In this work we prove a ``lattice world" analog of LHL over infinite domains, proving that certain ``generalized subset sum'' distributions are statistically close to well behaved discrete Gaussian distributions, even without any modular reduction. Specifically, given many vectors $\{\vec x_i\}_{i=1}^m$ from some lattice $L\subset\R^n$, we analyze the probability distribution $\sum_{i=1}^m z_i \vec x_i$ where the integer vector $\vec z \in \Z^m$ is chosen from a discrete Gaussian distribution. We show that when the $\vec x_i$'s are ``random enough'' and the Gaussian from which the $\vec z$'s are chosen is ``wide enough'', then the resulting distribution is statistically close to a near-spherical discrete Gaussian over the lattice $L$. Beyond being interesting in its own right, this ``lattice-world" analog of LHL has applications for the new construction of multilinear maps \cite{GGH12}, where it is used to sample Discrete Gaussians obliviously. Specifically, given encoding of the $\vec x_i$'s, it is used to produce an encoding of a near-spherical Gaussian distribution over the lattice. We believe that our new lemma will have other applications, and sketch some plausible ones in this work.
Category / Keywords: leftover hash lemma, discrete gaussians, multilinear maps Date: received 20 Dec 2012, last revised 21 Mar 2013 Contact author: shweta a at gmail com Available format(s): PDF | BibTeX Citation Version: 20130322:040918 (All versions of this report) Short URL: ia.cr/2012/714 Discussion forum: Show discussion | Start new discussion