S′, E ,H,LE ,LH).

7

3.3 Assertion Language

Like [15], our assertion languages deals with block ciphers, so it stands to reason
that some of our predicates will be similar to theirs. However, the definition of all the
predicates has to be adapted to our new semantics with two simultaneous executions.
We also need additional predicates to describe equality or inequality of strings between
the two executions, that will allow us to capture the definition of almost-universal hash
functions. We first give an intuitive description of our predicates, then we define them
all formally.

Empty: means that the probability that LE contains an element is negligible.
Eq(x, y): means that the probability that S(x) 6= S′(y) is negligible.
Uneq(x, y): means that the probability that S(x) = S′(y) is negligible.
E(E ;x;V): means that the probability that the value of x is either in LE or equal to that

of a variable in V is negligible.
H(H;x;V): means that the probability that the value of x is either in LH or equal to

that of a variable in V is negligible.
Ind(x;V ;V ′): means that no adversary has non-negligible probability to distinguish

whether he is given results of computations performed using the value of x or a
random value, when he is given the values of the variables in V and the values of the
variables in V ′ from the parallel execution. In addition to variables in Var, the set V
can contain special symbols `E or `H. When the symbol `E is present, it means that,
in addition to the other variables in V , the distinguisher is also given the values in
LE , similarly for `H.

Our Hoare logic is based on statements from the following language.

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ψ
ψ ::= Ind(x;W ;V ′) | Eq(x, y) | Uneq(x, y) | Empty | E(E ;x;V) | H(H;x;V)

where x, y ∈ Var and V, V ′ ⊆ Var, andW ⊆ Var∪{`E , `H}. We refer to the statements
produced by this grammar as formulas.

We introduce a few notational shortcuts that will help in formally defining our
predicates. For any set V ⊆ Var, we denote by S(V) the multiset resulting from the
application of S on each variable in V . Also, for a set W ⊆ Var ∪ {`E} with `E ∈W ,
we use S(W) as a shorthand for S(W \ {`E}) ∪ LE , and similarly for `H. For a set
V ⊆ Var ∪ {`E , `H} and an element x ∈ Var ∪ {`E , `H}, we write V, x as a shorthand
for V ∪ {x} and V − x as a shorthand for V \ {x}.

We define that a distribution X satisfies ϕ, denoted X |= ϕ as follows:

– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′

– X |= ϕ ∨ ϕ′ iff X |= ϕ or X |= ϕ′

– X |= Empty iff Pr[(S, S′,LE ,LH)
$← X : LE 6= ∅] is negligible

– X |= Eq(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) 6= S′(y)] is negligible

– X |= Uneq(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) = S′(y)] is negligible

8

– X |= E(E ;x;V) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)}∩ (LE ∪S(V −x)∪

S′(V − x)) 6= ∅] is negligible1

– X |= H(H;x;V) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)} ∩ (LH ∪ S(V −

x) ∪ S′(V − x)) 6= ∅] is negligible
– X |= Ind(x;V ;V ′) iff the two following formulas hold:

[(S, S′,LE ,LH)
$← X : (S(x), S(V − x) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S(V − x) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← X : (S′(x), S′(V − x) ∪ S(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S′(V − x) ∪ S(V ′))]

We now present a few lemmas that show useful relations and properties of our
predicates. In all these lemmas, it is assumed that H is any generic hash. The proof of
these lemmas is in Appendix B.

Lemma 1. The following relations are true for any sets V1, V2, V3, V4 and variables
x, y with x 6= y

1. Ind(x;V1;V2)⇒ Ind(x;V3;V4) if V3 ⊆ V1 and V4 ⊆ V2
2. H(H;x;V1)⇒ H(H;x;V2) if V2 ⊆ V1
3. E(E ;x;V1)⇒ E(E ;x;V2) if V2 ⊆ V1
4. Ind(x;V1, `H; ∅)⇒ H(H;x;V1)
5. Ind(x;V1, `E ; ∅)⇒ E(E ;x;V1)
6. Ind(x; ∅; {y})⇒ Uneq(x, y) ∧ Uneq(y, x)

Note that lines 4, 5 and 6 are particularly helpful because the predicate Ind is much
easier to propagate than the other predicates.

We also show that, as a consequence of our definition of DIST(H), we can always
infer the following predicates on the message blocks. This lemma is useful for proving
the rules corresponding to commands that introduce a new message block.

Lemma 2. Let X ∈ DIST(H). Then for any integer i, 1 ≤ i ≤ n, X |= Eq(mi,mi)
∨ Uneq(mi,mi).

The following formalizes the intuition that if a value can be computed in polynomial
time from other values available, then adding this value does not give the adversary
any useful information. In general, we say that an expression e is constructible from
values in a set V if e can be computed in polynomial time from V . But for the purpose
of the following lemma, it is sufficient to define constructible expressions as only single
variables x, as well as x⊕ y and x‖y for any variables x and y.

1 Since the variable x is removed from the set V when taking the probability, we always have
X |= E(E ;x;V) iffX |= E(E ;x;V, x). This is to remove the trivial case that {S(x), S′(x)}∩
(LE ∪ {S(x), S′(x)}) = ∅ never holds, and to simplify the notation. The same is also used for
predicates H(H;x;V) and Ind(x;V ;V ′).

9

Lemma 3. For any any X ∈ DIST(H), any sets of variables V , any expression e
constructible from V , and any variable x, z such that z 6∈ {x} ∪ Var(e) if X |=
Ind(z;V ;V ′) then [[x := e]](X) |= Ind(z;V, x;V ′). We emphasize that here we use the
notation Var(e) (in its usual sense), that is to say, the variable z does not appear at all
in e.
Similarly, if X |= Ind(z;V ′;V), then [[x := e]](X) |= Ind(z;V ′;V, x).

The following, which is useful for proving some of the rules dealing with the
concatenation commands, shows that the value of any given variable always have the
same length in each execution.

Lemma 4. For any distribution X ∈ DIST(H), any program cmd produced by our

grammar any (S, S′, E ,H,LE ,LH)
$← [[cmd]]X and any variable v ∈ Var, |S(v)| =

|S′(v)|.

4 Proving Almost-Universal Hash

Our main contribution is a Hoare logic for proving that a program is an almost-universal
hash function. We require that the program be written in a way so that, on input
m1‖ . . . ‖mn, the program must assign values to variables c1, . . . , cn in such a way
that the variable c1 contains the output of the function on input m1, the variable c2
contains the output of the function on input m1‖m2 and so on. We model the security of
an almost-universal hash function using our predicates as follows.

Proposition 1. Let H = (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x; cmd) be a generic
hash function on n-block messages. Then, H is an almost-universal hash function if, for
every positive integer n, UNIV (n) holds in the distribution obtained by executing the
program on any distribution in DIST0(H), where

UNIV (n) =
(∧n−1

i=1 Uneq(cn, ci) ∧
∧n
i=1 Eq(mi,mi)

)
∨
∧n
i=1 Uneq(cn, ci)

The proof of this proposition is in Appendix B.

Hoare Logic Rules
We present a set of rules of the form {ϕ}cmd{ϕ′}, meaning that execution of

command cmd in any distribution in DIST(H) that satisfies ϕ leads to a distribution that
satisfies ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}cmd{ϕ′} is
valid.

Since the predicates Eq(mi,mi) are useful only if the whole prefix of the two mes-
sages up to the ith block are equal, so that keeping track of the equality or inequality
of the message blocks after the first point at which the messages are different is un-
necessary. For this reason, when we design our rules, we never produce the predicates
Uneq(mi,mi) even when they would be correct.

We group rules together according to their corresponding commands. In all the rules,
unless indicated otherwise, we assume that t 6∈ {x, y, z} and x 6∈ {y, z}. . In addition,
for all rules involving the predicate Ind, we assume that `E and `H can be among the

10

elements in the set V . Since some of the rules (for example, rule (G5)) are valid only
under certain slightly complex conditions, we use square brackets in the statement of
some conditions to remove any ambiguity about their meaning. The proofs of soundness
of our rules are given in Appendix B.

We first introduce a few general rules for consequence, sequential composition,
conjunction and disjunction. Let φ1, φ2, φ3, φ4 be any four formulas in our logic, and let
cmd, cmd1, cmd2 be any three commands. These rules are standard, and their proof
are omitted.
(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}
(Disj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∨ φ3}cmd{φ2 ∨ φ4}

Initialization:
We find that the following predicates holds in any distribution X ∈ DIST0(H).

(Init) {Ind(k;Var, `E , `H;Var− k) ∧ Eq(k, k) ∧ Empty}
We recall that k is a special variable holding a secret key. It is sampled at random

before executing the program and is the same in both executions, so it is indistinguishable
from a random value given any other value.

Generic preservation rules:
Rules (G1) to (G6) show how predicates are preserved by most of the commands when
the predicates concern a variable other than that being operated on. For all these rules,
we assume that t and t′ can be y or z and cmd is either x := ρ(i, y), x := y, x := y‖z,
x := y ⊕ z, x := E(y), or x := H(y).
(G1) {Eq(t, t′)} cmd {Eq(t, t′)} even if t = y or t = z
(G2) {Uneq(t, t′)} cmd {Uneq(t, t′)} even if t = y or t = z
(G3) {E(E ; t;V)} cmd {E(E ; t;V)} provided x 6∈ V and cmd is not x := E(y)
(G4) {H(H; t;V)} cmd {H(H; t;V)} provided x 6∈ V and cmd is not x := H(y)
(G5) {Ind(t;V ;V ′)} cmd {Ind(t;V ;V ′)} provided [cmd is not x := E(y) or x := H(y)],

[x 6∈ V unless x is constructible from V − t] and [x 6∈ V ′ unless x is constructible from
V ′ − t]

(G6) {Empty} cmd {Empty} provided cmd is not x := E(y)
We note that, for rules (G3) to (G6), the straightforward preservation rule does not

apply when the command is either of the form x := E(y) or x := H(y), because some
predicates may no longer hold if the block cipher or the random oracle is computed
more than once on any given point. Therefore, the preservation of these predicates
for the block cipher and hash commands will have to be handled separately in rules
(B4) to (B6) and (H3) to (H5). For rule (G5), in general, we say that the value of a
variable x is constructible from the values of variables in V if there exists a deterministic
polynomial-time algorithm that can compute the value of x from the values in V . In this
case, it means that the variables in the right-hand side of cmd are all in V .

Function ρ:
(P1) {Eq(y, y)} x := ρ(i, y) {Eq(x, x)} for integer i

Since the details of the function ρ are not known in advance, we can infer only one
rule, that ρ preserves equality, because it is a deterministic function.

11

Assignment:
Rules (A1) to (A8), for the assignment, are all straightforward, and follow simply from
the simple fact that after the command, the value of x is equal to the value of y.
(A1) {true} x := mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(A2) {Eq(y, y)} x := y {Eq(x, x)}
(A3) {Uneq(y, y)} x := y {Uneq(x, x)}
(A4) {Ind(y;V ;V ′)} x := y {Ind(x;V ;V ′)} if x 6∈ V ′ unless y ∈ V ′ and y 6∈ V
(A5) {E(E ; y;V)} x := y {E(E ;x;V) ∧ E(E ; y;V)} if y 6∈ V
(A6) {H(H; y;V)} x := y {H(H;x;V) ∧ H(H; y;V)} if y 6∈ V
(A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
(A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}

Concatenation:
Rules (C1) to (C6) propagate the predicates for the concatenation command.
(C1) {Eq(y, y)} x := y‖mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(C2) {Eq(y, y) ∧ Eq(z, z)} x := y‖z {Eq(x, x)}
(C3) {Uneq(y, y)} x := y‖z {Uneq(x, x)}
(C4) {Ind(y;V, y, z;V ′)∧Ind(z;V, y, z;V ′)} x := y‖z {Ind(x;V, x;V ′)} provided [y 6= z],

[x, y, z 6∈ V] and [x 6∈ V ′ unless y, z ∈ V ′]
(C5) {Ind(y;V, `E ;V)} x := y‖z {E(E ;x;V)}
(C6) {Ind(y;V, `H;V)} x := y‖z {H(H;x;V)}

The most important rule for the concatenation is (C4), which states that the concate-
nation of two random strings results in a random string. Note that it is important for this
rule that y 6= z, otherwise the string x consists of a string twice repeated, which can
be distinguished easily from a random value. The condition x 6∈ V ′ unless y, z ∈ V ′
is similar to rule (G5), and follows from the constructibility of x from y and z. Rules
(C5) and (C6) state that if a string is indistinguishable from a random value given all
the values in the set of queries to the block cipher (or the hash function), then clearly it
cannot be a prefix of one of the strings LE . For rules (C1), (C3), (C5) and (C6), the roles
of y and z, or y and mi in the case of (C1), can be exchanged.

Xor operator:
Rules (X1) to (X4) describe the effect of the Xor operation.
(X1) {Eq(y, y)} x := y ⊕mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(X2) {Ind(y;V, y, z;V ′)} x := y ⊕ z {Ind(x;V, x, z;V ′)} provided [y 6= z], [y 6∈ V] and

[x 6∈ V ′ unless y, z ∈ V ′]
(X3) {Eq(y, y) ∧ Eq(z, z)} x := y ⊕ z {Eq(x, x)}
(X4) {Eq(y, y) ∧ Uneq(z, z)} x := y ⊕ z {Uneq(x, x)}

Rules (X2) is reminiscent of a one-time-pad encryption: if a value z is xor-ed with a
random-looking value y, than the result is similarly random-looking provided the value
of y is not given. Again, the condition x 6∈ V ′ unless y, z ∈ V ′ is similar to rule (G5),
and follows from the constructibility of x from y and z. The other rules are propagation
of the Eq and Uneq predicates. Due to the commutativity of the xor, the role of y and z,
or y and mi in the case of (X1), can be exchanged in all the rules above.

Block cipher:
Since block ciphers are modeled as random functions, that is, functions picked at random
among all functions from {0, 1}η to {0, 1}η, the output of the function for a point on

12

which the block cipher has never been computed is indistinguishable from a random
value.
(B1) {Empty} x := E(mi) {(Uneq(x, x) ∧ Ind(x;Var, `E , `H;Var))∨

(Eq(mi,mi) ∧ Eq(x, x) ∧ Ind(x;Var, `E , `H;Var− x))}
(B2) {E(E ; y; ∅) ∧ Uneq(y, y)} x := E(y) {Ind(x;Var, `E , `H;Var)}
(B3) {E(E ; y; ∅) ∧ Eq(y, y)} x := E(y) {Ind(x;Var, `E , `H;Var− x) ∧ Eq(x, x)}
(B4) {E(E ; y; ∅) ∧ Ind(t;V ;V ′)} x := E(y) {Ind(t;V, x;V ′, x)} even if t = y, provided

`E 6∈ V
(B5) {E(E ; y; ∅) ∧ Ind(t;V, `E , y;V

′, y)} x := E(y) {Ind(t;V, `E , x, y;V ′, x, y)}
(B6) {E(E ; y; ∅) ∧ E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

This is expressed in rules (B1) to (B3), and also used in the proof of many other rules.
Note that, when executing x := E(y) on a new value, if the values of y from the two
executions are equal, then of course the values of x will be equal afterwards. However,
if the values of y are not the same in the two executions, then the values of x will be
indistinguishable from two independent random values afterwards.

Since the querying of a block cipher twice at any point is undesirable, we always
require the predicate E as a precondition. We also have rules similar to (B2) to (B6),
with the predicate E(E ; y; ∅) replaced by the predicate Empty, since both imply that the
value of y is not in LE .

Hash Function:
We note that the distinguishing adversary, described in Section 2, does not have access
to the random oracle. This is sufficient for our purpose since our goal is only to prove
inequality of strings, not their indistinguishability from random strings. As a result, the
rules for the hash function are essentially the same as those for the block cipher.
(H1) {H(H; y; ∅) ∧ Uneq(y, y)} x := H(y) {Ind(x;Var, `E , `H;Var)}
(H2) {H(H; y; ∅) ∧ Eq(y, y)} x := H(y) {Ind(x;Var, `H;Var− x) ∧ Eq(x, x)}
(H3) {H(H; y; ∅) ∧ Ind(t;V ;V ′)} x := H(y) {Ind(t;V, x;V ′, x)} even if t = y, provided

`H 6∈ V
(H4) {H(H; y; ∅) ∧ Ind(t;V, `H, y;V

′, y)} x := H(y) {Ind(t;V, `H, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}

For loop:
(F1) {ψ(p− 1)} for l = p to q do: [cmdl] {ψ(q)} provided

{ψ(l − 1)} cmdl {ψ(l)} for p ≤ l ≤ q
The rule for the For loop simply states that if an indexed formula ψ(i) is preserved

through one iteration of the loop, then it is preserved through the entire loop. We discuss
methods for finding such a formula in Section 5.

Combining our logic with Proposition 1, we obtain the following theorem.

Theorem 1. Let (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x; cmd) describe the pro-
gram to compute a hash function Hash on an n block message. Then, Hash is an
almost-universal hash function if, for every positive integer n, {init} cmd {UNIV (n)}.

The theorem is the consequence of Proposition 1 and of the soundness of our Hoare
logic. We then say that a sequence of formulas [φ0, . . . , φn] is a proof that a program
[cmd1, . . . , cmdn] computes an almost-universal hash function if φ0 = true, φn ⇒
UNIV (n) and for all i, 1 ≤ n, {φi−1} cmdi {φi} holds.

13

5 Implementation

We chose to go forward through the program, instead of the more common approach
of going backward from the end, after implementing both methods. Going backward
through the program can require exploring multiple combinations of choices that all need
to be explores when many rules can lead to the necessary predicate. The presence of the
logical-or connector in our logic often resulted in an exponential number of possibilities
at each step. As a result, our prototype for the forward method was able to find proofs
much faster than an implementation of the backwards method.

We start at the beginning of the program and, at each command, apply every possible
rule. Once done, we test if the predicate UNIV (n) holds at the end of the program. One
downside of this forward approach is that the application of every possible rule can be
very time consuming because the formulas tend to grow after each command, which
leads to more and more rules being applied at every step. For this reason, we need a way
to filter out unneeded predicates, so that execution time remains reasonable.

5.1 Predicate Filter

We say that φ is a predicate on x if φ is either Eq(x, y), Uneq(x, y), E(E ;x;V),
H(H;x;V) or Ind(x;V1, V2) (for some y ∈ Var and V1, V2 ⊆ Var). We say that a
predicate φ on variable x is obsolete for program p if x does not appear anywhere in
p and if ¬(φ ⇒ Uneq(cn, ci)) and ¬(φ ⇒ Eq(mi,mi)) for any i, 1 ≤ i ≤ n.2 The
following theorem shows that once a predicate is obsolete, it can be discarded.

Theorem 2. If there exists a proof [φ0, . . . , φn] that a program p = [cmd1, . . . , cmdn]
computes an almost-universal hash function, then there also exists a proof [φ′0, . . . , φ

′
n]

that p computes an almost-universal hash function where for each i, φi ⇒ φ′i and each
φ′i does not contain any obsolete predicates for [cmdi+1, . . . , cmdn].

The theorem is a consequence of the fact that, in our logic, the rules for creating a
predicate on x following the execution of command x := e only have as preconditions
predicates on the variables in e. As a result, we can always filter out obsolete predicates
after processing each command.

Also, we note that the only commands that can make a predicate Eq(mi,mi) appear
are those of the form x := e in which mi appears in e. As a result, if we find that, for
some integer l, the predicate Eq(ml,ml) is not present in one of the conjunctions of the
current formula (after transforming the formula in disjunctive normal form) and that
the variable ml is no longer present in the rest of the program, then there is no longer
any chance that it will satisfy the conjunction with

∧n
j=1 Eq(mj ,mj) from UNIV (n).

Therefore, we can also safely filter out all other predicates of the form Eq(mi,mi) from
that conjunction.

We also add a heuristic filter to speed up the execution of our method. We make the
hypothesis that the predicate Ind(cn;V ; {c1, . . . , cn−1}) will be present at the end of the
program, which is the case for all our examples, so that we can filter out Ind(ci;V ;V ′)

2 Here, p will usually be the rest of the program after the program point at which the predicate φ
holds.

14

if i < n and ci is no longer present in the remainder of the program. In addition to
speeding up the program, filtering out these predicates greatly simplifies the construction
of loop invariants discussed in the next section. If we fail to produce a proof while using
the heuristic filter, we simply attempt again to find a proof without it.

5.2 Finding Loop Invariants

The programs describing the almost-universal hash function usually contains for loops.
It is therefore necessary to have an automatic procedure to detect the formula ψ(i) that
allows us to apply rule (F1). We now show a heuristic that can be used to construct such
an invariant, and illustrate how it works by applying them to HashCBC , described in
Section 3.1. One could easily verify that it also works on HashCBC′ , HashHMAC and
HashPMAC .

Once we hit a command ”for l = p to q do: [cmdl]”, we express the formula that
holds before the loop is executed in the form ϕ(p− 1). The classical method for finding
a stable invariant consists in processing the instructions cmdl contained in the loop to
find the formula ψ(l) such that {ϕ(l − 1)} cmdl {ψ(l)}. If ψ(l)⇒ ϕ(l), then we have
found a formula such that {ϕ(l − 1)} cmdl {ϕ(l)} and we can apply rule (F1).

Unfortunately, for most loops, this simple process either does not yield a stable
invariant, or gives a stable invariant too weak to produce a proof. We need a heuristic
to construct stronger stable invariants. The heuristic we describe here is inspired from
widening methods in abstract interpretation. We start with formula ϕ(l− 1), and process
the program of the loop once to find formula ψ1(l) such that {ϕ(l − 1)} cmdl {ψ1(l)}.
Then, we repeat this starting with formula ψ1(l − 1) to find formula ψ2(l) such that
{ψ1(l − 1)} cmdl {ψ2(l)}. The idea is then to inspect formulas ϕ(l), ψ1(l) and ψ2(l)
for patterns that can be extrapolated. For example, we can try to identify a predicate
γ(l) such that: (i) γ(l) appears in ϕ(l), (ii) γ(l − 1) ∧ γ(l) appears in ψ1(l), (iii)
γ(l − 2) ∧ γ(l − 1) ∧ γ(l) appears in ψ2(l). We then use a new starting formula
ϕ′(l) which is just like ϕ(l), except that the occurrence of γ(l) in ϕ(l) is replaced by∧j=l
j=p−1 γ(j) in ϕ′(l). Note that, by construction, ϕ(p− 1) is equal to ϕ′(p− 1), so we

know that ϕ′(p− 1) is satisfied at the beginning of the loop.3

Example: We now apply this method to HashCBC . After processing command
c1 := E(m1), we obtain the formula ϕ(1) = (Ind(c1;Var, `E ;Var− c1) ∧ Eq(m1,m1)
∧ Eq(c1, c1)) ∨ Ind(c1). Parameterizing this in terms of l, we obtain

ϕ(l) = (Eq(ml,ml) ∧ Eq(cl, cl) ∧ Ind(cl;Var, `E ;Var− cl)) ∨ Ind(cl)

We recall that the two instructions in the loop of HashCBC are the following: zi :=
ci−1 ⊕mi; ci := E(zi). After processing the program of the loop on ϕ(l − 1), we
obtain the following.

ψ1(l) = (Eq(ml−1,ml−1) ∧ Eq(ml,ml) ∧ Eq(cl, cl) ∧ Ind(cl;Var, `E ;Var− cl))
∨ Ind(cl)

3 We can similarly try to find patterns that appear only after the first iteration of the loop, that is,
γ(l) appears in ψ1(l) and γ(l − 1) ∧ γ(l) appears in ψ2(l), in which case

∧j=l
j=p γ(j) is added

in ϕ′(l).

15

We get this by applying rules (G1), (X1) and (X2) for the first command and rules (G1),
(B2) and (B3) for the second command. Note that ψ1(l)⇒ ϕ(l), so we could use ϕ(l)
to apply rule (F1), but this would not yield a proof of HashCBC . We repeat the same
process with ψ1(l − 1) to obtain

ψ2(l) =(Eq(ml−2,ml−2) ∧ Eq(ml−1,ml−1) ∧ Eq(ml,ml)∧
Eq(cl, cl) ∧ Ind(cl;Var, `E ;Var− cl)) ∨ Ind(cl).

This requires applying the same rules as before, but rule (G1) more often applied for
each command. We find γ(l) = Eq(ml,ml) and use

ϕ′(l) =
((∧l

i=1 Eq(mi,mi)
)
∧ Eq(cl, cl) ∧ Ind(cl;Var, `E ;Var− cl)

)
∨ Ind(cl)

as our next attempt at finding a stable invariant. We find that ϕ′(l) is a stable invariant for
the loop. So we apply the rule (F1) to obtain that ϕ′(n) holds at the end of the program,
and we easily find that ϕ′(n)⇒ UNIV (n) for all positive integer n, thereby proving
that HashCBC computes an almost-universal hash function.

5.3 Prototype

We programmed an OCaml prototype of our method for proving that the front end of
MACs are almost-universal hash functions. The program requires about 2000 lines of
code, and can successfully produce proofs of security for all the examples discussed in
this paper in less than one second on a personal workstation. Our prototype is available
on [14].

6 Proving MAC Security

As mentioned in Section 2, we prove the security of MACs in two steps: first we show
that the ‘compressing’ part of the MAC is an almost-universal hash function family, and
then we show that the last section of the MAC, when applied to an almost-universal
hash function, results in a secure MAC. The following shows how a secure MAC can be
constructed from an almost-universal hash function. The proof can be found in [4, 8, 9],
so we do not repeat them here.

Theorem 3. Let H = {hi}i∈{0,1}η and H′ = {hi}i∈{0,1}η be families of almost-
universal hash function, FE be a family of block ciphers and G be a random oracle. If

h
$← H, hE

$← H′, E , E1, E2
$← FE , G is sampled at random from all functions with the

appropriate domain and range and k, k1, k2
$← {0, 1}η , then the following hold:

– MAC1(m) = E(hi(m)) is a secure MAC with key sk = (i, kE).4

– MAC2(m) = G(k‖hi(m)) is a secure MAC with key sk = (i, k).

4 Here, kE denotes the secret key associated with block cipher E .

16

– MAC3(m) ={
E1(hi(m′)) where m′ = pad(m) if m’s length is not a multiple of η
E2(hi(m)) if m’s length is a multiple of η

is a secure MAC with key sk = (i, kE1 , kE2).
– MAC4(m) ={

E(hE(m′)⊕ k1) where m′ = pad(m) if m’s length is not a multiple of η
E(hE(m)⊕ k2) if m’s length is a multiple of η

is a secure MAC with key sk = (kE , k1, k2)

Combining HashCBC with MAC1 and MAC3 yields the message authentication
codes DMAC and ECBC respectively, usingHashCBC′ withMAC3 andMAC4 yields
FCBC and XCBC, combining HashPMAC and MAC4 yields a four key construction
of PMAC and using HashHMAC with MAC2 yields HMAC.

7 Conclusion

We presented a Hoare logic that can be used to automatically prove the security of con-
structions for almost-universal hash functions based on block ciphers and compression
functions modeled as random oracles. We can then obtain a secure MAC by combining
with a few operations, such as those presented in Section 6. Our method can be used
to prove the security of DMAC, ECBC, FCBC, XCBC, a two-key variant of HMAC
and a four-key variant of PMAC. Since we do not have a global view of the algorithm,
we cannot prove the one key variants of HMAC or PMAC, nor can we prove CMAC or
OMAC, which are one-key variants of XCBC. It is however relatively simple to derive
the security of these one-key schemes by hand once the security of the multiple key
variants has been proven. It remains an open problem to integrate this step into the logic.

It should be possible to extend our logic to prove exact reduction bounds for the
security of the ε-universal hash function. This could be done by keeping track of exact
security for each predicate to obtain a bound on the final invariant. We are also working
on integrating our tool for verifying the security of MACs with the tool for verifying the
security of encryption modes of operation of [15], to get a general tool for producing
security proofs of symmetric modes of operation.

References

1. G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech. Computational indistinguishability
logic. In Proceedings of the 17th ACM conference on Computer and communications security,
CCS ’10, pages 375–386. ACM, 2010.

2. G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for
the working cryptographer. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in
Computer Science, pages 71–90. Springer, 2011.

3. G. Barthe, B. Grégoire, Y. Lakhnech, and S. Z. Béguelin. Beyond provable security verifiable
ind-cca security of oaep. In CT-RSA, Lecture Notes in Computer Science, pages 180–196.
Springer, 2011.

4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In Advances in Cryptology - CRYPTO ’96, Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 1996.

17

5. M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In Advances in
Cryptology - CRYPTO ’94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings, pages 341–358, 1994.

6. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing ef-
ficient protocols. In CCS ’93: Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73, New York, USA, November 1993. ACM, ACM.

7. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac: Fast and secure
message authentication. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 216–233, 1999.

8. J. Black and P. Rogaway. Cbc macs for arbitrary-length messages: The three-key constructions.
In Advances in Cryptology CRYPTO 00, Lecture Notes in Computer Science, pages 197–215.
Springer-Verlag, 2000.

9. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message
authentication. In Advances in Cryptology - EUROCRYPT 2002. Lecture Notes in Computer
Science, pages 384–397. Springer-Verlag, 2002.

10. B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In
C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages
537–554. Springer, 2006.

11. R. Corin and J. den Hartog. A probabilistic hoare-style logic for game-based cryptographic
proofs. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP (2), volume
4052 of Lecture Notes in Computer Science, pages 252–263. Springer, 2006.

12. J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lahknech. Towards automated
proofs for asymmetric encryption schemes in the random oracle model. In Proceedings of the
15th ACM Conference on Computer and Communications Security, (CCS’08), Alexandria,
USA, Oct. 2008.

13. C. Fournet, M. Kohlweiss, and P. Strub. Modular code-based cryptographic verification. In
Y.Chen, G. Danezis, and V. Shmatikov, editors, ACM-CCS’11, pages 341–350. ACM, 2011.

14. M. Gagné, P. Lafourcade, and Y. Lakhnech. OCaml implementation of our method.
Computer Science Department, Saarland University, Germany, February 2013. Avail-
able at http://www.infsec.cs.uni-saarland.de/˜gagne/macChecker/
macChecker.html.

15. M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini. Automated proofs for encryption
modes. In 13th Annual Asian Computing Science Conference Focusing on Information
Security and Privacy: Theory and Practice (ASIAN’09), volume 5913 of LNCS, pages 39–53,
2009.

16. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 31–46. Springer, 2002.

17. E. Petrank and C. Rackoff. Cbc mac for real-time data sources. JOURNAL OF CRYPTOLOGY,
13:315–338, 1997.

18. M. Wegman and J. L. Carter. Universal classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1919.

19. M. Wegman and J. L. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

A Programs for Hash Functions

We present below the codes for all the other hash functions corresponding to MACs that
we have tested with our method.

18

HashCBC′(m1‖ . . . ‖mn, cn) : HashPMAC(m1‖ . . . ‖mn, cn) :
var i, z2, . . . , zn, c1, . . . , cn−1; var i, w1, x1, y1, . . . , wn, xn, yn,
c1 := m1; var z1, . . . , zn, c1, . . . , cn−1

for i = 2 to n do: c1 := m1;
[zi := E(ci−1); w1 := ρ(1, k);
ci := zi ⊕mi] x1 := w1 ⊕m1;

z1 = E(x1);
HashHMAC(m1‖ . . . ‖mn, cn): for i = 2 to n do:
var i, z1, . . . , zn, c1, . . . , cn−1; [ci := zi−1 ⊕mi;
z1 := k‖m1; wi := ρ(i, k);
c1 = H(z1); xi := wi ⊕mi;
for i = 2 to n do: yi := E(xi);

[zi := ci−1‖mi; zi := zi−1 ⊕ yi]
ci := H(zi)]

B Proofs

Proof of Lemma 1

Proof. These are all fairly straightforward.

1. If an algorithm could distinguish (S(x), S(V3)∪S′(V4)) from (u, S(V3)∪S′(V4)),
a similar algorithm would be able to distinguish (S(x), S(V1) ∪ S′(V2)) from
(u, S(V1)∪S′(V2)) by simply disregarding the values in S(V1)\S(V3) and S′(V2)\
S′(V4).

2. and 3) are trivial: x 6∈ T ⇒ x 6∈ T ′ for T ′ ⊂ T .
4. to 6) follow from the simple observation that if X |= Ind(x, V), then the probability

that the value of x is equal to the value of any variable in V (or any values inLE .dom,
LH.dom or in the simultaneous execution, if LE or LH is in V) is negligible,
otherwise an adversary could distinguish the value of x from a random value by
comparing it to all the values in S(V).

Proof of Lemma 2

Proof. Since X ∈ DIST(Γ,FE ,FH), then, by definition, X = [[cmd]]D(M,M ′)
0 for

some program cmd and n-block messages M,M ′. We note that, by design, for every
configuration (S, S′, E ,H,LE ,LH) that has non-zero probability in D(M,M ′)

0 , S(mi) is
equal to the ith block of M and S′(mi) is equal to the ith block of M ′. Therefore, it
is clear that either the ith blocks of M and M ′ are equal, in which case D(M,M ′)

0 |=
Eq(mi,mi), or they are not equal, and we have D(M,M ′)

0 |= Uneq(mi,mi). The result
then follows from our assumption that the message variables are never assigned new
values.

Proof of Lemma 3

19

Proof. Since X |= Ind(z;V ;V ′), we have the two following equations:

[(S, S′,LE ,LH)
$← X : (S(z), S(V − z) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S(V − z) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← X : (S′(z), S′(V − z) ∪ S(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S′(V − z) ∪ S(V ′))]

Suppose there exists an algorithmAwhich can distinguish distribution [(S, S′,LE ,LH)
$←

[[x := e]]X : (S(z), S(V − z, x) ∪ S′(V ′))] from [(S, S′,LE ,LH)
$← [[x := e]]X;u

$←
U : (u, S(V − z, x) ∪ S′(V ′))] with non-negligible probability. Then we construct an
algorithm B as follows:
On input (S(z), S(V −z)∪S′(V ′)), B uses the values in S(V −z) to compute the value
v of e and runs algorithmA on (S(z), S(V − z)∪{v}∪S′(V ′)). It should be clear that

B is successful in distinguishing [(S, S′,LE ,LH)
$← X : (S(z), S(V − z) ∪ S′(V ′))]

from [(S, S′,LE ,LH)
$← X;u

$← U : (u, S(V −z)∪S′(V ′))] with the same probability
as A, which contradicts X |= Ind(z;V ;V ′). Therefore,

[(S, S′,LE ,LH)
$← [[x := e]]X : (S(z), S(V − z, x) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← [[x := e]]X;u

$← U : (u, S(V − z, x) ∪ S′(V ′))]

Similarly,

[(S, S′,LE ,LH)
$← [[x := e]]X : (S′(z), S′(V − z, x) ∪ S(V ′))] ∼

[(S, S′,LE ,LH)
$← [[x := e]]X;u

$← U : (u, S′(V − z, x) ∪ S(V ′))]

which means [[x := e]]X |= Ind(z;V, x;V ′).
The proof that X |= Ind(z;V ′;V) implies [[x := e]](X) |= Ind(z;V ′;V, x) is done

in exactly the same way.

Proof of Lemma 4

Proof. This is a trivial consequence of the fact that the message variables always have
equal length in both executions, and the message variables are the only ones that are
assigned a value in DIST0(Γ,FE , FH). All values computed from there will therefore
also have equal length.

Proof of Proposition 1

Proof. (sketch) Say M1 is a k-block message, and M2 is an l-block message with
1 ≤ l ≤ k. If l < k, let M ′2 be obtained from M2 by padding with any string up to k
blocks, otherwise M ′2 =M2. We want to show that, either M1 =M2, or the probability
that M1 and M2 hash to the same value is negligible. Thanks to our constraint on the
construction of the program, with M1 placed as the message in S and M2 placed in
S′, which happens in D(M1,M

′
2)

0 , we will have that ck contains the hash of M1 in the

20

first execution and cl contains the hash of M2 in the second execution. If the invariant
UNIV (k) holds after executing the program on D(M1,M

′
2)

0 , then, when k 6= l, then
we have that Uneq(ck, cl) holds, and when k = l, then either Uneq(ck, ck) holds, or∧n
i=1 Eq(mi,mi) does, which shows that the probability that the hashes are equal is

negligible or M1 =M2, as required.

We recall all the rules in Table 1, and prove all the rules, grouping them according to
the corresponding commands.

B.1 Initialization

Proposition 2 (Rule (init)). IfX ∈ DIST0(Γ,FE ,FH), thenX |= {Ind(k;Var,LE ,LH;Var− k)∧
Empty}

Proof. LetX ∈ DIST0(Γ,FE ,FH). We have to prove thatX |= Ind(k;Var,LE ,LH;Var− k)
and X |= Empty. The former is obvious from the definition of DIST0(Γ,FE ,FH). The
latter is also clear because k is sampled randomly in the definition of DIST0(Γ,FE ,FH).

B.2 Generic Preservation

Proposition 3 (Rule (G1)). linebreak
{Eq(t)} cmd {Eq(t)} even if t = y or t = z

Proof. Trivial since t 6= x and only the value of x can be changed by the command.

Proposition 4 (Rule (G2)). linebreak
{Uneq(t)} cmd {Uneq(t)} even if t = y or t = z

Proof. Trivial since t 6= x and only the value of x can be changed by the command.

Proposition 5 (Rule (G3)). linebreak
{E(E ; t;V)} cmd {E(E ; t;V)} provided x 6∈ V and cmd is not x := E(y)

Proof. Clearly, Pr[(S, S′,LE ,LH)
$← X : S(t) ∈ LE .dom∪S(V)∨S′(t) ∈ LE .dom∪

S′(V)] = Pr[(S, S′,LE ,LH)
$← [[x := E(y)]]X : S(t) ∈ LE .dom ∪ S(V) ∨ S′(t) ∈

LE .dom ∪ S′(V)] because, the values in the sets S(V), S′(V) and Elist.dom are
unchanged by the command.

Proposition 6 (Rule (G4)). linebreak
{H(H; t;V)} cmd {H(H; t;V)} provided x 6∈ V and cmd is not x := H(y)

Proof. Similar to the proof of Rule (G3).

Proposition 7 (Rule (G5)). linebreak
{Ind(t;V ;V ′)} cmd {Ind(t;V ;V ′)} provided cmd is not x := E(y) or x := H(y),
and x 6∈ V unless x is constructible from V − t and x 6∈ V ′ unless x is constructible
from V ′ − t

21

Generic Preservation
(G1) {Eq(t, t′)} cmd {Eq(t, t′)} even if t = y or t = z
(G2) {Uneq(t, t′)} cmd {Uneq(t, t′)} even if t = y or t = z
(G3) {E(E ; t;V)} cmd {E(E ; t;V)} provided x 6∈ V and cmd is not x := E(y)
(G4) {H(H; t;V)} cmd {H(H; t;V)} provided x 6∈ V and cmd is not x := H(y)
(G5) {Ind(t;V ;V ′)} cmd {Ind(t;V ;V ′)} provided [cmd is not x := E(y) or x := H(y)], [x 6∈ V

unless x is constructible from V − t] and [x 6∈ V ′ unless x is constructible from V ′ − t]
(G6) {Empty} cmd {Empty} provided cmd is not x := E(y)

Function ρ:
(P1) {Eq(y, y)} x := ρi(y) {Eq(x, x)} for positive integer i

Assignment:
(A1) {true} x := mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(A2) {Eq(y, y)} x := y {Eq(x, x)}
(A3) {Uneq(y, y)} x := y {Uneq(x, x)}
(A4) {Ind(y;V ;V ′)} x := y {Ind(x;V ;V ′)} if x 6∈ V ′ unless y ∈ V ′ and y 6∈ V
(A5) {E(E ; y;V)} x := y {E(E ;x;V) ∧ E(E ; y;V)} if y 6∈ V
(A6) {H(H; y;V)} x := y {H(H;x;V) ∧ H(H; y;V)} if y 6∈ V
(A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
(A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}

Concatenation:
(C1) {Eq(y, y)} x := y‖mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(C2) {Eq(y, y) ∧ Eq(z, z)} x := y‖z {Eq(x, x)}
(C3) {Uneq(y, y)} x := y‖z {Uneq(x, x)}
(C4) {Ind(y;V, y, z;V ′) ∧ Ind(z;V, y, z;V ′)} x := y‖z {Ind(x;V, x;V ′)} provided [y 6= z],

[x, y, z 6∈ V] and [x 6∈ V ′ unless y, z ∈ V ′]
(C5) {Ind(y;V, `E ;V)} x := y‖z {E(E ;x;V)}
(C6) {Ind(y;V, `H;V)} x := y‖z {H(H;x;V)}

Xor operator:
(X1) {Eq(y, y)} x := y ⊕mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(X2) {Ind(y;V, y, z;V ′)} x := y ⊕ z {Ind(x;V, x, z;V ′)} provided [y 6= z], [y 6∈ V] and [x 6∈ V ′

unless y, z ∈ V ′]
(X3) {Eq(y, y) ∧ Eq(z, z)} x := y ⊕ z {Eq(x, x)}
(X4) {Eq(y, y) ∧ Uneq(z, z)} x := y ⊕ z {Uneq(x, x)}

Block cipher:
(B1) {Empty} x := E(mi) {(Eq(mi,mi) ∧ Eq(x, x) ∧ Ind(x;Var, `E , `H;Var− x))∨

(Uneq(x, x) ∧ Ind(x;Var, `E , `H;Var))}
(B2) {E(E ; y; ∅) ∧ Uneq(y, y)} x := E(y) {Ind(x;Var, `E , `H;Var)}
(B3) {E(E ; y; ∅) ∧ Eq(y, y)} x := E(y) {Ind(x;Var, `E , `H;Var− x) ∧ Eq(x, x)}
(B4) {E(E ; y; ∅) ∧ Ind(t;V ;V ′)} x := E(y) {Ind(t;V, x;V ′, x)} even if t = y, provided `E 6∈ V
(B5) {E(E ; y; ∅) ∧ Ind(t;V, `E , y;V

′, y)} x := E(y) {Ind(t;V, `E , x, y;V ′, x, y)}
(B6) {E(E ; y; ∅) ∧ E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

Hash Function:
(H1) {H(H; y; ∅) ∧ Uneq(y, y)} x := H(y) {Ind(x;Var, `E , `H;Var)}
(H2) {H(H; y; ∅) ∧ Eq(y, y)} x := H(y) {Ind(x;Var, `H;Var− x) ∧ Eq(x, x)}
(H3) {H(H; y; ∅)∧ Ind(t;V ;V ′)} x := H(y) {Ind(t;V, x;V ′, x)} even if t = y, provided `H 6∈ V
(H4) {H(H; y; ∅) ∧ Ind(t;V, `H, y;V

′, y)} x := H(y) {Ind(t;V, `H, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}

For loop:
(F1) {ψ(p− 1)} for l = p to q do: [cmdl] {ψ(q)} provided {ψ(l− 1)} cmdl {ψ(l)} for p ≤ l ≤ q

Table 1. Rules of our Hoare Logic

22

Proof. It should be clear that, since LE and LH are unchanged by the command, the
following hold since the values of the variables in V −x are unchanged by the command:

[(S, S′,LE ,LH)
$← X : (S(t), S(V − x) ∪ S′(V ′ − x))] =

[(S, S′,LE ,LH)
$← [[cmd]]X : (S(t), S(V − x) ∪ S′(V ′ − x))]

[(S, S′,LE ,LH)
$← X : (S′(t), S′(V − x) ∪ S′(V ′ − x))] =

[(S, S′,LE ,LH)
$← [[cmd]]X : (S′(t), S′(V − x) ∪ S′(V ′ − x))].

We can add back x to V (resp. V ′) when x is constructible from V − t (resp. V ′ − t)
using Lemma 3. It follows that (X |= Ind(t;V ;V ′))⇒ ([[cmd]]X |= Ind(t;V ;V ′)).

Proposition 8 (Rule (G6)). linebreak
{Empty} cmd {Empty} provided cmd is not x := E(y)

Proof. This is obvious since the command does not modify LE .

B.3 Function ρ

Proposition 9 (Rule (P1)). linebreak
{Eq(y)} x := ρ(y) {Eq(x)}

Proof. This is a trivial consequence of the fact that ρ is a (deterministic) function.

B.4 Assignment

Proposition 10 (Rule (A1)). linebreak
{true} x := mi {Eq(mi,mi) ∧ Eq(x, x) ∨ Uneq(x, x)}

Proof. This follows immediately from Lemma 2 and the fact that after the execution of
the command, the value of x is the same as the value of mi.

Proposition 11 (Rules (A2) to (A9)). The following rules hold.

– (A2) {Eq(y, y)} x := y {Eq(x, x)}
– (A3) {Uneq(y, y)} x := y {Uneq(x, x)}
– (A4) {Ind(y;V ;V ′)} x := y {Ind(x;V ;V ′)} provided y 6∈ V ∪ V ′
– (A5) {E(E ; y;V)} x := y {E(E ;x;V)} provided y 6∈ V
– (A6) {H(H; y;V)} x := y {H(H;x;V)} provided y 6∈ V
– (A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
– (A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}

Proof. The proofs of all those rules are trivial consequences of the fact that if X is any
distribution, then, in [[x := y]]X , the variables x and y will always be assigned the same
value.

23

B.5 Concatenation

Proposition 12 (Rule (C1)). linebreak
{Eq(y, y)} x := y‖mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}

Proof. This is a clear consequence of Lemma 2.

Proposition 13 (Rule (C2)). linebreak
{Eq(y, y) ∧ Eq(z, z)} x := y‖z {Eq(x, x)}

Proof. Trivial.

Proposition 14 (Rule (C3)). linebreak
{Uneq(y, y)} x := y‖z {Uneq(x, x)}

Proof. Trivial consequence of the fact that for any distributionX and (S, S′, E ,H,LE ,LH)
$←

X , with overwhelming probability, S(y) 6= S′(y), and, from Lemma 4, |S(y)| = |S′(y)|
implies that S(y)‖S(z) 6= S′(y)‖S′(z).

Proposition 15 (Rule (C4)). linebreak
{Ind(y;V, y, z;V ′)∧Ind(z;V, y, z;V ′)} x := y‖z {Ind(x;V, x;V ′)} provided x, y, z 6∈
V and x 6∈ V ′ unless y, z ∈ V ′ and y 6= z

Proof. We first consider the case where X be a distribution such thatX |= Ind(y;V, y, z)∧
Ind(z;V, y, z) with x, y, z 6∈ V and x 6∈ V ′. We have that

[(S, S′,LE ,LH)
$← [[x := y‖z]]X : (S(x), S((V, x)− x) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← [[x := y‖z]]X : (S(x), S(V) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← X : (S(y)‖S(z), S(V) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U , u2
$← U : (u1‖u2, S(V) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← UU : (u, S(V) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := y‖z]]X,u $← UU : (u, S((V, x)− x) ∪ S′(V ′))]

The first two equality are consequences of the fact that x 6∈ V ∪ V ′ and of the semantics
of x := y‖z. The second to last line is true because, for strings u, u1, u2 of appropriate

sizes, [u1, u2
$← U : u1‖u2] = [u

$← U : u]. The last line follows from the fact that
x 6∈ V ∪ V ′. So we only have left to justify the two lines in which S(y) and S(z) are
replaced with uniform random values u1 and u2 respectively. Suppose there exists an
adversary A that can break the following:

[(S, S′,LE ,LH)
$← X : (S(y)‖S(z), S(V) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V) ∪ S′(V ′))]

24

Then we can construct an algorithm B that attacks the following:

[(S, S′,LE ,LH)
$← X : (S(y), S(V, z) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X,u

$← U : (u, S(V, z) ∪ S′(V ′))].

On input (b, B), B runs algorithm A on input (b‖a,B − a) where a is the value of the
variable z in A. When A terminates, algorithm B outputs the same result as A. It should
be clear that B is successful into distinguishing its two distributions precisely when A
does. So ifA succeeds in distinguishing between its two distributions with non-negligible
probability, so can B, which violates our assumption that X |= Ind(y;V, y, z). We can
show similarly that the following also holds:

[(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X,u1

$← U , u2
$← U : (u1‖u2, S(V) ∪ S′(V ′))].

The same argument can be applied with the roles of S and S′ reversed, which
completes the proof that [[x := y‖z]]X |= Ind(x;V, x;V ′).

The case when y, z ∈ V ′ is similar, the result follows from the argument above and
Lemma 3.

Proposition 16 (Rules (C5) and (C6)). linebreak

(C5) {Ind(y;V,LE ; ∅)} x := y‖z {E(E ;x;V)}
(C6) {Ind(y;V,LH; ∅)} x := y‖z {H(H;x;V)}

Proof. linebreak

(C5) Let A be the algorithm which, on input (a,A), outputs 1 if and only if a is a prefix
of one of the strings in A. We examine A advantage in breaking the following:

[(S, S′,LE ,LH)
$← X; (S(y), S(V,LE)] ∼ [(S, S′,LE ,LH)

$← X,u
$← U ; (u, S(V,LE))].

Since X |= Ind(y;V,LE ; ∅), A’s advantage in distinguishing the two distributions
above must be negligible. Noting that the probability that A outputs 1 when given
an input from the second distribution must be negligible (because u is sampled
from a domain of size exponential in the security parameter), then we must that that
the probability that A outputs 1 when given an output from the first distribution is

negligible as well. That is, for (S, S′,LE ,LH)
$← X , the probability that S(y) is a

prefix of any string in S(V,LE) is negligible. Thus, the probability that S(y)‖S(z) =
S(x) ∈ S(V,LE) is negligible. Similarly, we can find that the probability that
S′(y)‖S′(z) = S′(x) ∈ S′(V,LE) is negligible as well, which shows that [[x :=
S(y)‖S(z)]]X |= E(E ;x;V).

(C6) The proof is similar to the proof of Rule (C5), but with LH instead of LE .

25

B.6 Xor

Proposition 17 (Rule (X1)). linebreak
{Eq(y, y)} x := y ⊕mi {(Eq(x, x) ∧ Eq(mi,mi)) ∨ Uneq(x, x)}

Proof. This easily follows from Lemma 2.

Proposition 18 (Rule (X2)). linebreak
{Ind(y;V, y, z;V ′)} x := y ⊕ z {Ind(x;V, x, z;V ′)} provided y 6= z, y 6∈ V and
x 6∈ V ′ unless y, z ∈ V ′

Proof. This proof is similar to the proof of Rule (C4). Let X be a distribution such that
X |= Ind(y;V, y, z) with y 6= z, y 6∈ V and x 6∈ V ′. We have that

[(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X : (S(x), S((V, x, z)− x) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X : (S(x), S(V, z) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← X : (S(y)⊕ S(z), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u⊕ S(z), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u, S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X,u $← U : (u, S((V, x, z)− x) ∪ S′(V ′))]

All those lines are justified similarly to the proof of Rule (C4), except for the two lines in
which S(y) is replaced with a uniform random values u, and the line in which u⊕ S(z)
is replaced with u. The latter is easily justified by the fact that, for any random value

independent from S(z), the two distributions [u $← U ;u ⊕ S(z)] and [u
$← U ;u] are

identical (under the condition that y 6= z).
As for the former, suppose there exists an adversary A that can break the following:

[(S, S′,LE ,LH)
$← X : (S(y)⊕ S(z), S(V, z) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X,u

$← U : (u⊕ S(z), S(V, z) ∪ S′(V ′))]

Then we can construct an algorithm B that attacks the following:

[(S, S′,LE ,LH)
$← X : (S(y), S(V, z) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X,u

$← U : (u, S(V, z) ∪ S′(V ′))].

On input (b, B), B runs algorithm A on input (b ⊕ a,B) where a is the value of the
variable z in A. When A terminates, algorithm B outputs the same result as A. It should
be clear that B is successful into distinguishing its two distributions precisely when A
does. So ifA succeeds in distinguishing between its two distributions with non-negligible
probability, so can B, which violates our assumption that X |= Ind(y;V, y, z;V ′).

26

The same argument can be applied with the roles of S and S′ reversed, which
completes the proof that [[x := y ⊕ z]]X |= Ind(x;V, x, z;V ′).

The case when y, z ∈ V ′ is similar, the result follows from the argument above and
Lemma 3.

Proposition 19 (Rule (X3)). linebreak
{Eq(y, y) ∧ Eq(z, z)} x := y ⊕ z {Eq(x, x)}

Proof. Trivial.

Proposition 20 (Rule (X4)). linebreak
{Eq(y, y) ∧ Uneq(z, z)} x := y ⊕ z {Uneq(x, x)}

Proof. Trivial.

B.7 Block Cipher

For many of the proofs of rules involving the evaluation of the block cipher, we use the
fact that, in the ideal cipher model, the block cipher is modeled as a perfectly random
function. As a result, if the block cipher has not yet been evaluated at a given point,
then the value of the block cipher at that point is indistinguishable from an independent
random value. This is due to the fact that the distinguishing adversary does not have any
access to E .

Proposition 21 (Rules (B1), (B2) and (B3)). linebreak

(B1) {Empty} x := E(mi) {(Eq(mi,mi) ∧ Eq(x, x)∧
Ind(x;Var,LE ,LH;Var− x)) ∨(Uneq(x, x) ∧ Ind(x))}

(B2) {E(E ; y; ∅) ∧ Uneq(y, y)} x := E(y) {Ind(x)}
(B3) {E(E ; y; ∅) ∧ Eq(y, y)} x := E(y) {Ind(x;Var,LE ,LH;Var− x) ∧ Eq(x, x)}

Proof. linebreak

(B1) Since X |= Empty, we know that, with overwhelming probability, E(S(mi)) and
E(S′(mi)) have never been computed before. Following Lemma 2, we either have
X |= Eq(mi,mi) or X |= Uneq(mi,mi). We consider each case separately:
• if S(mi) 6= S′(mi), i.e. X |= Uneq(mi,mi), and since neither is in LE .dom,

then both E(S(mi)) and E(S′(mi)) look random and independent from all other
values (just as if they had both been sampled randomly and independently),
so [[x := E(y)]]X |= Ind(x) is immediate. It should be clear that, in this case,
Uneq(mi,mi) is preserved by x := E(mi).

• if S(mi) = S′(mi), that is X |= Eq(mi,mi), then clearly [[x := E(mi)]]X |=
Eq(mi,mi) ∧ Eq(x, x) since E is a function. As before, S(mi), S

′(mi) 6∈
LE .dom, so E(S(mi) is indistinguishable from a random and independent
value even given all other values in the system, values except for E(S′(mi)),
to which it is equal. So [[x := E(y)]]X |= Ind(x;Var,LE ,LH;Var− x) is also
clear.

(B2) Since Uneq(y, y) is given here, this is exactly the first case of the proof of Rule
(B1).

27

(B3) Since Eq(y, y) is given here, this is exactly the second case of the proof of Rule
(B1).

Proposition 22 (Rule (B4)). linebreak
{E(E ; y; ∅) ∧ Ind(t;V ;V ′)} x := E(y) {Ind(t;V, x;V ′, x)} provided LE 6∈ V , even if
t = y

Proof. Since X |= E(E ; y; ∅), for any (S, S′,LE ,LH)
$← [[x := E(y)]]X , any adversary

A that successfully distinguishes t from a random value given S(V, x)∪S′(V ′, x) could
be simulated by an algorithm which, given only S(V) ∪ S′(V ′), samples a uniform
random u and runsA(t, S(V)∪S′(V ′)∪{u}) (this is for the case in which S(y) = S′(y),
we would need two random values if S(y) 6= S′(y) but the argument is the same), which
would contradict X |= Ind(t;V ;V). The same can be argued with the roles of S and S′

reversed.

Proposition 23 (Rules (B5)). linebreak

(B5) {E(E ; y; ∅) ∧ Ind(t;V,LE , y;V ′, y)} x := E(y) {Ind(t;V,LE , x, y;V ′, x, y)}

Proof. This is a simple consequence of the fact that, while the values of y (through both
S and S′) get added to LE .dom, this does not change anything to the sets S(V,LE , y) ∪
S′(V ′, y) and S′(V,LE , y) ∪ S(V ′, y) since the values of y were already included in
both. The addition of x in Ind(t;V,LE , x, y;V ′, x, y) can be proven in the same way as
in the proof of Rule (B4).

Proposition 24 (Rule (B6)). linebreak
{E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

Proof. Clearly, Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)} ∈ LE .dom ∪ S(V, y) ∪

S′(V, y)] = Pr[(S, S′,LE ,LH)
$← [[x := E(y)]]X : S(x) ∈ LE .dom ∪ S(V, y) ∨

S′(x) ∈ LE .dom ∪ S′(V, y)] because, since S(y), S′(y) ∈ S(V, y) ∪ S′(V, y), adding
S(y), S′(y) to LE .dom will not change the set LE .dom ∪ S(V, y) ∪ S′(V, y).

B.8 Hash Function

All the proofs for hash function computation are essentially the same as the proofs for
block cipher evaluation. This is due to our choice of using an adversary that does not
have access to the random oracle when trying to distinguish distributions (see Section 3).

Proposition 25 (Rules (H1) to (H5)).

(H1) {H(H; y; ∅) ∧ Uneq(y, y)} x := H(y) {Ind(x)}
(H2) {H(H; y; ∅) ∧ Eq(y, y)} x := H(y) {Ind(x;Var,LE ,LH,Var− x) ∧ Eq(x, x)}
(H3) {H(H; y; ∅) ∧ Ind(t;V ;V ′)} x := H(y) {Ind(t;V, x;V ′, x)} provided LH 6∈ V ,

even if t = y
(H4) {H(H; y; ∅) ∧ Ind(t;V,LH, y;V ′, y)} x := H(y) {Ind(t;V,LH, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}

28

Proof. All the proofs for hash function computation are essentially the same as the
proofs for block cipher evaluation. This is due to our choice of using an adversary that
does not have access to the random oracle when trying to distinguish distributions (see
Section 3).

B.9 For Loop

Proposition 26 (Rule (F1)). linebreak
{ψ(i− 1)} for x = i to j do: cx {ψ(j)} provided {ψ(k− 1)} ck {ψ(k)} for i ≤ k ≤ j

Proof. This is a simple induction on x.

C Example with 2 Block CBC

We show below the application of our logic on a program describing HashCBC for
a two block message, with the loop unrolled. We can see that the invariant at the end
implies UNIV (2): in the first two clauses, Uneq(c2, c1)∧Uneq(c2, c2) is implied by the
predicate Ind(c2;Var, `E , `H;Var), and in the third, we have equality of all the message
blocks and Ind(c2;Var, `E , `H;Var− c2) which implies Uneq(c2, c1). For simplicity,
we only present the invariants that are necessary to the analysis.

(Init) {Empty}
c1 := E(m1); (B1) {(Uneq(c1, c1) ∧ Ind(c1;Var, `E , `H;Var))∨

(Eq(m1,m1) ∧ Eq(c1, c1) ∧ Ind(c1;Var, `E , `H;Var− c1))}
z2 := c1 ⊕m2; (G5)(X2) {(Ind(c1;Var− z2, `E , `H;Var) ∧ Ind(z2;Var− c1, `E , `H;Var))∨

(Ind(c1;Var− z2, `E , `H;Var− c1 − z2)∧
Ind(z2;Var− c1, `E , `H;Var− c1 − z2)∧

(G1)(X1) Eq(m1,m1) ∧ Uneq(z2, z2))∨
(Eq(m1,m1) ∧ Eq(m2,m2) ∧ Eq(z2, z2)∧
Ind(c1;Var− z2, `E , `H;Var− c1 − z2) ∧
Ind(z2;Var− c1, `E , `H;Var− c1 − z2))}

c2 := E(z2) (B2)(B4) {(Ind(c1;Var− z2, `H;Var) ∧ Ind(c2;Var, `E , `H;Var))∨
(Ind(c1;Var− z2, `H;Var− c1 − z2) ∧

(G1) Eq(m1,m1) ∧ Ind(c2;Var, `E , `H;Var))∨
(B3) (Eq(m1,m1) ∧ Eq(m2,m2) ∧ Ind(c2;Var, `E , `H;Var− c2)∧

Ind(c1;Var− z2, `H;Var− c1 − z2))}

D Prototype

For now, this prototype is meant only as a proof of concept for our method. We describe
the steps required to use the prototype to verify HashCBC . We refer to Appendix A for
the program of this function.

Variable Declaration
First, we must declare the variables of the program: c1,m1, i, n, zi, ci−1,mi and ci. Our
prototype uses 3 types of variables: OrdinaryVar, IndexedVar and ParamVar. OrdinaryVar

29

are those variables that are described only with a string, and do not have an index. For
example, in the program, i and n are OrdinaryVar. IndexedVar are variable that have an
integer index. For example, c1 andm1 are IndexedVar. The constructor for an IndexedVar
takes a variable and an integer as input. ParamVar are variables that have a parameter,
a variable and an offset, as an index. For example, ci−1, ci and mi are ParamVar. The
constructor for a ParamVar takes a string, a variable and an integer as input.

Here are a few examples of variable declarations:
let i = OrdinaryVar "i";;
let c1 = IndexedVar("c",1);;
let ci = ParamVar("c",i,0);;
let ciMinusOne = ParamVar("c",i,-1);;

Description of the Program
Our programming language supports 5 operations: block cipher, hash, exclusive or,
concatenation and the ρ function. Operations correspond to the right-hand side of most
commands. These operations have the following constructors: Block(bc,op) takes
a block cipher bc and an operand op as input. In our case, only one block cipher is
used and it is always the string ”bc”. Hash(h,op) takes a hash function h and an
operand op as an input. Again, in our case, only one hash function is used and it is
always the string ”h”. Xor(op1,op2) takes 2 operands and is the exclusive or operation.
Conc(op1,op2) takes 2 operands and is the concatenation operation. Rho(int,op)
takes an integer and an operand and is the i-fold application of the ρ function.

The instructions of the program are either For commands, describing a for-loop,
or a SimpleCmd, which describes any other command. A SimpleCmd consists of a
target variable and an operation. For example, the command x := y ⊕ z is described by
SimpleCmd(x,Xor(y, z)).

A program is simply a list of commands. For example, the program describing
commands contained in the For loop of HashCBC would be described as follows:
let lcom1=SimpleCmd(zi,Xor(ciMinusOne,mi));;
let lcom2=SimpleCmd(ci,Block(BC "bc",zi));;
let forLoopPrg=[lcom1;lcom2];;

A For loop is described by two bounds, a variable, the loop variable, and a program,
the body of the loop. Bounds are either an IntBound, described only by an integer, or a
ParamBound, that take a variable and an offset. For example, the For loop in HashCBC
can be described by For(IntBound 2,ParamBound(n,0),i,[lcom1;lcom2]).

Using all this, we can describe the full code of HashCBC as follows:
let com1 = SimpleCmd(c1, Block(BC "bc",m1));;
let lcom1=SimpleCmd(zi,Xor(ciMinusOne,mi));;
let lcom2=SimpleCmd(ci,Block(BC "bc",zi));;
let forLoopPrg = [lcom1;lcom2];;
let com2 = For(IntBound 2,ParamBound(n,0),i,forLoopPrg);;
let hash_cbc = [com1;com2];;

Testing a program
The function that attempts to prove the security of an almost-universal hash function
by applying all our Hoare rules is prove prg. This function takes as input an initial
predicate, a desired postcondition and a program. The predicates are expressed in
disjunctive normal form, the inner lists are conjunctions of all the invariants they contain,
and the outer lists are disjunctions of all the conjunctions within. The initial predicate is
generally the (init) predicate given previously in this paper, and is described as follows:

30

let init = [[Empty;Indis(k,var,VarMinus([Var(k)]),true,true);
Equal(k,k)]];;

In this predicate, the notation VarMinus([Var(k)]) denotes the set that contains all
the variables except for k. The predicate we want at the end of the program is UNIV (n),
and it is described as follows:

let post = [[Unequal(cn,cn);
BigAnd(IntBound 1,ParamBound(n,-1),Unequal(cn,c_bav)))];

[BigAnd(IntBound 1,ParamBound(n,0),Equal(m_bav,m_bav));
BigAnd(IntBound 1,ParamBound(n,-1),Unequal(cn,c_bav))]];;

In this description, BigAnd(b1,b2,invr) is a predicate that takes two bounds and a
predicate and represents

∧b2
bigAndV ar=b1 invr, and c bav and m bav are ParamVar that

have the OrdinaryVar “bigAndVar” as an index. We note that our prototype assumes that
the variable “bigAndVar” is always the index variable in a predicate BigAnd, so it is
important that this particular variable is used as the index.

Using the code we have given here, we can obtain the following output forHashCBC
by simply executing prove prg init post hash cbc;;.

[[[Empty;
Indis(OrdinaryVar "k",VarMinus [],

VarMinus [Var(OrdinaryVar "k")],true,true);
Equal(OrdinaryVar "k",OrdinaryVar "k")]];

[[Indis(IndexedVar("c",1),VarMinus [],VarMinus [],true,true)];
[Indis(IndexedVar("c",1),VarMinus [],

VarMinus [Var(IndexedVar("c",1))],true,true);
Equal(IndexedVar("c",1),IndexedVar("c",1));
BigAnd(IntBound 1,IntBound 1,

Equal(ParamVar("m",OrdinaryVar "bigAndVar",0),
ParamVar("m",OrdinaryVar "bigAndVar",0)))]];

[[Indis(ParamVar("c",OrdinaryVar "n",0),VarMinus[],
VarMinus [Var(ParamVar("c",OrdinaryVar "n",0))],true,true);

BigAnd(IntBound 1,ParamBound(OrdinaryVar "n",0),
Equal(ParamVar("m",OrdinaryVar "bigAndVar",0),

ParamVar("m",OrdinaryVar "bigAndVar",0)))];
[Indis(ParamVar("c",OrdinaryVar "n",0),VarMinus [],

VarMinus [],true,true)]]]

This is a trace of all invariants generated automatically for proving the security of
HashCBC with our prototype. More generally, this function outputs an empty list if it
is unsuccessful in finding a proof of the scheme, and outputs a list of DNF predicates in
which the first is init, the ith predicate is the predicate obtained after executing the ith

command, and the last predicate implies post.

31

