
Construction of Differential Characteristics in ARX Designs
Application to Skein

Gaëtan Leurent

UCL Crypto Group??

Gaetan.Leurent@uclouvain.be

Abstract. In this paper, we study differential attacks against ARX schemes. We build upon the
generalized characteristics of de Cannière and Rechberger and the multi-bit constraints of Leurent.
We describe a more efficient way to propagate multi-bit constraints, that allows us to use the
complete set of 232 2.5-bit constraints, instead of the reduced sets used by Leurent.
As a result, we are able to build complex non-linear differential characteristics for reduced versions
of the hash function Skein. We present several characteristics for use in various attack scenarios;
this results in attacks with a relatively low complexity, in relatively strong settings. In particular,
we show practical free-start and semi-free-start collision attacks for 20 rounds and 12 rounds of
Skein-256, respectively.
To the best of our knowledge, these are the first examples of complex differential trails built for pure
ARX designs. We believe this is an important work to assess the security of ARX designs against
differential cryptanalysis. Our improved tools will be publicly available with the final version of this
paper.

1 Introduction

A popular way to construct cryptographic primitives is the so-called ARX design, where the
construction only uses Additions (a� b), Rotations (a≫ i), and Xors (a⊕ b). These operations
are very simple and can be implemented efficiently in software or in hardware, but when mixed
together, they interact in complex and non-linear ways. In particular, two of the SHA-3 finalists,
BLAKE and Skein, follow this design strategy. More generally, functions of the MD/SHA family
are built using Additions, Rotations, Xors, but also bitwise Boolean functions, and logical shifts;
they are sometimes also referred to as ARX. This stategy as also been used for stream ciphers
such as Salsa20 and ChaCha, and block ciphers, such as TEA, XTEA, HIGHT, or SHACAL
(RC5 uses additions and data-dependant rotations, but we only consider construction with fixed
rotations).

The ARX design philosophy is opposed to S-Box based designs such as the AES. Analysis of
S-Box based designs usually happen at the word-level; differential characteristics are relatively
easy to build, but efficient attacks often need novel techniques, such as the rebound attack against
hash functions [MRST09]. For ARX designs, the analysis is done on a bit-level; finding good
differential characteristics remains an important challenge. In particular, the seminal attacks on
the MD/SHA-familiy by the team of X. Wang are based on differential characteristics built by
hand [WLF+05,WY05,WYY05,YCKW11], and an important effort has been devoted to building
tools to construct automatically such characteristics [dCR06,SO06,FLN07a,MNS11,SLdW07].
This effort has been quite successful for functions of the MD/SHA family, and it has allowed
new attacks based on specially designed characteristics: attacks against HMAC [FLN07b], the
construction of a rogue MD5 CA certificate [SSA+09], and attacks against combiners [MRS09].

However, this body of work is mainly focused on MD/SHA designs, as opposed to pure ARX
designs such as Skein or BLAKE. In MD/SHA-like functions, the Boolean functions play an
important role, and the possibility to absorb differences gives a lot of freedom for the construction
of differential characteristics. In pure ARX designs, the addition is the only source of non-linearity,
and the freedom in the carry expansions is much harder to use than the absorption property of
Boolean functions.
?? Part of this work was done when the author was at the University of Luxembourg

1

To this effect, Leurent introduced multi-bit constraints [Leu12] involving several consecutive
bits of a variable (i.e. x[i] and x[i−1]), instead of considering bits one by one. He describes reduced
sets of 1.5-bit and 2.5-bit constraints, and explains how to propagate these constraints using
S-systems and automata. This set of constraints is well suited to study ARX designs because it
can extract a lot of information about the carries extensions in modular additions.

1.1 Our Results

In this paper, we study the problem of constructing differential characteristics for ARX schemes.
This work is heavily inspired by the framework of generalized characteristics from de Cannière
and Rechberger [dCR06], and the multi-bit constraints of Leurent. We build upon those previous
works and introduce a more efficient way to perform the constraint propagation in Section 2. We
show how to use this constraint propagation tool in a differential characteristic search algorithm
in Section 3, and we present our results on Skein in Section 4.

Constraint propagation. Our first result is an alternative way to perform the constraint
propagation for multi-bit constraints. Our approach is significantly more efficient that the
previous one, and uses the full set of 232 constraints instead of a reduced set of 16 carefully
chosen constraints. The reduced set is sufficient in most situations, but we show that the full
set extracts some more information. Our approach can also deal with larger systems that the
previous technique with a reasonable complexity. In particular, we can deal with the 3-input
modular sums, and 3-input Boolean functions used in functions of the MD/SHA family.

Construction of differential characteristics. We use this new tool to construct of differ-
ential characteristics automatically. We show that we can actually build complex non-linear
characteristics using some simple heuristics and our efficient constraint propagation tool.

To the best of our knowledge, this the first time complex differential trails are build for ARX
designs (a previous attempt by Yu et al. [YCKW11] has been shown to be flawed [Leu12]). We
believe this is an important result to assess the security of ARX designs against differential
cryptanalysis.

Application to Skein. Finally, We apply this technique to reduced versions of the Skein hash
function, where we build rebound-like characteristics by connecting two high-probability trails.

We compare our results with previous works in Table 1. Most previous work on Skein are
either weak distinguishers (such as boomerang properties or free-tweak free-start near-collisions),
or attack with marginal improvement over brute-force (such as some biclique-based results). In
this work, we present attacks in relatively strong settings (collisions and free-start collisions)
with a relatively low complexity (several attacks are practical, and all our attack gain at least a
factor 28).

2 Analysis of Differential Characteristics

The first step for working with differential characteristics (or trails) is to choose a way to represent
a characteristic, and to evaluate its probability. The main idea of differential cryptanalysis is to
consider the computation of the function for a pair of input X,X ′, and to specify the difference
between x and x′ for every internal state variable x. The difference can be an xor difference, a
modular difference, or more generally, use any group operation. However, this approach is not
efficient for ARX design, because both the modular difference and the xor difference play an
important role. Several works have proposed better way to represent a differential characteristic
for ARX designs.

2

Table 1. Comparison of attacks on Skein-256 (we omit attack on previous versions, and weak distinguishers).
In order to compare various attack settings, we count the number of extra degrees of freedom used by the attack.

Extra Degrees of freedom Ref Rounds Time Note

Collision 0 [KRS11] 4 2 96 Biclique based
8 2120

9 2124

12 2126.5

Free-start collision 8 [LIS12] 22† 2253.8† Biclique based
37† 2255.7†

Free-tweak partial-collision 12 [YCKW11] 32 2105 51 active bits — Invalid characteristic

Collision 0 4.4 12 ≈ 2114

Semi-free-start collision 4 4.4 12 ≈ 2 40

Free-start collision 8 4.5 20 ≈ 2 40

Free-tweak near-collision 10? 4.6 24 ≈ 2 40 3 active bits
Free-tweak partial-collision 10? 4.6 32 ≈ 2119 51 active bits

† Attacks on Skein-512. For Skein-256, fewer round will be attacked, with a complexity slightly below 2256.
? We use freedom degrees in the tweak difference, but the tweak value can be arbitrary.

Signed bitwise difference. The groundbreaking results of Wang et al. [WLF+05,WY05,WYY05]
are based on a bitwise signed difference. For each bit of the state, they specify whether the bit
is inactive (x = x′), active with a positive sign (x = 0, x′ = 1), or active with a negative sign
(x = 1, x′ = 0). This information express both the xor difference and the modular difference.

Generalized characteristics. This was later generalized by de Cannière and Rechberger [dCR06]:
for each bit of the state, they look at all possible values of the pair (x, x′), and they specify which
values are allowed. This give a set of 16 constraints as shown in Table 2. The constraints -, u
and n correspond to the bitwise signed difference of Wang. De Cannière and Rechberger also
describe an algorithm to build differential characteristics using this set of constraints.

Multi-bit constraints. Recently, Leurent studied differential characteristics for ARX designs,
and introduced multi-bit constraints [Leu12]. These constraints are applied to the values of
consecutive bits of a state variable (e.g. x[i] and x[i−1]) instead of being purely bitwise. Multi-bit
constraints are quite efficient to study ARX designs because they can capture the behaviour of
carries in the modular addition. Two set of constraints are introduced in [Leu12]:

– a set of 16 constraints involving (x[i], x′[i], x[i−1]) called 1.5-bit constraints;
– a set of 16 constraints involving (x[i], x′[i], x[i−1], x′[i−1], x[i−2]) called 2.5-bit constraints.

The full sets of 28 and 232 constraint are not used because the propagation method of [Leu12]
becomes impractical with such large sets.

2.1 Constraint Propagation and Probability Computation

In [Leu12], a set of constraints is represented by an S-system, and an automaton is built to
compute the probability of a each operation. To perform constraints propagation, each constraint
is split into two disjoint subsets; if one of the subsets result in an incompatible system, the
constraint can be restricted to the other subset without reducing the number of solutions.

This approach allows to achieve a good efficiency when the automaton is fully determinized:
one can test whether a system is compatible with only n table access. However, the table become
impractically large if the set of constraint is too large, or if the operation is too complex. In [Leu12],
the automaton is fully determinized for 1.5-bit constraints, but could not be determinized for
2.5-bit constraints; this results in a quite inefficient propagation algorithm for 2.5-bit constraints.

3

Table 2. Generalized constraints used in [dCR06].

(x, x′): (0, 0) (0, 1) (1, 0) (1, 1)

? anything X X X X
- x = x′ X - - X
x x 6= x′ - X X -
0 x = x′ = 0 X - - -
u (x, x′) = (0, 1) - X - -
n (x, x′) = (1, 0) - - X -
1 x = x′ = 1 - - - X
incompatible - - - -

3 x = 0 X X - -
5 x′ = 0 X - X -
7 X X X -
A x′ = 1 - X - X
B X X - X
C x = 1 - - X X
D X - X X
E - X X X

In this work, we explore a different option using non-deterministic automata. This allows
to deal with large set of constraints and more complex operations. We need to perform many
operations to verify whether a system is compatible, but the automata are very sparse and
can be represented by small tables fitting in the cache (the tables of [Leu12] take hundreds
of megabytes); this gives good results in practice. In addition we show special properties of
the automata allowing an efficient propagation algorithm without splitting the constraints into
subsets.

2.2 Our New Approach

In this work we describe a method that is specific to systems of the following form:

u = f(a, b, c, . . .) u′ = f(a′, b′, c′, . . .) (1)

δ(a, a′) = A δ(b, b′) = B δ(c, c′) = C . . .

δ(u, u′) = U,

where f is an S-function, and the difference δ is given by a set of constraints which fully determines
x[i], x′[i], x[i−1], and x′[i−1]. We consider a, a′, b, b′ . . . as variables, and A, B, . . .U as parameters.

Building the automaton. To deal with 2.5-bit constraints, we use a base alphabet B of
32 constraints, each specifying one possible value for x[i], x′[i], x[i−1], x′[i−1], x[i−2] (for 2-bit
constraints, the base alphabet has 16 constraints). Since the system given by (1) with the
constraints in B is an S-system, we can compute a set of states S, and a transition function:

τ : S × (B × {0, 1} × {0, 1})p−1 × B → S
q, (A, a, a′), (B, b, b′), . . . , U 7→ q′

so that each solution to the system corresponds to a path in the automaton with transition
function τ . More details about the construction of τ are given in [MVCP10,Leu12]. In our
implementation, we use the tools of [Leu12] to compute the transition table.

When we describe a differential characteristic, we use an alphabet A = P(B) consisting the
232 subsets of the base alphabet A (216 subsets for 2-bit constraints). We transform an automaton

4

on the alphabet B to operate on the alphabet A by changing the transition function into a
non-deterministic transition function:

τ ′ : S × (A× {0, 1} × {0, 1})p−1 ×A → P(S)

q, (A, a, a′), (B, b, b′), . . . , U 7→
⋃

A∈A,...,U∈U

τ
(
q, (A, a, a′), . . . , U

)
This automaton can test whether the constraints are satisfied for given values of the parameters
A,B, . . . , U , of the variables a, a′, b, b′, . . ., and with u = f(a, b, c, . . .), u′ = f(a′, b′, c′, . . .). We
further transform the automaton be removing the information about a, a′, . . .:

τ ′′ : S ×Ap → P(S)

q,A,B, . . . , U 7→
⋃

a,a′,b,b′,...∈{0,1}

τ ′
(
q, (A, a, a′), . . . , U)

)
This new automaton can decide whether there exists solutions to System (1) for given parameters
A,B, . . . , U . The transition function is highly non-deterministic, but we still use the original
automaton by relabelling the transitions, and reading several transitions at each step.

Lemma 1. The transition automaton of a system following (1) with p parameters, v variables,
and s bits of state has the following properties:

i) Each state can be labelled with a 1-bit value for value of a, a′, b, b′ . . . , x, x′. All the input
transitions share this value for a[i], a′[i], b[i], b′[i] . . . , x[i], x′[i], while all the output transitions
share this value for a[i−1], a′[i−1], b[i−1], b′[i−1] . . . , x[i−1], x′[i−1].

ii) No pair of states are linked by two different transitions;
iii) Each state has exactly 22v output transitions (the transition table is sparse);

Proof. i) In order to reject incoherent constraints for bit i−1 and i of a variable, the automaton
must store the values of the previous bits that are used for the constraint on bit i in the state.

ii) Let’s assume we have two transitions from a state q to a state q′. Since the two transition go
to the same state, they must specify the same values of the parameters on bit i. Moreover,
the two transition come from the same state, so they must also specify the same values on
bits before i. Therefore the two transitions are the same.

iii) Because the system follows the form x = f(a, b, c, . . .), x′ = f(a′, b′, c′, . . .), any choice of the
variables a, a′, b, b′, . . . is valid with exactly one value of x, x′.

Propagation. We use the properties of Lemma 1 in order to build an efficient propagation
algorithm. Thanks to property ii), we have a one to one correspondence between the paths in the
original automaton, and the paths in the relabelled automaton. Therefore we can easily identify
the constraints corresponding to actual solutions of the system. To propagate constraints, we
first build the set of paths allowed by the initial constraints, we look at which edges are actually
used in paths, and we build the new constraints by identifying the constraints corresponding to
the edges.

Notations. We use the symbols from [Leu12] to denote the most common constraints as shown
in Table 5. When a characteristic uses a less common constraint, we use an hexadecimal mask to
represent it. The less common constraints used in the characteristics given in Appendix C are
given in Table 9.

When the constraints on the current bit and the constraints on previous bits are independent,
we write the constraints involving previous bit in exponent (e.g. see Figure 7). For instance, we
have can write the constraints < as uu ∪ nn.

5

2.3 Propagation for a Differential Characteristic

A differential characteristic is given by a set a constraints for each internal state variable. An
ARX design (or a more general MD/SHA-like desing) is built with two kinds of operations:

– Operations that are S-functions: additions, xors, and bitwise Boolean function. We build a
system for each operation following (1), and we use them to propagate constraints between
the inputs and the output of the operation (the propagation goes both ways). To propagate a
full characteristic, we propagate every operation until no new constraints are found.

– Rotations: since the constraints are local and only involve consecutive bits, we deal with
a rotation y = x ≫ i by just rotating the constraint pattern: if δx = ∆x then we use
δy = ∆x ≫ i. However, we have to relax some constraints if the multi-bit relations are
broken by the rotation.

2.4 Propagation Example

Let us show how the propagation operates with a simple example. For this example, we use 2-bit
constraints, and we consider the operation u = a ∨ (a� a). The leads to the following system:

u = a ∨ (a� a) u′ = a′ ∨ (a′ � a′) (2)

δ(a, a′) = A δ(u, u′) = U.

This system has 2 parameters, 2 variables and 4 bits of state (two for each δ operation; the state
of a� a is already included in the state of δ(a, a′)). The automaton corresponding to this system
is given in Figure 7. Note that the automaton only needs 9 states out of the 24 = 16 possible
values for the state of the S-system. In our work we always minimize the automata, and this
usually results in a significant reduction of the number of states. We can verify that Lemma 1 is
respected.

We will show how the propagation algorithm works with the following input:

δ(a, a′) = -x-- δ(u, u′) = ----. (3)

This correspond to a situation where an input difference must be absorbed through the operation.
We first build a graph with a copy of the transitions for each bit. Then for each bit, we remove

the transitions that are not acceptable according to the initial constraints (3). More precisely, we
only keep constraints that are subsets of -/- for the first and second bits, subsets of x/- for the
third bit, and subsets of -/- for the fourth bit. We get the graph of Figure 8, and we look for
paths starting for state 0 in the initial layer, and ending in any state of the final layer. (Note that
the least significant bit is on the left in the graph, but on the right when we write δx = -x--).
The nodes and edges involved in these paths are shown in black. We note that the constraints
are compatible because such paths exists, and we can count the number of paths to compute the
number of solutions: there are 4 different paths in the graph, so the are 4 different solutions to
System (2) satisfying (3). We can read the solution by following the paths:

δ(a, a′): 1n10 1u10 1n11 1u11
δ(u, u′): 1110 1110 1111 1111

Let us now do the constraint propagation. For each bit, we look at the active edges in Figure 8,
and we list the corresponding constraints for a and u in Table 4. The new constraints will be
the union of all the active constraints. We get the following output (we disregard restriction on
previous bits for bit 0):

δ(a, a′) = 1xx11-- δ(u, u′) = 11111--.

6

Here, the constraints on previous bits do not add any information, so we can omit them:

δ(a, a′) = 1x1- δ(u, u′) = 111- (4)

It is easy to verify that any solution to the System (2) satisfying the initial constraints (3) also
satisfies the deduced constraints.

2.5 Comparison with Previous Works

We show a comparison of our approach with previous methods in Table 3. We use the same
settings as [Leu12]:

1. a reduced Skein with two rounds and 4 words of 4 bits each;
2. a reduced Skein with three rounds and 4 words of 6 bits each.

These experiments show that using the full set of 2.5-bit constraints gives better result than using
the reduced set of [Leu12]. We also give timing informations1: our new approach for constraint
propagation is one order of magnitude faster that the previous method with a reduced set of
2.5-bit constraints, and somewhat slower than the previous method with 1.5-bit constraints.

Table 3. Experiments with a few rounds of a 4-bit Skein. We give the number of input/output differences accepted
by each technique, and the ratio of false positive.

2 rounds / 4 bits (total: 232) 3 rounds / 6 bits (sparse1)

Method Accepted F pos. Accepted F pos. Time2

Exhaustive search 225.1 (35960536) – 218.7 (427667) –
2.5-bit full set 225.3 (40597936) 0.13 219.2 (619492) 0.4 2.5 ms
2.5-bit reduced set [Leu12] 225.3 (40820032) 0.14 219.5 (746742) 0.7 50 ms
1.5-bit reduced set [Leu12] 225.3 (40820032) 0.14 220.4 (1372774) 2.2 0.5 ms
1-bit constraints [dCR06] 225.4 (43564288) 0.21 220.7 (1762857) 3.1 0.5 ms
Check adds independently 225.8 (56484732) 0.57

1 Weight 4 differences. The total number of input/output differences is
(∑4

i=0

(
24
i

))2 ≈ 226.75.
2 Average time to verify one input/output difference (over the false positives of the 1.5-bit reduced set).

3 Automatic Construction of Differential Characteristics

In order to build a differential attack for a hash function or a block cipher, an important task is to
build a differential characteristic. For the analysis of ARX primitives (and MD/SHA-like designs),
the characteristic is usually designed at the bit level. This turns out to be a very challenging
task because of the complex interactions between the operations, and the large number of state
elements to consider. This problem has been heavily studied for attacks on the MD/SHA family of
hash functions: a series of attack by X. Wang and her team are based on differential characteristics
build by hand [WLF+05,WY05,WYY05,YCKW11], while later works gave algorithms to build
such characteristics automatically [dCR06,SO06,FLN07a,MNS11,SLdW07].

In this section, we show that the multi-bit constraints can be used to design a successful
algorithm for this task on ARX designs. Our algorithm is heavily inspired by the pioneer work
of de Cannière and Rechberger [dCR06], and the more detailed explanation given in [Pey08]
and [MdCIP09].

1 The comparison is done with similar implementations.

7

3.1 Types of Trails

Differential trails can be classified in two categories: iterative and non-iterative. An iterative
characteristic exploits the round-based nature of many cryptographic constructions: if a trail can
be built over a few rounds with the same input and output difference ∆, then this characteristic
can be repeated to reach a larger number of rounds. In practice very few iterative characteristics
have been found for ARX constructions, because many design use different rotation amounts or
Boolean functions over the rounds, or a non-iterative key-schedule. Notable exceptions include
the attacks of den Boer and Bosselaers against MD5 [dBB93], and the recent work of Dunkelman
and Khovratovich on BLAKE [DK11]. In this work, we focus on non-iterative trails.

The main way to build non-iterated trails is to connect two simple and high-probability trails
using a complex and low-probability section in between. The choice of the high-probability trails
will depend on the attack setting, and should be done by the cryptanalyst using specific properties
of the design, while the complex section will be build automatically by an algorithm (or by hand).
When the characteristic is used in a hash-function attack, the cost of the low-probability section
can usually be avoided.

For instance, the characteristics used for the attacks on SHA-1 use a linear section build
using local collisions [CJ98,WYY05], and a non-linear section to connect a given input difference
to the linear characteristic. This general idea is also the core of the rebound attack [MRST09]: it
combines two high-probability trails using a low-probability transition through an S-box layer.

In our applications, we will use a rebound-like approach to connect two high-probability trails
with a complex low-probability section. Using rebound-like differential trails for ARX designs
has been proposed in [YCKW11], but the path they give has been shown to be flawed.

3.2 Algorithm

Our algorithm takes as input a characteristic representing the high-probability parts of the trail
∆1 → ∆2 and ∆3 → ∆4. The main part of the algorithm is a search phase which tries to fill
the middle part with a valid characteristic. We follow the general idea of the algorithm of de
Cannière and Rechberger, by repeating the following operations, as illustrated in Figure 1:

Propagation: deduce more information from the current characteristic by running the propaga-
tion algorithm on each operation.

Guessing: select an unconstrained state bit (i.e. a ? constraint), and reduce the set of allowed
values (e.g. to a - or x constraint).

When a contradiction is found, we go back to the last guess, and make the opposite choice,
leading to a backtracking algorithm. However, we abort after some number of trials and restart
from scratch because mistakes in the early guesses would never be corrected.

Our algorithm is build from the idea that the constraint propagation is relatively efficient to
check if a transition ∆→ ∆′ is possible. Therefore to connect the differences ∆2 and ∆3 from
the high-probability trails, we essentially guess the middle difference ∆′ and we check whether
the transitions ∆2 → ∆′ and ∆′ → ∆3 are possible.

This leads to the following difference with the algorithm of de Cannière and Rechberger:

– We specify in advance which words of the state will be restricted in the guessing phase, using
state words in the middle of the unspecified section.

– We guess from the low bits to the high bits, and we can compare incomplete characteristics
by counting how many bits have been guessed before aborting the search.

– Every time the backtracking process is aborted, we remember which guess was best and the
random guesses of the next run are biased toward this choice.

– We only use signed differences, i.e. we use the constraints -, u, and n.

8

???????????
???????????
???????????

∆4

∆3

∆2

∆1

Initial characteristic

???????????
???????????
???????????

Propagation

???????????
???????????
???????????

Guessing

???????????
???????????
???????????

Propagation

∆4

∆3

∆2

∆1

∆′

Final characteristic

Fig. 1. Overview of the search algorithm. We start with high-probability trails ∆1 → ∆2 and ∆3 → ∆4, and we
connect them through a difference ∆′

4 Application to Skein-256

In this section, we apply our algorithm to build characteristics for several attack scenarios on
Skein-256.

4.1 Short Description of Threefish and Skein

Fig. 2. Threefish-256 round

The compression function of Skein is based on the block cipher Threefish. In this paper we
only study Threefish-256, which uses a 256-bit key (as 4 64-bit values), a 128-bit tweak (as 2
64-bit values), and a 256-bit state (as 4 64-bit values). The full version of Skein has 72 rounds.
We denote the ith word of the state after r rounds as er,i. There is a key addition layer every 4
rounds:

er,i =

{
vr,i + kr/4,i if r mod 4 = 0

vr,i otherwise

where kr/4,i is the ith word of the round key at round r/4. The round function is shown by
Figure 2. The state vr+1,i (for i = 0, 1, .., nw) after round r + 1 is obtained from er,i by applying
a MIX transformation and a permutation of 4 words as following:

(fr,2j , fr,2j+1) := MIXr,j(er,2j , er,2j+1) for j = 0, 1, .., nw/2
vr+1,i := fr,σ(i) for i = 0, 1, .., nw

where σ is the permutation (0 3 2 1) (specified in [FLS+10]) and (c, d) = MIXr,j(a, b) is defined
as:

c = a� b
d = (b≪ Rr mod 8,j)⊕ c

9

The rotations Rr mod 8,j are specified in [FLS+10]. The key scheduling algorithm of Threefish
produces the round keys from a tweak (t0, t1) and a key as following:

kl,0 = k(l) mod 5 kl,1 = k(l+1) mod 5 + tl mod 3

kl,2 = k(l+2) mod 5 + t(l+1) mod 3 kl,3 = k(l+3) mod 5 + l,

where k4 = C240 ⊕
⊕4

i=0 ki with C240 a constant specified in [FLS+10], and t2 = t0 ⊕ t1. The
compression function F for Skein is given as F (M,H, T) = EH,T (M) ⊕M , where H is the
chaining value, M is the message, and T is a block counter. This follows the Matyas-Meyer-Oseas
construction for the compression function, and the Haifa construction for the iteration.

In this work, we only consider attack on multiples of four rounds, because the structure of
Skein is build with 4-round blocks with key additions in between. We describe attacks in three
different settings in Sections 4.4, 4.5, and 4.6. The attack are based on different kinds of trails
shown in Figures 4, 5, and 6, and examples of characteristics are given in Tables 10, 11, and 12,
respectively. All the characteristics have been verified by building a conforming pair.

4.2 Building Characteristics

To describe a differential characteristic for Skein with our framework, we write constraints for
each er,i value, and for the vr,i values before a key addition (i.e. when r mod 4 = 0). For each
round, we have 4 equations and 2 rotations, corresponding to two MIX functions. We also write
the full key schedule as a system of equations.

We note that the variables er,2j with r mod 4 = 0 are only involved in modular additions:
fr,2j = er,2j � er,2j+1 and er,2j = vr,2j � kr/4,2j . Therefore, we could remove these variables,
and write fr,2j = vr,2j � kr/4,2j � er,2j+1 using a three-input modular addition. In practice, the
propagation algorithm for three-input modular addition take significantly longer, so we keep the
variables, but we try to avoid constraining them since the multi-bit constraints can propagate
the modular difference.

Choosing the high-probability characteristics. In attacks setting with differences in the
key, we build the high-probability trails starting from a non-active state, with a low-weight key
difference. When we go through the key addition, a difference is introduced in the state, and
we propagate the difference by linearizing the function. If we have no difference in the key, we
start with a single active bit in the state and we propagate the difference for a few rounds by
linearizing the function. Most of our trails use the most significant bit as active bit in order to
avoid a few probabilities.

4.3 General Results

For the algorithm to work successfully, we need to find a delicate balance in the initial characteristic.
If the unconstrained section is too short, there will not be enough degrees of freedom to connect
the high-probability parts. On the other hand, if the unconstrained section is too long, the
propagation algorithm will not filter bad characteristics efficiently.

In practice, we can only build characteristics when we have a key addition layer in the
unconstrained part of the characteristic. This way, the algorithm can use degrees of freedom
from the key to connect the initial characteristics. In general it seems hard to find enough degree
of freedom to build a valid trail without using degrees of freedom from the key: for arbitrary
differences ∆2 and ∆3, we expect on average a single pair satisfying f(x+∆2) = f(x) +∆3 and
that would hardly be a differential trail.

In order to let the algorithm use the degree of freedom in the key efficiently, we use the registers
before and after a key addition as guessing points: vr,0, vr,1, vr,2, vr,3, er,1, er,3 with r mod 4 = 0
(as discussed above we do not constrain er,0 and er,2).

10

We find that the characteristics built by the algorithm are rather dense, and use all the
degrees of freedom in the state, and many degrees of freedom in the key. This is not a problem for
attacks on the compression function, but the characteristics are harder to use in attacks against
the full hash function, where fewer degrees of freedom are available to the attacker. We note that
this problem is less acute for attack against functions of the MD/SHA family, where the message
block is much larger than the state.

On the other hand, the trail of [YCKW11] built by hand by Yu et al. was quite sparse, but it
has been shown to be invalid [Leu12]. It remains an open question to see whether valid sparse
trails can be built.

∆3

∆2

∆1

∆0

Fig. 3. Previous trails:
rel-key, rel-tweak.

∆

∆

Fig. 4. Collision trails:
fixed key.

∆0

∆4

∆3

∆2

∆1

∆0

∆0

∆0

Fig. 5. Collision trails:
related-key.

∆7

∆6

∆5

∆4

∆3

∆2

∆1

∆0

Fig. 6. (Near-)Collision
trails: rel-key, rel-tweak.

4.4 Collision Attacks

We first study attacks with no difference in the key (i.e. the chaining value) so that they can be
applied to the full hash function. We try to build characteristics for a collision attack, therefore
we use the same difference in the initial state and in the final state so that they can cancel out
in the feed-forward2. We start with a low-weight difference in one of the first rounds and we
propagate by linearization through rounds 0–4 and backward through round 11.

We show an example of such characteristic in Table 10. This characteristic can be used for a
practical semi-free-start collision attack on 12-round Skein, and we give an example of collision
in Table 6.

Full collision attack. To build a collision attack on the full hash function, we have to deal
with the fact that the characteristic is only valid for a small fraction of the keys (i.e. a small
fraction of the chaining values). We use a large number of characteristics, and a large number of
random chaining values, in a meet-in-the-middle fashion.

Our experiments indicate that we can build characteristics with about 270 solutions for a
cost of 240. If we extrapolate this experimental result, we expect that it is possible to build many
2 We could build characteristics for 20 rounds if we consider near-collisions, but this would not work on the full
hash function because of the finalization step.

11

such characteristics. Let’s assume that we can build N characteristics for a cost of N × 240; each
characteristic has 270 solutions out of 2150 valid keys. In a second phase, we will hash M random
message blocks and test if they can give a collision using one of the characteristics. Out of the M
chaining values generated, we expect that M ×N × 2150−256 will be valid for one characteristic,
and M ×N × 270−256 values will actually lead to a collision after verification. An important step
of the attack will be to find for which characteristic a given chaining value can be valid, but this
can be done efficiently using a hash table indexed by the bits of the chaining value which are
imposed by the characteristics.

The optimal complexity is achieved with N = 273 and M = 2113. With these parameters we
only have to verify 280 valid chaining values, so the verification step is negligible. This gives a
collision attack on 12-round Skein-256 with a time complexity of 2114, using memory to store
273 characteristics3. We believe that this estimation is a safe upper bound, and that better
characteristics can be found be running the search algorithm for longer times.

4.5 Free-start Collision Attack

For a collision attack on the compression function, i.e. a free-start attack on the hash function,
we can use a difference in the key (i.e. the chaining value). We note that the key schedule of
Skein-256 repeats itself every 20 rounds when there is no tweak difference. Therefore, we build
trails with two inactive blocks as shown in Figure 5: the difference introduced in the initial state
by k0 cancels out with the difference introduced in the final state by k5.

We give a characteristic build using this idea in Table 11, and a collision pair in Table 7.

4.6 Free-tweak Free-start Near-collision Attack

Finally, we can use degrees of freedom in the tweak to reach the maximum number of rounds
possible. Previous works has shown that the key schedule allows to have one round without any
active key words if we use a difference in the tweak in order to cancel a difference in the key.
Using this property we can build a 24-round trail, and extend it to 32 round by propagating
the external difference for four extra rounds in each direction, as shown in Figure 6. This is the
approach used in [YCKW11].

We give a characteristic build using this idea in Table 12, and an example of pair following
the characteristic in rounds 4 to 28 in Table 8. This results in a low weight difference for the input
and output, with many zero bits in predetermined position. Moreover, we can follow the approach
of [YCKW11] and also specify a fixed characteristic for round 0 to 4 and 28 to 32. It costs about
240 to build a characteristic that allows 220 solutions, so we can estimate that the amortized
costs of building a valid pair for rounds 4 to 28 if about 220. Using the analysis of [YCKW11],
we would build a conforming pair for rounds 0 to 32 for a cost of 220+43+43 = 2119. That is
comparable with the complexity given in [YCKW11], but this work is based on an incompatible
trail.

Conclusion

In this paper we describe an algorithm to build differential characteristics for ARX designs,
and we apply the algorithm to find characteristics for various attack scenarios on Skein. Our
attacks do not threaten the security of Skein, but we achieve good results when compared to
previous attacks with low-complexity attacks in relatively strong settings. In particular, we show
practical free-start and semi-free-start collision attacks for 20 rounds and 12 rounds of Skein-256,
respectively.
3 To store a characteristic, we just need to store masks defining the valid keys, and one state in the middle (if is
not necessary to store all the intermediate constraints). Then, we can test a chaining value candidate by just
computing all the intermediate states and checking if we reach a collision. This would take about 4× 256 bits

12

This seems to be the first time complex differential trails are built for pure ARX functions
(as opposed to MD/SHA-like functions with Boolean functions). Since our approach is rather
generic, we expect that our technique can be applied to other ARX designs, and will be used to
evaluate the security of these designs against differential cryptanalysis.

Acknowledgement

We would like to thank Pierre-Alain Fouque and Thomas Peyrin for fruitful discussions about
differential characteristics and propagation of constraints.

Gaëtan Leurent was supported by the AFR grant PDR-10-022 of the FNR Luxembourg, and
is supported by the CRASH ERC grant from the European Union.

References

CJ98. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor,
CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 56–71. Springer, 1998.

Cra05. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

dBB93. Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Function of MD5. In Tor
Helleseth, editor, EUROCRYPT, volume 765 of Lecture Notes in Computer Science, pages 293–304.
Springer, 1993.

dCR06. Christophe de Cannière and Christian Rechberger. Finding SHA-1 Characteristics: General Results
and Applications. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2006.

DK11. Orr Dunkelman and Dmitry Khovratovich. Iterative differentials, symmetries, and message modification
in BLAKE-256. In ECRYPT2 Hash Workshop, 2011.

FLN07a. Pierre-Alain Fouque, Gaetan Leurent, and Phong Nguyen. Automatic Search of Differential Path
in MD4. ECRYPT Hash Worshop – Cryptology ePrint Archive, Report 2007/206, 2007. http:
//eprint.iacr.org/.

FLN07b. Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture
Notes in Computer Science, pages 13–30. Springer, 2007.

FLS+10. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon
Callas, and Jesse Walker. The Skein hash function family. Submission to NIST, 2008/2010.

KRS11. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for preimages:
Attacks on skein-512 and the sha-2 family. Cryptology ePrint Archive, Report 2011/286, 2011.
http://eprint.iacr.org/.

Leu12. Gaëtan Leurent. Analysis of Differential Attacks in ARX Constructions. In Asiacrypt, 2012.
LIS12. Ji Li, Takanori Isobe, and Kyoji Shibutani. Converting meet-in-the-middle preimage attack into

pseudo collision attack: Application to sha-2. In Anne Canteaut, editor, FSE, volume 7549 of Lecture
Notes in Computer Science, pages 264–286. Springer, 2012.

MdCIP09. Nicky Mouha, Christophe de Cannière, Sebastiaan Indesteege, and Bart Preneel. Finding Collisions
for a 45-Step Simplified HAS-V. In Heung Youl Youm and Moti Yung, editors, WISA, volume 5932 of
Lecture Notes in Computer Science, pages 206–225. Springer, 2009.

MNS11. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT,
volume 7073 of Lecture Notes in Computer Science, pages 288–307. Springer, 2011.

MRS09. Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 Is Weaker Than Weak: Attacks on
Concatenated Combiners. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 144–161. Springer, 2009.

MRST09. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of
Lecture Notes in Computer Science, pages 260–276. Springer, 2009.

MVCP10. Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel. The Differential Analysis
of S-Functions. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas in
Cryptography, volume 6544 of Lecture Notes in Computer Science, pages 36–56. Springer, 2010.

Pey08. Thomas Peyrin. Analyse de fonctions de hachage cryptographiques. PhD thesis, University of Versailles,
2008.

13

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

SLdW07. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions for MD5 and Colliding
X.509 Certificates for Different Identities. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture
Notes in Computer Science, pages 1–22. Springer, 2007.

SO06. Martin Schläffer and Elisabeth Oswald. Searching for Differential Paths in MD4. In Matthew J. B.
Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 242–261. Springer,
2006.

SSA+09. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Molnar, Dag Arne
Osvik, and Benne de Weger. Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA
Certificate. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science,
pages 55–69. Springer, 2009.

WLF+05. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In Cramer [Cra05], pages 1–18.

WY05. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer [Cra05],
pages 19–35.

WYY05. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Victor
Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer,
2005.

YCKW11. Hongbo Yu, Jiazhe Chen, Ketingjia, and Xiaoyun Wang. Near-Collision Attack on the Step-Reduced
Compression Function of Skein-256. Cryptology ePrint Archive, Report 2011/148, last revised 31 Mar
2011, 2011. http://eprint.iacr.org/.

14

http://eprint.iacr.org/

A Constraint Propagation

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

00/00 00/00
n0/n0

n0/n0

u0/u0

u0/u0

1 0/1 0

1 0/1 0

nn/nn nn/nn
0n/nn

0n/nn

1 n/1 n

1 n/1 n

u n
/1 n

u n
/1 n

00 /0
n

00 /0
n

n0/n
n

n0/n
n

u0/un

u0/un

10/1n

10/1n

uu/uu uu/uu
0u/uu

0u/uu

1u/1u

1u/1u

n u/1 u

n u/1 u

00 /0
u

00 /0
u

n0 /n
u

n0 /n
u

u0/u
u

u0/u
u

10/1u

10/1u
11/11 11/11
01/11

01/11

n1/11

n1/11

u1/11

u1/11

0
0 /0

1

0
0 /0

1

n
0 /n

1

n
0 /n

1

u0 /u
1

u0 /u
1

10/1
1

10/1
1

n
n /n

1

n
n /n

1

0
n /n

1

0
n /n

1

1n /1
1

1n /1
1

un/11

un/11

u
u /u

1

u
u /u

1

0u /u
1

0u /u
1

1u /1
1

1u /1
1

nu/1
1

nu/1
1

State Transitions

0 0
00/00−−−→ 0 0

n0/n0−−−→ 1 0
u0/u0−−−→ 3 0

10/10−−−→ 5

1 1
nn/nn−−−→ 1 1

0n/nn−−−→ 2 1
1n/1n−−−→ 5 1

un/1n−−−→ 8

2 2
00/0n−−−→ 0 2

n0/nn−−−→ 1 2
u0/un−−−→ 3 2

10/1n−−−→ 5

3 3
uu/uu−−−→ 3 3

0u/uu−−−→ 4 3
1u/1u−−−→ 5 3

nu/1u−−−→ 7

4 4
00/0u−−−→ 0 4

n0/nu−−−→ 1 4
u0/uu−−−→ 3 4

10/1u−−−→ 5

5 5
11/11−−−→ 5 5

01/11−−−→ 6 5
n1/11−−−→ 7 5

u1/11−−−→ 8

6 6
00/01−−−→ 0 6

n0/n1−−−→ 1 6
u0/u1−−−→ 3 6

10/11−−−→ 5

7 7
nn/n1−−−→ 1 7

0n/n1−−−→ 2 7
1n/11−−−→ 5 7

un/11−−−→ 8

8 8
uu/u1−−−→ 3 8

0u/u1−−−→ 4 8
1u/11−−−→ 5 8

nu/11−−−→ 7

Fig. 7. Transitions for System (2)

Table 4. Active edges in figure 8, and new deduced constraints.

i edges (δa/δu) a constraints u constraints

0 00/00, 10/10 00 ∪ 10 ≡ -0 00 ∪ 10 ≡ -0

1 10/10, 11/11 10 ∪ 11 ≡ 1- 10 ∪ 11 ≡ 1-

2 n1/11, u1/11 n1 ∪ u1 ≡ x1 11 ∪ 11 ≡ 11

3 1n/11, 1u/11 1n ∪ 1u ≡ 1x 11 ∪ 11 ≡ 11

0
0

0
0

0

1
1

1
1

1

2
2

2
2

2

3
3

3
3

3

4
4

4
4

4

5
5

5
5

5

6
6

6
6

6

7
7

7
7

7

8
8

8
8

8

0
0/0

0
0
0/0

0

1
0/1

0

1
0/1

0

1
n/1

n

1
n/1

n

0 0
/0 n

0 0
/0 n

1
0/1

n

1
0/1

n

1
u/1

u

1
u/1

u

0 0
/0 u

0 0
/0 u

1
0/1

u

1
0/1

u

1
1/1

1
1
1/1

1
0
1/1

1

0
1/1

1

0 0/0 1

0 0/0 1

1 0
/1 1

1 0
/1 1

1 n
/1 1

1 n
/1 1

1 u
/1 1

1 u
/1 1

0
0/0

0
0
0/0

0

1
0/1

0

1
0/1

0

1
n/1

n

1
n/1

n

0 0
/0 n

0 0
/0 n

1
0/1

n

1
0/1

n

1
u/1

u

1
u/1

u

0 0
/0 u

0 0
/0 u

1
0/1

u

1
0/1

u

1
1/1

1
1
1/1

1
0
1/1

1

0
1/1

1

0 0/0 1

0 0/0 1

1 0
/1 1

1 0
/1 1

1 n
/1 1

1 n
/1 1

1 u
/1 1

1 u
/1 1

u
n/1

n

u
n/1

n

n
u/1

u

n
u/1

u

n
1/1

1

n
1/1

1

u
1/1

1

u
1/1

1

u
n/1

1

u
n/1

1
n u
/1 1

n u
/1 1

0
0/0

0
0
0/0

0

1
0/1

0

1
0/1

0

1
n/1

n

1
n/1

n

0 0
/0 n

0 0
/0 n

1
0/1

n

1
0/1

n

1
u/1

u

1
u/1

u

0 0
/0 u

0 0
/0 u

1
0/1

u

1
0/1

u

1
1/1

1
1
1/1

1
0
1/1

1

0
1/1

1

0 0/0 1

0 0/0 1

1 0
/1 1

1 0
/1 1

1 n
/1 1

1 n
/1 1

1 u
/1 1

1 u
/1 1

F
ig.8.

G
raph

representation
of

System
(2)

w
ith

initialconstraints
(3)

(x
,x
′ ,
2
x
,2
x
′ ,
4
x
):

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

?
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
-
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

X
x

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

0
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
u

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

n
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

#
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

3
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
5
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
7
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
A

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

B
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

X
C

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

D
X

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
E

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

=
X

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X
X

X
!

-
-

-
-

X
X

X
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

-
-

-
-

<
-

-
-

-
-

-
-

-
X

X
X

X
-

-
-

-
-

-
-

-
X

X
X

X
-

-
-

-
-

-
-

-
>

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
X

X
-

-
X

X
X

X
-

-
-

-
X

X
X

X
-

-
X

X
X

X
X

X
X

X
U
X

X
-

-
X

X
X

X
-

-
X

X
-

-
-

-
-

-
X

X
-

-
-

-
X

X
-

-
X

X
X

X
N
X

X
X

X
-

-
X

X
-

-
-

-
X

X
-

-
-

-
-

-
X

X
-

-
X

X
X

X
-

-
X

X
/
X

X
-

X
X

-
X

X
-

-
X

-
-

X
-

-
-

-
X

-
-

X
-

-
X

X
-

X
X

-
X

X
\

-
-

X
-

-
X

-
-

-
-

-
X

X
-

-
-

-
-

-
X

X
-

-
-

-
-

X
-

-
X

-
-

V
-

-
X

X
-

-
-

-
X

X
-

-
X

X
X

X
X

X
-

-
X

X
X

X
-

-
X

X
-

-
-

-
M

-
-

-
-

X
X

-
-

X
X

X
X

-
-

X
X

X
X

X
X

-
-

X
X

-
-

-
-

X
X

-
-

T
ab

le
5.

C
on

st
ra
in
ts

id
en
ti
fie

d
in

[L
eu

12
]a

nd
w
ri
tt
en

as
fu
ll
2.
5-
bi
t
co
ns
tr
ai
nt
s.

B (Near-)Collision Pairs for Skein-256

Table 6. Semi-free-start collision for 12-round Skein-256. This pair is the same as given in Table 10.

Input 1 Input 2 Difference Weight
m0 97c787b0252f1bef 97c787b0252f1bef 0000000000000000 0
m1 9ba673bd9a918263 9ba673bd9a918263 0000000000000000 0
m2 59f24b2909ae5223 59f24b2909ae5223 0000000000000000 0
m3 963151773356523a 963151773356523a 0000000000000000 0
t0 0000000000000000 0000000000000000 0000000000000000 0
t1 0000000000000000 0000000000000000 0000000000000000 0
v4,0 b9ded48b4e413597 39ded48b4e413597 8000000000000000 1
v4,1 5a63d56d9481f1d6 5a63d56d9481f1d6 0000000000000000 0
v4,2 0accb31ed067ae77 0accb31ed067ae77 0000000000000000 0
v4,3 734e405bed9d64cc 734e405bed9d64cc 0000000000000000 0

Output 1 Output 2 Difference Weight
e16,0 f3424f9d5f6d8c50 73424f9d5f6d8c50 8000000000000000 1
e16,1 74a4ddb5e6e65d54 74a4ddb5e6e65d54 0000000000000000 0
e16,2 bc4c51d904f3425d bc4c51d904f3425d 0000000000000000 0
e16,3 b511e49ca126be77 b511e49ca126be77 0000000000000000 0

Table 7. Free-start collision for 20-round Skein-256. This pair is the same as given in Table 11.

Input 1 Input 2 Difference Weight
m0 5f977cfdd64d2f57 5f977cfdd64d2f57 0000000000000000 0
m1 35839193022be6f4 b5839193022be6f4 8000000000000000 1
m2 05e168930700458f 85e168930700458f 8000000000000000 1
m3 6f47d57f8b6f9b78 6f47d57f8b6f9b78 0000000000000000 0
t0 0000000000000000 0000000000000000 0000000000000000 0
t1 0000000000000000 0000000000000000 0000000000000000 0
v0,0 627f37f95152438c 627f37f95152438c 0000000000000000 0
v0,1 0532b3fdf499d0d7 8532b3fdf499d0d7 8000000000000000 1
v0,2 91c792ab31ba535c 11c792ab31ba535c 8000000000000000 1
v0,3 72e80ac1aaee8118 72e80ac1aaee8118 0000000000000000 0

Output 1 Output 2 Difference Weight
e20,0 6627a3d5c18e2057 6627a3d5c18e2057 0000000000000000 0
e20,1 7a1eeeee92b2202d fa1eeeee92b2202d 8000000000000000 1
e20,2 2bf3a5067fac9218 abf3a5067fac9218 8000000000000000 1
e20,3 b0ccc2f709dc2e35 b0ccc2f709dc2e35 0000000000000000 0

Table 8. Pair of input with low-weight difference for 32-round Skein-256. This pair is the same as given in Table 12; we
don’t specify how the differences are propagated in rounds 0 to 4 and 28 to 32.

Input 1 Input 2 Difference Weight
m0 edb22ce30810011a edb22ce30810011a 0000000000000000 0
m1 08142e9044b0054a 08142e9044b0054a 0000000000000000 0
m2 1e06bd5779535f97 1e06bd5779535f97 0000000000000000 0
m3 82a5e785e5c5b836 02a5e785e5c5b836 8000000000000000 1
t0 0000000000000000 8000000000000000 8000000000000000 1
t1 0000000000000000 0000000000000000 0000000000000000 0
v0,0 c0097c86ad089acd c0decb29fae7a20d 00d7b7af57ef38c0 35
v0,1 0eef94c587c9f8fc 91efc569f9eaf0fc 9f0051ac7e230800 23
v0,2 a5333c6b7af97e18 a272f89740fdbae4 0741c4fc3a04c4fc 28
v0,3 49df6d34f9ebc32f cc9f6d0935eb8663 8540003dcc00454c 19

Output 1 Output 2 Difference Weight
e32,0 650f11ac87162f96 650f119c82f63796 0000003005e01800 9
e32,1 22ed455a3e3dd26a e5f12d8d8431cafa c71c68d7ba0c1890 28
e32,2 ef0d1179583e8671 ed0d118994327e51 020000f0cc0cf820 17
e32,3 5de99dad57671f6a 5ec99dbd5347076a 0320001004201800 8

C Differential Characteristics for Skein-256

The characteristics given in Tables 10, 11, and 12 follow the general structure described in Figures 4, 5,
and 6. For more details of the attacks, see Sections 4.4, 4.5, and 4.6, respectively.

We use the following colors in the characteristics:

– red constraints for active bits;
– green constraints for inactive bits;
– orange constraints for carry bits (inactive if the previous bit is inactive);
– blue constraints for other situations.

The most common characteristics are given in Table 5, while the unusual one are assigned a two digit
code, and given in Table 9 in hexadecimal notation. The 32-bit hexadecimal values correspond to the
columns of Table 5; for instance the constraint N would be represented by f30c0cf3. The two-digit
codes are just used as shorthand so that all the information for the trails fit in the tables.

When using those characteristics, we start with the middle state given by the characteristic, we select
a key satisfying the key constraints, and we check the remaining rounds. Therefore, the probabilities
given for the upper rounds are probability in the backward direction, while probabilities in the lower
round are in the forward direction.

When the tweak is not given in the characteristic, it should be taken as zero.

Table 9. Description of the uncommon constraints used in the characteristics

Sym. Mask Sym. Mask Sym. Mask Sym. Mask
0
0 00fff200 0

1 00f08f00 0
2 0001ff00

1
0 cf003000 1

1 000c0cf3 1
2 cf300000 1

3 f00f0ff0
1
4 0f00f000 1

5 00f0f00f 1
6 cf303000 1

7 c030000f
1
8 8030004f 1

9 c330000f 1
a 0ff0100f 1

b 00f0000f
1
c 003030cf 1

d 810c0cf3 1
e 000030c0 1

f 000f0ff0
2
0 730c00f2 2

1 cf3030cc 2
2 0ff0f00f 2

3 f30c04e0
2
4 0000f00f 2

5 030c0000 2
6 0ff00000 2

7 0f102000
2
8 0400f008 2

9 0f00f00f 2
a f00f0000 2

b 000030cf
2
c cf3030c0 2

d c0300000 2
e 00000cf3 2

f 830c00f2
3
0 030c0c03 3

1 00000ff0 3
2 0f0030c0 3

3 c03030cf
3
4 c03030c0
4
0 3001cf30 4

1 30c0c030 4
2 0cf3f300 4

3 00f3f30c
4
4 00f0030c 4

5 000f00f0 4
6 0cf30000 4

7 30c04f00
4
8 00f3000c 4

9 0000c030 4
a 30cf0000 4

b 0c03f200
4
c 00cf0030 4

d 00cf8030 4
e 0c030000

5
0 8000004f 5

1 8f0000ff 5
2 f000004f 5

3 010000f2
5
4 ff000081 5

5 4f0000f2 5
6 f00000ff 5

7 4f0000f0
5
8 f200004f 5

9 810000ff 5
a 800000ff 5

b ff0000f2
5
c f200000f 5

d 0f0000ff 5
e ff000080 5

f 020000ff
6
0 f2000001 6

1 ff0000f0 6
2 ff00000f 6

3 f10000ff
6
4 4f0000ff 6

5 420000ff 6
6 ff000040 6

7 ff000002
6
8 0f0000f2 6

9 0f0000f1 6
a 4f000080 6

b 010000ff
6
c ff00004f 6

d 4000008f 6
e ff0000f1 6

f ff000004
7
0 080000ff 7

1 ff000001 7
2 04000008 7

3 ff00008f
7
4 f20000ff 7

5 ff000042 7
6 f1000002 7

7 ff000082
7
8 410000ff 7

9 280000ff 7
a f200008f 7

b f100000f
7
c 8f000040 7

d 82000041 7
e f100008f 7

f 400000ff
8
0 8f0000f2 8

1 4f0000f1 8
2 f000008f 8

3 40000080
8
4 820000ff

Table 10. Collision characteristic for rounds 4 to 16. 2144.1 valid keys, probability 2−71.1

Can be used for near-collisions for rounds 0 to 20.

Constraints Prob. Example
m0 -001!==5

0
5
1-5

2--------------------000100105
3
5
4-5

2----5
5----5

6----------- 97c787b0252f1bef
m1 1001101115

7-----0011100111011110110011010!5
8-----5

9---------------- 9ba673bd9a918263
m2 -101!=!---5

a--------------------15
b---------5

a---------5
c----------- 59f24b2909ae5223

m3 -001011000-----5
d----5

c-----15
b---15

e-----5
f1------------6

0---06
1
5
2
5
1---0 963151773356523a

m4 -1011000!==5
a---1111-01011000100105

e----05
7-----------6

2
5
c---1!5

0
6
3---1 d873f5892cba83b7

e4,0 x--- 0.0 55854848e8d2b7fa
e4,1 -- 0.0 b45620969e3043f9
e4,2 -- 0.0 a0fe049603be00b1
e4,3 -- 0.0 4bc235e51a57e884
e5,0 x--- 0.0 09db68df8702fbf3
e5,1 -- 0.0 d86feb73899182ff
e5,2 -- 0.0 ecc03a7b1e15e935
e5,3 x--- 0.0 24e70858746a57b2
e6,0 x--- 0.0 e24b545310947ef2
e6,1 x---1-----u----------- 0.0 6122c59537fb62a9
e6,2 x--- 0.0 11a742d3928040e7
e6,3 x---0------------5

1-------- 0.0 82f4a248ea489c96
e7,0 --u-----0----- 2.0 436e19e8488fe19b
e7,1 ----------1---------0------------10115

2
6
1---n--------------------6

d 0.0 06a1773b59686055
e7,2 ------6

2-------------0---=-6
b----6

0-6
c----6

0------------------------1 0.0 949be51c7cc8dd7d
e7,3 ------n-------------0---=-1----0-0011100!-----------n-----u6

e---1 0.0 e6ea92fe1c500c11
v8,0 -10016

8
6
8---0--------------------5

3----------n---------u----------- 1.0 4a0f9123a1f841f0
v8,1 -11001n111-----6

e----u-----u6
4---16

1-----n5
2------------n---!7

0n5
1---0 1.3 67d6740b7ff27b70

v8,2 -11110n1!==5
8---0!==-1000000110105

3
5
4----05

5-----------6
fn---10u5

b---0 1.0 7b86781a9918e98e
v8,3 -0010011--n--------------------0101001116

1-u---------u----------- 0.4 1367f176a75936cb

e8,0 101001000000000111011100010011001010101110n001101001u10000010011 a401dc4caba69413
e8,1 111111n0000001111100u10110u00010101100n1010010001100n10110n01010 fe07c582b348cdaa
e8,2 010100n111111010011011011010001111000101110100110110n10101u00101 53fa6da3c5d36d45
e8,3 1010101100n0111101111001001001101100110010u010000101u01010111100 ab2f7926cc8852bc
e9,0 101000n0000010011010u00111u01111010111n011n011110110000110n11101 a209a1cf5eef61bd
e9,1 100001n000u011110010101001u000101100u00011n001110110101100101110 860f2a42c0e76b2e
e9,2 111111n100n0100111100110110010101001001001u110111100000000u00001 ff29e6ca925bc001
e9,3 010100110110n0010000n101u0u111010110110110u0u10111011110u0n11100 53690d1d6d85de3c
e10,0 0010nu0000u11000110un1000u01001000unn1n11n0101101100110011n01011 2818cc121fd6cceb
e10,1 0u1010n0uunnu1000010uuun1nnnnnu1n1uuununuu11n0101u0n0101n000000n 2a3421fdc53a9581
e10,2 010100n0nuunu010111nuunn1nn0unnnnnnnnnnnnn10u00110011110u0111101 5292f3e7ffe19e3d
e10,3 1001nu1011n1000010nun1u01n10000010nnn0111n111010n10000n010u11101 9af0ace0bbfac29d
e11,0 un0nuunu0n00n10unnn0nn10uu0un1n11n100n0nu00nu001unnu00nuu1n01nuu 524cee0fe511626c
e11,1 0u01u1n101uuu0u1001111ununu1uu10010un01101110u0unuuuuuuuu11uu001 17413d524b708061
e11,2 1110n1u1n0uuu01110n000uunnu0100010nnn01111unnnuuu1nuuuuun1u11010 ed83a0c8bbdc60da
e11,3 1un01100101u1nn00111u011unuu01u100100n0n10uuu10uu111nuuuu1n11100 acae73452584787c
v12,0 u11010un1000nnn00un0n0n1unnu001uuu1100uu1uuuuuu1nnnu00nu1100n10n 698e2b623081e2cd
v12,1 u010nun0nunn1101000nnun1nu0nnuu00n110nuu10101110101n00011n110010 2abd1b9874aeb1f2
v12,2 10u1n01uuu11001uuuu1u1u0uu0u11u11n100u0nun10000u1101nuu101010110 9a32140de160d956
v12,3 nu000u011u10nuu1100u0uun0unu10n1un0111nunu01000n1110111011101111 81a9812b5e91eeef

e12,0 -nnnnnnn11
0UMNVM1

1NNVM4
0UMNN4

1
1
2
4
2N1

3x11
4
4
3NNN1

3
1
5
4
4VUUUUMVMNVMV1

6UMV1
7
1
8
1
9
1
ax--n 2.0 ffbf7cd963d83507

e12,1 -uuuuunnuunn---nuuu-u0unuun0uuu1nu----0n-----------n7
1---nu15

b---1 1.6 03311121a16935a9
e12,2 -unnu04

5
1
b
1
cM1

dNNNVUUUMVMVMVUM1
3x---uuu00un1

e
4
6
1
fx2

0NNN1
3
4
7UUUU2

1
2
2x--------- 0.5 31f99bbe068ff545

e12,3 uuunnn01un-----nnnnnunu0nnnunuuunn11nuu1uu-----n---------------- 1.0 1d4ff4e8f9237155
e13,0 xuuuuunun1----u0----6

3-----n----nu0----u-unuuuuununn---nunu7
2n-uuu 19.7 02f08dfb05416ab0

e13,1 xunnnnunu0----n1----7
3----------011000nunu-----uunuuunnnnunuununn 2.2 bd0f720cc52c8f4b

e13,2 -nu011n10-----0----------------unnnnnnn11-----11011001n010011010 19.5 4f4990a6ffb3669a
e13,3 -1u000u11-----1-----------0----001----n-01000111000---001001-010 1.0 41b25f9057470892
e14,0 xnuuuuuuuuuuuuuuuuuuuuuuuuu----1n1----!-!-----!====---unnnn=-011 14.9 c0000007ca6df9fb
e14,1 --1-----------------------u----100------------11-!6

1---1100n!---- 0.0 b502f54326734b37
e14,2 -001000!------------------1----101----5

3-5
c-----10!=5

a---n1001!-100 1.0 90fbf03756fa6f2c
e15,3 -11000111101001011-01111010-----00---------------!=---u0101----- 0.0 e3d2ef4416eec8b0
e15,0 x-1----------------------------0n1------------01-5

5----01005
5
5
b---- 1.0 7502f54af0e14532

e15,1 -0100---------------------------u1---------------6
8----1101------ 0.0 a5cb64c941d1c367

e15,2 -1110105
7------------------------01---------------5

7----11115
5----- 1.0 74cedf7b6de937dc

e15,3 --------------------------------1----------------------=6
1------- 0.0 abd6fe9ffc78881e

v16,0 x-5
e-----------------------------0---------------------00!------- 0.0 1ace5a1432b30899

v16,1 -- 0.0 dcdd5605c1b74165
v16,2 --------------------------------6

2----------------------5
2-------- 0.0 20a5de1b6a61bffa

v16,3 -- 0.0 5b1f997397786c50

Table 11. Free-start collision characteristic for rounds 0 to 20. 256.7 valid keys, probability 2−43

Constraints Prob. Example
m0 -1-1-11110016

a
5
9-----1116

a--1111!--5
d-010-1001001-06

1----111!--01!==- 5f977cfdd64d2f57
m1 x0-1010110000!-110010001100100110-000-1000101!=7

1----0115
3--110!=- 35839193022be6f4

m2 x0-0-101-=-0-------0106
a--0010-----000-=!7

4---0-5
1-----010---006

4--- 05e168930700458f
m3 -11011110!-0!==5

8---1010101111-1110001-1106
8--11111-01101101116

4--0 6f47d57f8b6f9b78
m4 00011011!=-000110100101101011-00111100!==7

1--01010000110101115
b--0 1b634b58f1f50d76

e4,0 x--- 0.0 dd5113862e4682f2
e4,1 x--- 0.0 976b12a915df1438
e4,2 -- 0.0 2682e7ab2b50853e
e4,3 -- 0.0 c21caeeb08ac00af
e5,0 -- 0.0 74bc262f4425972a
e5,1 -- 0.0 f9c797c9b7c5d83b
e5,2 -- 0.0 e89f969633fc85ed
e5,3 ---------------------------------------n------------------------ 0.0 26979807350b410f
e6,0 -- 1.0 6e83bdf8fbeb6f65
e6,1 --------------7

4
5
d----11-----u----7

7
6
e-----x------5

5-----!----------- 0.0 76b75dcddd173495
e6,2 ---------------!6

c-------6
8--1-----------n------------------------ 1.3 0f372e9d6907c6fc

e6,3 ---------==5
9---10-------!---7

3-----7
8----5

a--!=6
4---=----------106

1-- 0.7 188d43891e190294
e7,0 ---5

4----------------6
4
6
1----0u-----1----7

9
0
0
6
e-----------5

5-----=5
6---- 2.5 e53b1bc6d902a3fa

e7,1 --==7
a-7

b
6
d
6
3---7

8-------!!6
c---!=---------010

1-7
c-6

2-------!!6
5---1000--- 0.0 c583f4662226eac0

e7,2 00106
a-=5

c
5
d---01000-11001000!5

2---!-000011n05
e--0005

5---010011006
4---0 0.3 27c472268720c990

e7,3 10110-00=---00!==-000110101n---1-n10111u01-10n16
1---111110010--00 0.0 b0e1c6b1ee76ff28

v8,0 -0-0-016
8-6

a-5
a-------!==5

0--01u1-----==5
0-6

8
5
3
5
b---5

e-------==5
a---==6

c--- 2.6 aabf102cfb298eba
v8,1 -u11011u11-10u06

1---00111111n0-001n000-01!7
1--0n!==-001110000u6

4--1 0.1 36d0c7f0c5760e09
v8,2 1101100010-0011000111000110n!-000n110101!5

2--0n111100100010116
4--0 0.0 d8a638d87597c8b8

v8,3 -=-!-00u100115
b-----110!--11u11--5

5-===-1010101-15
b----1015

3--011!=- 0.4 8899faec3eaa7adc

e8,0 n01100001010000001111000110u000000000010001010011101010001001001 b0a078c00229d449
e8,1 1u10011u00011u0010011101011n00000n01000011100n0110101001100u0001 a6189d7050e5a981
e8,2 111101000000100110000100001n00010n10011110001n001101011000101110 f4098431678cd62e
e8,3 1110100u0011000101110111111u101000010100111101111010101000110101 e83177ea14f7aa35
e9,0 0n01011u10111u0100010110001100000n01001100001n1101111101110u1010 56b91630530f7dca
e9,1 1010101n110n000011101000111011001n01011010110u010110100u01010010 abd0e8ecd6b16852
e9,2 1101110u0011101011111100000110110n11110010000n001000000001100011 dc3afc1b7c848063
e9,3 0n11000n11100101000u00100000100n0u11100101101111000n01000n0u110u 71e50209396f144c
e10,0 uu000010nuuu1u01111111110001110nu0101001110000001110011u00un1100 0289ff1d29c0e61c
e10,1 nnu101n0n1nnnn0uuunn010000n00uuu101001n1n00uuu01010u10101000unnn d6fc3420a7814a87
e10,2 0n00111000unnnnnnnnn111000100nuu10110101111nuu11100n010010n0nnnn 4e1ffe24b5f394af
e10,3 nu0u0111nunu0u11010u001u0001001nn010011100001n011000110n0uuu1010 87a34213a70d8d0a
e11,0 11u1nuun10uuu11uuunn0011001nn10nn10nuuunu10uuu100unn000u101u0unn d986333dd14230a3
e11,1 n1un1u00u1uu1n1u0n0u101unu1nnn1n1nnn1n1uunu0u01n00nn0010uu0111nu d84e4abffe43321e
e11,2 n1un0101n1uu0u1101u0000u0011nu0uu101110nuuuuu00100nu000n1u1110un d5c340385d0121b9
e11,3 11uunu01n1unu101n1nnuun1100n100un00nu0101un0nu0n01u0nnnunun1nuun c9d5f39892a94eb9
v12,0 nu1n00u11nu1unu0u1n111un1nnnn1un110u1n1n1000un0n01n00un01n0u0001 b1d47dfdcf8562c1
v12,1 nn00n010nu1nu0001nn00100n110n00nn10nunun00010100uu000011011u000u cab0e4e9d5140360
v12,2 nu011n1n1uunnu0nu01nuu1n1nu1uuu01110n111101u1unu011100u001n100n0 9f9933d0efaa7072
v12,3 1u111u00uu011n01u01un010uu0u0u1uu0u0u11111n0u0nn00nuuuu100u11un0 b81d2a0207e3211a

e12,0 xunu00u!==-nn1
4
4
8
2
3V2

2x10unn0nnnn-un01un2
4xnu16

b--2
5
4
9
2
6>=-1nnnn000nn6

4--1 0.0 211c537d5af4fe39
e12,1 nnnuu1nuuu-nunuuuunnuuuuunuuu-nunnuuu1nn05

e--1001uu01000011un5
b--u 0.0 e6143042c70910d6

e12,2 2
2<-1-n1n0u14

5
1
b
4
7U2

2x--nu4
a
2
7x-nuu12

8x-2
9xuuu-unnnnn2

ax2
b
4
bNN1

3xnnn2
b
2
2xu01

e
2
6>- 0.5 ff30b0cec5f79fc9

e12,3 -n-unnunnunuuu-ununnnunnnuunununu-uun-nuuuuun1nn----nuu0--u100u- 0.3 eda0bb950a0f0811
e13,0 xuuu0nnnuunnuuu6

1---000111nuuuuuuu0100-unnnnnnnnuu-uunnnnuuuunnnn 7.1 073083c021fe0f0f
e13,1 xnnn1uuunnuunnn5

d---11100010000000-00101101000-nnnnunuuuunnnnuuuu 5.4 f8cf7c400b47d0f0
e13,2 x110-1001101u00----unn0--n100u--n-unuuuuuuuuu-101010011111011010 11.2 ecd16c63d006a7da
e13,3 -000-0101011n11----1000nnnnuuuunnuu---000011u0100-10011101101111 0.0 82be91e18c32276f
e14,0 xuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu-1!=-0101000-!==-01111111111111 3.6 000000002d45dfff
e14,1 -00----0100100011110011---000=--05

d=---100100=-1==-11-111-1100010 0.0 8691e6867e4e3762
e14,2 x116

1-111100unnnnnnnnnnn--1000!--u5
6!---000011!-0!=-00111101001001 4.4 6f8ffe455c38cf49

e15,3 -11101000011110000-111n00011001116
4----1001010-!==-0-11010010111- 0.3 f43c3e33f255dd2e

e15,0 -00----0100100011110011---000=--n5
b
6
b---111005

7
6
1-6

1=6
2-01-111-1100001 0.6 8691e686ab941761

e15,1 -1!6
1-1110017

4----10-0100--==-7
d---u7

4----010--16
1-1=5

6-!-00110111-==- 0.0 ef30a90e0533a378
e15,2 x1!6

2-0111100110000-1110--111!=--u5
b----1010005

d-1!5
6-!-11000111!==- 0.7 63cc3c794e8eac77

e15,3 -00----01----0111010000---011---n-5
9---16

1!---5
6-6

2!6
2-!--==--0-111-0 0.0 0c8ba11cb26d2fbc

v16,0 -5
0-----11!5

c-----!=-!==----5
c-----------0!5

a-----6
e
5
8--5

0--01!-1!5
6-00- 0.0 75c28f94b0c7bad9

v16,1 -------7
3------5

6!-----------6
a------------------7

3
7
e--6

4--!-----01--- 0.0 c23af22a0c707d2f
v16,2 x5

0
6
3----06

8----1111!-1116
4---05

3
5
4---------6

a
5
1
5
c-----6

3
5
8--6

c--!6
0--0-105

3-- 0.0 7057dd9600fbdc33
v16,3 x------01-----------=!----5

6-----------1=7
f------------01---!----- 0.0 70f12cec5ff713d7

Table 12. Free-start, free-tweak, (Near-)Collision characteristic for rounds 0 to 32. 244.9 valid keys, probability 2−25.1

Constraints Prob. Example
k0 -11011011011001000101100111000110000!===6

2-010000000000010001!-10 edb22ce30810011a
k1 00001000000101000010111010010000010001005

d-1100000000010101001010 08142e9044b0054a
k2 -0!6

0-5
2-5

4--5
2------01111016

1-0!-111!===5
6-6

8---08
0--11--011111!6

2-10-11 1e06bd5779535f97
k3 >====6

0-5
c--6

3----1111001111000010111100-0111000101--11100006
1-1!-10 82a5e785e5c5b836

k4 x-!5
8------5

e------10000116
1-1=-011!==-------08

0--10--1110017
4--1--11 62d4437b79caf9d3

t0 u000 0000000000000000
t1 00 0000000000000000
t2 u000 0000000000000000

e12,0 x--- 0.0 87ad0104ef83d5a7
e12,1 -- 0.0 da552a21bd36c3ad
e12,2 -- 0.0 d9fd1666ce2e3e47
e12,3 -- 0.0 980fe1445c75f41a
e13,0 x--- 0.0 62022b26acba9954
e13,1 -- 0.0 cae71f9e1abbf0e9
e13,2 -- 0.0 720cf7ab2aa43261
e13,3 x-----------------------!6

2------------------------------8
2------- 0.0 217846a1f70e3300

e14,0 x---5
6----------- 0.0 2ce94ac4c7768a3d

e14,1 x-----------111!5
6-------=-------------------00106

a
6
3--u5

8--01------ 0.0 17ef213dc2826776
e14,2 0

2------5
1--00!5

a---!-116
716

a
5
1-----------6

0---5
d-1!5

2----6
b--5

c----------- 0.0 93853e4d21b26561
e14,3 n------0110100---0-110==6

2-------0---=---100106
5---0--=----------- 0.0 d0d3387d00910c93

e15,0 ------------------101!5
6----5

8--!5
8------------------11u06

a
6
3--15

5--11 1.0 44d86c0289f8f1b3
e15,1 !=5

d-------0---=---010016
5---0--01----------n------1000101---1-010 0.0 7b18528906b7453a

e15,2 01100!=6
c--011000011101101100!-!=-01000106

1-0000110111000111110100 0.0 645876ca224371f4
e15,3 100111u5

b--000111110100001000!-10-1111110111100101111n00000n01110 0.0 9c87d0867ef2f82e
v16,0 --=6

c------1------01111105
d-8

30-011!=7
1-------n7

7--00--11u115
3
6
3--0--01 0.5 bff0be8b90b036ed

v16,1 -11111n0000100101011n11101n11110001111u15
d-1100011011n01010n0!-00 0.0 7e12bf7e3db1baa4

v16,2 000000u01110000001000111010100001010000!6
2-1101100110n01000n00010 0.0 00e04750a1366a22

v16,3 -015
3-5

8-5
b--u------11110115

d-11-00111106
1-6

b---n5
b--=6

0--10u100!5
6-0!-00 0.9 b947fbb1eba86464

e16,0 u01000101100010100000010000001110000101001n110110011u00011000000 22c502070a7b30c0
e16,1 011010n1110001001110n10001n00001010001u1110000011011n01110n11110 6bc4ec6145c1bbbe
e16,2 u00010u011110100011101011110000011100101111001100110n11101n01100 08f475e0e5e66f6c
e16,3 1101011101u0111010111001000010010110010011n110111100u01111111111 d74eb90964fbc3ff
e17,0 n00011n0100010011110n11001n01000010100u000n111001110110001n11110 8e89ee68503cec7e
e17,1 u10110u101u010100100101000u100011000n00100u111011110010000100101 594a4a11891de425
e17,2 n11000u001u0001100101110111010100100101011n000100011001101n01011 e0432eea4ae2336b
e17,3 n01101011001u0011011n111u0u110000011111011u1u01101110110n0u01111 b591bf183ed3768f
e18,0 1110011111u101000011n000011110011101n0u1010110101101000010n00011 e7d43879d95ad0a3
e18,1 1u0010nu10n1n111110un101u1nn110u1u1110011100n0000u0u1111u001011n 8abfcd7cb9c80f17
e18,2 100101u111u1u1001110n110u0u00010100010011011u10110101001n1111010 95d4ee0289b5a9fa
e18,3 1010010110u0u00110n0n1u0110111010111n00001000010u10000u101n11101 a581acdd7842417d
e19,0 un1100nu100nu100000001unn1nn011u1u0nuun100nuu01unnu1nnnnn0n110nu 729405f69322dfba
e19,1 01111uu10uun01n1nn1u0nnnu10uununnu0u00uuun0nnu1nu0110nnuu0u0n111 7917e745805b360f
e19,2 00111un1unun0110nuun1unun11uuuuuuuuuu0unnnnn0nnnn1101unnu1n10111 3b569ae001f7eb77
e19,3 n10un1uun1uun00011100uunn11nu00n000nnuu0n11uu1111uuuu0uuu1u1nnuu ccc8e1f118e7805c
v20,0 nn1un0nn1u1un0n1nn1un1u1001nnnu000un00nnun1nnnnuuuun0n011100n00n ebabed3c137e15c9
v20,1 0u01unu011101nnn0n1nu1n1un00n0u01uu0uu1n1n0uuunnunun010111nnu0u0 14ef774883c355f0
v20,2 u00unu0u0001n11101n1nnuu11unu00n000nn0n01n0nnnnn011010nn110nu01n 081f7cd11adf6bd3
v20,3 110u1u0n0101011100u0u10nnuu01n000u01n0000uu1nuuu1101010u0010u11u c957058c1818d426

e20,0 xn011uunununnn1u0uunnun0000nn1n100un10nn5
d-uunnnuuuun0n10111

4
1
b<-1n 0.0 d95e1a1f1b8e16e3

e20,1 uuunnnunuuuuuunnnunuu10nnn01n0uunnuun0uu6
1-nnuunnunun101100n1nun0 0.0 1d03a5d8c8735b3a

e20,2 -014
c
2
2
4
4N4

dUU2
c
2
2x----0n1n01

4<6
2-1u-uuu1

e
2
d
4
e
2
e
1
fx4

aU2
2xn2

fN3
0
3
1>--0010nn3

2
3
3
3
4
2
6>-nu 0.8 26263a289432cb6a

e20,3 u10u1u-n--7
3----unnnunnu1uuunuuunnn11n-unnnu111nu--00110u!5

6-0u-un 0.3 4bfced11fdde8c61
e21,0 xnnn0nnuunnuuuu11unnnnnnnnn1unnnn1nuunuuuuuuuuununnnuunuuuun1-un 1.6 f661bff7e401721d
e21,1 xuuu1uunnuunnnn000111111111110000000u-0-------uunuuunnunnnnunuuu 5.6 899e3ff805e88de8
e21,2 -nn1-01000nuu01--01001n!6

2-1n-unu10u10-n---08
0--01010101n111001011 13.3 7223273a921157cb

e21,3 -nu001111111u005
d-10110010100uuunnuu100u0001110110111010101010-10 0.0 47f15941903b7556

e22,0 xnnnnnnnnnnnnnnnnnnnnnnnnnnunnnnn110!-0-------100000000000000-01 0.0 7fffffefe9ea0005
e22,1 -!5

5--11110000=6
2-100110016

1-n1-111100106
1
6
7---7

c
7
a--011-10-00101!==-10 0.0 af80997f9519a95e

e22,2 x!==-01000010!6
2-nuuuuuu06

1-11-100001005
d
5
a---6

0
8
1--0011001nu100!==-01 1.1 ba14807c224ccd21

e23,3 -10111001000010111-111u1100010000110!-1-------00000000u-0------- 0.0 5c85dd886614017f
e23,0 -!5

5--11110000=6
2-100110016

1-10-111u1115
d---------111-10-00101!=6

2-11 0.0 2f80996f7f03a963
e23,1 -111-100100000--1-------5

8-==-100n-0-----------11111011=-6
2------- 0.0 7483db04d7b7efd7

e23,2 x001-1101001105
d-01-111!=5

8-==-100100!5
6---------00110011!-6

1------- 0.0 169a5e048860cea0
e23,3 -!---1-!5

8--11=5
d-100=5

d-116
2-00-05

d-10-06
1-----------8

4----11-11-=6
1-10 0.0 553e9b0a8157cfc6

v24,0 -5
7
5
b--10000006

1
6
1--5

e---------16
1-!==6

0-6
2-----------111-05

3-5
2
5
e--------- 0.0 a404747456bb993a

v24,1 x7
8--------------------7

8-------6
1--------------------------------- 0.0 ea8f36c95c86056c

v24,2 x6
b---!-15

d--15
7
6
e--==-=5

d-6
a
5
1--6

0
5
4-=5

6-00-5
d-----------------5

3
6
e--------- 0.0 6bd8f90f09b89e66

v24,3 x---------------6
b-----------------5

6-------------0--------------- 0.0 73b39ba32238423e

	Construction of Differential Characteristics in ARX Designs Application to Skein
	Introduction
	Our Results

	Analysis of Differential Characteristics
	Constraint Propagation and Probability Computation
	Our New Approach
	Propagation for a Differential Characteristic
	Propagation Example
	Comparison with Previous Works

	Automatic Construction of Differential Characteristics
	Types of Trails
	Algorithm

	Application to Skein-256
	Short Description of Threefish and Skein
	Building Characteristics
	General Results
	Collision Attacks
	Free-start Collision Attack
	Free-tweak Free-start Near-collision Attack

	Constraint Propagation
	(Near-)Collision Pairs for Skein-256
	Differential Characteristics for Skein-256

