Cryptology ePrint Archive: Report 2013/265

Attribute-Based Encryption with Fast Decryption

Susan Hohenberger and Brent Waters

Abstract: Attribute-based encryption (ABE) is a vision of public key encryption that allows users to encrypt and decrypt messages based on user attributes. This functionality comes at a cost. In a typical implementation, the size of the ciphertext is proportional to the number of attributes associated with it and the decryption time is proportional to the number of attributes used during decryption. Specifically, many practical ABE implementations require one pairing operation per attribute used during decryption.

This work focuses on designing ABE schemes with fast decryption algorithms. We restrict our attention to expressive systems without system-wide bounds or limitations, such as placing a limit on the number of attributes used in a ciphertext or a private key. In this setting, we present the first key-policy ABE system where ciphertexts can be decrypted with a constant number of pairings. We show that GPSW ciphertexts can be decrypted with only 2 pairings by increasing the private key size by a factor of X, where X is the set of distinct attributes that appear in the private key. We then present a generalized construction that allows each system user to independently tune various efficiency tradeoffs to their liking on a spectrum where the extremes are GPSW on one end and our very fast scheme on the other. This tuning requires no changes to the public parameters or the encryption algorithm. Strategies for choosing an individualized user optimization plan are discussed. Finally, we discuss how these ideas can be translated into the ciphertext-policy ABE setting at a higher cost.

Category / Keywords: public-key cryptography / attribute-based encryption

Publication Info: PKC 2013. This is the full version.

Date: received 8 May 2013

Contact author: susan at cs jhu edu

Available format(s): PDF | BibTeX Citation

Version: 20130513:120119 (All versions of this report)

Discussion forum: Show discussion | Start new discussion

[ Cryptology ePrint archive ]