Cryptology ePrint Archive: Report 2012/687

The k-BDH Assumption Family: Bilinear Map Cryptography from Progressively Weaker Assumptions

Karyn Benson and Hovav Shacham and Brent Waters

Abstract: Over the past decade bilinear maps have been used to build a large variety of cryptosystems. In addition to new functionality, we have concurrently seen the emergence of many strong assumptions. In this work, we explore how to build bilinear map cryptosystems under progressively weaker assumptions. We propose $k$-BDH, a new family of progressively weaker assumptions that generalizes the decisional bilinear Diffie-Hellman (DBDH) assumption. We give evidence in the generic group model that each assumption in our family is strictly weaker than the assumptions before it. DBDH has been used for proving many schemes secure, notably identity-based and functional encryption schemes; we expect that our $k$-BDH will lead to generalizations of many such schemes. To illustrate the usefulness of our $k$-BDH family, we construct a family of selectively secure Identity-Based Encryption (IBE) systems based on it. Our system can be viewed as a generalization of the Boneh-Boyen IBE, however, the construction and proof require new ideas to fit the family. We then extend our methods to produces hierarchical IBEs and CCA security; and give a fully secure variant. In addition, we discuss the opportunities and challenges of building new systems under our weaker assumption family.

Category / Keywords: public-key cryptography / pairings, Identity Based Encryption, weaker assumptions

Publication Info: An extended abstract will appear at CT-RSA 2013. This is the full version.

Date: received 6 Dec 2012

Contact author: kbenson at cs ucsd edu

Available format(s): PDF | BibTeX Citation

Version: 20121210:104749 (All versions of this report)

Discussion forum: Show discussion | Start new discussion


[ Cryptology ePrint archive ]