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Abstract— In this paper, security analysis of block ciphers with 
key length greater than block length is proposed. For a well-
designed block cipher with key length k and block length n s.t. 
k>n and for all P, C, there are  n-k2 keys which map P to C. 
For given block cipher, if there is an efficient algorithm that 
can classify such keys, we propose an algorithm will be able to 
recover the secret key with complexity { }( )nkn ,maxO −22 . We 
apply this method on 2-round block cipher KASUMI. 

Keywords- Block cipher, Key classes, key length, block 
length, KASUMI. 

I. INTRODUCTION  
In design of block cipher, one step is to determine key 

length and block length. There are some standard block 
ciphers such as KASUMI , IDEA, 3DES, AES-256 which 
their  block length is smaller than key length. Because of 
pseudo-randomness property of these ciphers, their key 
space can be portioned into equivalence classes of keys with 
the same number of elements. For instance in block cipher 
KASUMI, the key space would have 642 classes that each 
contains 642 different keys. 

In our proposed attack, we assume that there is an 
efficient algorithm which computes the equivalence class of 
an arbitrary key w.r.t. a plaintext P. 

We present an efficient algorithm for computing 
equivalence class of arbitrary key for one-round and 2-round 
KASUMI. Hence, in the rest, we give a short introduction to 
KASUMI block cipher.  

KASUMI is modified version of the block cipher 
MISTY1 [1], which is optimized for hardware performance. 
In the past few years, it has received a lot of attentions from 
the cryptographic researchers. Kuhn introduced the 
impossible differential attack on 6-round KASUMI with data 
complexity 552 and time complexity 1002 [2], which has 
been recently extended to 7-round KASUMI[3]. This attack 
on the last 7 rounds needs 114.32 encryptions with 

52.52 chosen plaintexts and  on the first 7 rounds, the data 
complexity is 622 known plaintexts and the time complexity 
is 115.82 encryptions. 

In 2007, a higher order differential attack has been 
published on 5-round KASUMI with data complexity 

28.92 and time complexity 31.22 [4].  
Since the key schedule of KASUMI is linear, many 

related-key attacks have published. A related-key differential 
attack on 6-round KASUMI has presented in 2002[5]. The 
first related-key attack on the full 8-round KASUMI was 
proposed by Biham et al.with 76.12 encryptions [6], which 
was improved to a practical related-key(sandwich) attack on 
the full KASUMI by Dunkelman et al. with data complexity 

262 and time complexity 322 [7].  However, assumption for 
these kinds of attack is controlling over the differences of 
two or more related keys. With this assumption, resulting 
attacks isn’t applicable in most real-world usage scenarios 
[8].  
 In this paper, we propose a new attack which isn’t based on 
differential type attacks. 

In this paper, first we introduce our new method and then 
apply it to reduced-round KASUMI.  In section II, we 
introduce details of our method. In section III, the method 
has applied to KASUMI. In section IV, we propose an 
algorithm for generating equivalence classes of KASUMI 
keys.  Finally, after experimental results, we will give some 
suggestions and recommendations for future works. 

 

II. OUR PROPOSED ATTACK 

Consider a block cipher { } { } { }nkn ,,,E 101010: →× in 
which n is block length and k is key length. 

For a well-designed block cipher with key length k and 
block length n s.t. k>n and for all 0P , 0C , there are  

n-k2
keys K which  

( ) 0C=K,PE 0

Let { }n,P 100 ∈ , we can show that the following relation 
is an equivalence relation.  

K'K ~ iff  ( ) ( )K',PE=K,PE 00

In the rest of this paper, [ ]
0PK stands for equivalence 

class of key { }k,K 10∈ . For block cipher E, suppose that 



there exists an efficient algorithm Γ which computes the 
equivalence class of an arbitrary key w.r.t.  plaintext 0P .

Now we describe our new attack. Let 0K is the secret 

key of the system and we have 



=
n
kr : pairs 

,10),,( i −≤≤ riCP i s.t. iCKPE =),( 0i .

Algorithm 1: 
1. Select the key K such that ( ) 0C=K,PE 0 .

2. Find key 
0

][' PKK ∈ s.t for 10 −≤≤ ri ,

ii CKPE =)',( .

Based on pseudo-randomness property of encryption 
algorithm, it is expected that there is exactly one key such 
that ( ) 0C=K,PE 0 for every interval ( )[ ]nn +i,i 212 ××
and nki −≤≤ 20 . For finding a key K such that 

( ) 0C=K,PE 0 , it would be sufficient to look up entire keys 

within [ ]120 −n, . It can be efficiently done using rainbow-
tables and time-memory-data-trade-off methods with 
complexity lower than 2n .

Also because [ ]
00 PKK ∈ , we generate the 

class [ ]
0PK by Γ algorithm. If a key in this class can 

correctly decrypts all 




n
k pair ),( i iCP , select it as main 

unknown key. 
 

III. KASUMI BLOCK CIPHER 

In this section, we introduce briefly the general structure 
and properties of KASUMI as well as functions that used in 
KASUMI.  

A. KASUMI block cipher 
KASUMI is a block cipher used for the security of 3GPP 

systems such as UMTS, GSM and GPRS. Both the 
confidentiality (f8) and integrity function (f9) in UMTS are 
based on KASUMI. In GSM, KASUMI is used in the A5/3 
algorithm for generating key stream and in GPRS in the 
GEA3 key stream generator. 

 KASUMI is an 8-round Feistel block cipher algorithm; it 
operates on 64 bit input to produce 64 bit output under a 128- 

bit key. In each round, there are two functions: the FO 
function which is a 3-round, 32-bit Feistel structure, and the 
FL function which receives 32-bit as input and produces 32-
bit output. The order of using two mentioned functions in the 

cipher is affected by the round number. In the odd round, the 
first function is FL and in the even round, the FO function is 
used first.  

The FO function also uses four-round Feistel FI function 
in a recursive structure. The FI function receives 16-bit as 
input and produce 16-bit as output. It uses two S-boxes S7 ( 
7-bit to 7-bit permutation) and S9 (9-bit to 9-bit 
permutation).  

Using a simple key schedule of figure 1, the round 
function uses a round key which consists of eight 16-bit sub 
keys derived from the original 128-bit key. The FL function 
uses 32-bit sub-keys  ji,KL  in round i where j=1 or 2. The 

FO function uses 96-bit sub-keys ji,KO and ji,KI .
The 128-bit key K is divided into eight 16-bit sub keys 

iK :

Figure 1.  KASUMI key schedule 

 
We start with FI function which is the nonlinear part of  

cipher. 
 

B. FI function properties 
 

One of the main functions used in KASUMI block cipher is  

{ } { } { }161616 101010: ,,,FI →×
As figure 4 shows, there are two sboxes S7 (7-bit to 7-bit 

permutation) and S9 (9-bit to 9-bit permutation). In the 
following, we give some properties for the FI function. 

 
1. ( ) ( )( )xFIKIFI=KIx,FI 12 ⊕

where 1FI  is above part of the FI function before 
the key KI affects and  2FI  is below part of the FI 
function after the key KI affects. 

 



Figure 2.  KASUMI block cipher 

 

Figure 3.  FO function 

 

Figure 4.  FI function 

 

Figure 5.  FL function 

 
It is clear that 1FI and 2FI  are invertible functions that 

are independent from key. 
 2. Suppose that 

( ) y=KIx,FI (1) 
 Where x, y and KI are input, output and key. Having two 
members of the set {x,y,KI}, the third one is uniquely 
computed efficiently. In fact, if  x, KI (y, KI) are known, 
using encryption (decryption) procedure, y (x) is efficiently 
computable. 
If x, y are known, then 

( ) ( )yFIxFI=KI 1
21
−⊕

3. ( ) ( ){ }| | 322=y=KIx,FI;KIx,
For all { }1610,y∈ .

4. For all { }1610,x'x, ∈ , we can find KI and KI' s.t. 



( ) ( )KI',x'FI=KIx,FI
In fact, it is sufficient to find keys such that  

( ) ( )x'FIxFI=KI'KI 11 ⊕⊕ (2) 

It is clear that the number of keys which (2) holds are 162 .
5. For all { }1610,y,x'x, ∈ , there are some keys KI, KI' s.t.  
 ( ) ( ) y=KI',x'FI=KIx,FI
Using equation (2), these keys can be easily computed.  
 

C. FO function properties 

Function { } { } { }329632 101010: ,,,FO →× is the main 
part of KASUMI.  

Suppose that ( )RL X,X=X and ( )RL Y,Y=Y
are input and output of FO function, then  
 

( )
( )22R

11LRL

KI,KOXFI
KI,KOXFIX=Y

⊕⊕

⊕⊕
(3) 

 
⊕LR Y=Y (4) 

 ( )( )3311LR KI,KOKI,KOXFIXFI ⊕⊕⊕

Equation (4) can be rewritten as  
( ) =KOKI,YYFI 33RL

1 ⊕⊕−

( )11LR KI,KOXFIX ⊕⊕ (5) 
Finally, we have  

( ) ( )
( ) 33RL

1
22RL11LR

KOKI,YYFI
KI,KOXFIY=KI,KOXFIX

⊕⊕

⊕⊕⊕⊕
−=

(6) 
 
When input and output of the FO function (X ,Y) are 

known, then there are 642 keys K such that FO(X,K)=Y. 
For arbitrary values of  { }1610,KI,KI,KO,KI 3211 ∈ ,

we can efficiently compute 32 KO,KO uniquely  s.t.  
 yKxFO =),( . If it is needed, we can guess other parts 

of key and compute remain parts. 
 

D. FL function properties 
 

FL function { } { } { }323232 101010: ,,,FL →× is the 
simplest component of KASUMI. We introduce some 
properties of FL function. 

1. By fixing FL sub-keys, the function is one-to-one 
w.r.t to the input. But this isn't correct for the sub-
keys by fixing the input. 

2. If  ( )RL X,X=X , ( )RL Y,Y=Y are  input,  output 
of the FL function,  and ( )21 KL,KL=KL is the 
corresponding sub-key, then  

( )

( ) 1LRR

2RLL

KLX=XY

KLY=XY

∧

∨

>>>

>>>

1

1

⊕

⊕ (7) 

 
Using (7), it is possible to classify all the FL sub-keys. 

 

In the following sections, we apply our method on reduced 
rounds KASUMI. 

IV. AN ALGORITHM FOR GENERATING EQUIVALENCE 
KEYS IN THE FIRST ROUND 

In this section, using mentioned properties for function 
that used in KASUMI, we propose an efficient algorithm for 
finding class of keys which map fixed input 0P to fixed 

output 0C for { }64
0 10,C,P 0 ∈ ( 0C is the output of the 

first round before substitution of two halves)  
 

Algorithm 2: 
 
Given ( ) ( )RL0RL C,C=C,P,P=P0

Find every { }12810,K ∈ s.t. 

( ) 0OneRound C=K,PKASUMI 0 .

For ( ) { }9610,KI,KI,KI,KO,KL,KL 321121 ∈ do 

 { find           { }1610,KO,KO 32 ∈ s.t. 

 ( )( ) RLR C=KOKI,,KL,PFLFOP ⊕ }

Using FO function property 2, we will be able to look up 
efficiently desired key values. 

( )321 KO,KO,KO=KO , ( )321 KI,KI,KI=KI .

There are 962 different keys K that  
( ) 0FirstRound C=K,PKASUMI 0 for fixed { }64

0 10,C,P 0 ∈ .

The sub-keys values ( ) { }3210,KO,KO 32 ∈ can be 
computed efficiently for every guess of sub-
keys ( ) { }9610,KI,KI,KI,KO,KL,KL 321121 ∈ . Therefore 
current algorithm is efficient, since the complexity of 
algorithm is 962 and this is the best complexity with regard 
to the number of keys. 
 

V. AN ALGORITHM FOR GENERATING EQUIVALENCE 
KEYS IN THE SECOND ROUND 

We extend our algorithm to 2-rounds KASUMI.  It is 
expected that there are 642 members in [ ]

0PK s.t. 



0P maped 0C ( 0C is the output of the second round before 
substitution of two halves). Since we are in the initial rounds 
of KASUMI and the statistical properties of the cipher 
algorithm are not complete, the number of elements of class 
[ ]

0PK may not be similar to that we expected. 

According to cipher structure, there are some relations 
between input and output of 2-round KASUMI block cipher 
as follow. 

 ( )( )
( )( )222LLR

111LRL

RKL,RKI,RKO,CFOFL=PC

RKI,RKO,RKL,PFLFO=PC

⊕

⊕

Where 1RKL  is the sub-key of first round for KL. 
Consequently, it needs to solve a system of equations for 
recovering unknown sub-keys. 

Based on key schedule, if 1K is known, the sub-key 

1KL  of the first round and 3KI of the second round, etc, 
will be known, where 

( )8765432 K,K,K,K,K,K,K,K=K 1 is the master key of 
the cipher. 

In our algorithm, we guess FL function sub-keys for the 
first two round, then using FO function equations (3-6), the 
other sub-keys can be efficiently computed. In fact, in the 
first two rounds, these FL sub-keys are 432 K,K,K,K1 . In 
the rest, we represent our proposed algorithm in which the 
unknown key values show by capital letters. 

 
Algorithm 3:  

 
Given ( ) ( )RL0RL C,C=C,P,P=P0

Find every { }12810,K ∈ s.t. 

( ) 0Round C=K,PKASUMI 02

For ( ) { }64
1 10,k,k,k,k 432 ∈ do 

 { ( )1L RKL,PFL=a : ;

RL PC=b ⊕: ;

LC=c : ;

( )2LR
1 RKL,PCFL=d ⊕: − ;

Solve the following equations, 
 

( ) ( )4RL5LR k',KaFIb=K',kaFIa 8
6

5
2 ⊕⊕⊕⊕

<<<<  

( )8RL
1 K',bbFIK= ⊕⊕

13
7

−<<  (8) 

( ) ( )5RL6LR K',KcFId=K',kcFIc 8
7

5
3 ⊕⊕⊕⊕ <<<<

( )1RL
1 k',ddFIK= ⊕⊕13

8
−<< }

It can be shown that if we would be able to find some 
part of key, the other parts of key can be computed uniquely. 

In this algorithm, when we find 6K , sub-key 5K can be 
computed from the first equation of algorithm 2. Using the 
second equation of algorithm 2,  8K,K7 can be computed. 

For correctness, these sub-key values should be checked 
by additional check equation in the second part of the first 
equation of algorithm 2.  

Solving strategy in algorithm 2, is an arbitrary strategy 
that can solve system of equations (8). For example we can 
replace this strategy with exhaustive search or algebraic 
methods to find 6K and then compute the rest of sub-key 
values. 

Complexity of the algorithm 2 depends on solving 
strategy. In the worst case, if exhaustive search method is 
used, the complexity of algorithm will be 802 .

VI. EXPERIMENTAL RESULTS 

Since KASUMI has 64-bit block length and 128-bit key 
length, based on birthday paradox, when a fixed plaintext 
encrypts with 322 different keys, there will be at least two 
equal cipher-text with probability more than ½. With P=0 
(plain-text with 64 bit zero), there are at least two keys that 
encryption of P lead to same cipher-text. 

Using such keys, we get output of the sixth round 
KASUMI; we wrote equations for last two round and the 
results are compared. We run our algorithm on 4,6,7-rounds 
KASUMI separately and obtain some equivalence keys. For 
6-round KASUMI, we found three keys with same cipher-
text. It can be inferred that 6-round KASUMI shows more 
non-randomness properties and it can be vulnerability for 
KASUMI, since we expected two keys with same cipher 
with considering 232 different keys. One of the results 
presents in appendix1. 

 

VII. CONCLUSIONS 
In this respect, we proposed a new attack on block 

ciphers with key length greater than block length, if it would 
be possible to efficiently classify the key space of 
corresponding block cipher. In fact, the complexity of attack 
will be { }( )nkn ,maxO −22 where n is block length and k is 
key length. 

Some recommendations for continuing this work are as 
follow. 

1. Extend our algorithm to higher rounds of KASUMI. 

2. Solving algebraic equations obtained by 2-rounds 
KASUMI in an efficient way. 

3. Compute ( )jjii C'=C|C'=Cp for j>i where 

ji C,C are the output of i'th-round KASUMI with 
same plain-text and different keys. 



4. Cryptanalysis of 4-rounds KASUMI block cipher 
with complexity of order 642 .

5. Classification of the key space of other cipher 
algorithms such as IDEA, 3DES, AES-256 with key 
length greater than block length. 

6. Combining this method with other known attack to 
achieve a near practical attack algorithm. 

7. When there are more than 




n
k data, our method is 

not more efficient than the case that we have 




n
k

data. Is it possible to improve this method if we 
have more data?   
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APPENDIX 1. 

 

Plain-text=0 
Key=0xF1D941159CA8B6238135DACB8A370940 
 Cipher-text=0x2DBCDA8D84CDAD86 
 
--->> c1: left=0, right=db16eed5 
--->> c2: left=db16eed5, right=48d17eb6 
--->> c3: left=48d17eb6, right=2ebddad4 
--->> c4: left=2ebddad4, right=7b006cf8 
--->> c5: left=7b006cf8, right=d8805ffd 
--->> c6: left=d8805ffd, right=9f570e58 
--->> c7: left=9f570e58, right=84cdad86 
--->> c8: left=84cdad86, right=2dbcda8d 
 

Plain-text=0 
 
Key=    

0xCAFF6AC383136437A70C4560AC98CE9F 
 Cipher-text= 0x2DBCDA8D84CDAD86 
 
--->> c1: left=0, right=aa108129 
--->> c2: left=aa108129, right=ec2e85a9 
--->> c3: left=ec2e85a9, right=309e5e7b 
--->> c4: left=309e5e7b, right=8f1313fb 
--->> c5: left=8f1313fb, right=2b23dcc6 
--->> c6: left=2b23dcc6, right=9b7de2ee 
--->> c7: left=9b7de2ee, right=84cdad86 
--->> c8: left=84cdad86, right=2dbcda8d 
 

Where “ci” is the output of round i in the KASUMI. 
 




