eprint.iacr.org will be offline for approximately an hour for routine maintenance at 11pm UTC on Tuesday, April 16. We lost some data between April 12 and April 14, and some authors have been notified that they need to resubmit their papers.
You are looking at a specific version 20131029:233554 of this paper. See the latest version.

Paper 2013/401

Functional Signatures and Pseudorandom Functions

Elette Boyle and Shafi Goldwasser and Ioana Ivan

Abstract

In this paper, we introduce two new cryptographic primitives: \emph{functional digital signatures} and \emph{functional pseudorandom functions}. In a functional signature scheme, in addition to a master signing key that can be used to sign any message, there are \emph{signing keys for a function} $f$, which allow one to sign any message in the range of $f$. As a special case, this implies the ability to generate keys for predicates $P$, which allow one to sign any message $m$, for which $P(m) = 1$. We show applications of functional signatures to constructing succinct non-interactive arguments and delegation schemes. We give several general constructions for this primitive based on different computational hardness assumptions, and describe the trade-offs between them in terms of the assumptions they require and the size of the signatures. In a functional pseudorandom function, in addition to a master secret key that can be used to evaluate the pseudorandom function $F$ on any point in the domain, there are additional \emph{secret keys for a function} $f$, which allow one to evaluate $F$ on any $y$ for which there exists an $x$ such that $f(x)=y$. As a special case, this implies \emph{pseudorandom functions with selective access}, where one can delegate the ability to evaluate the pseudorandom function on inputs $y$ for which a predicate $P(y)=1$ holds. We define and provide a sample construction of a functional pseudorandom function family for prefix-fixing functions.

Metadata
Available format(s)
PDF
Publication info
Published elsewhere. Unknown status
Contact author(s)
ioanai @ mit edu
History
2013-10-29: last of 3 revisions
2013-06-20: received
See all versions
Short URL
https://ia.cr/2013/401
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.